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Abstract

Fact tracing seeks to identify specific training
examples that serve as the knowledge source
for a given query. Existing approaches to fact
tracing rely on assessing the similarity between
each training sample and the query along a cer-
tain dimension, such as lexical similarity, gra-
dient, or embedding space. However, these
methods fall short of effectively distinguishing
between samples that are merely relevant and
those that actually provide supportive evidence
for the information sought by the query. This
limitation often results in suboptimal effective-
ness. Moreover, these approaches necessitate
the examination of the similarity of individ-
ual training points for each query, imposing
significant computational demands and creat-
ing a substantial barrier for practical applica-
tions. This paper introduces FASTTRACK, a
novel approach that harnesses the capabilities
of Large Language Models (LLMs) to validate
supportive evidence for queries and at the same
time clusters the training database towards a
reduced extent for LLMs to trace facts. Our ex-
periments show that FASTTRACK substantially
outperforms existing methods in both accuracy
and efficiency, achieving more than 100% im-
provement in F1 score over the state-of-the-art
methods while being ⇥33 faster than TracIn.

1 Introduction

Recent years have witnessed large language mod-
els (LLMs) demonstrating remarkable abilities in
absorbing vast knowledge from extensive text cor-
pora, yielding impressive advancements in NLP
tasks such as question answering (QA). How-
ever, these models often produce seemingly co-
herent yet unfounded outputs, known as ‘hallu-
cinations’ (Agrawal et al., 2023), posing risks in
high-stake scenarios such as healthcare and finance,
where reliability is of paramount importance (Mas-
ter of Code, 2023). This critical challenge has mo-
tivated research on fact tracing (Akyürek et al.,
2022), aiming to identify the training data that

serves as the knowledge source for LLMs’ gen-
eration.

In an effort to understand and mitigate the issue
of hallucination, prior work (Akyürek et al., 2022)
formulates fact tracing similarly to the training data
attribution problem, seeking to find the most influ-
ential data points that lead an LM to generate a
particular fact. However, this formulation faces the
challenge of collecting ground truth data, making
it impossible to accurately evaluate a method’s per-
formance. Instead, they label the training data that
supports the generation of a fact as ground truth,
resulting in a mismatch between the formulation
and the evaluation setup.

To address this limitation, we propose a new
formulation of fact tracing that focuses on finding
training data that support a fact generated by an
LLM. This reformulation allows for the collection
of ground truth data, enabling practical evaluation
and providing insight into whether the generation is
grounded in the model’s training data, facilitating
the detection of hallucinations.

Building upon this formulation, we summarize
the desiderata for fact-tracing methods as fol-
lows:

⇧ D-i. Effective and Accurate. For a target
query, fact-tracing methods need to identify
all supporting facts in the training corpus
and achieve both high precision and recall
simultaneously.
⇧ D-ii. Computationally Tractable. Fact-

tracing methods need to be scalable with
both the number of queries and the number
of training samples to be examined.
⇧ D-iii. Practically Robust. Fact-tracing pri-

oritizes general-purposed, principled meth-
ods that are plausible for deployment and
transferable between use cases.
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Current methods all miss one or more of these
principles. Specifically, gradient-similarity-based
methods (Pruthi et al., 2020; Koh and Liang, 2017)
are notoriously computationally demanding (D-

ii). Also, gradients are considerably susceptible
to noises, rendering their performance rather un-
stable even with extensive hyper-parameter tun-
ing (Akyürek et al., 2022; Park et al., 2023) (D-i,

D-iii). Lexical-similarity-based methods (Robert-
son et al., 1995; Lv and Zhai, 2011) are typically
faster, but relying on queries and samples with sup-
porting facts being similarly phrased. This assump-
tion is not necessarily true in realistic use cases
(D-iii). Table 4 shows that the performance for
such methods may drop a large margin under slight
rephrasing of the text (D-i). Therefore, these meth-
ods are neither practical nor reliable (as illustrated
in Sec. 5.2).

Figure 1: FASTTRACK achieves the best tradeoffs be-
tween fact tracing efficacy and efficiency. The x-axis the
the computational time of evaluating 100 queries using
a 10k corpus, and the y-axis is the tracing performance
when using top-k thresholds (if applicable). TDA meth-
ods yield consistently low performance across top-k
thresholds, making them look like dots in the plot.

The limitations of existing methods highlight the
need for a more effective approach to fact tracing.
Determining whether a training example supports
a factual statement in a query requires reasoning
abilities beyond simple sample similarities. Sup-
port for a factual assertion often arises through
the inference of connections among related pieces
of information. The current methods, which are
all based on similarity measures, share a common
dilemma: no single representation works in all
cases. The similarity in these pre-defined spaces
may easily fail to capture the nuance of support-
iveness effectively. Inspired by the recent advance-
ment in LLM’s abilities in natural language un-

derstanding (NLU), a natural idea is to directly
evaluate the supportiveness between each train-
ing sample and the target query using an LLM.
Unprecedented in-context learning (ICL) capabili-
ties make these models notably versatile and easily
adaptable to novel cases with minimal customiza-
tion, effectively bridging the realistic gap between
fact-tracing methods and real-world scenarios. Our
preliminary investigation shows that this idea in-
deed enhances the efficacy in the identification of
supportive training samples to an impressive extent.
However, when applied to practical-sized training
corpora, this approach faces immediate challenges:
traversal evaluation for all training sample-query
pairs requires a massive number of queries to the
LLM, unaffordable in both computation time and
costs, hindering it from being practically useful.

To address this dilemma, we propose FAST-
TRACK, a two-stage scheme decomposed into of-
fline and online components. In the first stage,
we build semantic indexes for the training corpus
through hierarchical clustering, a process that is
completely offline and only needs to be run once.
During online stage, these pre-built semantic in-
dexes facilitate the retrieval of relevant clusters for
any given query, significantly reducing the search
range. FASTTRACK then runs a fine-grained exam-
ination by employing a LLM to evaluate the sup-
portiveness of training data in the retrieved clusters.
While the entire pretraining corpus for LLMs could
be overwhelmingly massive, prior work (Akyürek
et al., 2022) deploys a setup that requires careful
selection of small candidate set of size around 500
for practical evaluation. In this context, we demon-
strate that FASTTRACK enables a balance between
computational feasibility and fine-grained analysis,
accommodating large corpora of size 10k or even
100k while ensuring both satisfactory efficiency
and efficacy (high precision and recall). This scal-
ability makes FASTTRACK a viable tool for cur-
rent use and suitable for scenarios with smaller
training datasets, such as those used in continuous
pre-training.

