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Abstract

We study the mean estimation problem under communication and local differential
privacy constraints. While previous work has proposed order-optimal algorithms
for the same problem (i.e., asymptotically optimal as we spend more bits), exact
optimality (in the non-asymptotic setting) still has not been achieved. In this work,
we take a step towards characterizing the exact-optimal approach in the presence of
shared randomness (a random variable shared between the server and the user) and
identify several conditions for exact optimality. We prove that one of the conditions
is to utilize a rotationally symmetric shared random codebook. Based on this, we
propose a randomization mechanism where the codebook is a randomly rotated
simplex — satisfying the properties of the exact-optimal codebook. The proposed
mechanism is based on a k-closest encoding which we prove to be exact-optimal
for the randomly rotated simplex codebook.

1 Introduction

The distributed mean estimation problem has attracted attention from the machine learning community
as it is a canonical statistical formulation for many stochastic optimization problems such as dis-
tributed SGD [1, 3, 31, 32] and federated learning [33, 34]. As these tasks require data collection from
the users, the mean estimation problem has often been studied under privacy constraints to protect
users’ sensitive information. More specifically, several works [2, 4, 7, 8, 9, 29, 35] have analyzed and
improved the tradeoff between the utility and e-local differential privacy (e-LDP) — the predominant
paradigm in privacy mechanisms, which guarantees that an adversary cannot distinguish the user data
from the outcome of the privacy mechanism [10, 24]. Among them, [4, 8, 9] developed algorithms
that are asymptotically optimal, achieving an optimal mean squared error (MSE) proportional to

m), where n is the number of users, and d is the input dimension. Later, [7] proved the

corresponding lower bounds that hold for all privacy regimes. However, only PrivUnit [4] enjoys
exact optimality among a large family of mechanisms, as proved by [2], while others provide only
order optimality and their performance in practice depends heavily on the constant factors.

Another important consideration in the applications of mean estimation is the communication cost
during user data collection. For instance, in federated learning, clients need to send overparameterized
machine learning models at every round, which becomes a significant bottleneck due to limited
resources and bandwidth available to the clients [22, 25, 28]. This has motivated extensive research on
mean estimation [31, 34, 38] and distributed SGD [1, 3, 13, 26, 37] under communication constraints;
and communication-efficient federated learning [17, 18, 21, 33].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



In addition to the lines of work that studied these constraints (either privacy or communication)
separately, recently, there has also been advancement in the joint problem of mean estimation under
both privacy and communication constraints. [6] introduced an order-optimal mechanism SQKR
requiring only O(¢) bits by using shared randomness — a random variable shared between the server
and the user (see Section 2 for the formal definition). Later, [30] demonstrated better MSE with
another order-optimal algorithm, MMRC, by simulating PrivUnit using an importance sampling
technique [5, 15] — again with shared randomness. In the absence of shared randomness, the order-
optimal mechanisms proposed by [6] do not achieve the best-known accuracy under this setting and
are outperformed by the lossless compression approach in [12] that compresses PrivUnit using a
pseudorandom generator (PRG). Due to not using shared randomness, these mechanisms require
more bits than others [6, 30] that use shared randomness in the scenarios where it is actually available.

1.1 Contributions

To our knowledge, no existing mechanism achieves exact optimality under both privacy and commu-
nication constraints with shared randomness'. In this work, we address this gap by treating the joint
problem as a lossy compression problem under e-LDP constraints.

Our first contribution is to demonstrate that the exact optimal scheme with shared randomness can
be represented as random coding with a codebook-generating distribution. Specifically, under b bits
of communication constraint, the server and the user generate a codebook consisting of M = b
vectors (codewords) using shared randomness. The user then selects an index of a vector under a
distribution that satisfies e-LDP constraints, and the server claims the corresponding vector upon
receiving the index. We term this approach as “random coding with a codebook and demonstrate
that this (random codebook generation) is the optimal way to use shared randomness.

Next, we prove that the exact-optimal codebook-generating distribution must be rotationally sym-
metric. In other words, for any codebook-generating distribution, the distribution remains the same
after random rotation. Based on this insight, we propose Random Rotating Simplex Coding (RRSC),
where the codebook-generating distribution is a uniformly randomly rotating simplex. This choice
of codebook distribution is reasonable as it maximizes the separation between codewords, which
efficiently covers the sphere. The corresponding encoding scheme is the k-closest encoding, where
the top-k closest codewords to the input obtain high sampling probability, and the remaining ones
are assigned low probabilities. We show that this scheme is exact-optimal for the random rotating
simplex codebook.

The proposed codebook generation is valid only when M < d (or b < log d where b is the communi-
cation budget) due to the simplex structure of the codebook. Note that as shown in [6], b < log d bits
of communication budget is sufficient to achieve orderwise optimal MSEs under an e-LDP constraint
for any £ < O (log d), which is usually a common scenario in practical applications such as federated
learning where d can range from millions to billions. In addition, we can also extend the scheme
for cases when M > d, by using a codebook consisting of (nearly) maximally separated M vectors
on the sphere. As the number of bits b used for communication increases, we demonstrate that the
proposed scheme approaches PrivUnit, which is the exact-optimal scheme without communication
constraints.

Finally, through empirical comparisons, we demonstrate that RRSC outperforms the existing order-
optimal methods such as SQKR [6] and MMRC [30]. We also observe that the performance of RRSC is
remarkably close to that of PrivUnit when the number of bits is set to b = e.

1.2 Related Work

The ¢ mean estimation problem is a canonical statistical formulation for many distributed stochastic
optimization methods, such as communication (memory)-efficient SGD [31, 34] or private SGD [24].
For instance, as shown in [14], as long as the final estimator of the mean is unbiased, the {5 estimation
error (i.e., the variance) determines the convergence rate of the distributed SGD. As a result, there
is a long thread of works that study the mean estimation problem under communication constraints
[3, 8, 13, 31, 34, 39], privacy constraints [2, 16], or a joint of both [1, 6, 12, 30].

"Note that we can also eliminate shared randomness with a private coin setting. See Section 5 for a discussion.



Among them, [6] shows that O (¢) bits are sufficient to achieve the order-optimal MSE
a
and communication constraints. Notice that the MSE of SQKR is orderwise optimal up to a constant
factor. Later on, in [12], it is shown that the pre-constant factor in SQKR is indeed suboptimal, resulting
in an unignorable gap in the MSE compared to PrivUnit — an optimal ¢ mean estimation scheme
under e-LDP. In the original PrivUnit, the output space is a d-dimensional sphere S¢~! and hence
requires O(d) bits of communication, which is far from the optimal O(g) communication bound.
However, [12] shows that one can (almost) losslessly compress PrivUnit via a pseudo-random
generator (PRG). Under the assumption of an existing exponentially strong PRG, [12] proves that
one can compress the output of PrivUnit using polylog(d) bits with negligible performance loss.
Similarly, [30] shows that with the help of shared randomness, PrivUnit can be (nearly) losslessly
compressed to © (&) bits via a channel simulation technique, called MMRC. We remark that although
the privacy-utility trade-offs in [12] and [30] are (nearly) exactly optimal, the communication ef-
ficiency is only order-optimal. That is, under an exact b-bit communication constraint, the MSEs
of [12] (denoted as FT21) and MMRC [30] may be suboptimal. In this work, we aim to achieve the
exact-optimal MSE under both communication and privacy constraints.

