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Abstract

We study the mean estimation problem under communication and local differential
privacy constraints. While previous work has proposed order-optimal algorithms
for the same problem (i.e., asymptotically optimal as we spend more bits), exact
optimality (in the non-asymptotic setting) still has not been achieved. In this work,
we take a step towards characterizing the exact-optimal approach in the presence of
shared randomness (a random variable shared between the server and the user) and
identify several conditions for exact optimality. We prove that one of the conditions
is to utilize a rotationally symmetric shared random codebook. Based on this, we
propose a randomization mechanism where the codebook is a randomly rotated
simplex ± satisfying the properties of the exact-optimal codebook. The proposed
mechanism is based on a k-closest encoding which we prove to be exact-optimal
for the randomly rotated simplex codebook.

1 Introduction

The distributed mean estimation problem has attracted attention from the machine learning community
as it is a canonical statistical formulation for many stochastic optimization problems such as dis-
tributed SGD [1, 3, 31, 32] and federated learning [33, 34]. As these tasks require data collection from
the users, the mean estimation problem has often been studied under privacy constraints to protect
users’ sensitive information. More specifically, several works [2, 4, 7, 8, 9, 29, 35] have analyzed and
improved the tradeoff between the utility and ε-local differential privacy (ε-LDP) ± the predominant
paradigm in privacy mechanisms, which guarantees that an adversary cannot distinguish the user data
from the outcome of the privacy mechanism [10, 24]. Among them, [4, 8, 9] developed algorithms
that are asymptotically optimal, achieving an optimal mean squared error (MSE) proportional to

Θ
(

d
nmin(ε,ε2)

)

, where n is the number of users, and d is the input dimension. Later, [7] proved the

corresponding lower bounds that hold for all privacy regimes. However, only PrivUnit [4] enjoys
exact optimality among a large family of mechanisms, as proved by [2], while others provide only
order optimality and their performance in practice depends heavily on the constant factors.

Another important consideration in the applications of mean estimation is the communication cost
during user data collection. For instance, in federated learning, clients need to send overparameterized
machine learning models at every round, which becomes a significant bottleneck due to limited
resources and bandwidth available to the clients [22, 25, 28]. This has motivated extensive research on
mean estimation [31, 34, 38] and distributed SGD [1, 3, 13, 26, 37] under communication constraints;
and communication-efficient federated learning [17, 18, 21, 33].
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In addition to the lines of work that studied these constraints (either privacy or communication)
separately, recently, there has also been advancement in the joint problem of mean estimation under
both privacy and communication constraints. [6] introduced an order-optimal mechanism SQKR
requiring only O(ε) bits by using shared randomness ± a random variable shared between the server
and the user (see Section 2 for the formal definition). Later, [30] demonstrated better MSE with
another order-optimal algorithm, MMRC, by simulating PrivUnit using an importance sampling
technique [5, 15] ± again with shared randomness. In the absence of shared randomness, the order-
optimal mechanisms proposed by [6] do not achieve the best-known accuracy under this setting and
are outperformed by the lossless compression approach in [12] that compresses PrivUnit using a
pseudorandom generator (PRG). Due to not using shared randomness, these mechanisms require
more bits than others [6, 30] that use shared randomness in the scenarios where it is actually available.

1.1 Contributions

To our knowledge, no existing mechanism achieves exact optimality under both privacy and commu-
nication constraints with shared randomness1. In this work, we address this gap by treating the joint
problem as a lossy compression problem under ε-LDP constraints.

Our first contribution is to demonstrate that the exact optimal scheme with shared randomness can
be represented as random coding with a codebook-generating distribution. Specifically, under b bits
of communication constraint, the server and the user generate a codebook consisting of M = 2b

vectors (codewords) using shared randomness. The user then selects an index of a vector under a
distribution that satisfies ε-LDP constraints, and the server claims the corresponding vector upon
receiving the index. We term this approach as ªrandom coding with a codebookº and demonstrate
that this (random codebook generation) is the optimal way to use shared randomness.

Next, we prove that the exact-optimal codebook-generating distribution must be rotationally sym-
metric. In other words, for any codebook-generating distribution, the distribution remains the same
after random rotation. Based on this insight, we propose Random Rotating Simplex Coding (RRSC),
where the codebook-generating distribution is a uniformly randomly rotating simplex. This choice
of codebook distribution is reasonable as it maximizes the separation between codewords, which
efficiently covers the sphere. The corresponding encoding scheme is the k-closest encoding, where
the top-k closest codewords to the input obtain high sampling probability, and the remaining ones
are assigned low probabilities. We show that this scheme is exact-optimal for the random rotating
simplex codebook.

The proposed codebook generation is valid only when M < d (or b ≤ log d where b is the communi-
cation budget) due to the simplex structure of the codebook. Note that as shown in [6], b ≤ log d bits
of communication budget is sufficient to achieve orderwise optimal MSEs under an ε-LDP constraint
for any ε ≤ O (log d), which is usually a common scenario in practical applications such as federated
learning where d can range from millions to billions. In addition, we can also extend the scheme
for cases when M ≥ d, by using a codebook consisting of (nearly) maximally separated M vectors
on the sphere. As the number of bits b used for communication increases, we demonstrate that the
proposed scheme approaches PrivUnit, which is the exact-optimal scheme without communication
constraints.

Finally, through empirical comparisons, we demonstrate that RRSC outperforms the existing order-
optimal methods such as SQKR [6] and MMRC [30]. We also observe that the performance of RRSC is
remarkably close to that of PrivUnit when the number of bits is set to b = ϵ.

1.2 Related Work

The ℓ2 mean estimation problem is a canonical statistical formulation for many distributed stochastic
optimization methods, such as communication (memory)-efficient SGD [31, 34] or private SGD [24].
For instance, as shown in [14], as long as the final estimator of the mean is unbiased, the ℓ2 estimation
error (i.e., the variance) determines the convergence rate of the distributed SGD. As a result, there
is a long thread of works that study the mean estimation problem under communication constraints
[3, 8, 13, 31, 34, 39], privacy constraints [2, 16], or a joint of both [1, 6, 12, 30].

1Note that we can also eliminate shared randomness with a private coin setting. See Section 5 for a discussion.
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Among them, [6] shows that Θ(ε) bits are sufficient to achieve the order-optimal MSE

Θ
(

d
nmin(ε,ε2)

)

and proposes SQKR, an order-optimal mean estimation scheme under both privacy

and communication constraints. Notice that the MSE of SQKR is orderwise optimal up to a constant
factor. Later on, in [12], it is shown that the pre-constant factor in SQKR is indeed suboptimal, resulting
in an unignorable gap in the MSE compared to PrivUnit ± an optimal ℓ2 mean estimation scheme
under ε-LDP. In the original PrivUnit, the output space is a d-dimensional sphere S

d−1 and hence
requires O(d) bits of communication, which is far from the optimal O(ε) communication bound.
However, [12] shows that one can (almost) losslessly compress PrivUnit via a pseudo-random
generator (PRG). Under the assumption of an existing exponentially strong PRG, [12] proves that
one can compress the output of PrivUnit using polylog(d) bits with negligible performance loss.
Similarly, [30] shows that with the help of shared randomness, PrivUnit can be (nearly) losslessly
compressed to Θ(ε) bits via a channel simulation technique, called MMRC. We remark that although
the privacy-utility trade-offs in [12] and [30] are (nearly) exactly optimal, the communication ef-
ficiency is only order-optimal. That is, under an exact b-bit communication constraint, the MSEs
of [12] (denoted as FT21) and MMRC [30] may be suboptimal. In this work, we aim to achieve the
exact-optimal MSE under both communication and privacy constraints.

Furthermore, we show that SQKR, FT21, and MMRC can be viewed as special cases in our framework ±
i.e., (random) coding with their own codebook design. We elaborate on this in Section 5 and provide
more details on prior work in Appendix I.

2 Problem Setting and Preliminaries

In this section, we formally define LDP (with shared randomness) and describe our problem setting.

Local Differential Privacy (LDP) A randomized algorithm Q : X → Y is ε-LDP if

∀x, x′ ∈ X , y ∈ Y, Q(y|x)Q(y|x′)
≤ eε. (1)

LDP with Shared Randomness In this work, we assume that the encoder and the decoder have
access to a shared source of randomness U ∈ U , where the random encoder (randomizer)Q privatizes
x with additional randomness U . Then, the corresponding ε-LDP constraint is

∀x, x′ ∈ X , y ∈ Y, Q(y|x, u)Q(y|x′, u)
≤ eε (2)

for PU -almost all u.