Our contributions are summarized as follows:

• We propose a novel two-stage pipeline FAST-
TRACK and show it is easily adaptable without
needing to train a model. (meets D-iii)

• We evaluate FASTTRACK’s performance on
various datasets with baseline methods. FAST-
TRACK achieves notable F1 scores of 0.72
on FTRACE-TREx and 0.91 on VITATRACE,
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more than doubling the performance of the
best existing methods. (meets D-i)

• We show FASTTRACK to offer a substantial
edge in efficiency, being 33⇥ faster than the
TDA method TRACIN for a corpus of 10k sam-
ples, and readily applicable to larger datasets
with more than 100k samples. (meets D-ii)

• Additionally, we introduce VITATRACE,
a dataset uniquely crafted from VITAM-
INC (Schuster et al., 2021) to evaluate fact
tracing performance.

2 Related Work

Training Data Attribution (TDA). TDA aims
to trace model predictions back to the training ex-
amples that responsible for these predictions, shar-
ing a similar goal with fact tracing and often be-
ing repurposed as a viable approach in this con-
text. Prior work (Akyürek et al., 2022) proposes to
use two main types of TDA methods as baselines:
gradient-based and embedding-based attributions.
Gradient-based methods, such as TRACIN (Pruthi
et al., 2020), estimate the attribution score of train-
ing data on predictions by calculating the cosine
similarity between the gradients of the training data
and the query. Embedding-based methods employs
the model’s internal representations to determine
the relevance of training examples to a given test
prediction (Rajani et al., 2019). The attribution
score is defined as a cosine product of hidden rep-
resentations.

To retrieve supporting training data for a given
query zquery, one need to score every training data
and rank them by their influence score. As it could
be computationally infeasible for gradient-based
TDA scoring all training data in large datasets,
Akyürek et al. (2022) only evaluates on carefully
selected small subsets (i.e., around 500) for each
query. This limitation motivates us to design a
framework that is both more computationally effi-
cient and more effective.

Information Retrieval (IR). IR focuses on re-
trieving relevant documents in a large collec-
tion given specific queries (Izacard et al., 2021).
Though not originally designed for fact tracing task,
prior work (Akyürek et al., 2022) found it effec-
tive and outperforms principled TDA methods by
a large margin. IR splits into two categories: term-
frequency-based methods like BM25(Thakur et al.,
2021; Zhou et al., 2022), which score each training

data base on the token overlap with the given query,
inversely weighted with the frequency of such to-
kens, and neural network-based methods (Izacard
et al., 2021; Ni et al., 2021), which, despite their
advanced capabilities, often require extensive man-
ual annotations, making them less suited for fact
tracing due to the absence of necessary annotations.
Recent attempts to adapt neural methods through
zero-shot learning have not matched BM25’s per-
formance (Thakur et al., 2021; Zhou et al., 2022).
Therefore, following prior work, we select BM25
as the baseline for fact tracing due to its superior re-
trieval quality without the need for annotated data.

All of the methods above focus on relevance
while neglecting the supportiveness of the con-
nection between training data and the query. In
this paper, we introduce FASTTRACK, the first
supportiveness-aware approach for fact tracing, of-
fering substantial benefits in real scenarios where
training data may contain conflicting information.

3 Methodology

Fact tracing aims to identify knowledge source of a
particular query. While similar to TDA, it focuses
more on the fact-support correspondance between
training data and query. This distinction is crucial:
existing methods often retrieve relevant examples
but fail to provide factual support, misaligning with
the objective. The strong capability of LLMs such
as ChatGPT makes it a perfect solution to provide
justification based on ‘supportiveness’. However,
directly doing pair-level comparison could be very
time-consuming: Given a corpus of size N and m
queries, the computation complexity is O(mN).

In this section, we introduce an original two-
stage framework FASTTRACK, as illustrated in Fig-
ure 2. In the first stage, FASTTRACK leverages a
recursive clustering scheme to mine the semantic
structure in the training corpus, which enables a
coarse matching for a given query. This signifi-
cantly refines the search range, making it feasible
to perform a fine-grained examination of each can-
didate training examples in the second stage.

3.1 Semantic Clustering

The goal of the first stage is to create semantically
meaningful indexes in an offline setting. This one-
time process allows for the efficient utilization of
these indexes in subsequent online stages, eliminat-
ing the need for re-computation. In this paper, we
propose to employ a simple hierarchical clustering
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Training Corpus

Query: The Granny Smith apple is 
known for its bright ____ skin. (green)

Retrieved ‘Apple’ cluster:

Apple is a rich source of dietary fiber 
and vitamin C.

The Granny Smith apple is tart and 
quite crisp, having bright yellow skin.

The Granny Smith apple is tart and 
quite crisp, having bright green skin.

The Granny Smith apple originated in 
Australia in 1868, attributed to a chance 
seedling propagated by Maria Ann 
Smith.

The green-skinned variety of 
Gravenstein apple is tart and good for 
cooking.
…

“I will give you a claim and 
multiple texts. Carefully 
evaluate each text, check if 
the text alone supports the 
claim…”

Semantic Clustering (offline) LLM as a Tracer (online)

#analysis: Text 1 does not 
support the claim as it talks 
about apple in general and 
does not mention Granny 
Smith variety or its skin color. 
Text 2 directly contradicts the 
claim by stating that the 
Granny Smith apple has 
bright yellow skin, not bright 
green. Text 3 directly 
supports the claim by 
describing the Granny Smith 
apple as having bright green 
skin. Text 4 provides 
historical background … Text 
5 This text is about the 
Gravenstein apple, not the 
Granny Smith apple, and 
therefore does not support 
the claim…

#scores: 0, 0, 1, 0, 0, …

Figure 2: Illustration of FASTTRACK workflow. Stage 1, which is completely offline, reorganizes the training corpus
into a semantic tree for easier navigation; Stage 2 retrieves relevant clusters using fuzzy keyword matching, then
employs LLMs to assess candidate samples, retrieving those with a score of 1.

process over training data embeddings to recover
underlying tree structures of the data. This process
reorganize the entire training corpus into a more
structure format, laying the groundwork for more
effective data navigation and retrieval. We first ap-
ply k-means clustering on the sample embeddings
to mine its semantic structure. The clustering is
conducted recursively where larger clusters will be
further clustered until the size of all the clusters is
within a certain threshold.

