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Abstract. Reconstructing 3D faces with facial geometry from single
images has allowed for major advances in animation, generative models,
and virtual reality. However, this ability to represent faces with their
3D features is not as fully explored by the facial expression inference
(FEI) community. This study therefore aims to investigate the impacts
of integrating such 3D representations into the FEI task, specifically for
facial expression classification and face-based valence-arousal (VA) esti-
mation. To accomplish this, we first assess the performance of two 3D face
representations (both based on the 3D morphable model, FLAME) for
the FEI tasks. We further explore two fusion architectures, intermediate
fusion and late fusion, for integrating the 3D face representations with
existing 2D inference frameworks. To evaluate our proposed architecture,
we extract the corresponding 3D representations and perform extensive
tests on the AffectNet and RAF-DB datasets. Our experimental results
demonstrate that our proposed method outperforms the state-of-the-art
AffectNet VA estimation and RAF-DB classification tasks. Moreover,
our method can act as a complement to other existing methods to boost
performance in many emotion inference tasks.

Keywords: 3D Face Representations · Facial Expression Inference · In-
termediate and Late Fusion

1 Introduction

Facial expressions play a significant role in social interactions, as it can provide
insights into a person’s feelings toward other individuals or events. Mehrabian
and Wiener [46] suggest that 55% of communication is perceived through facial
expressions. AI-based automated emotion analysis enhances user experience and
it has well-known applications in autonomous driving [9], online course learning
[4], security [42, 49], healthcare [48], medical rehabilitation [68], employee job
retention [52], and many other social situations.

* Equal contribution.
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In the domain of facial expression inference (FEI)1, there are two primary
tasks: discrete and continuous facial expression inference. Discrete or categorical
inference aims to assign facial expressions into distinct emotional categories, such
as anger, sadness, joy/happiness, surprise, fear, disgust, contempt and neutral,
whereas continuous inference assigns facial expressions within a continuous 2D
numerical space; where the two dimensions are extents of valence (the extent of
pleasant or unpleasant response to an emotional stimulus) and arousal (the state
of physiological activation and alertness resulting from an emotional stimulus).
Discrete classification has advanced quickly due to the ease of data annotation.
However, the highly abstract nature of labels makes cross-cultural consensus
difficult [2]. Additionally, experts disagree on the number of emotion categories
[13, 14, 19, 55], which have increased from 7 to 135 [7]. Continuous circumplex
emotion modeling [56] further quantifies emotions and promotes research, but it
is challenging to annotate accurately and suffers from bias [32, 47]. To mitigate
this, researchers typically try to increase the number of human observers to
reduce bias [53]. Although both types of analysis have certain data limitations,
combining them offers complementary benefits. Therefore, we believe that the
model’s analysis should consider both perspectives.

Recently, 3D mesh reconstruction from static human-centric images has shown
impressive achievements across various applications [12,57,66,70]. In particular,
reconstructing 3D faces from monocular images using facial geometry has proven
effective in capturing extreme, asymmetric, and subtle expressions accurately.
Regressing parameters from images as a lightweight 3D representation can dis-
entangle facial shape and expression, and easily generate 3D facial geometry
using a morphable model like FLAME [40]. Therefore, a natural progression is
to integrate this technology into facial expression inference. However, limited re-
search has investigated the significance and impact of the parameters involved,
and how they can enhance FEI. In this work, we investigate the performance
of two latest 3D face regression models, EMOCA [10] and SMIRK [54], in the
context of the FEI task.

Data fusion is a process dealing with data and information from multiple
sources to achieve improved information for decision-making [17]. This paper
addresses the fusion of information from 2D images with parameters regressed
from 3D perspectives, presenting significant challenges and uncertainties. A ma-
jor issue is the heterogeneity of feature representations. Features from different
modalities can vary greatly, requiring effective methods to integrate these diverse
features seamlessly. Therefore, this paper proposes two architectures, intermedi-
ate fusion and late fusion, to investigate the impact of different fusion methods
on facial expression inference performance.
In summary, the contributions of this work are as follows:

First, We provide insights into the parameters of 3D face representation
(pose, shape, expression, jaw, etc.) and compare the two recent 3D face

1 Wagner et al . [62] postulate that facial expressions are inferred and not recognized,
hence the use of the term FEI, rather than the more popular term FER - facial
expression recognition.
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representation models, SMIRK and EMOCA on the benchmark datasets.
Experiments showcase that EMOCA 3D representation achieves better per-
formance on FEI tasks.