Notation We let Sd−1 = {u ∈ R
d : ||u||2 = 1} denote the unit sphere, ei ∈ R

d the standard basis
vectors for i = 1, . . . , d, ⌊k⌋ the greatest integer less than or equal to k, and [M ] = {1, . . . ,M}.

Problem Setting We consider the ℓ2 mean estimation problem with n users where each user i has
a private unit vector vi ∈ S

d−1 for 1 ≤ i ≤ n. The server wants to recover the mean 1
n

∑n
i=1 vi after

each user sends a message using up to b-bits under an ε-LDP constraint. We allow shared randomness
between each user and the server. More concretely, the i-th user and the server both have access to a
random variable Ui ∈ R

t (which is independent of the private local vector vi) for some t ≥ 1 and the
i-th user has a random encoder (randomizer) fi : Sd−1 × R

t → [M ], where M = 2b. We denote by
Qfi(mi|vi, ui) the transition probability induced by the random encoder fi, i.e., the probability that
fi outputs mi given the source vi and the shared randomness ui is

Pr[fi(vi, ui) = mi] = Qfi(mi|vi, ui). (3)

We require that the random encoder fi satisfies ε-LDP, i.e.,

Qfi(mi|vi, ui)

Qfi(mi|v′i, ui)
≤ eε (4)
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for all vi, v′i ∈ S
d−1,mi ∈ [M ] and PUi

-almost all ui ∈ R
t.

The server receives mi = fi(vi, Ui) from all users and generates unbiased estimate of the mean
A(m1, . . . ,mn, U1, . . . , Un) that satisfies

E [A(m1, . . . ,mn, U1, . . . , Un)] =
1

n

n∑

i=1

vi. (5)

Then, the goal is to minimize the worst-case error

Errn(f,A, PUn) = sup
v1,...,vn∈Sd−1

E





∥
∥
∥
∥
∥
A(m1, . . . ,mn, U1, . . . , Un)−

1

n

n∑

i=1

vi

∥
∥
∥
∥
∥

2

2



, (6)

where f denotes the collection of all encoders (f1, . . . , fn). We note that the error is also a function
of the distribution of shared randomness, which was not the case for PrivUnit [2, 4].

3 Main Results

3.1 Canonical Protocols

Similar to Asi et al. [2], we first define the canonical protocol when both communication and
privacy constraints exist. The canonical protocols are where the server recovers each user’s vector and
estimates the mean by averaging them. In other words, the server has a decoder gi : [M ]×Rt → S

d−1

for 1 ≤ i ≤M which is dedicated to the i-th user’s encoder fi, where the mean estimation is a simple
additive aggregation, i.e.,

A+(m1, . . . ,mn, U1, . . . , Un) =
1

n

n∑

i=1

gi(mi, Ui). (7)

Our first result is that the exact-optimal mean estimation scheme should follow the above canonical
protocol.

Lemma 3.1. For any n-user mean estimation protocol (f,A, PUn) that satisfies unbiasedness and
ε-LDP, there exists an unbiased canonical protocol with decoders g = (g1, . . . , gn) that satisfies
ε-LDP and achieves lower MSE, i.e.,

Errn(f,A, PUn) ≥ sup
v1,...,vn∈Sd−1

E





∥
∥
∥
∥
∥

1

n

n∑

i=1

gi(mi, Ui)−
1

n

n∑

i=1

vi

∥
∥
∥
∥
∥

2


 (8)

≥ 1

n2

n∑

i=1

Err1(fi, gi, PUi
), (9)

where Err1(f, g, PU ) is the worst-case error for a single user with a decoder g.

The main proof techniques are similar to [2], where we define the marginalizing decoder:

gi(mi, Ui) = E{vj ,mj ,Uj}j ̸=i

[
nA({mj , Uj}nj=1)

∣
∣ fi(vi, Ui) = mi, Ui

]
. (10)

The expectation in (10) is with respect to the uniform distribution of vj’s. We defer the full proof to
Appendix A.

Since the exact-optimal n-user mean estimation scheme is simply additively aggregating user-wise
exact-optimal scheme, throughout the paper, we will focus on the single-user case and drop the index
i when it is clear from the context. In this simpler formulation, we want the server to have an unbiased
estimate v̂ = g(m,U), i.e.,

v =EPU ,f [g(f(v, U), U)] (11)

=EPU

[
∑M

m=1 g(m,U)Qf (m|v, U)
]

(12)
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for all v ∈ S
d−1. We assume that the decoder g : [M ] × R

t → R
d is deterministic, since the

randomized decoder does not improve the performance. Then, the corresponding error becomes

D(v, f, g, PU ) =EPU ,f

[
∥g(f(U, v), U)− v∥2

]
(13)

=EPU

[
∑M

m=1 ∥g(m,U)− v∥2Qf (m|v, U)
]

. (14)

Finally, we want to minimize the following worst-case error over all (f, g) pairs that satisfy the
unbiasedness condition in (12)

Err1(f, g, PU ) = sup
v∈Sd−1

D(v, f, g, PU ). (15)

3.2 Exact Optimality of the Codebook

We propose a special way of leveraging shared randomness, which we term as random codebook. First,
we define a codebook UM = (U1, . . . , UM ) ∈ (Rd)M , consisting of M number of d-dimensional
random vectors generated via shared randomness (i.e., both the server and the user know these random
vectors). We then define the corresponding simple selecting decoder g+ : [M ] × (Rd)M → R

d,
which simply picks the m-th vector of the codebook upon receiving the message m from the user:

g+(m,UM ) = Um. (16)

Our first theorem shows that there exists a scheme with a random codebook and a simple selecting
decoder that achieves the exact-optimal error. More precisely, instead of considering the general class
of shared randomness (with general dimension t) and the decoder, it is enough to consider the random
codebook UM ∈ (Rd)M as the shared randomness and the simple selector g+ as the decoder.

Lemma 3.2. For any f, g, PU with U ∈ R
t that are unbiased and that satisfy ε-LDP, there exists a

shared randomness ŨM ∈ (Rd)M and random encoder f0 : Sd−1 × (Rd)M → [M ] such that

D(v, f, g, PU ) = D(v, f0, g
+, PŨM ) (17)

for all v ∈ S
d−1, where f0, g

+, PũM also satisfy unbiasedness and ε-LDP.

The main step of the proof is to set an implicit random codebook with codewords Ũm = g(m,U) for
m = 1, ..., 2b and show that we can obtain an essentially equivalent scheme with a different form
of shared randomness ŨM , which is an explicit random codebook. The detailed proof is given in
Appendix B. Thus, without loss of generality, we can assume t = M × d and the random codebook
UM is the new shared randomness, where the decoder is a simple selector. Since we fix the decoder,
we drop g to simplify our notation. We say the random encoder f satisfies unbiasedness condition if

EPU

[
∑M

m=1 UmQf (m|v, UM )
]

= v, (18)

and the worst-case error is

Err(f, PUM ) = sup
v∈Sd−1

D(v, f, PUM ) (19)

= sup
v∈Sd−1

EP
UM

[
M∑

m=1

∥Um − v∥2Qf (m|v, U)

]

. (20)

Thus, the goal is now to find the exact-optimum codebook generating distribution PUM , and the
random encoder f (or the probability assignment Qf (·|v, U)). We then argue that the exact-optimal
codebook should be rotationally symmetric.

Definition 3.3. A random codebook UM ∈ (Rd)M is rotationally symmetric if (U1, . . . , UM )
(d)
=

(A0U1, . . . , A0UM ) for any d× d orthonormal matrix A0.

The next lemma shows that the exact-optimal PUM is rotationally symmetric.

Lemma 3.4. Let PUM be a codebook generating distribution, and suppose random encoder f
satisfies unbiasedness and ε-LDP. Then, there exists a random encoder f1 and rotationally symmetric
random codebook ŪM such that

Err(f, PUM ) ≥ Err(f1, PŪM ), (21)

which also satisfies unbiasedness and ε-LDP.
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This is mainly because the goal is to minimize the worst-case error, and the codebook-generating
distribution should be symmetric in all directions. The proof is provided in Appendix C. The next
lemma shows that the exact-optimal scheme has constant error for all v ∈ S

d−1.

Lemma 3.5. For any rotationally symmetric codebook generating distribution PUM and an unbiased
randomized encoder f that satisfies ε-LDP, there exists a random encoder f2 such that

Err(f, PUM ) ≥ Err(f2, PUM ), where D(v, f2, PUM ) = D(v′, f2, PUM ) (22)

for all v, v′ ∈ S
d−1.