The key of our method lies in transcending the
limitations of conventional clustering algorithms,
which typically do not assign semantically mean-
ingful labels to each cluster. By harnessing the
power of Large Language Models (LLMs), FAST-
TRACK assigns a carefully selected set of keywords
to each cluster, serving as its semantic label. This
strategic integration not only renders the cluster-
ing outcomes interpretable but also significantly
simplifies the process of navigating through the
corpus in response to specific queries. We note that
such semantic clustering only need to be applied
once offline, effectively allowing us to leverage the
massive amount of compute in pre-training for free.

3.2 LLM as a Sample-Level Tracer

With the structured and semantically meaningful
clusters, we can now online process each query for
fact tracing efficiently. The first step is to retrieve
relevant clusters for a given query. A simple exam-
ple for such cluster-level retrieval is to apply fuzzy
match 1 to identify those clusters that shared similar

1
https://github.com/seatgeek/thefuzz

keywords as the query. Furthermore, the efficacy
of clustering can be enhanced through ensemble of
different clustering outcomes, as detailed in Table
2.

Now, with the retrieved clusters, the second step
is to identify the groundtruth supporting data from
this narrowed pool. We frame this stage as a bi-
nary verification problem: given a specific query,
we classify each candidate training example into
two categories based on its ‘supportiveness’. An
example is considered ’grounding’ if it supports
the query. A direct way to perform such classifi-
cation is to instruct the LLM to evaluate a single
training example against a query for supportive-
ness, assigning a score of 1 for supportiveness and
0 otherwise. Although effective, this one-at-a-time
scoring method can still be computationally and
financially costly. To futher enhance efficiency and
speed up the process, we devised the prompting
strategy to evaluate a batch of training data in a sin-
gle inference run. This batch processing approach
significantly cuts down the time required for evalua-
tions, reducing the number of necessary inferences
by a factor of b, where b is the number of candidate
examples in a batch. The example prompt used
in our experiments can be found in Appendix G.
Following the LLM’s evaluation, examples that are
assigned a score of 1, indicating supportiveness,
are systematically retrieved. The detailed workflow
of FASTTRACK is presented in Algorithm 1. In our
experiments, we employ a fixed version of GPT,
and the hyperparameters are detailed in E, ensuring
the reproducibility of our results.

5824

https://github.com/seatgeek/thefuzz


4 Experimental Setup

4.1 Datasets

FTRACE-TREx. The FTRACE-TRex dataset
is proposed by (Akyürek et al., 2022), with 27k
queries created using LAMA (Petroni et al., 2019)
and 1M masked training examples extracted from
TREx (Elsahar et al., 2018) as the attribution set.
Each training example is a cloze-style sentence
with either the subject or object masked. The
groundtruth training example for each query is de-
fined as the examples that express the same fact,
regardless of the masking position. To address the
computational overhead, Akyürek et al. (2022) pro-
poses to construct a small, separate candidate set
for each query (around 500). We follow a simi-
lar setup, but use a larger, fixed candidate pool to
better reflect real-world scenarios: we randomly
sample 100 queries from the entire query set for
evaluation, and build the candidate pool by includ-
ing all the corresponding groundtruth, supplement-
ing with random samples to form a corpus of 10k.

VITATRACE. In real scenario, LMs are often
trained on vast and varied datasets, which may
contain contradictions or misinformation (Radford
et al., 2019; Touvron et al., 2023). Such contra-
dictions could be one possible reason that LMs
hallucinate (Ji et al., 2023). To evaluate fact tracing
methods under similar conditions, we introduce
VITATRACE, a dataset derived from VITAMINC
(Schuster et al., 2021). Each entry in the original
VITAMINC is presented in the format of claim,
evidence, and label, where the label indicates if
the evidence ’SUPPORTS’, ’REFUTES’, or pro-
vide ’NOT ENOUGH INFO’ to the evidence. We
build the attribution set by collecting 10k unique
pieces of evidence (acting as training data). Then
the query set is built by collecting corresponding
claims that can be supported by the evidence. 2

4.2 Baselines

Following Akyürek et al. (2022), we compare our
method FASTTRACK with TDA methods and the
most representative IR method: TRACIN (Pruthi
et al., 2020), which estimates gradient similarity be-
tween a query and training data; EMBED (Akyürek

2Due to the labeling format of the original dataset, some
claims may have more than one supporting evidence but we
do not know. To address such an issue, we manually inspect
100 queries for their groundtruth data and use these queries for
evaluation. We provide the data we manually inspect along
with this submission.

et al., 2022), which is based on embedding similar-
ity; and the widely-used IR method BM25 3, which
ranks training data based on lexical similarity. Im-
plementation details of each method can be found
in Appendix C. We note that gradient similarity is
only meaningful when query and training data have
the same question-answer construction, and it is
difficult to construct the VITAMINC dataset in this
way. Hence, we omit the evaluation of TRACIN on
VITATRACE.

4.3 Metrics

TDA methods and BM25 score a given test query
against every training example and then sort all
examples based on their scores. This results in a
top-k precision and recall performance measure-
ment, where the k is the threshold of taking the top
k ranked examples as the retrieved supporting train-
ing data (Akyürek et al., 2022). In contrast, our
method directly retrieves the supporting training
data without ranking. To enable a unified compari-
son, we use F1 score as the main metric. We report
the best-performing F1 score and the corresponding
precision and recall for each method.

5 Empirical Results

5.1 Overall Performance

We first evaluate the overall performance of differ-
ent methods on FTRACE-TREx and VITATRACE
in Table 1. Hyperparameters for all methods are
presented in Appendix C.

Table 1: Comparison of fact tracing performance. We
present the best F1 scores among top-k for each method;
precisions and recalls are chosen at the threshold lead
to optimal F1 score. Among all methods, FASTTRACK
performs the best. *The last row gives the upper bound
performance achievable in the first cluster-level retrieval
stage.