ﬁ(s,eﬁ) and proposes SQKR, an order-optimal mean estimation scheme under both privacy

Furthermore, we show that SQKR, FT21, and MMRC can be viewed as special cases in our framework —
i.e., (random) coding with their own codebook design. We elaborate on this in Section 5 and provide
more details on prior work in Appendix I.

2 Problem Setting and Preliminaries
In this section, we formally define LDP (with shared randomness) and describe our problem setting.

Local Differential Privacy (LDP) A randomized algorithm Q : X — ) is e-LDP if

Q(yl|x) .
Q) =

Vo, € X,y €, (1)

LDP with Shared Randomness In this work, we assume that the encoder and the decoder have
access to a shared source of randomness U € U, where the random encoder (randomizer) Q privatizes
z with additional randomness U. Then, the corresponding e-LDP constraint is

Qylz,u) _ .

Ve, o' e X,y )Y, -2 <
V=50l w)

2
for Py-almost all u.

Notation We let S~ = {u € R?: ||u||o = 1} denote the unit sphere, e; € R? the standard basis
vectors for i = 1,...,d, | k] the greatest integer less than or equal to k, and [M] = {1,..., M}.

Problem Setting We consider the /o mean estimation problem with n users where each user ¢ has
a private unit vector v; € S%-1 for 1 < 4 < n. The server wants to recover the mean % 2?21 v; after
each user sends a message using up to b-bits under an -LDP constraint. We allow shared randomness
between each user and the server. More concretely, the ¢-th user and the server both have access to a
random variable U; € R? (which is independent of the private local vector v;) for some ¢ > 1 and the
i-th user has a random encoder (randomizer) f; : S?-1 x Rt — [M], where M = 2°. We denote by
@y, (m;|v;, u;) the transition probability induced by the random encoder f;, i.e., the probability that
fi outputs m; given the source v; and the shared randomness u; is

Prfi(vs, wi) = mi] = Qy, (mslvi, ug). 3)
We require that the random encoder f; satisfies e-LDP, i.e.,

Qfl (mi|vi7 u’b) < ef

4
in(miw;‘aui) o 4



for all v;, v} € S¥=1,m; € [M] and Py,-almost all u; € R®.

The server receives m; = f;(v;, U;) from all users and generates unbiased estimate of the mean
A(ma,...,my, Uy, ..., Up,) that satisfies

1
E[A(ml,...,mn,Ul,...,Un)}:—Zvi. 5)

Then, the goal is to minimize the worst-case error

2
1 n
Err,(f, A, Pyn) = sup E A(ml,...,mn,Ul,...,Un)fvai , 6)
'U17~~~7'Unesd'_l n i=1 2
where f denotes the collection of all encoders (f1, ..., f,,). We note that the error is also a function

of the distribution of shared randomness, which was not the case for PrivUnit [2, 4].

3 Main Results

3.1 Canonical Protocols

Similar to Asi et al. [2], we first define the canonical protocol when both communication and
privacy constraints exist. The canonical protocols are where the server recovers each user’s vector and
estimates the mean by averaging them. In other words, the server has a decoder g; : [M] x Rt — S4—1
for 1 < ¢ < M which is dedicated to the i-th user’s encoder f;, where the mean estimation is a simple
additive aggregation, i.e.,

1 n
Fm, s Uns e Un) = =S gi(ma, Uy). 7
-/4 (mla My, U1, 5 ) n;g(ma ) ()

Our first result is that the exact-optimal mean estimation scheme should follow the above canonical
protocol.

Lemma 3.1. For any n-user mean estimation protocol (f, A, Py~ ) that satisfies unbiasedness and
e-LDP, there exists an unbiased canonical protocol with decoders g = (g1, . .., gn) that satisfies
e-LDP and achieves lower MSE, i.e.,

2
1 n 1 n
EI"I‘n(f, .A, PUn) Z sup E — Z gi(mi, UL) - = Z V; (8)
V4.,V €S4—1 n i—1 n =1
1 n
Z ﬁZErrl(fhgi?PUi)? (9)
i=1

where Err1 (f, g, Pu) is the worst-case error for a single user with a decoder .

The main proof techniques are similar to [2], where we define the marginalizing decoder:
gi(m, U;) = E{uj,mj,Uj}j#i [nA({mj,Uj}?zl) | fi(vi, Us) = mian]~ (10)

The expectation in (10) is with respect to the uniform distribution of v;’s. We defer the full proof to
Appendix A.

Since the exact-optimal n-user mean estimation scheme is simply additively aggregating user-wise
exact-optimal scheme, throughout the paper, we will focus on the single-user case and drop the index
1 when it is clear from the context. In this simpler formulation, we want the server to have an unbiased
estimate 0 = g(m, U), i.e.,

v =Ep, s [9(f(v,U),U)] (11)
=Ep, |0, g(m, U)Qy(mlv,U) (12)



for all v € S?~!. We assume that the decoder g : [M] x R* — R? is deterministic, since the
randomized decoder does not improve the performance. Then, the corresponding error becomes

D(v, f,9, Pv) =Epy s [ll9(f(U;0), U) = v|?] (13)
=Ep, [Sons llgm, U) = olPQy(mlv, )] (14)

Finally, we want to minimize the following worst-case error over all (f, g) pairs that satisfy the
unbiasedness condition in (12)

Errl(f7g7PU): SudplD(’vavgaPU)' (15)
veSd—

3.2 Exact Optimality of the Codebook

We propose a special way of leveraging shared randomness, which we term as random codebook. First,
we define a codebook UM = (Uy,...,Uys) € (R)M, consisting of M number of d-dimensional
random vectors generated via shared randomness (i.e., both the server and the user know these random
vectors). We then define the corresponding simple selecting decoder g* : [M] x (RY)M — R4,
which simply picks the m-th vector of the codebook upon receiving the message m from the user:

gt (m, UM) =U,,. (16)

Our first theorem shows that there exists a scheme with a random codebook and a simple selecting
decoder that achieves the exact-optimal error. More precisely, instead of considering the general class
of shared randomness (with general dimension ¢) and the decoder, it is enough to consider the random
codebook UM € (R?)M as the shared randomness and the simple selector g* as the decoder.
Lemma 3.2. For any f, g, Py with U € R that are unbiased and that satisfy e-LDP, there exists a
shared randomness UM e (RYM and random encoder fy : S*1 x (RH)M — [M] such that

D(U,fag,PU)ZD(U7f0,9+,PgM) (17)
forallv € S*1, where fq, g, Pyu also satisfy unbiasedness and e-LDP.