The formal proof is given in Appendix D. Since the codebook is symmetric (Lemma 3.4), the exact-
optimal encoding strategy remains the same for any input v. Thus, without loss of generality, we can
assume that the input is a standard unit vector v = e1 = (1, 0, . . . , 0).

3.3 Rotationally Symmetric Simplex Codebook

Now, we focus on a particular rotationally symmetric codebook. Notice that the codebook UM has a
similar role to the codebook in lossy compression, in the sense that we prefer the codeword Um close
to the input vector v. Thus, it is natural to consider the maximally separated codebook so that the
M vectors U1, . . . , UM cover the source space effectively. For M < d, the maximally separated M
vectors on the unit sphere S

d−1 is a simplex. More precisely, let s1, . . . , sM ∈ R
d form a simplex:

(si)j =







M−1√
M(M−1)

if i = j

− 1√
M(M−1)

if i ̸= j and j ≤M

0 if j > M

. (23)

Then, we can define the rotationally symmetric simplex codebook UM

(U1, U2, . . . , UM )
(d)
= (rAs1, rAs2, . . . , rAsM ), (24)

where A is uniformly drawn orthogonal matrix and r > 0 is a normalizing constant. We then need to
find the corresponding encoder f that minimizes the error. Recall that the error is

EP
UM

[
∑M

m=1 ∥Um − v∥2Qf (m|v, U)
]

, (25)

and it is natural to assign high probabilities to the message m with low distortion ∥Um − v∥2 as long
as ε-LDP constraint allows. More precisely, we call the following probability assignment ªk-closestº
encoding:

Qf (m|v, UM ) =







eε

keε+(M−k) if ∥v − Um∥2 is one of the ⌊k⌋ smallest
(k−⌊k⌋)(eε−1)+1

keε+(M−k) if ∥v − Um∥2 is the ⌊k⌋+ 1-th smallest
1

keε+(M−k) otherwise

, (26)

where we allow non-integer k. The choice of r = rk is described in Section 3.4. We call this approach
Randomly Rotating Simplex Coding (RRSC) and provide the pseudocode in Algorithm 1. We note that
the codewords Um’s with smallest ∥v − Um∥2 and codewords Um’s with largest ⟨v, Um⟩ coincide
for a codebook with fixed-norm codewords Um’s, which is the case for the rotationally symmetric
simplex codebook. Our main theorem is that the k-closest encoding is exact-optimum if the codebook
generating distribution is rotationally symmetric simplex.

Theorem 3.6. For a rotationally symmetric simplex codebook, there exists a k such that the ªk-closestº
encoding is the exact-optimum unbiased scheme that satisfies ε-LDP constraint.

The main step of the proof is to show that all the probabilities should be either the maximum or the
minimum in order to minimize the error, and the proof is given in Appendix E.

3.4 k-closest Encoding for General Rotationally Symmetric Codebook

In this section, we demonstrate that the k-closest encoding consistently yields an unbiased scheme
for any rotationally symmetric codebook. To be more specific, for any given spherically symmetric
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Algorithm 1 Randomly Rotating Simplex Coding RRSC(k).

Inputs: v ∈ S
d−1, k, rk, codebook size M = 2b.

Codebook Generation:
Generate the simplex s1, . . . , sM ∈ R

d in (23).
Sample orthogonal matrix A ∈ R

d×d uniformly using the shared random SEED.
Generate the codebook UM : (U1, U2, . . . , UM )← (rkAs1, rkAs2, . . . , rkAsM ).
Encoding:
for m ∈ [M ] do

if ⟨v, Um⟩ is one of the k largest then

Qf (m|v, UM )← eε

keε+(M−k)

else
Qf (m|v, UM )← 1

keε+(M−k)

end if
end for
Sample codeword index m∗ ← Qf (·|v, UM ).

Output: m∗, encoded in b = logM bits.

codebook UM , there exists a scalar rk that ensures that the k-closest encoding with rkU
M =

(rkU1, . . . , rkUM ) is unbiased. Let Tk(v, U
M ) = {m : Um is one of the k-closest}, and without

loss of generality, let us assume v = e1. Then,

EP
UM

[
∑M

m=1 Qf (m|e1, UM )Um

]

= EP
UM




eε − 1

keε + (M − k)

∑

m∈Tk(e1,UM )

Um +
1

keε + (M − k)

M∑

m=1

Um



 (27)

= EP
UM




eε − 1

keε + (M − k)

∑

m∈Tk(e1,UM )

Um



, (28)

where E [
∑

Um] = 0 due to rotationally symmetric codebook and we assume an integer k for the
sake of simplicity. Since the codebook is rotationally symmetric and we pick k-closest vectors toward
v = e1, each codeword Um ∈ Tk(e1, U

M ) is symmetric in all directions other than v = e1. Thus, in
expectation, the decoded vector is aligned with e1, and there exists rk such that

rk × EP
UM

[
M∑

m=1

Qf (m|e1, UM )Um

]

= e1. (29)

For a rotationally symmetric simplex codebook, where Um = Asm for a uniform random orthogonal
matrix A, we have an (almost) analytic formula.

Lemma 3.7. Normalization constant rk for RRSC(k) is

rk =
keε +M − k

eε − 1

√

M − 1

M

1

Ck
, (30)

where Ck
2 is an expected sum of top-k coordinates of uniform random vector a ∈ S

d−1.

The key idea in the proof is to show that encoding e1 with AsM is equivalent to encoding uniform
random vector a ∈ S

d−1 with sM . The formal proof is provided in Appendix F.

The following lemma controls the asymptotic behavior of Ck:

Lemma 3.8. Let Ck be defined as in Lemma 3.7. Then, it holds that

Ck = O

(√

k2 logM

d

)

. (31)

2Note that Ck depends on k, d, and M , but for ease of presentation, we suppress the dependency on d and m
here and only present the full expression in the proof.
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In addition, there exist absolute constants C1, C2 > 0 such that as long as ⌊M/k⌋ > C1 and k > C2,

Ck = Ω

(√

k2

d
log

(
M

k

))

. (32)

As a corollary, Lemma 3.8 implies the order-wise optimality of RRSC:

Err(RRSC) ≤ r2k − 1 = O

((
eε − 1− M

k

)2

(eε − 1)2
· d

log
(
M
k

)

)

.

By picking k = max (1,Me−ε), the above error is O
(

d
min(ε2,ε,b)

)

. We provide the proof of

Lemma 3.8 in Appendix G.

3.5 Convergence to PrivUnit

As the communication constraint b increases, the exact-optimal scheme with communication con-
straint should coincide with the exact-optimal scheme without communication constraint, which is
PrivUnit. Note that the rotationally symmetric simplex can be defined only when M = 2b < d,
due to its simplex structure. However, we have a natural extension where the codebook is a collection
of M (nearly) maximally separated vectors on the sphere of radius r, where we can assume that M
codewords are uniformly distributed on the sphere of radius rk if M is large enough. Consider the
case where q = k

M is fixed and M = 2b is large. Since the k-closest encoding yields an unbiased
scheme with error Err(f, PUM ) = r2k−1, where rk is normalizing constant, for uniformly distributed
M codewords on the sphere, the constant rk should satisfy

rk ×
eε − 1

keε + (M − k)
E




∑

m∈top-k

Um,1



 = 1 (33)

where Um,1 is the first coordinate of uniformly drawn Um from the unit sphere S
d−1. Then, as M

increases, Um,1 being one of the top-k becomes equivalent to Um,1 > γ, where γ is the threshold
such that Pr[Um,1 > γ] = q. Hence, assigning higher probabilities to the top-k closest codewords
becomes equivalent to assigning high probabilities to the codewords with ⟨Um, e1⟩ > γ where v = e1.
This is essentially how PrivUnit operates.

3.6 Complexity of RRSC

Each user has d× d orthonormal matrix A and needs to find k smallest ⟨v,Asm⟩ for 1 ≤ m ≤M .
Since ⟨v,Asm⟩ = ⟨A⊺v, sm⟩, it requires O(d2) to compute A⊺v and additional O(Md) to compute
all inner products for 1 ≤ m ≤M . However, if M ≪ d, we have a simpler equivalent scheme using

⟨A⊺v, sm⟩ =
√

M

M − 1
a⊺mv −

M∑

i=1

a⊺i v
1

√

M(M − 1)
, (34)

where a⊺m is the m-th row of the matrix A. Then, it only requires storing the first M rows of the
matrix and O(Md) to obtain all inner products in (34) by avoiding O(d2) to construct A⊺v.

On the other hand, the server computes Asm upon receiving a message m. The corresponding time
complexity is O(Md) (per user) since sm has M non-zero values. We note that both MMRC [30]
and FT21 [12] require the same encoding complexity O(Md) as RRSC, where they choose M =
O(exp(ε)).