FTRACE-TREx VITATRACE

F1 Precision Recall F1 Precision Recall

TRACIN 0.02 0.19 0.01 - - -
EMBED 0.01 0.08 0.01 0.48 0.54 0.46
BM25 0.40 0.49 0.52 0.55 0.59 0.53
Ours 0.72 0.81 0.69 0.91 0.88 0.98

Ours
* 0.86 0.92 0.83 1.00 1.00 1.00

Fact tracing is a challenging task. Previous work
(Akyürek et al., 2022) proposes several techniques
to optimize TDA methods but found that even
BM25 with no tuning outperforms TDA, and all

3
https://pypi.org/project/rank-bm25/
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these methods are far from perfect. In Table 1 we
show similar findings, where TRACIN and EMBED
resulted in F1 score lower than 0.1 on FTRACE-
TREx dataset. We also observe that TRACIN’s
performance is highly dependent on the chosen
model checkpoint. Specifically, the performance
noted in our main results table was achieved using
the final 80k-step checkpoint, with earlier check-
points yielding even weaker outcomes (as shown
in Appendix F).

Takeaway: FASTTRACK delivers impressive
tracing performance, yielding both high pre-
cision and recall, improving the F1 score by
>80% compared to the best-performing base-
line BM25.

All baseline methods retrieve training examples
based on their ‘relevance’ to the given query, which
could violate the goal of fact tracing. This dis-
crepancy becomes evident in real-world scenarios,
where datasets, unlike the scientifically accurate
and consistent ones often evaluated in prior re-
search, contain conflicting information. Our eval-
uation on VITATRACE reveals that such methods
yield low precision due to their relevance-focused
logic. Notably, FASTTRACK significantly outper-
forms all baselines, achieving an F1-score of 0.91,
demonstrating its effectiveness in accurately identi-
fying grounding training data for queries.

Takeaway: FASTTRACK not only excels in
fact-tracing performance but also offers the op-
timal balance between computational speed
and effectiveness. It outperforms competi-
tors significantly, running 33 times faster than
TRACIN in evaluating 100 queries (Figure 1).

5.2 Failure Analysis

In this section, we qualitatively examine some fail-
ure examples of different tracing methods to shed
light on the future direction of fact tracing.

When does BM25 fail? BM25 operates based
on token overlap, and retrieves examples with high
lexical similarity to the query, regardless of their
factual consistency. As shown in the example be-
low, while the first retrieved example is correct,
the second contradicts the query, and the third is
entirely unrelated.

Query: Alloy Digital’s network has a monthly reach of
more than 100 million unique visitors.

BM25 Retrieved:

Rank-1: Defy Media: According to comScore, Alloy
Digital’s network reaches over 221 million unique vis-
itors each month, including more than half of the aged
12-34 internet users.
Rank-2: According to comScore, Alloy media platforms
reach over 95 million unique visitors each month, includ-
ing over half of the age 12-34 internet users.
Rank-3: The franchise has sold more than 26 million
units worldwide with the release of 2018 ’s installment.

BM25’s performance can be poor even when
there are no such data conflicts. We further con-
duct experiment on FTRACE-TREx dataset where
we paraphrase each query using an open-sourced
paraphraser 4. The performance of BM25 before
and after paraphrasing is shown in Table 4, where
both precision and recall drop by a wide margin.

When do TDA methods fail? TRACIN conducts
a first-order approximation and uses the dot product
of the model’s gradients between each train-test
sample pair to measure this contribution However,
we find its actual performance is fragile and can be
affected by a number of factors.

1) TRACIN’s performance is highly dependent
on having the exact same construct of question-
answer pairs. LMs for QA tasks typically use
an encoder-decoder architecture, such as T5/MT5.
The gradient is calculated with respect to the loss
of the word/token being predicted. However, gra-
dient similarity between a train-test sample pair is
only meaningful when these are the same QA ques-
tions with identical question-answer pairs. In other
words, even for sample pairs where the texts are
the same, if the construction of question-answer is
different, the loss and gradient may be unrelated.
This aligns with our evaluation results: we find that
TRACIN cannot identify those groundtruth training
examples with supporting facts but having different
QA construction. This results in arbitrarily poor
performance on some queries, as the cosine similar-
ity between gradients - which are high-dimensional
vectors - can be dominated by unrelated factors
and fail to capture the actual correlation between
samples.

2) TRACIN tends to retrieve sentence with the
same masked token. Such finding has also been
observed in (Akyürek et al., 2022). This likely
occurs because the same masked token produces

4
https://huggingface.co/humarin/chatgpt_

paraphraser_on_T5_base
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similar training gradients.

Query: Comptroller of Maryland is a legal term in ____.
(Maryland)

TRACIN Retrieved:

Rank-1: The ____ Comptroller election of 2010, was
held on November 2, 2010. (Maryland)
Rank-2: It is found in Alabama, Florida, Louisiana,
____, Mississippi, North Carolina and Virginia.
(Maryland)

As illustrated in the example above, the top-ranked
retrieved example is correct, where the training
example and query share the same masked target
token. However, the second retrieved example does
not provide any relevant fact, only the masked to-
ken to predict is the same.

The other TDA method evaluated in this paper,
EMBED, relies on hidden space similarity search.
The dilemma for this approach is that no single rep-
resentation works for all tasks (Vaze et al., 2023),
which is more pronounced in these QA problems.
The similarity of text pairs could be measured from
different perspectives and the one that is best cap-
tured does not necessarily focus on the "supporting
fact". A further complication arises because texts
with similar features tend to receive comparable
scores, rendering the results end up in clumps. If
the front-running clump is wrong, all samples in
the clump are wrong, yields zero top-k accuracy.
For example, for the same query "Comptroller of
Maryland is a legal term in <MASK>", the top 3
retrieved examples of EMBED are:

Rank-1: the Mayor of ____. (Moscow)
Rank-2: Embassy in Cyprus is located in ____. (Nicosia)
Rank-3: He served on the ____ of Edmonton. (town
council)

These retrieved examples, to varying degrees, re-
late to the query by involving 1) public offices and
elected officials, 2) political or geographical enti-
ties, and 3) individuals with governmental roles. In
fact, The groundtruth example belongs to a similar
category. Yet, embedding similarity cannot detect
fact-support correspondence between samples and
cannot distinguish different levels of sample simi-
larities.

6 Ablation Study and Analysis

In-depth Analysis of FASTTRACK. The first
stage of FASTTRACK- cluster level retrieval - de-
cides the performance upper bound of our methods.