The main step of the proof is to set an implicit random codebook with codewords U,,, = g(m, U) for
m = 1, ..., 2" and show that we can obtain an essentially equivalent scheme with a different form
of shared randomness U, which is an explicit random codebook. The detailed proof is given in
Appendix B. Thus, without loss of generality, we can assume ¢t = M X d and the random codebook
UM is the new shared randomness, where the decoder is a simple selector. Since we fix the decoder,
we drop g to simplify our notation. We say the random encoder f satisfies unbiasedness condition if

Epy [ S0y UnQy(mlo,UM)] =, (1s)
and the worst-case error is
Err(f, Pym) = sup D(v, f, Pym) (19)
peSd—1
M
= sup Epyy | Y 1Um = 0lPQs(mlo,U)|. (20)
vesSd—1

m=1
Thus, the goal is now to find the exact-optimum codebook generating distribution Pp;a, and the
random encoder f (or the probability assignment Q) (-|v, U)). We then argue that the exact-optimal
codebook should be rotationally symmetric.

Definition 3.3. A random codebook UM € (R?)M is rotationally symmetric if (Uy,...,Uy;) =
(ApUx, ..., ApUys) for any d x d orthonormal matrix Ag.

The next lemma shows that the exact-optimal Py is rotationally symmetric.

Lemma 3.4. Let Pyu be a codebook generating distribution, and suppose random encoder f
satisfies unbiasedness and e-LDP. Then, there exists a random encoder f1 and rotationally symmetric
random codebook UM such that

Err(f, Pym) > Err(f1, Pom), (1)

which also satisfies unbiasedness and e-LDP.



This is mainly because the goal is to minimize the worst-case error, and the codebook-generating
distribution should be symmetric in all directions. The proof is provided in Appendix C. The next
lemma shows that the exact-optimal scheme has constant error for all v € S~ 1.

Lemma 3.5. For any rotationally symmetric codebook generating distribution Py v and an unbiased
randomized encoder f that satisfies e-LDP, there exists a random encoder [ such that

Err(f, Pym) > Err(fa, Pywm), where D(v, fo, Pym) = DV, fao, Pyu) (22)

forallv,v' € S41,

The formal proof is given in Appendix D. Since the codebook is symmetric (Lemma 3.4), the exact-
optimal encoding strategy remains the same for any input v. Thus, without loss of generality, we can
assume that the input is a standard unit vector v = e; = (1,0,...,0).

3.3 Rotationally Symmetric Simplex Codebook

Now, we focus on a particular rotationally symmetric codebook. Notice that the codebook UM has a
similar role to the codebook in lossy compression, in the sense that we prefer the codeword U, close
to the input vector v. Thus, it is natural to consider the maximally separated codebook so that the

M vectors Uy, ..., Ups cover the source space effectively. For M < d, the maximally separated M
vectors on the unit sphere S¥~! is a simplex. More precisely, let s, ..., sy € RY form a simplex:
/M(M—1) ifi=j
. R _ 1 . . . .
(si); = N ifi£jandj < M . (23)
0 ifj > M

Then, we can define the rotationally symmetric simplex codebook UM

(U1,Us,...,Un) @ (rAsi,rAss, ..., rAsn), (24)

where A is uniformly drawn orthogonal matrix and > 0 is a normalizing constant. We then need to
find the corresponding encoder f that minimizes the error. Recall that the error is

Epyse [Yoes U = vI2Q; (mlv, U)], 25)

and it is natural to assign high probabilities to the message m with low distortion ||U,,, — v||? as long
as e-LDP constraint allows. More precisely, we call the following probability assignment “k-closest”
encoding:

€

TR if ||v — U,,||? is one of the | k] smallest

Qr(mlv,UM) = ¢ CLLNC=IEL i o — U, || ds the [k + 1-th smallest, — (26)
1

u gy otherwise
where we allow non-integer k. The choice of r = 7y, is described in Section 3.4. We call this approach
Randomly Rotating Simplex Coding (RRSC) and provide the pseudocode in Algorithm 1. We note that
the codewords U,,’s with smallest ||v — Uy, ||* and codewords U,,’s with largest (v, U,,) coincide
for a codebook with fixed-norm codewords U,,’s, which is the case for the rotationally symmetric
simplex codebook. Our main theorem is that the k-closest encoding is exact-optimum if the codebook
generating distribution is rotationally symmetric simplex.

Theorem 3.6. For a rotationally symmetric simplex codebook, there exists a k such that the “k-closest”
encoding is the exact-optimum unbiased scheme that satisfies c-LDP constraint.

The main step of the proof is to show that all the probabilities should be either the maximum or the
minimum in order to minimize the error, and the proof is given in Appendix E.

3.4 k-closest Encoding for General Rotationally Symmetric Codebook

In this section, we demonstrate that the k-closest encoding consistently yields an unbiased scheme
for any rotationally symmetric codebook. To be more specific, for any given spherically symmetric



Algorithm 1 Randomly Rotating Simplex Coding RRSC(k).
Inputs: v € S, k, 1., codebook size M = 2°.
Codebook Generation:
Generate the simplex s1, ..., sy € R%in (23).
Sample orthogonal matrix A € R*? uniformly using the shared random SEED.
Generate the codebook UM: (Uy, Us, ..., Upr) < (1 Asy, mp A, ..., 1Ay ).
Encoding:
for m € [M] do
if (v, U,,,) is one of the k largest then
Qr(m|v,UM) «
else
Qy(m|v,UM)
end if
end for
Sample codeword index m* < Q(-|v, UM).
Output: m*, encoded in b = log M bits.

€
€
kes+(M—k)

1
kes+(M—k)

codebook UM, there exists a scalar 7, that ensures that the k-closest encoding with 7, UM =
(riUy, . ..,rxUpr) is unbiased. Let Ty, (v, UM) = {m : U, is one of the k-closest}, and without
loss of generality, let us assume v = e;. Then,

Epyy | Sy Qr(mler, UM)Uy |

ef —1 1
=Ep , | ——— Unt+—— > Un 27)
o s, 2 U O
ef —1
=E — Un |, 28
Por | ke + (M — k) 28

meTy (e1,UM)

where E [>" U,,] = 0 due to rotationally symmetric codebook and we assume an integer & for the
sake of simplicity. Since the codebook is rotationally symmetric and we pick k-closest vectors toward
v = ey, each codeword U,,, € Ty (e, UM) is symmetric in all directions other than v = e;. Thus, in
expectation, the decoded vector is aligned with e, and there exists r such that

M
T X EPUI\/I [Z Qf(m\el,UM)Um

m=1

. (29)

For a rotationally symmetric simplex codebook, where U,,, = As,, for a uniform random orthogonal
matrix A, we have an (almost) analytic formula.

Lemma 3.7. Normalization constant ry, for RRSC(k) is

ke*+M—-k |M—-11
n=— Ve (30)

where C}? is an expected sum of top-k coordinates of uniform random vector a € S*~1.

The key idea in the proof is to show that encoding e; with AsM is equivalent to encoding uniform
random vector a € S?~! with s. The formal proof is provided in Appendix F.

The following lemma controls the asymptotic behavior of Cj:
Lemma 3.8. Let Cy, be defined as in Lemma 3.7. Then, it holds that

Ck=0<\/]€2k;gM>. G1)

Note that C, depends on k, d, and M, but for ease of presentation, we suppress the dependency on d and m
here and only present the full expression in the proof.




In addition, there exist absolute constants Cy,Cy > 0 such that as long as | M /k| > Cy and k > Cs,

k2 M

As a corollary, Lemma 3.8 implies the order-wise optimality of RRSC:

s_1-M)? g
Err(RRSC) <72 —1=0 (e kJ . .
( ) <7k < (e —1)2 log (A—,f)

By picking £k = max (1, Me™¢), the above error is O (m) We provide the proof of

Lemma 3.8 in Appendix G.