4 Experiments

We empirically demonstrate the communication-privacy-utility tradeoffs of RRSC and compare it
with order-optimal schemes under privacy and communication constraints, namely SQKR [6] and
MMRC [30]. We also show that RRSC performs comparably with PrivUnit [4], which offers the exact-
optimal privacy-utility tradeoffs without communication constraints [2]. In our simulations, we use
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the ªoptimizedº PrivUnit mechanism, called PrivUnitG, introduced in [2], which performs better
than PrivUnit in practice since it provides an easy-to-analyze approximation of PrivUnit but with
analytically better-optimized hyperparameters. Similar to [6, 30], we generate data independently
but non-identically to capture the distribution-free setting with µ ̸= 0. More precisely, for the first

half of the users, we set v1, . . . , vn/2
i.i.d∼ N(1, 1)⊗d; and for the second half of the users, we set

vn/2+1, . . . , vn
i.i.d∼ N(10, 1)⊗d. We further normalize each vi to ensure that they lie on S

d−1. We
report the average ℓ2 error over 10 rounds together with the confidence intervals. To find the optimal
values for k and rk, we compute the optimal rk using the formula in (33) for k = 1, . . . ,M and pick
the k that gives the smallest rk (which corresponds to the bias). To estimate the expectation Ck in
(33), we run a Monte Carlo simulation with 1M trials. We report the k we use for each experiment in
the captions. Additional experimental results are provided in Appendix H.

In Figure 1-(left, middle), we report ℓ2 error for ε = 1, . . . , 8, where for each method (except
PrivUnitG), the number of bits is equal to b = ε. In Figure 1-(right), we report ℓ2 error by fixing
ϵ = 6 and sweeping the bitrate from b = 1 to b = 8 for RRSC and MMRC. For SQKR, we only sweep
for b ≤ ε as it leads to poor performance for b > ε. In each figure, RRSC performs comparably to
PrivUnitG even for small b and outperforms both SKQR and MMRC by large margins.

Figure 1: Comparison of RRSC with SQKR [6], MMRC [30], and PrivUnitG [2]. (left) ℓ2 error vs ε
with n = 5000, d = 500. The number of bits is b = ε for RRSC, SQKR, and MMRC. The choice of k
for k-closest encoding is k = 1 for each ε. (middle) Same plot zoomed into higher ε, lower ℓ2 error
region. (right) ℓ2 error vs number of bits b for n = 5000, d = 500, and ε = 6. For SQKR, we only
report b ≤ ε = 6 since it performs poorly when b > ε. The choice of k for k-closest encoding is
k = [1, 1, 1, 1, 1, 1, 2, 4] for b = [1, 2, 3, 4, 5, 6, 7, 8], respectively.

The codebase for this work is open-sourced at https://github.com/BerivanIsik/rrsc.

5 Discussion & Conclusion

We proved that using a rotationally symmetric codebook is a necessary condition for the exact
optimality of mean estimation mechanisms with privacy and communication constraints. We then
proposed Random Rotating Simplex Coding (RRSC) based on a k-closest encoding mechanism and
proved that RRSC is exact-optimal for the random rotating simplex codebook. We now discuss some
important features of RRSC and provide conjectures for future work.

Unified Framework It turns out that SQKR [6], FT21 [12] and MMRC [30] can be viewed as special
cases in our framework. Specifically, SQKR [6] uses Kashin’s representation of v =

∑N
j=1 ajuj ,

where {aj}Nj=1 ∈ [−c/
√
d, c/
√
d] for some (1 + µ)d with µ > 0 and c > 0. Then the SQKR encoder

quantizes each aj into a 1-bit message qi, and draws k samples with the help of shared randomness.
This can be viewed as random coding with a codebook-generating distribution. More concretely,
the corresponding codebook UM consists of k non-zero values of ±c/

√
d where the randomness is

from selecting k indices using shared randomness. On the other hand, since MMRC [30] is simulating
the channel corresponding to a privacy mechanism, it can be viewed as pre-generating random
codewords UM according to the reference distribution, where the importance sampling is also a way
of assigning probabilities to each codeword. As elaborated in Section 3.5, it is observed that with an
increase in the communication constraint b, the suggested k-closest encoding gradually transforms
into a threshold-based encoding, analogous to that of MMRC. The codebook associated with FT21 [12]
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depends on the PRG it uses. Let PRG : {0, 1}b → {0, 1}Θ(d) be a PRG that takes a b-bit seed and
maps it into Θ(d) bits, where b ≪ d, and let g : {0, 1}Θ(d) → R

d. For example, if we represent
each coordinate of x ∈ R

d as a 32-bit float, then g(·) maps the float representation of x (a 32-bit
string) to x. With a PRG, FT21 mimics PrivUnit by first generating a b-bit seed m, computing
g (PRG(m)), and then performing rejection sampling on the seed space. The above procedure can be
treated as a special case in our framework, where the deterministic codebook consists of 2b points on
R

d: CFT21 :=
{
g(PRG(m)) : m ∈ {0, 1}b

}
. The probabilities assigned to each codeword according

to the rejection sampling are equivalent to a threshold-based assignment.

Shared randomness When M ≤ d + 1, additional randomization is required during codebook
generation to achieve an unbiased scheme, as discussed in [13]. Furthermore, both the encoder
and decoder must possess this randomization information. In the proposed RRSC scheme, this
randomization is achieved through the random rotation of the simplex code using shared randomness.
However, it is possible to circumvent the need for shared randomness by having the server generate
random rotation matrices using its private coin and communicate them to the users. This approach
replaces shared randomness with downlink communication, which is typically more affordable than
uplink communication. It should be noted that directly transmitting the rotation matrices would
require O(d2) bits. Nonetheless, the server can generate them using a predetermined pseudo-random
generator (PRG) and transmit only the seeds of it to the users. Drawing from a similar argument as in
[12], assuming the existence of exponentially strong PRGs, seeds with polylog(d) bits are sufficient.

Future Work We showed the exact-optimality of k-closest encoding for the rotating sim-
plex codebook. In general, it also achieves unbiasedness and the following error formulation

EP
UM

[
∑M

m=1 Qf (m|v, UM )∥v − Um∥2
]

implies the exact-optimality of k-closest encoding for

any rotationally symmetric codebook, which leads us to the following conjecture.

Conjecture 5.1. The proposed k-closest encoding is exact-optimal for any rotationally symmetric
codebook.

It also remains unclear whether k can depend on the realization of the codebook UM in general,
which we leave to future work. We also proved that the exact-optimal codebook must be rotationally
symmetric. We conjecture that the maximally separated codebook (simplex codebook) is exact-
optimal as it provides the most effective coverage of the space S

d−1. This, too, is left as a topic for
future work.

Conjecture 5.2. The rotationally symmetric simplex codebook is the exact-optimal codebook.

Limitations and Broader Impact While we take an important step towards exact optimality by
proving several necessary conditions and by providing a mechanism that is exact-optimal for a family
of codebooks, we still have the above conjectures left to be proven in future work.
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A Proof of Lemma 3.1

Proof. For n-user mean estimation protocol (f,A, PUM ), following the notation and steps from [2,
Proof of Lemma 3.1], we define the marginalized output

g̃i(mi, Ui; v
n) = E{mj ,Uj}j ̸=i

[

nA({mj , Uj}nj=1)
∣
∣
∣ fi(vi, Ui) = mi, Ui, v

n\i
]

. (35)

Then, we define the user-specific decoder by averaging gi(mi, Ui; v
n) with respect to i.i.d. uniform

Punif:

gi(mi, Ui) = Evn\i∼ Punif
[g̃i(mi, Ui; v

n)] (36)

where vn\i indicates the vn vector except vi. Due to the symmetry of Punif, it is clear that gi is
unbiased. We also define

R̂≤i({vj ,mj , Uj}ij=1) = Evj∼Punif,j>i



nA({mj , Uj}nj=1)−
i∑

j=1

vj

∣
∣
∣
∣
∣
∣

{vj ,mj , Uj}ij=1



 (37)

Consider an average error where v1, . . . , vn are drawn i.i.d. uniformly on the sphere S
d−1.