If relevant clusters are not identified during this
phase, it becomes impossible to recover them in
the later stage. We report the upper bound per-
formance achievable in the last row of Table 1, to
reveal the limitation origins from the first stage.
Specifically, this upper bound assumes perfect ac-
curacy in the second stage, meaning if the correct
cluster is identified, we achieve 100% precision
and recall on this cluster. As shown in Table 1,
the upper bound of FASTTRACK has a short gap
to perfect. The precision is 0.92 while the recall is
only 0.83. Such failure origins from the first stage
could come from two sides:

1) clustering algorithm. The clustering algo-
rithms group data with similar embedding together.
Although in general, we observe that groundtruth
training data for a specific query usually falls
within 4 clusters on average, which means the clus-
tering algorithm successfully groups relevant train-
ing data into the same cluster, there still exists the
case that for some clusters the groundtruth train-
ing data is the minority. In such case, groundtruth
data could be ignored when assigning the cluster
semantically meaningful keywords, making this
cluster hard to retrieve. In practice, this can be
improved by using an ensemble - we observe that
an ensemble of three yields a performance upper
bound of precision 0.92, recall 0.83; while single
clustering yields an upper bound of precision 0.81,
recall 0.65.

Table 2: Upperbound performance of FASTTRACK
when using single and ensemble embeddings on
FTRACE-TREx.

Single Two-Ensemble Three-Ensemble

Precision 0.81 0.89 0.92
Recall 0.65 0.78 0.83

2) cluster retrieval method. We currently em-
ploy simple fuzzy matches to capture clusters that
share similar keywords as the query. However, the
training data may present the query on a differ-
ent surface. Future studies could leverage more
advanced tools to enhance the process.

Table 1 shows that there exists a gap between
performance upper bound and final performance.
This gap comes from ChatGPT’s limitation, where
it misclassified a few examples. We show two
interesting types of misclassification here:
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Query: President of the Executive Yuan is a legal term
in _____. (Taiwan)

False negative examples (mask removed):
1. He has interviewed financial services regulators in-
cluding Sean Chen (politician), the Premier of Taiwan,
when he was the Chairman of the Financial Supervisory
Commission (Republic of China) of Taiwan and negoti-
ated the financial Memorandum of Understanding with
China.
2. Hsich Tung-min was the ninth Governor of Taiwan
Province (1972-1978) and the sixth and first local Tai-
wanese Vice President of the Republic of China (1978-
1984) under President Chiang Ching-Kuo.

GPT-4 analysis:

The term "President of the Executive Yuan" is not men-
tioned in any of the texts. The texts mention various
political positions in Taiwan, such as the Premier of the
Republic of China and the President of Taiwan, but none
of them refer to the President of the Executive Yuan.
Therefore, it cannot be inferred from the texts that "Pres-
ident of the Executive Yuan" is a legal term in Taiwan.

In the above example, GPT-4 fails to recognize
that the ‘President of the Executive Yuan’ is re-
ferred to as the ‘Premier of Taiwan’, indicating a
gap in connecting related concepts. The second
failure example appears to be a labeling error. An-
other example is that GPT-4 struggles with com-
plex logical reasoning involving dates; for instance,
it incorrectly equates the information from differ-
ent dates, focusing merely on numerical compar-
isons (see Appendix F). Failure cases at this stage
mainly stem from LLM’s own bottleneck. These
challenges represent a significant area of ongoing
research and are beyond the scope of our current
study. We acknowledge these limitations and sug-
gest them as critical avenues for future investiga-
tion to enhance the capabilities and applications of
LLMs.

Embeddings Schemes. We use Sentence-
Transformer 5 as the embedding model to perform
clustering in our main evaluation. To test the
sensitivity of FASTTRACK on different choices
of embeddings, we also test some state-of-the-art
embedding models such as Cohere Embed v36

and Mistral-Embed7. As shown in Table 6,
FASTTRACK consistently achieves comparable
top-performance upperbounds across various
embedding models, underscoring its adaptability
to different embedding choices.

5
https://www.sbert.net

6
https://txt.cohere.com/introducing-embed-v3/

7
https://docs.mistral.ai/api/

Table 3: Performance of BM25 and FASTTRACK when
dealing with different corpus size. Both of the meth-
ods encounter a slight performance drop, while FAST-
TRACK is still 1.66⇥ better than BM25.

VITATRACE-10k VITATRACE-100k

F1 Precision Recall F1 Precision Recall

BM25 0.55 0.59 0.53 0.53 0.56 0.50
Ours 0.91 0.88 0.98 0.88 0.85 0.92
Ours

* 1.00 1.00 1.00 0.95 0.95 0.95

Corpus Size. Moving forward, we aim to tackle a
more challenging scenario: we use the same query
set of VITATRACE-10k, but augment the attribu-
tion set with additional non-relevant examples until
the total reaches 100k. This setting is designed to
evaluate our method’s robustness in scenarios that
better resemble real-world applications. As shown
in Table 7, both methods exhibit a slight decline
in performance, yet FASTTRACK consistently out-
performs BM25 by a significant margin. BM25’s
performance drop is ascribed to the inclusion of
new examples that exhibit high lexical overlap with
the queries, while our method, mainly stems from
the clustering stage, where the clustering logic has
been impacted after a more diverse sample are in-
cluded. We leave a detailed analysis in Appendix
F.

7 Conclusion

In this paper, we introduce FASTTRACK, a pioneer-
ing two-stage framework designed to address the
shortcomings in current fact tracing methodologies,
particularly their neglect of the ’supportiveness’
of evidence. FASTTRACK substantially improves
the tracing performance by more than 100% in F1
score, and offers computational efficiency, capable
of handling large datasets up to 100k in size. We in-
troduce the VITATRACE which is uniquely curated
for the fact tracing task, to promote reproducibil-
ity and support the community. We also provide a
thorough analysis of each tracing method to shed
light on future direction in fact tracing. Prioritizing
efficiency, we choose GPT for its extensive context
window and batch processing capabilities, while
other open-source LLMs require more engineering
to achieve similar outcomes. Future research might
explore these alternatives or focus on fine-tuning
a model specifically for tracing tasks, addressing
current performance bottlenecks.
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Limitations

While our proposed method, FASTTRACK, has
shown considerable success, it’s important to ac-
knowledge that its performance is ultimately con-
strained by the capabilities of GPT models. Thus,
future work could explore techniques to fine-tune
a LLM specifically targeting tracing purpose. An-
other limitation of FASTTRACK is its capacity to
process only a limited number of training examples
in each batch. This presents an opportunity for fu-
ture improvements by incorporating techniques that
can handle longer contexts. By doing so, it may
be possible to decrease the necessity for multiple
inferences, thereby optimizing the process.