We introduced two architectures for integrating 3D representations: inter-
mediate fusion and late fusion. Our experiments demonstrate that the late
fusion architecture achieves superior performance.

Lastly, we present a simple and effective architecture that can be flexibly
adapted to various affective reasoning tasks. Extensive experiments demon-
strate the efficiency of our method, with results surpassing the state-of-the-
art in AffectNet VA estimation and RAF-DB classification. We will release
the 3D representation data along with the code developed for this work.

2 Related Work

Facial Expression Inference Datasets

The continuous development of datasets has driven the advancement of AI-
based affective models. Early datasets such as JAFFE [45], CK+ [44], and
KDEF [6] primarily collected expressions under 7 or 8 discrete categories. Subse-
quently, in-the-wild datasets like FER2013 [16], AffectNet [47], RAF-DB [38,39],
and Aff-Wild2 [22–34, 69] further increased the scale of data. EmotionNet [3],
LIRIS_CSE [21] and MAFW [43] extended the discrete labels by including com-
pound annotations to better capture the richness of human emotions. Addition-
ally, fine-grained discrete labels have been explored in datasets like F2ED [72]
and Emo135 [63]. Having both discrete and continuous annotations also opens up
new avenues for research breadth [1,35,47] Contextual information is consciously
considered and collected in the EMOTIC [35] and VEATIC [53] datasets.

To better compare performance advantages, this paper selects the widely
studied AffectNet and RAF-DB datasets for analysis. AffectNet includes 287,651
training images and 3,999 validation images (typically used as test data in ex-
periments). It provides annotations for 8 distinct categories and VA (Valence-
Arousal) annotations. RAF-DB includes 12,272 images for training and 3,096
images for testing, covering 7 distinct categories. Additionally, the dataset con-
tains labels related to attributes such as gender, age, and more.

Facial Expression Inference Models

Discrete expression inference on datasets like AffectNet and RAF-DB has made
continuous progress. The current top accuracy models [51] on both datasets are
the same: DDAMFN, FMAE, BTN, and ARBEx. DDAMFN [71] integrates a
Mixed Feature Network (MFN) as the backbone and a Dual-Direction Atten-
tion Network (DDAN) as the head. FMAE [50] introduces Identity Adversarial
Training (IAT) and pre-trains a Facial Mask Autoencoder. S2D [8] proposes the
Static-to-Dynamic Model to improve Dynamic Facial Expression Recognition
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(DFER) in videos. BTN [18] includes Multi-Level Attention (MLA) and Batch
Transformer (BT) modules to address uncertainty and noisy data in Facial Ex-
pression Recognition (FER). ARBEx [64] incorporates learnable anchors and
a multi-head self-attention mechanism in the embedding space to tackle class
imbalance, bias, and uncertainty in expression learning tasks.

Regarding continuous expression VA inference, CAGE [62] is the current
state-of-the-art framework. It uses a small-scale pre-trained version of the Multi-
Axis Vision Transformer (MaxVIT) [61] along with a lightweight EfficientNet
model [59]. The core insight is to train both discrete category and VA estima-
tion simultaneously, using the combined checkpoint to enhance VA inference.
Therefore, DDMFN and CAGE frameworks are employed as our 2D image-side
backbones for fusion analysis.

Data Fusion

Intermediate fusion allows data fusion at different stages of model training by
transforming input data into higher-level feature representations through mul-
tiple layers [37]. It offers flexibility at different depths of fusion. In the context
of deep learning with multimodal data, intermediate fusion involves merging
different modal representations in a single hidden layer, enabling the model to
learn joint representations. To improve performance, data dimensionality can be
adjusted [11,67].