3.5 Convergence to PrivUnit

As the communication constraint b increases, the exact-optimal scheme with communication con-
straint should coincide with the exact-optimal scheme without communication constraint, which is
PrivUnit. Note that the rotationally symmetric simplex can be defined only when M = 2° < d,
due to its simplex structure. However, we have a natural extension where the codebook is a collection
of M (nearly) maximally separated vectors on the sphere of radius r, where we can assume that M
codewords are uniformly distributed on the sphere of radius 7, if M is large enough. Consider the
case where ¢ = z\k4 is fixed and M = 2° is large. Since the k-closest encoding yields an unbiased
scheme with error Exr(f, Py ) = rk 1, where 7}, is normalizing constant, for uniformly distributed
M codewords on the sphere, the constant r; should satisfy

e —1

— K U =1 33
B2 ke 1 (M — k) >, Um 33)
mGtOp-k’

where U, 1 is the first coordinate of uniformly drawn U,,, from the unit sphere S?=1. Then, as M
increases, U,, 1 being one of the top-k becomes equivalent to U, ; > -y, where vy is the threshold
such that Pr[U,, 1 > 7] = ¢. Hence, assigning higher probabilities to the top-k closest codewords
becomes equivalent to assigning high probabilities to the codewords with (U, e1) > v where v = €.
This is essentially how PrivUnit operates.

3.6 Complexity of RRSC

Each user has d x d orthonormal matrix A and needs to find k smallest (v, As,,) for 1 <m < M.
Since (v, As,,) = (ATv, s,,), it requires O(d?) to compute ATv and additional O(Md) to compute
all inner products for 1 < m < M. However, if M < d, we have a simpler equivalent scheme using

(AT, 8,,) = aTU— alv—— (34)
oo~ Xt iy

where a7, is the m-th row of the matrix A. Then, it only requires storing the first M rows of the
matrix and O(Md) to obtain all inner products in (34) by avoiding O(d?) to construct ATv.

On the other hand, the server computes As,, upon receiving a message m. The corresponding time
complexity is O(Md) (per user) since s,,, has M non-zero values. We note that both MMRC [30]
and FT21 [12] require the same encoding complexity O(Md) as RRSC, where they choose M =

O(exp(e)).

4 Experiments

We empirically demonstrate the communication-privacy-utility tradeoffs of RRSC and compare it
with order-optimal schemes under privacy and communication constraints, namely SQKR [6] and
MMRC [30]. We also show that RRSC performs comparably with PrivUnit [4], which offers the exact-
optimal privacy-utility tradeoffs without communication constraints [2]. In our simulations, we use



the “optimized” PrivUnit mechanism, called PrivUnitG, introduced in [2], which performs better
than PrivUnit in practice since it provides an easy-to-analyze approximation of PrivUnit but with
analytically better-optimized hyperparameters. Similar to [6, 30], we generate data independently
but non-identically to capture the distribution-free setting with p # 0. More precisely, for the first
half of the users, we set vy,...,vy,/2 i N(1,1)®4; and for the second half of the users, we set
Un/2415-+5Un ES (10, 1)®d. We further normalize each v; to ensure that they lie on S?~!. We
report the average ¢ error over 10 rounds together with the confidence intervals. To find the optimal
values for k and 7y, we compute the optimal 7y, using the formula in (33) for k = 1, ..., M and pick
the k that gives the smallest r; (which corresponds to the bias). To estimate the expectation CY, in
(33), we run a Monte Carlo simulation with 1M/ trials. We report the k we use for each experiment in
the captions. Additional experimental results are provided in Appendix H.

In Figure 1-(left, middle), we report ¢ error for ¢ = 1,...,8, where for each method (except
PrivUnitG), the number of bits is equal to b = <. In Figure 1-(right), we report ¢, error by fixing
€ = 6 and sweeping the bitrate from b = 1 to b = 8 for RRSC and MMRC. For SQKR, we only sweep
for b < ¢ as it leads to poor performance for b > <. In each figure, RRSC performs comparably to
PrivUnitG even for small b and outperforms both SKQR and MMRC by large margins.
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Figure 1: Comparison of RRSC with SQKR [6], MMRC [30], and PrivUnitG [2]. (left) /5 error vs
with n = 5000, d = 500. The number of bits is b = ¢ for RRSC, SQKR, and MMRC. The choice of &
for k-closest encoding is k = 1 for each €. (middle) Same plot zoomed into higher ¢, lower ¢ error
region. (right) /5 error vs number of bits b for n = 5000, d = 500, and € = 6. For SQKR, we only
report b < ¢ = 6 since it performs poorly when b > ¢. The choice of k for k-closest encoding is
kE=1[1,1,1,1,1,1,2,4] forb = [1,2,3,4,5,6,7, 8], respectively.

The codebase for this work is open-sourced at https://github.com/BerivanIsik/rrsc.

5 Discussion & Conclusion

We proved that using a rotationally symmetric codebook is a necessary condition for the exact
optimality of mean estimation mechanisms with privacy and communication constraints. We then
proposed Random Rotating Simplex Coding (RRSC) based on a k-closest encoding mechanism and
proved that RRSC is exact-optimal for the random rotating simplex codebook. We now discuss some
important features of RRSC and provide conjectures for future work.

Unified Framework It turns out that SQKR [6], FT21 [12] and MMRC [30] can be viewed as special

cases in our framework. Specifically, SQKR [6] uses Kashin’s representation of v = Zjvzl
where {a;}7, € [—¢/\/d, ¢/\/d) for some (1 + p1)d with ;2 > 0 and ¢ > 0. Then the SQKR encoder
quantizes each a; into a 1-bit message ¢;, and draws k& samples with the help of shared randomness.
This can be viewed as random coding with a codebook-generating distribution. More concretely,
the corresponding codebook UM consists of & non-zero values of +c/ V/d where the randomness is
from selecting k indices using shared randomness. On the other hand, since MMRC [30] is simulating
the channel corresponding to a privacy mechanism, it can be viewed as pre-generating random
codewords U™ according to the reference distribution, where the importance sampling is also a way
of assigning probabilities to each codeword. As elaborated in Section 3.5, it is observed that with an
increase in the communication constraint b, the suggested k-closest encoding gradually transforms
into a threshold-based encoding, analogous to that of MMRC. The codebook associated with FT21 [12]

ajuj,



depends on the PRG it uses. Let PRG : {0,1}* — {0,1}®(9) be a PRG that takes a b-bit seed and
maps it into ©(d) bits, where b < d, and let g : {0,1}°(¥) — R?. For example, if we represent
each coordinate of € R? as a 32-bit float, then g(-) maps the float representation of z (a 32-bit
string) to . With a PRG, FT21 mimics PrivUnit by first generating a b-bit seed m, computing
g (PRG(m)), and then performing rejection sampling on the seed space. The above procedure can be
treated as a special case in our framework, where the deterministic codebook consists of 2b points on
R%: Cero1 := {g(PRG(m)) : m € {0,1}"}. The probabilities assigned to each codeword according
to the rejection sampling are equivalent to a threshold-based assignment.