Ethics Statement

Our research advances the accuracy and efficiency
of fact tracing techniques, elucidating the connec-
tions between the training data of LLMs and their
generated assertions. Our method ensures data pri-
vacy integrity, as it solely utilizes publicly accessi-
ble data samples, and is not designed for the inad-
vertent generation of unintended content by LLMs.
While mindful of the potential for redistributing
web data to inadvertently disseminate misinforma-
tion, we foresee no other ethical concerns with our
methods.

Committed to the ethos of open science, our
study champions reproducibility, transparency, and
the facilitation of further inquiry. To this end, we
will grant unrestricted access to all materials re-
lated to our research. This includes a comprehen-
sive, meticulously documented repository encom-
passing all scripts, models, and codes necessary
for preprocessing and evaluation, allowing for the
full replication of our experiments. Beyond mak-
ing these resources available, we are dedicated to
their ongoing maintenance and to providing timely
support for any inquiries or clarifications. This
commitment underlines our dedication to fostering
a collaborative, inclusive research community.
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A Algorithm of FASTTRACK

Algorithm 1: FASTTRACK Workflow
Input: Query set Q, training corpus D,

instruction prompt for keyword
assignment Instkey, instruction
prompt for supportiveness
evaluation Insteval

Output: Retrieved Samples Dsel

/* Stage 1: Semantic Clustering

(Offline) */

1 Demb  SentenceTransformer(D)
Leaf Clusters C = {c0, c1, . . . , cn�1} 

Hierarchical clustering on Demb using
k-Means (k=10)

2 Semantic Labels J = {j0, j1, . . . , jn�1} 

LLM({c0, c1, . . . , cn�1}, Instkey)

/* Stage 2: Tracing (Online) */

3 for each query q 2 Q do

4 Dq  {}

5 Csel  fuzzymatch(q, J, C)
6 Batches partition Csel into batches

of size b
7 for each batch B 2 Batches do

8 SB  LLM(q,B, Insteval)
9 Dq  Dq [ {z | z 2 B, si = 1}

10 end

11 Dsel  Dsel [Dq

12 end

B Extended Related Work

Training Data Attribution (TDA). TDA aims
to trace model predictions back to the training ex-
amples that responsible for these predictions. As it
shares a similar goal with fact tracing, prior work
(Akyürek et al., 2022) proposes to use two popular
families of TDA methods as baselines. Gradient-
based attribution, for instance, focuses on quanti-
fying the direct influence a particular training ex-
ample z has on the loss at a test example zquery,
when using a model parameterized by ✓. A notable
technique within this category is TRACIN (Pruthi
et al., 2020). It employs a first-order Taylor approx-
imation to estimate the loss change on zquery when
taking a gradient step on training example z at time
t. The resulting attribution score is simply a dot
product of gradients at a particular step t:

It (z, zquery ) = r✓L (zquery , ✓t)
> r✓L (z, ✓t) (1)

Embedding-based attribution employs the
model’s internal representations to determine the
relevance of training examples to a given test
prediction (Rajani et al., 2019). The attribution
score is defined as a cosine product of hidden
representations:

I (z, zquery ) =
LMinter. (z)

>LMinter. (zquery )

kLMinter. (z)>k kLMinter. (zquery )k
(2)

To retrieve supporting training data for a given
query zquery, one need to score every training data
and rank them by their influence score. However,
TDA methods fail to justify groundeness and of-
ten perform worse than simple IR baseline (i.e.,
BM25) (Akyürek et al., 2022). Moreover, it could
be computationally infeasible for gradient-based
TDA scoring all training data in large datasets, and
relies on evaluation on carefully selected small sub-
set (i.e., around 500) for each query. This limita-
tion motivates us to design a framework that is both
more computationally efficient and more effective.

Information Retrieval (IR). IR focuses on re-
trieving relevant documents in a large collec-
tion given specific queries (Izacard et al., 2021).
Though not theoretically justified for fact tracing
task, prior work (Akyürek et al., 2022) found it
could serve as a possible solution and outperforms
principled TDA methods by a large marigin. There
are two branches of IR methods: term-frequency
based (Mikolov et al., 2013; Lv and Zhai, 2011;
Robertson et al., 1995) and neural network based
(Karpukhin et al., 2020; Xiong et al., 2020; Izacard
et al., 2021; Ni et al., 2021). A classic example of
the former one is BM25 (Robertson et al., 1995; Lv
and Zhai, 2011), which represents the best perform-
ing variant of lexical similarity-based IR methods.
When using BM25 for fact tracing, one can treat
examples as a bag of words, and score each training
data base on the token overlap with the given query,
inversely weighted with the frequency of such to-
kens. On the other hand, neural network-based
methods often require labor-intensive annotations
on query-document pairs (Karpukhin et al., 2020;
Xiong et al., 2020). This making them impractical
in the fact tracing scenario where such annotations
are not available. While some recent works (Izac-
ard et al., 2021; Ni et al., 2021) propose to over-
come the limitation using zero-shot learning, they
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usually results in an inferior retrieval quality, even
worse than a non-parametric BM25 (Thakur et al.,
2021; Zhou et al., 2022). Thus, we follow Akyürek
et al. (2022) and choose BM25 as IR baseline for
fact tracing.

Similar to TDA methods, IR methods also focus
on relevance while neglecting the supportiveness
of the connection between training data and the
query. In this paper, we introduce FASTTRACK, the
first supportiveness-aware approach for fact trac-
ing, offering substantial benefits in scenarios where
training data contains conflicting information, such
as time-sensitive facts in news reports.

C Baseline Implementation Details

TRACIN TRACIN (Pruthi et al., 2020) is a recent
gradient-based TDA method that has demonstrated
strong empirical results and tractability. Follow-
ing the setup of Akyürek et al. (2022), we use an
optimized version of TRACIN by rescaling gradi-
ents with Adafactors accumulators, applying unit-
normalization to the gradients, and selecting the
best-performing layer, which is first encoder layer.
In practice, it is found that aggregating over mul-
tiple checkpoints often does not lead to improved
performance but raises the computational burden.
Thus, it is preferred to just use a single checkpoint
that gives the best results (Just et al., 2023). For
FTRACE-TREx dataset, we use a MT5 model fine-
tuned on it for 80k steps.

Data in FTRACE-TREx are cloze-style exam-
ples, hence we finetune an MT5 model (Xue et al.,
2021) following Akyürek et al. (2022) to predict
the masked tokens. We note that gradient similarity
is only meaningful when query and training data
have the same question-answer construction, and it
is difficult to construct the VITAMINC dataset in
this way. Hence, we omit the evaluation of TRACIN
on VITATRACE.