Late fusion involves independently processing data sources at the decision
stage before fusing the results [37]. This technique is inspired by the popular-
ity of ensemble classifiers [36]. When data sources differ significantly in sampling
rate, data dimensionality, and measurement units, this technique is much simpler
than early fusion methods. Since errors from multiple models are handled inde-
pendently, they are uncorrelated, and late fusion typically yields better perfor-
mance. Many researchers use late or decision-level fusion to address multimodal
data problems [20,58,65].

3 Face Representation with 3D Morphable Models

Although there are many different 3D face representation models, in this work,
we are mainly considering 3D morphable models (3DMM), which have been
widely used in widely used in facial geometry reconstruction tasks. These models
regress the 3D representations of faces from 2D images, by projecting the input
2D image onto the previously established 3DMM space, to obtain shape, pose,
expression, and detail coefficients. Nonlinear optimization techniques are then
used to refine these parameters by minimizing a cost function. The pipeline
demonstrating the relationship between face regression and 3DMM is shown in
Figure 1 Below, we briefly introduce the widely used FLAME model and the
two latest FLAME-based regression tasks EMOCA and SMIRK.

FLAME [41] is a 3DMM used for synthesizing detailed and expressive 3D
models of human heads. It accomplishes this by exploiting a linear shape space
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Fig. 1: A standard pipeline for 3D facial geometry reconstruction from an image. Left:
The regression model extracts disentangled 3D parameter representations from the
images. Right: These parameters are utilized to reconstruct the 3D facial geometry
using a 3D Morphable Model.

trained from a large dataset of 3D scan sequences (4D with time). The model
uses Principal Component Analysis (PCA) to create a low-dimensional repre-
sentation of facial shapes and this involves identifying the principal components
(PCs) that capture the most variance in the facial shapes from the training
data. Thus, any new face can be represented as a linear combination (the shape
parameters) of these principal components. By adjusting the weights of these
components, FLAME can generate a wide variety of facial shapes. To improve
its fidelity, FLAME also includes pose-dependent corrective blendshapes and
global expression blendshapes. The global blendshapes are predefined facial ex-
pressions that are added to the base facial shape. They capture various facial
movements associated with emotions, such as smiling, frowning, or surprise.

Figure 2 shows a few examples of the resulting synthesized faces when various
model parameters are altered. The images were created from the FLAME Model
Viewer located on the authors’ site2.

Fig. 2: 3D Representation Visualization

2 https://flame.is.tue.mpg.de/

https://flame.is.tue.mpg.de/
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EMOCA [10] extends the previously trained face reconstruction framework,
DECA [15], which reconstructs a detailed 3D face model by learning the FLAME
parameters from a single RGB image. The model uses a combination of land-
mark losses, photometric losses, and perceptual emotion consistency loss during
training to ensure the reconstructed 3D faces accurately convey the emotional
content of the input images. The EMOCA model regresses a total of 334 param-
eters: 100 for shape, 50 for emotional expressions, 6 for pose, 100 for detail, 50
for texture, and others including pose-dependent and articulated components.

SMIRK [54] is another FLAME-based regression model that has the ad-
vantage of capturing any subtleties, extreme expressions, asymmetries, or rarely
observed expressions that create slight deformations of the face shape. SMIRK
replaces the previous differentiable rendering approach in comparing generated
3D face representations with the original inputs. Given the rendered predicted
mesh geometry and sparsely sampled pixels of the input image, this new neural
rendering module focuses on local geometries to generate a face image more sim-
ilar to the original, which can then be fed back to the reconstruction pipeline.
The SMIRK model regresses to 358 standard parameters of which 300 are shape,
50 are expression and 6 are pose. Other additional parameters include camera
parameters and those specific to the neural rendering process used in SMIRK.

4 Fusion Architecture

4.1 3D Representation Classifier Architecture

Though EMOCA and SMIRK report emotion recognition performance, their re-
sults are based on a manually cleaned dataset, which is difficult to reproduce.
Despite the inherent limitations of the AffectNet dataset, for a fair comparison,
we extracted all 3D features from AffectNet datasets to curate a 3D representa-
tion dataset and then trained the 3D representation classifier.