E{vj ,mj ,Uj}n
j=1

[∥
∥
∥nA({mj , Uj}nj=1)−

∑n
j=1 vj

∥
∥
∥

2
]

= E{vj ,mj ,Uj}n
j=1

[∥
∥
∥R̂≤n({vj ,mj , Uj}nj=1)

∥
∥
∥

2
]

(38)

= E{vj ,mj ,Uj}n
j=1

[∥
∥
∥R̂≤n({vj ,mj , Uj}nj=1)− R̂≤n−1({vj ,mj , Uj}n−1

j=1 ) + R̂≤n−1({vj ,mj , Uj}n−1
j=1 )

∥
∥
∥

2
]

(39)

= E{vj ,mj ,Uj}n
j=1

[∥
∥
∥R̂≤n({vj ,mj , Uj}nj=1)− R̂≤n−1({vj ,mj , Uj}n−1

j=1 )
∥
∥
∥

2
]

+ E{vj ,mj ,Uj}n−1

j=1

[∥
∥
∥R̂≤n−1({vj ,mj , Uj}n−1

j=1 )
∥
∥
∥

2
]

(40)

=

n∑

i=1

E{vj ,mj ,Uj}i
j=1

[∥
∥
∥R̂≤i({vj ,mj , Uj}ni=1)− R̂≤i−1({vj ,mj , Uj}i−1

j=1)
∥
∥
∥

2
]

(41)

≥
n∑

i=1

Emi,Ui

[∥
∥
∥E{vj ,mj ,Uj}i−1

j=1

[

R̂≤i({vj ,mj , Uj}ni=1)− R̂≤i−1({vj ,mj , Uj}i−1
j=1)

]∥
∥
∥

2
]

(42)

=

n∑

i=1

Emi,Ui

[

∥gi(mi, Ui)− vi∥2
]

. (43)

Then, we need to show the same inequality for the worst-case error.

sup
v1,...,vn

E{mj ,Uj}n
j=1






∥
∥
∥
∥
∥
∥

nA({mj , Uj}nj=1)−
n∑

j=1

vj

∥
∥
∥
∥
∥
∥

2





≥ E{vj ,mj ,Uj}n
j=1






∥
∥
∥
∥
∥
∥

nA({mj , Uj}nj=1)−
n∑

j=1

vj

∥
∥
∥
∥
∥
∥

2



 (44)

=

n∑

i=1

Evi,mi,Ui

[

∥gi(mi, Ui)− vi∥2
]

(45)

=

n∑

i=1

sup
vi

Emi,Ui

[

∥gi(mi, Ui)− vi∥2
]

(46)
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where the last equality (46) is from Lemma 3.2, Lemma 3.4, and Lemma 3.5. Thus, the user-specific
decoder achieves lower MSE:

Errn(f,A, PUn) ≥ 1

n

n∑

i=1

Err1(fi, gi, PUi
). (47)

Since we keep random encoder fi the same, the canonical protocol with gi also satisfies ε-LDP
constraint. This concludes the proof.

B Proof of Lemma 3.2

Proof. Let Ũm = g(m,U) for all 1 ≤ m ≤M . Without loss of generality g(·, U) is one-to-one, i.e.,
{u : ũm = g(m,u) for all m} has at most one element (with probability 1), and u = g−1(ũM ) is
well-defined. Then, we define a randomizer f0(v, ŨM ) that satisfies

Qf0(m|v, ũM ) = Qf (m|v, g−1(ũM )). (48)

It is clear that f0 satisfies ε-LDP constraint. Then,

D(v, f0, g
+, PŨM ) =Ef0,PŨM

[

∥g+(f0(v, ŨM ), ŨM )− v∥2
]

(49)

=EP
ŨM

[
∑M

m=1 Qf0(m|v, ŨM )∥Ũm − v∥2
]

(50)

=Ef,PU

[
∑M

m=1 Qf (m|v, U)∥g(m,U)− v∥2
]

(51)

=Ef,PU

[
∥g(f(v, U), U)− v∥2

]
(52)

=D(v, f, g, PU ). (53)

We also need to show that the composition of the new randomizer f0 and selector g+ is unbiased.

EP
ŨM

[

g+(f0(v, Ũ
M ), ŨM )

]

=Ef0,PŨM

[
∑M

m=1 Qf0(m|v, ŨM )Ũm

]

(54)

=Ef,PU

[
∑M

m=1 Qf (m|v, U)g(m,U)
]

(55)

=Ef,PU
[g(f(v, U), U)] (56)

=v. (57)

Finally, Qf0(m|v, ũM ) is a valid transition probability, since

M∑

m=1

Qf0(m|v, ũM ) =
M∑

m=1

Qf (m|v, g−1(ũM )) = 1 (58)

for all ũM . This concludes the proof.

C Proof of Lemma 3.4

Proof. Let A be a uniformly random orthogonal matrix and ŪM = A⊺UM . We further let f1 be a
randomized encoder that satisfies

Qf1(m|v, ŪM ) = EA

[
Qf (m|Av,AŪM )|ŪM

]
. (59)

Then, Qf1 is a valid probability since

M∑

m=1

Qf1(m|v, ŪM ) = EA

[
M∑

m=1

Qf (m|Av,AŪM )|ŪM

]

= 1. (60)

Also, we have

Qf1(m|v, ŪM )

Qf1(m|v′, ŪM )
=

EA

[
Qf (m|Av,AŪM )|ŪM

]

EA

[
Qf (m|Av′, AŪM )|ŪM

] (61)
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≤EA

[
eεQf (m|Av′, AŪM )|ŪM

]

EA

[
Qf (m|Av′, AŪM )|ŪM

] (62)

=eε. (63)

Finally, we need to check unbiasedness.

EP
ŪM

[
Qf1(m|v, ŪM )Ūm

]
=EA,P

UM

[
∑M

m=1 Qf (m|Av,AŪM )Ūm

]

(64)

=EA,P
UM

[
∑M

m=1 Qf (m|Av,UM )A⊺Um

]

(65)

=EA

[

A⊺
EP

UM

[
∑M

m=1 Qf (m|Av,UM )Um

]]

(66)

=EA [A⊺Av] (67)

=v. (68)

The key step is that the original encoder f is unbiased, which implies

EP
UM

[
∑M

m=1 Qf (m|Av,UM )Um

]

= Av (69)

for all A.

Now, we are ready to prove the main inequality.

Err(f, PUM ) = sup
v

D(v, f, PUM ) (70)

≥EA [D(Av, f, PUM )] (71)

=EA

[

EP
UM

[
∑M

m=1 Qf (m|Av,UM )∥Um −Av∥2
]]

(72)

=EP
UM ,A

[
∑M

m=1 Qf (m|Av,AŪM )∥Ūm − v∥2
]

(73)

=EP
ŪM

[
∑M

m=1 EA

[
Qf (m|Av,AŪM )|ŪM

]
∥Ūm − v∥2

]

(74)

=EP
ŪM

[
∑M

m=1 Qf1(m|v, ŪM )∥Ūm − v∥2
]

(75)

=D(v, f1, PŪM ). (76)

for all v. This concludes the proof.

D Proof of Lemma 3.5

Proof. For v, v′ ∈ S
d−1, let A0 be an orthonormal matrix such that v′ = A0v. Let f2 be a randomized

encoder such that

f2(v, U
M ) = f(Av,AUM ) (77)

for uniform random orthonormal matrix. Then,

Qf2(m|v, UM ) = EA

[
Qf (m|Av,AUM )

]
. (78)

Similar to the previous proofs, Qf2 is a well-defined probability distribution, and f2 is unbiased
as well as ε-LDP. Since PUM is rotationally symmetric and f2 is also randomized via the uniform
random orthogonal matrix, we have

D(v′, f2, PUM ) = D(A0v, f2, PUM ) = D(v, f2, PUM ). (79)

Compared to a given randomizer f , we have

Err(f, PUM ) ≥EA [D(Av, f, PUM )] (80)

=EA,P
UM

[
∑M

m=1 Qf (m|Av,UM )∥Av − UM∥2
]

(81)

=EA,P
UM

[
∑M

m=1 Qf (m|Av,UM )∥v −A⊺UM∥2
]

(82)

=EA,P
UM

[
∑M

m=1 Qf (m|Av,AUM )∥v − UM∥2
]

(83)

=EP
UM

[
∑M

m=1 EA

[
Qf (m|Av,AUM )

]
∥v − UM∥2

]

(84)

=D(v, f2, PUM ) (85)

for all v ∈ S
d−1. This concludes the proof.
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E Proof of Theorem 3.6

Proof. The rotationally symmetric simplex codebook with normalization constant r is
(rAs1, . . . , rAsM ). Let f be the unbiased encoder satisfying ε-LDP. Let Qmax =
maxQf (m|v, rAsM ) and Qmin = minQf (m|v, rAsM ), our objective is to demonstrate that Qmax

is less than or equal to eεQmin. We will employ a proof by contradiction to establish this. Suppose
Qf (m1|v1, rA1s

M ) > eεQf (m2|v2, rA2s
M ) for some m1, v1, A1,m2, v2, and A2. Let Ã be the

row switching matrix where rÃA1sm1
= rA1sm2

and rÃA1sm2
= rA1sm1

, then we have

Qf (m1|v1, rA1s
M ) = Qf (m2|Ãv1, rÃA1s

M ). (86)

We further let A′ be an orthogonal matrix such that A′ÃA1 = A2, then

Qf (m2|Ãv1, rÃA1s
M ) =Qf (m2|A′Ãv1, rA

′ÃA1s
M ) (87)

=Qf (m2|A′Ãv1, rA2s
M ) (88)

If we let v′1 = A′Ãv1, then

Qf (m2|v′1, rA2s
M ) =Qf (m1|v1, rA1s

M ) (89)

>eεQf (m2|v2, rA2s
M ), (90)

which contradicts the ε-LDP constraint.