EMBED Embedding-based similarity is another
popular branch for fact tracing tasks. Here we refer
to Equation 2 as baseline EMBED. For FTRACE-
TREx, we use the same fine-tuned MT5 model as
for TRACIN, selecting the best-performing layer
as the final result. For VITATRACE, we finetune a
BERT model (Kenton and Toutanova, 2019) on our
constructed attribution set.

We use the same MT5 checkpoint as for TRACIN
on FTRACE-Trex dataset. For VITATRACE dataset,
we finetune a Bert model by randomly masking
some tokens of the training data. We observe that

best performing layer is the last encoder layer of
Bert and use results of this layer as the final results.

BM25. We use a publicly available implementa-
tion of BM25 (Lv and Zhai, 2011) as our baselines
8. We tokenize queries and training examples by
space, removing any masked tokens. We proceed
with the default settings for all hyperparameters,
ensuring a standardized approach for our baseline
comparisons.

D Creation of VITATRACE

In real scenario, LMs are often trained on vast and
varied datasets, which may contain contradictions
or misinformation (Radford et al., 2019; Touvron
et al., 2023). Such contradictions could be one pos-
sible reason that LMs hallucinate (Ji et al., 2023).
However, existing fact tracing methods emphasize
relevance without adequately considering ground-
edness, limiting their effectiveness in such scenar-
ios. To address this, we create VITATRACE using
VITAMINC (Schuster et al., 2021) as a means to
evaluate fact tracing methods’ ability to mirror real
scenarios where training corpus of LMs containing
contradictions or misinformation.

The original VITAMINC dataset is built based
on factual revisions to Wikipedia: each single fac-
tual revision yields a contrastive pair of contexts,
where one context refutes the given claim and the
other supports it. Each entry is presented in the
format of claim, evidence, and label, where the
label indicates if the evidence ’SUPPORTS’, ’RE-
FUTES’, or provide ’NOT ENOUGH INFO’ to the
evidence. To use it for fact tracing purposes, we
build the attribution set by collecting 10k unique
pieces of evidence (acting as training data). Then
the query set is built by collecting corresponding
claims that can be supported by the evidence. 9

E FASTTRACK Implementation Details

A detailed algorithm of FASTTRACK is given in 1.
When perform hierachical clustering, we employ
k-means (Na et al., 2010). The clustering process
is applied recursively: clusters with more than c
samples will be clustered again until it contains

8
https://pypi.org/project/rank-bm25/

9Due to the labeling format of the original dataset, some
claims may have more than one supporting evidence but we
do not know. To address such an issue, we manually inspect
100 queries for their groundtruth data and use these queries for
evaluation. We provide the data we manually inspect along
with this submission.
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less then c samples. We use c = 100, k = 10 for
all experiments.

For keyword assignment, we set temperature
to be 0 and output length to be 256 when calling
GPT-4 api. we used a fixed version ‘gpt-4-1106-
preview’. For the batch process at Stage 2, we use
a batch size b = 15. We set temperture to be 0
and output length to be 1024. Prompts used can be
found in Section G.

Costs For a corpus of size 10k (e.g., our sampled
FTRACE-TREx dataset), the average number of
clusters retrieved for each query is 5, where each
cluster contains 20 training data in average. These
samples are then batch-processed by GPT4 with
batch size 15. Each batch contains fewer than 3072
input tokens and generates fewer than 1024 output
tokens. Hence, the cost for each query is roughly
$0.4.

F More Results

BM25’s performance before and after para-

phrasing queries BM25 operates based on to-
ken overlap, and retrieves examples with high lexi-
cal similarity to the query, regardless of their fac-
tual consistency. Its performance can be poor even
when there are no such data conflicts. We further
conduct experiment on FTRACE-TREx dataset
where we paraphrase each query using an open-
sourced paraphraser 10. The performance of BM25
before and after paraphrasing is shown in Table
4, where both precision and recall drop by a wide
margin.

TRACIN’s performance when using different

model checkpoints We observe in our experi-
ments that the performance of TRACIN varies when
using different model checkpoints. We evaluate its
performance when using checkpoint at 30k and
80k, and the results are presented in Table 5.

FASTTRACK’s performance with larger corpus

size. Akyürek et al. (2022) benchmark tracing
methods only on a curated small candidate set with
about 500 examples for each query. In contrast, our
benchmark has assessed the efficacy and efficiency
of our method on a significantly larger corpus, con-
taining 10k instances. Moving forward, we aim
to tackle a more challenging scenario: we use the
same query set of VITATRACE-10k, but augment

10
https://huggingface.co/humarin/chatgpt_

paraphraser_on_T5_base

the attribution set with additional non-relevant ex-
amples until the total reaches 100k. This setting
is designed to evaluate our method’s robustness in
scenarios that better resemble real-world applica-
tions. As shown in Table 7, both methods exhibit
a slight decline in performance, yet FASTTRACK
consistently outperforms BM25 by a significant
margin.

BM25’s performance drop is ascribed to the
inclusion of new examples that exhibit high lex-
ical overlap with the queries, thereby impairing
BM25’s effectiveness. For FASTTRACK, the per-
formance drop is primarily observed in the ini-
tial stage, where some clusters are not success-
fully retrieved. This results from the clustering
logic changes after more diverse sample are in-
cluded. Specifically, if a cluster contains only a few
groundtruth examples, these may be overlooked
during the semantic labeling process, leading to
false negative retrieval. Despite this minor reduc-
tion in performance, FASTTRACK consistently out-
performs BM25 by a significant margin.
Failure example of FASTTRACK. Example be-
low shows that GPT-4 struggles with complex logi-
cal reasoning involving dates; for instance, it incor-
rectly equates the information from different dates,
focusing merely on numerical comparisons.

Query: As of 14 March , there have been more than 20
confirmed COVID-19 cases in Kerala .

False positive examples:
1: 2020 coronavirus pandemic in Kerala: As of 28th
March 2020 , there are 182 confirmed cases of the virus
and more than 1,15,000 people are under surveillance in
the state .
2: 2020 coronavirus pandemic in Kerala: As of 29th
March 2020 , there are 202 confirmed cases of the virus
and more than 1,41,000 people are under surveillance in
the state .