The classifiers in this study adopted a similar architecture to the emotion
classification MLP proposed in [60], with minor adjustments. The classifier net-
work architecture comprises an input layer, followed by four fully connected
layers, each with an output dimension of 2048. Batch normalization and Leaky
ReLU activation functions are applied in all fully connected layers. Dropout
rates of 50% and 40% are applied to the first and second layers, respectively.
The output layer is adapted based on the dataset: for the RAF-DB dataset, it
has 7 output dimensions, while for the AffectNet dataset, it includes 8 classes
plus additional outputs for valence and arousal levels.

4.2 Loss Function

Discrete Expression Inference For the AffectNet dataset [47], following the
previous approach [60, 62] for emotion classification, we employed a combined
loss function for this task.
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Fig. 3: Overview of the 3D Representation Fusion Architecture

The combined loss function used in this study integrates several components
to handle both classification and regression tasks. The cross-entropy loss LCE is
used for the classification task, measuring the difference between the true and
predicted class labels. For the regression tasks, the mean squared error LMSE is
applied to minimize the squared differences between the predicted and true val-
ues of valence and arousal. Additionally, we incorporate the Pearson correlation
coefficient LPCC , which assesses the linear correlation between the predicted
and true valence and arousal values. Furthermore, the concordance correlation
coefficient LCCC is used to measure the agreement between the predicted and
true values, considering both precision and accuracy.

The final loss function is a weighted combination of these components as
shown Eq: 1:

Loss = LCE +
α

α + β + γ
× LMSE +

β

α + β + γ
× (1 − LCCC) +

γ

α + β + γ
× (1 − LPCC) (1)

where α, β, γ are weighting factors for the different components of the loss
function. The values of α, β, γ are randomly sampled from a uniform distribution
between 0 and 1 for each batch.

Continuous Expression Inference Regarding the VA estimation on Affect-
Net, we follow CAGE [62] and use a two-stage training approach and employ
their best performance model, MaxVIT as our 2D image analysis model. In the
first stage, we train with a combined loss Losscombined. In the second stage,
building on the first, we modify the output to valence and arousal to strengthen
the VA supervised learning with Lossva.

Losscombined = LweightedCE + w1 · LMSE (2)
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Lossva = LCCC + w2 · LMSE (3)

where the weighted cross-entropy LweightedCE is used to ease the issue of
imbalanced distribution in the training set. This loss function assigns weights
based on the frequencies of the expressions.

4.3 Intermediate Fusion Architecture

In the intermediate fusion architecture shown in Fig. 3, A facial image is pro-
cessed by both a 2D face analysis model and a 3D face regression model. The 2D
analysis model extracts high-dimensional features useful for recognizing facial
expressions, while the 3D regression model regresses parameters that are linked
to the facial structure.

Next, the 2D image features and the transformed 3D features are concate-
nated (or combined) into a comprehensive feature set. This feature set is then
fed into a linear fusion architecture, leveraging both 2D and 3D information. The
fused features are input into a classification layer (CLS), which is identical to the
classifier architecture mentioned earlier. The CLS layer processes these features
to predict various aspects of facial expressions (category, valence, or arousal).

Different datasets necessitate different outputs and loss functions. The loss
function and linear fusion architecture used here are consistent with the classifier
architecture mentioned above.

4.4 Late Fusion Architecture

In the late fusion architecture shown in Fig. 3, the input image is processed by
the 2D face analysis model. This model extracts 2D features from the image and
inputs these 2D features into the 2D classifier, which outputs emotion category,
valence, and arousal results based on the requirements of different datasets.
Meanwhile, the input image is also processed by the 3D face regression model.
This model extracts 3D features from the image, and these 3D features are then
input into a pre-trained classifier, which outputs emotion category, valence, and
arousal results. This architecture maximizes the preservation of their respective
independent inference capabilities.

In the late fusion step, the outputs of the 2D classifier and the 3D classifier are
combined. Here, we use simple fusion methods such as max, mean, and weighted
to integrate the information from both 2D and 3D analyses, generating more
accurate and robust emotion recognition results.

5 Experiments

Training Setting and Evaluation Metrics The hyperparameters for the
training architecture are summarized in Tab. 1. These settings ensured the sta-
bility and efficiency of the model training process.
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Table 1: Hyperparameters for Classifier Training.