Shared randomness When M < d + 1, additional randomization is required during codebook
generation to achieve an unbiased scheme, as discussed in [13]. Furthermore, both the encoder
and decoder must possess this randomization information. In the proposed RRSC scheme, this
randomization is achieved through the random rotation of the simplex code using shared randomness.
However, it is possible to circumvent the need for shared randomness by having the server generate
random rotation matrices using its private coin and communicate them to the users. This approach
replaces shared randomness with downlink communication, which is typically more affordable than
uplink communication. It should be noted that directly transmitting the rotation matrices would
require O(d?) bits. Nonetheless, the server can generate them using a predetermined pseudo-random
generator (PRG) and transmit only the seeds of it to the users. Drawing from a similar argument as in
[12], assuming the existence of exponentially strong PRGs, seeds with polylog(d) bits are sufficient.

Future Work We showed the exact-optimality of k-closest encoding for the rotating sim-
plex codebook. In general, it also achieves unbiasedness and the following error formulation

Ep, ar [E%Zl Q(m|v, UM)|v — Um||2} implies the exact-optimality of k-closest encoding for
any rotationally symmetric codebook, which leads us to the following conjecture.

Conjecture 5.1. The proposed k-closest encoding is exact-optimal for any rotationally symmetric
codebook.

It also remains unclear whether k can depend on the realization of the codebook U in general,
which we leave to future work. We also proved that the exact-optimal codebook must be rotationally
symmetric. We conjecture that the maximally separated codebook (simplex codebook) is exact-
optimal as it provides the most effective coverage of the space S?~!. This, too, is left as a topic for
future work.

Conjecture 5.2. The rotationally symmetric simplex codebook is the exact-optimal codebook.

Limitations and Broader Impact While we take an important step towards exact optimality by
proving several necessary conditions and by providing a mechanism that is exact-optimal for a family
of codebooks, we still have the above conjectures left to be proven in future work.
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A Proof of Lemma 3.1

Proof. For n-user mean estimation protocol (f, A, Py u ), following the notation and steps from [2,
Proof of Lemma 3.1], we define the marginalized output

9i(mi, Uiz v"™) = B, 05} 2 nA({m;, Uj}?:1) fi(vi, Us) = my, Ui, vV (35)

Then, we define the user-specific decoder by averaging g;(m;, U;; v™) with respect to i.i.d. uniform
P, unif-

gi(mi, Ui) = Eynvie py [Gi(mi, Ui v™)] (36)

where v"\ indicates the v™ vector except v;. Due to the symmetry of Py, it is clear that g; is
unbiased. We also define

Rei({vj,m, U Yisy) = By by jsi | nA{m;, Uy = Y v | {vjmy, UYis | 37)

j=1
Consider an average error where v1, . . ., v,, are drawn i.i.d. uniformly on the sphere S?~1.

Bpoy ey | [P Ams. U3Y) - S

=Bfo,m,051n, [ Refrym,. Ui}j=1) m (38)

o 2
:E{Uj,mijj};lzl Rgn({vj,mj,Uj}?: ) 'R,<n 1({Uj7mij} )+R<n 1({vj,mj,U} H :|

(39)
= Eu,.m; 0517, _ 7%<n({vj,mj,Ul}n_ ) = Ren1({vj,m;, Uj H ]
B, my vy [HR<n 1({vj,my, Us iz HQ} (40)
= Bt oo U3320) = Reioafosms U320 @
=1

ziﬁw [H opmr it [Reil{gmy, Ui Hsy) = R ({wg,my, U Y }H] “2)
_ZEW [lge(ome, U) = wi]?]. 43)

Then, we need to show the same inequality for the worst-case error.

2
sup B, uyn, | [nAWms, Ui¥i) =D v
V1yeeeyUn j:l
-
> B, my vyyn, | [|[nACmG UsYZ) =D v, (44)

:i v, U [ng(mu i)_viuz} (45)

ZsupEml [lg: (i, U) = il (46)
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where the last equality (46) is from Lemma 3.2, Lemma 3.4, and Lemma 3.5. Thus, the user-specific
decoder achieves lower MSE:

1 n
Errn(f, A Pon) > = Eri(fi, i Pu,)- (47)
=1

Since we keep random encoder f; the same, the canonical protocol with g; also satisfies e-LDP
constraint. This concludes the proof. O

B Proof of Lemma 3.2

Proof. Let U,, = g(m,U) for all 1 < m < M. Without loss of generality g(-, U) is one-to-one, i.e.,
{u : 1y, = g(m,u) for all m} has at most one element (with probability 1), and u = g~ (a™) is
well-defined. Then, we define a randomizer fo(v, UM) that satisfies

Qo (mlv, @) = Qg(mlv, g~ (@), (48)
It is clear that f; satisfies e-LDP constraint. Then,

D(v, fo, g%, Pose) =Ego.pgan [lg* (Folv,0M), 0) = o] (49)
~Erys | Sy Qo (mfo, UM) [T — o] (50)
=Eypy [Ty Qs(mlo, U)lg(m, U) = v]?] (51)
=Ey.py [llg(f(v,U0),U) = v|] (52)
:D(v7f7g7PU)- (53)

We also need to show that the composition of the new randomizer fy and selector g™ is unbiased.
Epyu [9%(Fo(0,0M), 0| =Egy,py0y [Shioy Qo (mlv, 0¥) 0| (54)
=Ef,ry |Yimy Qs (mlv, U)g(m, V)| (55)
=Ey.p, [9(f(v,U),U)] (56)
=v. (57)

Finally, Q, (m|v, @) is a valid transition probability, since

M M
> Qpo(mlv, @) =" Q(mlv, g~ (@) =1 (58)
m=1 m=1

for all @ . This concludes the proof. O

C Proof of Lemma 3.4

Proof. Let A be a uniformly random orthogonal matrix and U = ATUM  We further let f; be a
randomized encoder that satisfies

Qy, (mlv, UMy =E, [Qf(m|Av,A(7M)|UM]. (59)

Then, @y, is a valid probability since

M M
> Qs (mfv,UM) =Ea | Y Qp(m|Av, AUM)|TM| =1. (60)
m=1

m=1
Also, we have
Qg (mfo,UM) — E4 [Qs(m|Av, AUM)[UM]
Qp, (mlv',UM) " E4 [Qf(m|Av/, AUM)|UM]

(61)
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Ea [e2Qs(m|Av, AUM)|UM]

— = 62
T Ey4 [Qf(m|Av’,AUM)\UM] 62)
=e°. (63)
Finally, we need to check unbiasedness.
Ery s (@ (mlo, 0M) U] =B,y [z Qp(mlAv, AT, | (64)
~Ea,pu0 | St Qs (] Av, UM) ATU,, | (65)
=E4 [ATEp,,, [Sal, Qr(mlAv,UMUL]] (66)
=E [AT Av] (67)
=0. (68)
The key step is that the original encoder f is unbiased, which implies
Ep,y [ Sy @r(mlAv, UM)U,, | = Av (69)
for all A.
Now, we are ready to prove the main inequality.
Err(f, Pym) =sup D(v, f, Pyam) (70)
>Ea [D(Av, f, Py )] (71)
=B [Ep,y, [ Ly Qs (m|Av, UM)|Uy, — Av|?]] (72)
=B ui,a | Lot Qp(m|Av, AUM) T — v]?] (73)
~Epy, [ St Ea [Qr(mlAv, ADM)[TM] ||, — o] (74)
~Eryu [Smies Q (mlv, TM) [T — o] 75)
=D(v, f1, Pgm). (76)
for all v. This concludes the proof. O