For an unbiased encoder, the error is

EP
UM

[
∑M

m=1 ∥Um − v∥2Qf (m|v, UM )
]

= EP
UM

[
M∑

m=1

∥Um∥2Qf (m|v, UM )

]

− 1 (91)

= r2 − 1. (92)

Thus, we need to find r that minimizes the error.

On the other hand, the encoder needs to satisfy unbiasedness. Without loss of generality, we assume
v = e1, then we need

EA

[
∑M

m=1 rAsmQf (m|e1, rAsM )
]

= e1, (93)

where the expectation is with respect to the random orthonormal matrix A. If we focus on the first
index of the vector, then

r × Ea

[
M∑

m=1

a⊺smQf (m|e1, rAsM )

]

= 1, (94)

where a⊺ = (a1, . . . , ad) is the first row of A and has uniform distribution on the sphere Sd−1. Thus,
it is clear that assigning higher probability (close to Qmax) to the larger a⊺sm.

If Qmax is strictly smaller than eεQmin, then we can always scale up the larger probabilities and scale
down the lower probabilities to keep the probability sum to one (while decreasing the error). Hence,
we can assume that Qmin = q0 and Qmax = eεq0 for some 1 > q0 > 0.

Now, let k be such that

(M − ⌊k⌋ − 1)q0 + qi + ⌊k⌋eεq0 = 1, (95)

where qi is an intermediate value such that qi ∈ [q0, e
εq0]. Then, the optimal strategy is clear: (i)

assign eεq0 to ⌊k⌋-th closest codewords sm’s, (ii) assign qi to the (⌊k⌋+ 1)-th closest codeword, and
(iii) assign q0 to the remaining codewords. This implies that the k-closest coding is optimal.

F Proof of Lemma 3.7

Proof. Following (28) with Um = Asm and v = e1, we have

rk
eε − 1

keε + (M − k)
E




∑

m∈Tk(e1,A·S)

A · sm




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= rk
eε − 1

keε + (M − k)
E




∑

m∈argmaxk({⟨e1,As1⟩,...,⟨e1,AsM ⟩})
A · sm





= e1.

By focusing on the first coordinate of the above equation and observing that ⟨e1, AsM ⟩ = ⟨a, sm⟩
where a is the first row of the rotation matrix A, we must have

rk ·
eε − 1

keε + (M − k)
Ea∼unif(Sd−1)




∑

m∈Topk({⟨a,s1⟩,...,⟨a,sM ⟩})
⟨a, sm⟩



 = 1. (96)

Note that since A is a random orthogonal matrix drawn from the Haar measure on SO(d), a is
distributed uniformly over the unit sphere S

d−1.

Next, observe that by definition,

sm =
M

√

M(M − 1)
em −

1
√

M(M − 1)
1M ,

where 1M = (1, 1, ..., 1
︸ ︷︷ ︸

Mentries

, 0, ..., 0) ∈ {0, 1}d (that is, (1M )m = 1{m≤M}). Therefore,

⟨a, sm⟩ =
M

√

M(M − 1)
am −

1
√

M(M − 1)
⟨a,1M ⟩,

and hence plugging in (96) yields

rk ·
eε − 1

keε + (M − k)
Ea∼unif(Sd−1)




∑

m∈Topk({⟨a,s1⟩,...,⟨a,sM ⟩})
⟨a, sm⟩





=rk ·
eε − 1

keε + (M − k)
· M
√

M(M − 1)
Ea∼unif(Sd−1)

[
k∑

i=1

a(i|M) −
k

M
⟨a,1M ⟩

]

=rk ·
eε − 1

keε + (M − k)
·
√

M

M − 1
·Ea∼unif(Sd−1)

[
k∑

i=1

a(i|M)

]

︸ ︷︷ ︸

:=Ck

,

where (1) a(i|M) denotes the i-th largest entry of the first M coordinates of a and (2) the last equality
holds since a is uniformly distributed over Sd−1.

G Proof of Lemma 3.8

Proof. First of all, observe that

Ea∼unif(Sd−1)

[
k∑

i=1

a(i|M)

]

= Ea∼unif(Sd−1)

[

E

[
k∑

i=1

a(i|M)

∣
∣
∣
∣
∣

M∑

i=1

a2i

]]

(a)
= Ea∼unif(Sd−1)





√
√
√
√

M∑

i=1

a2i · E(a′
1
,...,a′

M
)∼unif(SM−1)

[
k∑

i=1

a′(i)

]



= Ea∼unif(Sd−1)





√
√
√
√

M∑

i=1

a2i





︸ ︷︷ ︸

(i)

·E(a′
1
,...,a′

M
)∼unif(SM−1)

[
k∑

i=1

a′(i)

]

︸ ︷︷ ︸

(ii)

,

where (a) holds due to the spherical symmetry of a. Next, we bound (i) and (ii) separately.
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Claim G.1 (Bounding (i)). For any d ≥M > 2, it holds that

√

M − 2

d− 2
≤ Ea∼unif(Sd−1)





√
√
√
√

M∑

i=1

a2i



 ≤
√

M

d− 2
. (97)

Proof of Claim G.1. Observe that when a is distributed uniformly over Sd−1, it holds that

(a1, a2, ..., ad)
d
=




Z1

√
∑d

i=1 Z
2
i

,
Z2

√
∑d

i=1 Z
2
i

, ...,
Zd

√
∑d

i=1 Z
2
i



 ,

where A
d
= B denotes A and B have the same distribution, and Z1, ..., Zd

i.i.d.∼ N (0, 1). As a result,
we must have

Ea∼unif(Sd−1)





√
√
√
√

M∑

i=1

a2i



 = E
Z1,...,ZM

i.i.d.∼N (0,1)





√
√
√
√

∑M
i=1 Z

2
i

∑M
i=1 Z

2
i +

∑d
i′=M+1 Z

2
i′



 .

By Jensen’s inequality, it holds that

E
Z1,...,ZM

i.i.d.∼N (0,1)





√
√
√
√

∑M
i=1 Z

2
i

∑M
i=1 Z

2
i +

∑d
i′=M+1 Z

2
i′





= E
Z1,...,ZM

i.i.d.∼N (0,1)






√
√
√
√

1

1 +
∑

d
i′=M+1

Z2

i′
∑

M
i=1

Z2
i






(a)
≥
√
√
√
√
√

1

1 + E
Z1,...,ZM

i.i.d.∼N (0,1)

[
∑

d
i′=M+1

Z2

i′
∑

M
i=1

Z2
i

]

(b)
=

√

1

1 + d−M
M−2

=

√

M − 2

d− 2
,

where (a) holds since x 7→
√

1/(1 + x) is a convex mapping for x > 0, and (b) holds due to the fact
that

∑

i Z
2
i follows from a χ2 distribution and that the ratio of two independent χ2 random variables

follows an F -distribution.

On the other hand, it also holds that

E
Z1,...,ZM

i.i.d.∼N (0,1)





√
√
√
√

∑M
i=1 Z

2
i

∑M
i=1 Z

2
i +

∑d
i′=M+1 Z

2
i′





(a)
≤

√
√
√
√E

Z1,...,ZM
i.i.d.∼N (0,1)

[ ∑M
i=1 Z

2
i

∑M
i=1 Z

2
i +

∑d
i′=M+1 Z

2
i′

]

=

√
√
√
√E

Z1,...,ZM
i.i.d.∼N (0,1)

[

1−
∑d

i=M+1 Z
2
i′

∑M
i=1 Z

2
i +

∑d
i′=M+1 Z

2
i′

]

=

√
√
√
√
√
√1− E

Z1,...,ZM
i.i.d.∼N (0,1)






1

1 +
∑

M
i=1

Z2
i

∑

d
i=M+1

Z2

i′






18



(b)
≤
√
√
√
√
√

1− 1

1 + E
Z1,...,ZM

i.i.d.∼N (0,1)

[
∑

M
i=1

Z2
i

∑

d
i=M+1

Z2

i′

]

(c)
=

√

1− 1

1 + M
d−M−2

=

√

M

d− 2
,

where (a) holds since
√· is concave, (b) holds since x 7→ 1

1+x is convex, and (c) again is due to the

fact that the ratio of two independent χ2 random variables follows an F -distribution.