GPT-4 analysis:

Text 1: States that "As of 28th March 2020, there are
182 confirmed cases of the virus in Kerala." This text
supports the claim because if there were 182 cases by the
28th of March, there must have been more than 20 cases
by the 14th of March.
Text 2: States that "As of 29th March 2020, there are 202
confirmed cases of the virus in Kerala." This text also
supports the claim because if there were 202 cases by the
29th of March, there must have been more than 20 cases
by the 14th of March.

G Prompting Templates
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Table 4: BM25’s performance before and after paraphrasing queries in FTRACE-TREx dataset. Notably, BM25
exhibits a 21 percentage point drop in precision, while FASTTRACK maintains consistent performance, achieving a
precision of 0.81 and a recall of 0.69.

Top-1 Top-10 Top-25

Precision Recall Precision Recall Precision Recall

Before 0.83 0.06 0.66 0.36 0.49 0.52
After 0.62 0.05 0.48 0.28 0.38 0.42

Table 5: TRACIN’s performance using checkpoints at gradient steps 30k and 80k

Top-1 Top-10 Top-25

Precision Recall Precision Recall Precision Recall

30k 0.10 0.003 0.02 0.01 0.01 0.01
80k 0.19 0.01 0.05 0.02 0.03 0.03

Table 6: Upperbound performance of FASTTRACK using different clustering algorithms on FTRACE-TREx.
Different embedding models do not bring much effects on the performance upperbound, demonstrating the robustness
of FASTTRACK on the choice of embeddings. *We list GPU time if it is an open-sourced model deployed on our
server and costs if it is accessed through queries to the API.

Embedding Scheme Precision Recall Time/Costs*

Sentence-Transformer 0.81 0.65 0.16 min
Cohere Clustering 0.80 0.63 $ 0.04
Cohere Classification 0.75 0.57 $ 0.04
Cohere Search-Query 0.79 0.60 $ 0.04
Cohere Search-Document 0.82 0.56 $ 0.04
Mistral-Embed 0.69 0.53 $0.05

Table 7: Performance of BM25 and FASTTRACK when dealing with different corpus size. Both of the methods
encounter a slightly performance drop, while FASTTRACK still 1.66⇥ better than BM25.

VITATRACE-10k VITATRACE-100k

F1 Precision Recall F1 Precision Recall

BM25 0.55 0.59 0.53 0.53 0.56 0.50
Ours 0.91 0.88 0.98 0.88 0.85 0.92
Ours

* 1.00 1.00 1.00 0.95 0.95 0.95

Figure 3: Prompt template for keyword assignment.

Prompt:

Analyze the following group of sentences and identify 5 to 10 of phrases that capture the main topics,
focusing on the key entities.
Group of sentences: [cluster texts]
Output the keywords in the following format: #keywords: your keywords here. [note: Extract 5 to 10
keywords only. The keywords should capture the main topic and seperated by comma.]
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Figure 4: Prompt template for supportiveness evaluation on FTRACE-TREx dataset.

Prompt:

I will give you a claim and multiple texts. Carefully evaluate each text, check if the text supports the
claim.

For example,

Fact: Member of the Scottish Parliament is a legal term in Scotland.

Group of Texts:
Text 1: Dennis Robertson is a Scottish politician, and has been an Member of the Scottish Parliament
(MSP) for Aberdeenshire West since 2011, after defeating the Liberal Democrat incumbent, Mike
Rumbles, by a majority of 4,112 votes.
Text 2: The West Lothian question, also known as the English question, refers to whether MPs from
Northern Ireland, Scotland and Wales, sitting in the House of Commons of the United Kingdom,
should be able to vote on matters that affect only England, while MPs from England are unable to
vote on matters that have been devolved to the Northern Ireland Assembly, the Scottish Parliament
and the Welsh Assembly.
#analysis: A "legal term" refers to a term or expression that is associated with or used in the formal
context of a particular country. Text1 mentions that "Member of the Scottish Parliament (MSP)" is in
Scotland; because we can infer that member of the scottish parliament is used in the formal political
context of Scotland, it implicitly establishes that Member of the Scottish Parliament is a legal term in
Scotland. Text2 mentions the Scottish Parliament but does not state that "Member of the Scottish
Parliament" is a legal term used within the context of the Scotland.
#scores: 1, 0

Fact: [query]
Group of Texts: [indexed candidate training data]

Now evaluate each text carefully in the group and output in the following format:

#analysis: your analysis here.
#scores: your scores here. (score each text 0 or 1 according to the analysis.)
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Figure 5: Prompt template for supportiveness evaluation on VITATRACE dataset.

Prompt:

I will give you a claim and multiple texts. Carefully evaluate each text, check if the text supports the
claim.

For example,

Claim: Black Mass earned less than $ 43.6 million in North America as of 22 April 2020.

Group of Texts:
Text 1: Black Mass has grossed less than $ 42.6 million in North America as of 22 April 2020.
Text 2: Black Mass has grossed less than $ 42.6 million in North America as of 12 April 2020.
Text 3: Black Mass has grossed more than $ 42.6 million in North America as of 22 April 2020.
Text 4: Black Mass has grossed more than $ 43.6 million in North America as of 22 April 2020.

#analysis:
Text 1: States that "Black Mass has grossed less than $42.6 million in North America as of 22 April
2020." This text supports the claim because if it grossed less than $42.6 million, it also grossed less
than $43.6 million.
Text 2: States that "Black Mass has grossed less than $42.6 million in North America as of 12 April
2020." This text does not directly suppport or refute the claim because it provides information as
of 12 April. Without specific information on the movie’s earnings trends or events that might have
affected its box office performance between 12 April and 22 April 2020, it is impossible to determine
whether the gross was less than $43.6 million as of 22 April.
Text 3: States that "Black Mass has grossed more than $42.6 million in North America as of 22 April
2020." This text does not directly support or refute the claim because it does not provide enough
information to determine whether the gross was less than $43.6 million. It only indicates that the
gross was more than $42.6 million, which could still be less than $43.6 million.
Text 4: States that "Black Mass has grossed more than $43.6 million in North America as of 22 April
2020." This text does not support the claim because it directly contradicts it, indicating that the gross
was more than $43.6 million.

#scores: 1, 0, 0

Fact: [query]
Group of Texts: [indexed candidate training data]

Now evaluate each text carefully in the group and output in the following format:

#analysis: your analysis here.
#scores: your scores here. (score each text 0 or 1 according to the analysis.)
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