Hyperparameter Value
Batch Size 64
Weight Decay 1e-5
Maximum Epochs 100
Early Stopping Patience 3
Learning Rate Scheduler CyclicLR
Base Learning Rate 1e-6
Maximum Learning Rate 1e-4
Step Size len(train_loader)//2
Scheduler Mode ’triangular’
Cyclical Momentum No

For the emotion discrete classification task, we use state-of-the-art binary
classification metrics [62,71], including Accuracy, F1 score, Precision, and Recall.
We follow established practices3 to compute these metrics. For a comprehensive
evaluation, we report both weighted and macro averages for the unbalanced
test dataset (RAF-DB). For the balanced test dataset (AffectNet), where both
metrics are identical, we report results once.

For the emotion continuous regression task, our evaluation metrics are Mean
Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Concordance Correlation Coefficient (CCC).

Table 2: Classification Comparison of EMOCA and SMRIK 3D Represen-
tations only (no fusion) on AffectNet Dataset.

3D Classifier Accuracy ↑ F1 ↑ Precision ↑ Recall ↑
CLSSmirk3D−short 0.5461 0.5459 0.5477 0.5461
CLSSmirk3D−full 0.5546 0.5547 0.5569 0.5546
CLSEmoca3D−short 0.5723 0.5726 0.5758 0.5723
CLSEmoca3D−full 0.5703 0.5704 0.5768 0.5703

5.1 3D Representation Classification Performance

In 3D representations, the parameters most relevant to expressions are expres-
sion, pose, and shape. To analyze the information gained from other parameters
on FEI tasks, we divided them into two groups: the short group (expression,
pose, shape) and the full group (all parameters). Thus, Smirk3Dshort has 353
dimensions, Smirk3Dfull has 358 dimensions, Emoca3Dshort has 156 dimen-
sions, and Emoca3Dfull has 334 dimensions.

As shown in Tab. 2 and Tab. 3, Emoca3D outperforms Smirk3D in discrete
emotion classification tasks. Emoca3Dshort achieves the best performance on
AffectNet, improving by 2.26% in accuracy compared to Smirk3Dshort, while
Smirk3Dfull achieves the best performance on RAF-DB, improving by 3.7% in
3 Code reference for evaluation (see lines 90-92).

https://github.com/wagner-niklas/CAGE_expression_inference/blob/main/models/evaluation.py/
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Table 3: Classification Comparison of EMOCA and SMRIK 3D Representa-
tions only (no fusion) on RAF-DB Dataset. Due to the unbalanced test dataset,
we report both weighted and macro average metrics for a comprehensive evaluation.
Acc stands for Accuracy, F1 for F1 score, P for Precision, and R for Recall.

3D Classifier Acc ↑ Weighted Avg Macro Avg
F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑

CLSSmirk3D−short 0.7378 0.7418 0.7475 0.7418 0.6421 0.6386 0.6482
CLSSmirk3D−full 0.7557 0.7584 0.7631 0.7557 0.6585 0.6568 0.6627
CLSEmoca3D−short 0.7862 0.7873 0.7895 0.7862 0.6965 0.6908 0.7037
CLSEmoca3D−full 0.7927 0.7946 0.7985 0.7927 0.7073 0.7043 0.7118

accuracy compared to Smirk3Dfull. Experiments show that EMOCA preserves
more emotional information and is better suited for emotion reasoning tasks.

5.2 3D Fusion in Discrete Facial Expression Inference

In the experiments of discrete expression inference on the AffectNet dataset as
shown in Tab. 4, our fusion method achieved the best performance. Although
we did not replicate its best performance as reported (65.04%) on AffectNet 8,
the weighted late fusion still achieved an improvement in all metrics. Here, the
late fusion weight is 0.2 for the 3D component. The weighted fusion strategy
improved the accuracy by 0.55%, the F1 score by 0.58%, the precision by 0.26%,
and the recall by 0.55%.

Table 4: Classification Comparison of Different Fusion Architectures on
AffectNet Dataset.