Claim G.2 (Bounding (ii)). As long as

• k ≥ 400 · log 10,

• log (M/k) ≥
(

103π log 2
9

)2

,

it holds that
√

k log
(
M
k

)

24π log 2M
≤ E(a′

1
,...,a′

M
)∼unif(SM−1)

[
k∑

i=1

a′(i)

]

≤
√

4k logM

M
. (98)

Proof of Claim G.2. We start by re-writing a′:

(a′1, a
′
2, ..., a

′
M )

d
=




Z1

√
∑M

i=1 Zi

,
Z2

√
∑M

i=1 Zi

, ...,
ZM

√
∑M

i=1 Zi



 .

This yields that

(a′(1), a
′
(2), ..., a

′
(k))

d
=




Z(1)

√
∑M

i=1 Z
2
i

,
Z(2)

√
∑M

i=1 Z
2
i

, ...,
Z(k)

√
∑M

i=1 Z
2
i



 ,

and hence

E(a′
1
,...,a′

M
)∼unif(SM−1)

[
k∑

i=1

a′(i)

]

= E
Z1,...,ZM

i.i.d.∼N (0,1)




1

√
∑M

i=1 Z
2
i

k∑

i=1

Z(i)



 .

Upper bound. To upper bound the above, observe that

E
Z1,...,ZM

i.i.d.∼N (0,1)




1

√
∑M

i=1 Z
2
i

k∑

i=1

Z(i)



 ≤ kE
Z1,...,ZM

i.i.d.∼N (0,1)




1

√
∑M

i=1 Z
2
i

Z(1)



 .

Let E1 :=
{

(Z1, ..., ZM )|∑M
i=1 Z

2
i ≤M(1− γ)

}

where γ > 0 will be optimized later. Then it

holds that

Pr {E1} ≤ e−
Mγ2

4 . (99)

On the other hand, the Borell-TIS inequality ensures

Pr
{∣
∣Z(1) − E

[
Z(1)

]∣
∣ > ξ

}
≤ 2e−

ξ2

2σ2 , (100)
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where Zi ∼ N (0, σ2) (in our case, σ = 1). Since E
[
Z(1)

]
≤ √2 logM , it holds that

Pr
{

Z(1) ≥
√

2 logM + ξ
}

≤ 2e−ξ2 .

Therefore, define E2 :=
{
Z(1) ≥

√
2 logM + ξ

}
and we obtain

E
Z1,...,ZM

i.i.d.∼N (0,1)




1

√
∑M

i=1 Z
2
i

k∑

i=1

Z(i)





≤ kE
Z1,...,ZM

i.i.d.∼N (0,1)




1

√
∑M

i=1 Z
2
i

Z(1)





≤ k ·



E




Z(1)

√
∑M

i=1 Z
2
i

∣
∣
∣
∣
∣
∣

E1 ∩ E2



+ sup
z1,...,zm




z(1)

√
∑M

i=1 z
2
i



 · Pr (Ec1 ∪ Ec2)





≤ k ·
(√

2 logM + ξ

M(1− γ)
+ 1 ·

(

e−Mγ2/4 + 2e−ξ2
))

≤ k ·





√

2 logM +
√

log(M)

0.9 ·M + 1 ·
(

e−M/400 + 2/M
)





= Θ

(
k
√
logM

M

)

,

where the last inequality holds by picking γ = 0.1 and ξ =
√
logM .

Lower bound. The analysis of the lower bound is more sophisticated. To begin with, let

EM :=

{

(Z1, ..., ZM )

∣
∣
∣
∣
∣

M∑

i=1

Z2
i ∈ [M(1− γ),M(1 + γ)]

}

denote the good event such that the denominator of our target is well-controlled, where γ > 0 again
will be optimized later. By the concentration of χ2 random variables, it holds that

Pr {EcM} ≤ e−
M
2
(γ−log(1+γ)) + e−

Mγ2

4 ≤ e
−M

2

(

1− 1√
1+γ

)

γ
+ e−

Mγ2

4 ≤ 2e−
Mγ2

4 . (101)

Next, to lower bound
∑k

i=1 Z(i), we partition (Z1, Z2, ..., ZM ) into k blocks B1, B2, ..., Bk where
each block contains at least N = ⌊M/k⌋ samples: Bj := [(j − 1) ·N + 1 : j ·N ] for j ∈ [k − 1]

and Bk = [M ] \
(
⋃k−1

j=1 Bj

)

. Define Z̃
(j)
(1) be the maximum samples in the j-th block: Z̃

(j)
(1)

:=

maxi∈Bj
Zi. Then, it is obvious that

k∑

i=1

Z(i) ≥
k∑

j=1

Z̃
(j)
(1) .

To this end, we define E1 to be the good event that 90% of Z̃(j)
(1)’s are large enough (i.e., concentrated

to the expectation):

E1 :=

{∣
∣
∣
∣

{

j ∈ [k]

∣
∣
∣
∣
Z̃

(j)
(1) ≥

√
logN√
π log 2

− log 100

}∣
∣
∣
∣
> 0.9k

}

.

Note that by the Borell-TIS inequality, for any j ∈ [k],

Pr

{

Z̃
(j)
(1) ≥

√
logN√
π log 2

− ξ

}

≥ 1− 2e−ξ2 ,
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so setting ξ = log 100 implies Pr
{

Z̃
(j)
(1) ≥

√
logN√
π log 2

− ξ
}

≥ 0.98. Since blocks are independent with

each other, applying Hoeffding’s bound yields

Pr {E1} ≥ 1− Pr {Binom(k, 0.98) ≤ 0.9} ≥ 1− e−k(0.08)2 ≥ 0.9,

when k ≥ 400 · log 10 ≥ log 10/0.082.

Next, we define a ªnot-too-badº event where
∑k

j=1 Z̃
(j)
(1) is not catastrophically small:

E2 :=







k∑

j=1

Z̃
(j)
(1) ≥ −

k√
M

ξ






,

for some ξ > 0 to be optimized later. Observe that E2 holds with high probability:

Pr {E2}
(a)
≥ Pr

{

k

M

M∑

i=1

Zi ≥ −
k√
M

ξ

}

(b)
≥ 1− e−ξ2/2,

where (a) holds since the each of the top-k values must be greater than k times the average, and (b)
holds due to the Hoeffding’s bound on the sum of i.i.d. Gaussian variables.

Lastly, a trivial bound implies that

inf
a∈SM−1

k∑

i=1

a(i) ≥ −
k√
M

.

Now, we are ready to bound E
Z1,...,ZM

i.i.d.∼N (0,1)

[

1√
∑

M
i=1

Z2
i

∑k
i=1 Z(i)

]

. We begin by decomposing

it into three parts:

E
Z1,...,ZM

i.i.d.∼N (0,1)





∑k
i=1 Z(i)

√
∑M

i=1 Z
2
i



 = Pr {E1 ∩ E2 ∩ EM} · E





∑k
i=1 Z(i)

√
∑M

i=1 Z
2
i

∣
∣
∣
∣
∣
∣

E1 ∩ E2 ∩ EM





+ Pr {Ec1 ∩ E2 ∩ EM} · E





∑k
i=1 Z(i)

√
∑M

i=1 Z
2
i

∣
∣
∣
∣
∣
∣

Ec1 ∩ E2 ∩ EM





+ Pr {Ec2 ∪ EcM} · E





∑k
i=1 Z(i)

√
∑M

i=1 Z
2
i

∣
∣
∣
∣
∣
∣

Ec2 ∪ EcM



 .