D Proof of Lemma 3.5

Proof. Forv,v’ € S*1, let Ay be an orthonormal matrix such that v/ = Agv. Let f be a randomized
encoder such that

fa(v, UMY = f(Av, AUM) (77)
for uniform random orthonormal matrix. Then,
Qp,(mlv,UM) =E4 [Qf(m|Av, AUM)]. (78)

Similar to the previous proofs, )y, is a well-defined probability distribution, and f, is unbiased
as well as e-LDP. Since Py is rotationally symmetric and f5 is also randomized via the uniform
random orthogonal matrix, we have

D(U’, fg, PUM) = D(on, fg, PUM) = D(U, fg, PUM). (79)
Compared to a given randomizer f, we have
Err(f> PUM) >Ea [D(A’U,f, PUM)] (30)
=En,pys | L Qr(m|Av, U] Av - UM 2] 81)
=Eat.pyas | Do Qr(mlAv, UM) Ju — ATUM 2] (2)
=Earpyur [t Q(mlAv, AUM) o — UM ] (83)
~Ep 0 [ Lt Ea [Qr(mlAv, AUM)] o - UM]2] (84)
:D(’U, fQ, PUM) (85)
for all v € S?~!. This concludes the proof. O
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E Proof of Theorem 3.6

Proof. The rotationally symmetric simplex codebook with normalization constant r is
(rdsi,...,rAsn). Let f be the unbiased encoder satisfying e-LDP. Let Qu.x =
max Q r(m|v,rAsM) and Quin = min Qs (m|v, rAs™), our objective is to demonstrate that Qyyax
is less than or equal to e°Q,i,. We will employ a proof by contradiction to establish this. Suppose
Qf(mq|v1, rAsM) > e“Q f(malve, rAgs™M) for some my,v1, Ay, ma,va, and Ay, Let A be the
row switching matrix where r A A1 s,,, = rA15,, and 7AA; s,,, = rA15,,,, then we have

Qr(mqlvy, rA;sM) = Qy (m2|f~11)1, rflAlsM). (86)
We further let A’ be an orthogonal matrix such that A’ AA; = A, then
Qy(mo |Avy, rAA sM) =Qf(mo |A" Avy, r A’ AA; M) (87)
=Q(mag|A' Avy, 7 Ags™) (88)
If we let v] = A’ Avy, then
Qr(malv}, rAzs™) =Qf(my|vy, 7 Ars™) (89)
>e“Qf(ma|vy, 7 Ags™), (90)

which contradicts the e-LDP constraint.

For an unbiased encoder, the error is

M
IEPUM Z%:l HUm - U‘|2Qf(m|vv U]w)] = IE:PUM [Z HUmanf(mh)V UM) -1 C2))
m=1
=7r?-1. (92)

Thus, we need to find r that minimizes the error.

On the other hand, the encoder needs to satisfy unbiasedness. Without loss of generality, we assume
v = e, then we need

E4 [Zi\le rAs,Qf(mler, rAsM)} = e, (93)

where the expectation is with respect to the random orthonormal matrix A. If we focus on the first
index of the vector, then

M
r X E, Z aTstf(m\el,rAsM) =1, (94)
m=1
where aT = (aq, ..., aq) is the first row of A and has uniform distribution on the sphere S?-1. Thus,

it is clear that assigning higher probability (close to Qax) to the larger aTs,,.

If Qax is strictly smaller than e @i, then we can always scale up the larger probabilities and scale
down the lower probabilities to keep the probability sum to one (while decreasing the error). Hence,
we can assume that Qi = qo and Qumax = €°qp for some 1 > gy > 0.

Now, let £ be such that
(M — k] —1)go + i + |k]e*qo = 1, (95)

where ¢; is an intermediate value such that ¢; € [qo, e°qo]. Then, the optimal strategy is clear: (i)
assign e°qq to | k]-th closest codewords s,,’s, (ii) assign ¢; to the (| k| + 1)-th closest codeword, and
(iii) assign qo to the remaining codewords. This implies that the k-closest coding is optimal. O

F Proof of Lemma 3.7

Proof. Following (28) with U,,, = As,, and v = e;, we have

ef —1
rp————— & A- s,
kes + (M — k) mGTk(Zel,A-S)
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et —1
=rp————FE A-s
kkes-l-(M—k) Z m
meEarg maxy ({(e1,4s1),....(e1,Asm)})
=e€1.
By focusing on the first coordinate of the above equation and observing that {(e1, Asys) = (a, Sm,)
where q is the first row of the rotation matrix A, we must have

e —1
Tk - mEaMmif(sd*l) Z <a, 5m> =1 (96)
me&Topy, ({{a,s1),....{a,sr)})

Note that since A is a random orthogonal matrix drawn from the Haar measure on SO(d), a is
distributed uniformly over the unit sphere S%~1.

Next, observe that by definition,

M 1
Sm = €m — 1M7
M(M —1) M(M —-1)
where 17 = (1,1,...,1,0,...,0) € {0,1}* (thatis, (1as),, = 1{m<ar})- Therefore,
——— -
M entries
M 1
<a73m> = Am — <a71M>7
M(M —1) M(M —-1)
and hence plugging in (96) yields
e —1
Tk - mEaNunif(sdﬂ) Z (@, 8m)
meTop, ({(a,s1),....{a,sn)})
k
e —1 M k
—r. - . E e ) — a1
Tk kes + (M— k‘) M(M — 1) ar~unif(S4—1) [; A ;| M) M<a7 M>‘|
k
e —1 M
=7 - . .E o ,
Tk kes + (M — k‘) M_1 ar~unif(S4-1) |Jz_; a(7,|M)‘| )
=C}

where (1) a(;|ar) denotes the i-th largest entry of the first M coordinates of a and (2) the last equality
holds since @ is uniformly distributed over S~ 1. O

G Proof of Lemma 3.8

Proof. First of all, observe that

k
Eqounifsi-1) [Z a(i|]W)‘|

i=1

r k M
= Equnifi-1) |E | D agim Z“?H
=1 =1
© (| ™ k i
@ 2 ;
- ]Earvunif(Sd*l) Z ag - E(a/l,...,ah)Nunif(SMfl) [Z a(z)‘|
i=1 i=1
[ M k
= Eqmunif(si-1) Zaf “E(af....af, ) ~unif(s-1) [Z azi) ’
i=1 i=1 i

) (ii)

where (a) holds due to the spherical symmetry of a. Next, we bound (i) and (ii) separately.
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Claim G.1 (Bounding (i)). For any d > M > 2, it holds that

M -2
d—2

< Eqmunif(si-1) 97

Proof of Claim G.1. Observe that when a is distributed uniformly over S?-1 it holds that

af  z Z Za

(a1,az,...,aq) - , - s ey y
VIl z2 [yl 2yl 2

where A £ B denotes A and B have the same distribution, and Z1, ..., Zy4 i1 N(0,1). As aresult,
we must have

M
Sl 72

Z1s Za RN(0,1) M 2 iildl 72

i1 27+ Yo i

By Jensen’s inequality, it holds that

M
E Zi:l Zzz

iid.