Framework Accuracy ↑ F1 ↑ Precision ↑ Recall ↑
DDAMFN (our reproduction) 0.6324 0.6323 0.6353 0.6324

Intermediate Fusion
F2D + FSmirk3D 0.6117 0.6098 0.6128 0.6117
F2D + FEmoca3D 0.6234 0.6232 0.6276 0.6234

Late Fusion
Max with CLSSmirk3D 0.6267 0.6260 0.6273 0.6267
Max with CLSEmoca3D 0.6294 0.6292 0.6306 0.6294
Mean with CLSSmirk3D 0.6262 0.6266 0.6315 0.6262
Mean with CLSEmoca3D 0.6289 0.6295 0.6338 0.6289

Weighted with CLSSmirk3D 0.6364 0.6367 0.6408 0.6364
Weighted with CLSEmoca3D 0.6379 0.6381 0.6379 0.6379

The best performance was achieved with the weighted Emoca3D late fusion
strategy, reaching the highest accuracy (94.00%), F1 score (93.93%), precision
(93.97%), and recall (94.00%). Compared to our reproduced DDAMFN model,
the weighted fusion strategy improved the accuracy by 3.84%, the F1 score by
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Table 5: Classification Comparison of Different Fusion Architectures on
RAF-DB Dataset. Due to the unbalanced test dataset, we report both weighted and
macro average metrics for a comprehensive evaluation. Acc stands for Accuracy, F1
for F1 score, P for Precision, and R for Recall.

Framework Acc ↑ Weighted Avg Macro Avg
F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑

DDAMFN (our reproduction) 0.9016 0.9013 0.9022 0.9016 0.8554 0.8686 0.8451
Intermediate Fusion

F2D + FSmirk3D 0.9006 0.9007 0.9018 0.9006 0.8489 0.8561 0.8435
F2D + FEmoca3D 0.8996 0.8990 0.8989 0.8996 0.8501 0.8559 0.8453

Late Fusion
Max with CLSSmirk3D 0.8989 0.8984 0.8989 0.8989 0.8527 0.8656 0.8426
Max with CLSEmoca3D 0.8941 0.8944 0.9021 0.8941 0.8462 0.8643 0.8485
Mean with CLSSmirk3D 0.9030 0.9024 0.9041 0.9030 0.8561 0.8829 0.8361
Mean with CLSEmoca3D 0.9130 0.9135 0.9178 0.9130 0.8413 0.8414 0.8521

Weighted with CLSSmirk3D 0.9106 0.9099 0.9110 0.9106 0.8689 0.8914 0.8516
Weighted with CLSEmoca3D 0.9400 0.9393 0.9397 0.9400 0.8958 0.9090 0.8860

3.80,% the precision by 3.75%, and the recall by 3.84%. This result has made
our model overpass the state-of-the-art performance on the RAF-DB dataset.

We believe the reason late fusion outperforms intermediate fusion is that the
results from different models remain more independent, thereby maximizing the
retention of each model’s respective advantages. However, the features provided
by intermediate fusion are redundant compared to the original features. During
training, we observed early stopping occurring within the first 8 epochs, earlier
than the baseline model’s 12-15 epochs. We guess this is because intermediate fu-
sion introduces excessive redundant information, which strongly correlates with
features extracted from images in high-dimensional space, leading to reduced
model generalization.

Table 6: Comparison with Previous SOTA models for Discrete FEI on RAF-
DB Dataset.

Method Accuracy [%] Date [mm-yy]
FMAE [50] 93.09 07-2024

S2D [8] 92.57 12-2023
BTN [18] 92.54 07-2024

ARBEx [64] 92.37 05-2023
DDAMFN [71] 92.34 07-2023

Ours 94.00 07-2024

The results shown in Tab.6 indicate that a simple weighted late fusion strat-
egy can significantly enhance the performance of our reproduced DDAMFN
model (originally ranked 5th), achieving new state-of-the-art performance. Note,
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that the TOP1 FMAE model pre-trained on the large dataset, while our method
just trained with a single AffectNet dataset.

Table 7: Continuous VA Results from Different Fusion Architectures on
AffectNet Dataset.