We bound these three terms separately. To bound the first one, observe that condition on E1 ∩ E2,
∑k

i=1 Z(i) ≥ Z̃
(j)
(1) ≥ 0.9k

√
logN
π log 2 − k√

M
γ. As a result,

Pr {E1 ∩ E2 ∩ EM} · E





∑k
i=1 Z(i)

√
∑M

i=1 Z
2
i

∣
∣
∣
∣
∣
∣

E1 ∩ E2 ∩ EM





≥
0.9k

√
logN
π log 2 − k√

M
γ

√

M(1 + γ)
·
(

1−
(

0.1 + e−ξ2/2 + 2e−Mγ2/4
))

. (102)

To bound the second term, observe that under E2,

k∑

i=1

Z(i) ≥ −
k√
M

ξ,
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so we have

Pr {E2 ∩ Ec1 ∩ EM} · E





∑k
i=1 Z(i)

√
∑M

i=1 Z
2
i

∣
∣
∣
∣
∣
∣

E2 ∩ Ec1 ∩ EM





≥ Pr {E2 ∩ Ec1 ∩ EM} ·
(

− k
√

M2(1− γ)
ξ

)

≥ Pr {Ec1} ·
(

− k
√

M2(1− γ)
ξ

)

≥ 0.1 ·
(

− ξ
√
k

√

M2(1− γ)

)

. (103)

For the third term, it holds that

Pr {Ec2 ∪ EcM} · E





∑k
i=1 Z(i)

√
∑M

i=1 Z
2
i

∣
∣
∣
∣
∣
∣

Ec2 ∪ EcM





≥ Pr {Ec2 ∪ EcM} · inf
a∈SM−1

k∑

i=1

a(i)

≥ −Pr {Ec2 ∪ EcM} ·
k√
M

≥ −
(

e−ξ2/2 + e−Mγ2/4
)

· k√
M

(104)

Combining (102), (103), and (104) together, we arrive at

E
Z1,...,ZM

i.i.d.∼N (0,1)





∑k
i=1 Z(i)

√
∑M

i=1 Z
2
i





≥
0.9k

(√
logN
π log 2

)

− k√
M
γ

√

M(1 + γ)
·
(

1−
(

0.1 + e−ξ2/2 + 2e−Mγ2/4
))

− 0.1 ·
(

ξ
√
k

√

M2(1− γ)

)

−
(

e−ξ2/2 + e−Mγ2/4
)

· k√
M

.

Finally, setting γ = O
(

1√
M

)

and ξ = O(1) yields the desired lower bound

Cd,M,k = Ω

(
k logN√

M

)

.

H Additional Experimental Results

In Figure 2, we provide additional empirical results by sweeping the number of users n from 2, 000
to 10, 000 on the left and sweeping the dimension d from 200 to 1, 000 on the right.

I Additional Details on Prior LDP Schemes

For completeness, we provide additional details on prior LDP mean estimation schemes in this
section, including PrivUnit [4], SQKR [6], FT21 [12], and MMRC [30]. We skip prior work analyzing
compression-privacy-utility tradeoffs that do not specifically focus on the distributed mean estimation
problem [19, 20] or others that study frequency estimation [6, 11, 30].
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Figure 2: Comparison of RRSC with SQKR [6], MMRC [30], and PrivUnitG [2]. (left) ℓ2 error vs
number of users n with d = 500, ε = 6, and the number of bits is b = ε = 6. k = 1 for each n.
(right) ℓ2 error vs dimension d for n = 5000, ε = 6, and the number of bits is b = ε = 6. k = 1 for
for each d.

I.1 PrivUnit [4]

[2] considered the mean estimation problem under DP constraint (without communication constraint)
when X = S

d−1 = {v ∈ R
d : ∥v∥1 = 1}. Since there is no communication constraint, they assumed

canonical protocol where the random encoder is f : Sd−1 → R
d and the decoder is a simple additive

aggregator

gn(f(v1), . . . , f(vn)) =
1

n

n∑

i=1

f(vi).

The authors showed that PrivUnit is an exact optimal among the family of unbiased locally private
procedures.

Recall that given an input vector v ∈ S
d−1, the local randomized PrivUnit(p, q) has the following

distribution up to normalization:

PrivUnit(p, q) ∼
{
Z|⟨Z, v⟩ ≥ γ w.p. p
Z|⟨Z, v⟩ < γ w.p. 1− p

where Z has a uniform distribution on S
d−1. Let Sγ be the surface area of hypersphere cap {z ∈

S
d−1|⟨z, v⟩ ≥ γ}, with S−1 representing the surface area of the d dimensional hypersphere. We

denoted q = Pr [Z1 ≤ γ] = (S−1 − Sγ)/S−1 (convention from [4, 2]). The normalization factor is
required to obtain unbiasedness.

[2] also introduced PrivUnitG, which is a Gaussian approximation of PrivUnit. In this approach,
Z is sampled from an i.i.d. N (0, 1/d) distribution. This simplifies the process of determining more
accurate parameters p, q, and γ. Consequently, in practical applications, PrivUnitG surpasses
PrivUnit in performance owing to superior parameter optimization.

I.2 SQKR [6]

Next, we outline the encoder and decoder of SQKR in this section. The encoding function mainly
consists of three steps: (1) computing Kashin’s representation, (2) quantization, and (3) sampling and
privatization.

Compute Kashin’s representation A tight frame is a set of vectors {uj}Nj=1 ∈ R
d that satisfy

Parseval’s identity, i.e. ∥v∥22 =
∑N

j=1⟨uj , v⟩2 for all v ∈ R
d. We say that the expansion v =

∑N
j=1 ajuj is a Kashin’s representation of x at level K if maxj |aj | ≤ K√

N
∥v∥2 [23]. [27] shows

that if N > (1 + µ) d for some µ > 0, then there exists a tight frame {uj}Nj=1 such that for any

x ∈ R
d, one can find a Kashin’s representation at level K = Θ(1). This implies that we can

represent the local vector v with coefficients {aj}Nj=1 ∈ [−c/
√
d, c/
√
d]N for some constants c and

N = Θ(d).
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Quantization In the quantization step, each client quantizes each aj into a 1-bit message qj ∈{

−c/
√
d, c/
√
d
}

with E [qj ] = aj . This yields an unbiased estimator of {aj}Nj=1, which can be

described in N = Θ(d) bits. Moreover, due to the small range of each aj , the variance of qj is
bounded by O(1/d).

Sampling and privatization To further reduce {qj} to k = min(⌈ε⌉, b) bits, client i draws k

independent samples from {qj}Nj=1 with the help of shared randomness, and privatizes its k bits

message via 2k-RR mechanism[36], yielding the final privatized report of k bits, which it sends to
the server.

Upon receiving the report from client i, the server can construct unbiased estimators âj for each

{aj}Nj=1, and hence reconstruct v̂ =
∑N

j=1 âjuj , which yields an unbiased estimator of v. In [6], it

is shown that the variance of v̂ can be controlled by O
(
d/min

(
ε2, ε, b

))
.

I.3 FT21 [12] and MMRC [30]

Both FT21 and MMRC aim to simulate a given ε-LDP scheme. More concretely, consider an ε-LDP
mechanism q(·|v) that we wish to compress, which in our case, PrivUnit. A number of candidates
u1, · · · , uN are drawn from a fixed reference distribution p(u) (known to both the client and the
server), which in our case, uniform distribution on the sphere Sd−1. Under FT21 [12], these candidates
are generated from an (exponentially strong) PRG, with seed length ℓ = polylog(d). The client
then performs rejection sampling and sends the seed of the sampled candidates to the server. See
Algorithm 2 for an illustration.

Algorithm 2 Simulating LDP mechanisms via rejection sampling [12]

Inputs: ε-LDP mechanism q(·|v), ref. distribution p(·), seeded PRG G : {0, 1}ℓ → {0, 1}t, failure
probability γ > 0.
J = eε ln(1/γ).
for j ∈ {1, · · · , J} do

Sample a random seed s ∈ {0, 1}ℓ.
Draw u← p(·) using the PRG G and the random seed s.

Sample b from Bernoulli
(

q(u|v)
eε·p(u)

)

.

if b = 1 then
BREAK

end if
end for

Output: s

On the other hand, under MRC [30] the LDP mechanism is simulated via a minimal random coding
technique [15]. Specifically, the candidates are generated via shared randomness, and the client
performs an importance sampling and sends the index of the sampled one to the server, as illustrated
in Algorithm 3. It can be shown that when the target mechanism is ε-LDP, the communication costs
of both strategies are Θ(ε) bits. It is also worth noting that both strategies will incur some bias
(though the bias can be made exponentially small as one increases the communication cost), and [30]
provides a way to correct the bias when the target mechanism is PrivUnit (or general cap-based
mechanisms).
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Algorithm 3 Simulating LDP mechanisms via importance sampling [30]

Inputs: ε-LDP mechanism q(·|v), ref. distribution p(·), # of candidates M
Draw samples u1, · · · , uM from p(u) using the shared source of randomness.
for k ∈ {1, · · · ,M} do
w(k)← q(uk|v)/p(uk).

end for
πMRC(·)← w(·)/∑k w(k).
Draw k∗ ← πMRC.

Output: k∗
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