Z1ye Zag N(0,1 M 9 d 2
Lo Zar v N(01) Doic1 L+ i1 Zi

1
= EZ 24901 T sd g2
Loy Zar ~N(0,1) 1+ 21 22
PN
(@) 1
>
- ;Li’:M+1 Ziz/
1+E217---,ZMiE'N(Oa1) YL, z;
(b) 1
- d—M
1 + M—-2
M2
d—2"

where () holds since « — +/1/(1 4 z) is a convex mapping for z > 0, and (b) holds due to the fact
that }, ZZ follows from a x? distribution and that the ratio of two independent x* random variables
follows an ['-distribution.

On the other hand, it also holds that

M 2

E i Zi:l Zz
Z1ye Zag N(0,1 M 9 d 2
! >N (0,1 i1 Lt e Zi

M 2

]E . [ - ZiZI dZ’L
- Z1 e Zaa N (0,1 2 2
\ v SN O | S Z2 4 v 2

d 2

E [1 - Zizyr1 2
o Z1se s Zag N(0,1 M 52 d 2
1o Za M N(01) Do ZE D e 2

1-E !
B Zuen ZuN O | S 22
d Z2
i=M+41 41
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1+E " [Z’Mlzf ]

Z1, o Z NN(0,1) | 08 M1 23
© 1
= 1_7
M
I+ ==
B M
d—2’

where (a) holds since +/- is concave, (b) holds since = — ——

— is convex, and (c) again is due to the
fact that the ratio of two independent y? random variables follows an F-distribution

Claim G.2 (Bounding (ii)). As long as
e k> 400 -log 10,

« log (M/k) > (W)z

it holds that
klog (A1) " 4k log M
Y log 2M = < Eay,....a4, )~unif(sM-1) ;a(i) < v (98)
Proof of Claim G.2. We start by re-writing a':
7 Z Z
(ay,ab,...;a)y) 4 ! 2 M

M, M 7 M
\/Zi:l Zi \/Zi:l Zi Dim1 i
This yields that

d Zq) Z2) Zk)
(a21)7a22)7...7a2k)) = ceny s
VEL Sz Sz
and hence
k
ol =
(ot )~unif(sh-1) Lz_; ap | =By e Zar RN (0,1) M 72 ; “o
Upper bound. To upper bound the above, observe that
E S Z Zy | <EE 1
el VSv-t= i I R WS
Let & {(Zl, vy Zar)] ZM Z? < M(1— )} where v > 0 will be optimized later. Then it
holds that

,YZ
Pr{&} <e” =

99)
On the other hand, the Borell-TIS inequality ensures

Pr{|Zu) —E [Za)]| > €} <2727, (100)
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where Z; ~ N'(0,0?) (in our case, o = 1). Since E [Z(1,] < v/2log M, it holds that

Pr{Z(l) > \/210gM+£} < 2e¢

Therefore, define & := {Z(;) > /2log M + ¢} and we obtain

E iid. Z
Z1sesZm NdN(O’l) \/ﬁ 2

1
< s
< kEzl _____ 2N (0.1) Zfil pe Z()

Z
<k [E| 29 leng|+ swp |2 | . Pr(erugs)

/ZM ZQ 21,000 %m sz\il 212

k- (W +1- (e*MW‘* + 2652))

\/2logM+ /log(M

0.9-M
(k«/logM)
=0 (=3

IN

IN
=

1. (e—M/4oo n 2/M)

)

where the last inequality holds by picking v = 0.1 and { = /log M.

Lower bound. The analysis of the lower bound is more sophisticated. To begin with, let

ZZ e ),M(1+7)]}

denote the good event such that the denominator of our target is well-controlled, where v > 0 again
will be optimized later. By the concentration of 2 random variables, it holds that

SM = { Zl,.. Z]\/[

1~2 M

Pr{€5,} < e~ ¥Olog(1+) | o~ < 6_7<1_4\/711+§)’7 e < 2~ =t (101)

Next, to lower bound Zle Z(;), we partition (Z, Zg, ...y Zpr) into k blocks By, B, ..., By, where
each block contains at least N = | M/k| samples: B; :==[(j —1)- N+ 1:j-N]forj e [k —1]

and By, = [M]\ (U;C llB ) Define Z((lg be the maximum samples in the j-th block: Z((f)) =

max;ep, Z;. Then, it is obvious that
- - > (5)
> Zwy =Y 4
i=1 j=1

To this end, we define £; to be the good event that 90% of Z (({)) ’s are large enough (i.e., concentrated
to the expectation):

. Vg N
& = K29 > Y20 10g100 4| > 0.9k 5.
{2 g

Note that by the Borell-TIS inequality, for any j € [k],

i Tog N
Pr{Z(J) > % —g} >1-2e¢,
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so setting & = log 100 implies Pr {Z (({)) > Jiv:’lgg —¢ } > 0.98. Since blocks are independent with

each other, applying Hoeffding’s bound yields
Pr{&} > 1— Pr{Binom(k,0.98) < 0.9} > 1 — e ¥ > g9,
when k& > 400 - log 10 > log 10/0.082.
Next, we define a “not-too-bad” event where Z 1 Z (({)) is not catastrophically small:
- k

52 = ZZ({) > = E )
270 = "

for some & > 0 to be optimized later. Observe that £ holds with high probability:

P{g}@P{k§:Z> kg}
r{&} >Pr< — ;> ——
MiZl M

(;)l—e_f 2

where (a) holds since the each of the top-k values must be greater than % times the average, and (b)
holds due to the Hoeffding’s bound on the sum of i.i.d. Gaussian variables.

Lastly, a trivial bound implies that
- k
inf apy > ———.
agsM -1 ; O ="M

1 k
Now, we are ready to bound ]EZ1 T RN (01) [\/W Yoic1 Za )] We begin by decomposing

it into three parts:

k k
Zi:l Z(i) Zi:l Z(

_ . i)
E gz n0) \/ZleQ =Pr{&n&Néy}-E ng N&NEm

. S Za
FPr{ESNENEY) B | =20 (ceqg,ne
{1 2 JW} \/W 1 2 M

k
Z(i)
+Pr{&U&)-E Lit ) lesues,

Vit 22

We bound these three terms separately. To bound the first one, observe that condition on & N &,
Zf:l Ziy Z 79) > 0.9k, /Lo N —E_~_ As aresult,

(1) 7 log 2 v M
k
Z3
Pr{&N&NEy}-E Ls NENEy
/Zl\l ZQ
0.9k, / 2ell — ko .
oEZ VM -(1—(0.1+6752/2+267M72/4>). (102)

M(1+~)

To bound the second term, observe that under £,
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so we have
k
21:1 Z(i)
M
V2o ZF

>Pr{&nNnENEn}- <Z\42?1—’y)§>

> Pr{&f}- <_]\/[2](€1—7)€>

>0.1- <—M> : (103)
M?(1 =)

Pr{EQQEfﬂé'M}-IE EQQEfﬂf;M

For the third term, it holds that
k
21:1 Z (7)

Vi, 22

k
>Pr{&5UE&L - inf ag)

SM—1
ac i—1

v

k
—Pr{&SUES Y} —
r{&; e VI
_ (e_§2/2 + e_M’YQ/‘*) ) 7]{]\4

v

(104)

Combining (102), (103), and (104) together, we arrive at

Ezl,...,ZM“JN(OJ)

) 0.9k (\/%) - %’Y . (1 _ <0.1 + e—€7/2 + 26—M'72/4)) —-0.1- (NE)

M?(1 =)

(e e _k_
e +e : .
( Vi
Finally, setting v = O (ﬁ) and £ = O(1) yields the desired lower bound
klog N >
7 )

Camp = <

H Additional Experimental Results

In Figure 2, we provide additional empirical results by sweeping the number of users n from 2, 000
to 10, 000 on the left and sweeping the dimension d from 200 to 1, 000 on the right.