Framework MSE ↓ MAE ↓ RMSE ↓ CCC ↑
CAGEva (Our reproduction) 0.1044 0.2377 0.3230 0.7814

3D Representation
RegresserEmoca3D 0.1061 0.2483 0.3257 0.7637
Feature Fusion
F2D + FEmoca3D 0.1061 0.2398 0.3257 0.7749
Late Fusion

Max with RegressorEmoca3D 0.1052 0.2419 0.3243 0.7727
Min with RegressorEmoca3D 0.1053 0.2441 0.3245 0.7726
Mean with RegresserEmoca3D 0.0956 0.2325 0.3092 0.7891

Weighted with RegresserEmoca3D 0.0958 0.2316 0.3095 0.7901

Table 8: Benchmark Comparison for VA Inference on AffectNet Dataset.

Framework RMSEval↓ RMSEaro↓ CCCval ↑ CCCaro ↑ Date[mm-yy]
VGG-G [5] 0.356 0.326 0.710 0.629 03-2021
CAGE [62] 0.331 0.305 0.716 0.642 04-2024

Ours 0.323 0.294 0.724 0.650 07-2024

5.3 3D Fusion in Continuous Facial Expression Inference

The experimental results on AffectNet, as shown in Table 7, indicate that our late
fusion and mean fusion strategies effectively improved performance. Surprisingly,
the performance of the 3D representation alone is already very close to that of our
reproduced CAGE. Our mean fusion achieved an MSE of 0.0956 and an RMSE of
0.392, while our weighted fusion achieved an MAE of 0.2316 and a CCC of 0.7901.
The weight for the 3D representation was set at 0.4. These results highlight the
importance of 3D representation to continuous FEI tasks. Compared to our
reproduced CAGE model, our mean late fusion improved performance by 8.43%
in MSE, 2.19% in MAE, 4.27% in RMSE, and 0.99% in CCC. Our weighted
late fusion increased performance by 8.24% in MSE, 2.57% in MAE, 4.18% in
RMSE, and 1.11% in CCC.

Tab.8 shows that our late fusion method has surpassed the current state-of-
the-art methods. Compared with the CAGE model, our valence RMSE increased
by 2.42% , arousal RMSE increased by 3.61%, valence CCC increased by 1.12%,
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and arousal CCV increased by 1.25%. The overall results indicate that the late
fusion of 3D representations can effectively enhance continuous expression infer-
ence tasks.

The experimental results on the AffectNet as shown in Tab. 7, our late fusion
and mean fusion both greatly improved the performance. Here the weight for
3D representation is 0.4. Our mean fusion achieved 0.0956 in MSE and 0.392
in RMSE, meanwhile, our weighted fusion achieved 0,2316 in MAE and 0.7901
in CCC. This highlights the 3D representation’s contribution to continuous FEI
tasks. Our mean fusion achieved an MSE of 0.0956 and an RMSE of 0.392,
while our weighted fusion achieved an MAE of 0.2316 and a CCC of 0.7901.
Compared to our reproduced CAGE model, our mean late fusion performance
improved by 8.43% in MSE, 2.19% in MAE, 4.27% in RMSE, and 0.99% in
CCC. Our weighted late fusion performance increased by 8.24% in MSE, 2.57%
in MAE, 4.18% in RMSE, and 1.11% in CCC.

6 Conclusions

As 3D face reconstruction aligns more closely with reality, its integration and
analysis can be beneficial in many FEI tasks. Our research evaluates the perfor-
mance of existing 3D face representations, introduces two fusion architectures,
and demonstrates the efficiency of late fusion through extensive experiments.
The experimental results show that our proposed method outperforms the state-
of-the-art in AffectNet VA estimation and RAF-DB classification tasks. These
findings offer valuable insights into the application of 3D representations for
emotion inference.

Moving forward, our future work will focus on several key areas. First, we
will delve deeper into the analysis of 3D representations within the realm of
micro-expressions, aiming to capture even the most subtle emotional cues. Sec-
ond, we will investigate how 3D reconstructions can enhance emotion inference
in scenarios involving human backgrounds and human-human interactions. By
continuing to refine and expand upon these methodologies, we aim to contribute
to the development of more nuanced and accurate emotion inference models.
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