I Additional Details on Prior LDP Schemes

For completeness, we provide additional details on prior LDP mean estimation schemes in this
section, including PrivUnit [4], SQKR [6], FT21 [12], and MMRC [30]. We skip prior work analyzing
compression-privacy-utility tradeoffs that do not specifically focus on the distributed mean estimation
problem [19, 20] or others that study frequency estimation [6, 11, 30].
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Figure 2: Comparison of RRSC with SQKR [6], MMRC [30], and PrivUnitG [2]. (left) /5 error vs
number of users n with d = 500, ¢ = 6, and the number of bitsis b = ¢ = 6. k£ = 1 for each n.
(right) /5 error vs dimension d for n = 5000, ¢ = 6, and the number of bitsisb =& = 6. k = 1 for
for each d.

I.1 PrivUnit [4]

[2] considered the mean estimation problem under DP constraint (without communication constraint)
when X = S9! = {v € R?: ||v||; = 1}. Since there is no communication constraint, they assumed
canonical protocol where the random encoder is f : S?~! — R? and the decoder is a simple additive
aggregator

3=

gn(f(vl)""’f(vn)): Zf(vl)

The authors showed that PrivUnit is an exact optimal among the family of unbiased locally private
procedures.

Recall that given an input vector v € S?~!, the local randomized PrivUnit(p, q) has the following
distribution up to normalization:

o ZUZ,v) > W.p. p
PrivUnit(p, g) ~ =
rivUnit(p, ¢) {Z<Z,v> <y  wpl-p
where Z has a uniform distribution on S¢~!. Let S., be the surface area of hypersphere cap {z €
S%1(z,v) > 7}, with S_; representing the surface area of the d dimensional hypersphere. We
denoted ¢ = Pr[Z; < +] = (S-1 —S,)/S—_1 (convention from [4, 2]). The normalization factor is
required to obtain unbiasedness.

[2] also introduced PrivUnitG, which is a Gaussian approximation of PrivUnit. In this approach,
Z is sampled from an i.i.d. A/(0,1/d) distribution. This simplifies the process of determining more
accurate parameters p,q, and . Consequently, in practical applications, PrivUnitG surpasses
PrivUnit in performance owing to superior parameter optimization.

1.2 SQKR [6]

Next, we outline the encoder and decoder of SQKR in this section. The encoding function mainly
consists of three steps: (1) computing Kashin’s representation, (2) quantization, and (3) sampling and
privatization.

Compute Kashin’s representation A tight frame is a set of vectors {u; }jvzl € R? that satisfy

Parseval’s identity, i.e. ||v\|§ = Z;yzl(uj,v>2 forallv € RY. We say that the expansion v =
Z;V:l aju; is a Kashin’s representation of « at level K if max; |a;| < TKN llv]l5 [23]. [27] shows
that if N > (1 + p)d for some g1 > 0, then there exists a tight frame {u; }jvzl such that for any
r € R?, one can find a Kashin’s representation at level X = ©(1). This implies that we can
represent the local vector v with coefficients {a; };V:l € [~¢/V/d,c/v/d)N for some constants ¢ and

N = 0(d).
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Quantization In the quantization step, each client quantizes each a; into a 1-bit message ¢; €
{—c/\/ﬁ, c/\/E} with E [¢;] = a;. This yields an unbiased estimator of {a; }évzl, which can be

described in N = ©(d) bits. Moreover, due to the small range of each aj, the variance of g; is
bounded by O(1/d).

Sampling and privatization To further reduce {¢;} to k& = min([e],b) bits, client ¢ draws k
independent samples from {g; };.v:l with the help of shared randomness, and privatizes its k bits

message via 2¥-RR mechanism[36], yielding the final privatized report of k bits, which it sends to
the server.

Upon receiving the report from client 7, the server can construct unbiased estimators a; for each
{a; }?;1, and hence reconstruct 0 = Z;V 1 Gju;, which yields an unbiased estimator of v. In [6], it

is shown that the variance of ¢ can be controlled by O (d/ min (%, &,b)).

1.3 FT21 [12] and MMRC [30]

Both FT21 and MMRC aim to simulate a given e-LDP scheme. More concretely, consider an e-LDP
mechanism ¢(-|v) that we wish to compress, which in our case, PrivUnit. A number of candidates
U1, -+ ,uy are drawn from a fixed reference distribution p(u) (known to both the client and the
server), which in our case, uniform distribution on the sphere S?-1, Under FT21 [12], these candidates
are generated from an (exponentially strong) PRG, with seed length ¢ = polylog(d). The client
then performs rejection sampling and sends the seed of the sampled candidates to the server. See
Algorithm 2 for an illustration.

Algorithm 2 Simulating LDP mechanisms via rejection sampling [12]
Inputs: e-LDP mechanism q(-|v), ref. distribution p(-), seeded PRG G : {0,1}* — {0, 1}, failure
probability v > 0.
J =eln(1/7).
forje{l,---,J}do
Sample a random seed s € {0, 1}*.
Draw u < p(-) using the PRG G and the random seed s.
Sample b from Bernoulli ( a(ulv) )

e p(u)
if b = 1 then
BREAK
end if
end for

Output: s

On the other hand, under MRC [30] the LDP mechanism is simulated via a minimal random coding
technique [15]. Specifically, the candidates are generated via shared randomness, and the client
performs an importance sampling and sends the index of the sampled one to the server, as illustrated
in Algorithm 3. It can be shown that when the target mechanism is e-LDP, the communication costs
of both strategies are O(¢) bits. It is also worth noting that both strategies will incur some bias
(though the bias can be made exponentially small as one increases the communication cost), and [30]
provides a way to correct the bias when the target mechanism is PrivUnit (or general cap-based
mechanisms).
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Algorithm 3 Simulating LDP mechanisms via importance sampling [30]

Inputs: e-LDP mechanism ¢(-|v), ref. distribution p(-), # of candidates M
Draw samples u1, - - - , ups from p(u) using the shared source of randomness.
forke{1,---, M} do
w(k) < q(uk|v)/p(ur).
end for
e () = w(-)/ 25 w(k).
Draw k* < TMRC-
Output: £*
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