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Abstract

We study Glauber dynamics for sampling from discrete distributions 𝜇 on the hypercube
{±1}𝑛 . Recently, techniques based on spectral independence have successfully yielded optimal
𝑂(𝑛) relaxation times for a host of different distributions 𝜇. We show that spectral independence
is universal: a relaxation time of 𝑂(𝑛) implies spectral independence.

We then study a notion of tractability for 𝜇, defined in terms of smoothness of the multilinear
extension of its Hamiltonian – log𝜇 – over [−1,+1]𝑛 . We show that Glauber dynamics has
relaxation time𝑂(𝑛) for such 𝜇, and using the universality of spectral independence, we conclude
that these distributions are also fractionally log-concave and consequently satisfy modified
log-Sobolev inequalities. We sharpen our estimates and obtain approximate tensorization of
entropy and the optimal ˜︁𝑂(𝑛) mixing time for random Hamiltonians, i.e. the classically studied
mixed 𝑝-spin model at sufficiently high temperature. These results have significant downstream
consequences for concentration of measure, statistical testing, and learning.

1

{anari,fkoehler,huypham,tdvuong}@stanford.edu
visheshj@uic.edu


1 Introduction

In this paper, we study probability measures 𝜇(𝜎) on the hypercube {±1}𝑛 and the standardMarkov
chain for sampling from such distributions known as the Glauber dynamics. Any such distribution
𝜇(𝑥) with full support can be written in the form

𝜇(𝜎) = 1
𝑍

exp(𝐻(𝜎))

for some function 𝐻 : {±1}𝑛 → ℝ, unique up to an additive constant, and corresponding normaliz-
ing constant 𝑍. We say that such a distribution 𝜇 is the Gibbs measure for Hamiltonian 𝐻.

Directly sampling from such a distribution is not easy, because evaluating the normalizing constant
𝑍 (“partition function”) can be computationally difficult. For this reason, samples are typically
generated using a Markov chain approach. In particular, the Glauber dynamics or Gibbs sampler
is a natural Markov chain with stationary distribution 𝜇 that in each step resamples a uniformly
random coordinate 𝑖 conditioned on the remaining coordinates ∼ 𝑖 ≔ [𝑛] − 𝑖:

Let 𝜎(0) ∈ {±1}𝑛 be the initial state.
for 𝑡 = 1, . . . do

Select 𝑖 uniformly at random from [𝑛] = {1, . . . , 𝑛}.
Let 𝜎(𝑡)

𝑗
= 𝜎(𝑡−1)

𝑗
for all 𝑗 ≠ 𝑖, and sample 𝜎(𝑡)

𝑖
from the conditional law ℙ𝜇[𝜎 = · | 𝜎∼𝑖 = 𝜎(𝑡−1)

∼𝑖 ].

Each step of this chain is easy to implement given access to the Hamiltonian 𝐻, and in particular
does not require knowledge of the normalizing constant 𝑍. What is less obvious is how long the
chain should be run. Understanding the mixing time, i.e. the number of stepswhichmust be executed
for the chain to approximately reach stationarity, for particular Hamiltonians 𝐻 is a very important
and mathematically difficult task which has been intensely studied for multiple decades (see e.g.
[AF95; Mar99; GZ03; LP17] for background). It suffices to say that there are many approaches to
prove rapid mixing with different strengths and weaknesses.

High-dimensional expansion and spectral independence. Recently, a fruitful approach to analyz-
ing the Glauber dynamics has emerged based on connections to high-dimensional expansion and
the geometry of polynomials. These ideas have been used to establish optimal mixing time bounds
in many settings (see e.g. [Ana+19; CGM19; ALO20; Bla+21; CLV20; CLV21; Ana+21a; Ana+21b;
Che+21; Ali+21; ALG22; CLV22; Che+22]).

One of the key concepts in this approach is spectral independence. A Gibbs measure 𝜇 is 𝜂-spectrally
independent if 𝜆max(Ψ) ≤ 𝜂whereΨ ∈ ℝ2𝑛×2𝑛 is the correlation matrix indexed by pairs in [𝑛]×{±1}
with entries

Ψ(𝑖 ,𝜏𝑖),(𝑗 ,𝜏𝑗) = ℙ𝜇[𝜎𝑖 = 𝜏𝑖 | 𝜎𝑗 = 𝜏𝑗] − ℙ𝜇[𝜎𝑖 = 𝜏𝑖].
Proving that the Gibbs measure (and all of its conditionings) is 𝑂(1)-spectrally independent is the
key first step for applying the high-dimensional expansion approach to mixing time (e.g. to apply
Theorem 1.3 of [ALO20], which implies polynomial mixing time bounds).

Understanding this concept and findingways to prove spectral independence is therefore very useful.
Many authors have asked and studied how spectral independence relates to existing notions in the
sampling literature. For example, Dobrushin’s uniqueness criterion [Dob68] is a classical concept
which considers the properties of a related-looking influence matrix. Recently, Liu [Liu21] and
Blanca, Caputo, Chen, Parisi, Štefankovič, and Vigoda [Bla+21] proved that Dobrushin’s criterion
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(and more generally, the existence of a contractive coupling) implies 𝑂(1)-spectral independence. A
similar implication holds under other widely used criteria such as correlation decay [CLV20] or
zero-freeness [Ali+21; CLV22].

1.1 Our Results

Universality of spectral independence. We prove a new result which directly connects spectral
independence with the classical notion of spectral gap. The spectral gap or Poincaré constant of a
Markov chain is the gap between the two largest eigenvalues of its transition matrix 𝑃. In other
words, we say that 𝑃 has spectral gap 𝜆 if 𝜆2(𝑃) = 1 − 𝜆. This is a key concept in the study of Markov
chains — informally, the spectral gap controls the speed of mixing from a warm start. For this
reason, the inverse spectral gap 1/𝜆 is known as the relaxation time of the (lazy version of the) Markov
chain [LP17].

We prove that spectral independence is a relaxation of the spectral gap, in other words, that 𝑂(1)-spectral
independence necessarily holds if the Glauber dynamics has a large spectral gap.
Theorem 1. If the Glauber dynamics of a distribution 𝜇 on the hypercube {±1}𝑛 has spectral gap 1

𝐶𝑛 , then 𝜇
is 𝐶-spectrally independent.

We actually prove a stronger fact (Theorem 30), which is the natural generalization of this result to
down-up walks. In particular, this means that the same relation holds for the Glauber dynamics
with spins valued in arbitrary alphabets, not just binary spins.

Conceptually, this gives a simple explanation for the ubiquity of spectral independence: it is
a necessary condition for the Glauber dynamics to have 𝑂(𝑛) relaxation time. It immediately
implies that spectral independence holds in a large number of settings where mixing time analysis
was performed using other methods (e.g., via stochastic localization [EKZ21; Ana+21a; CE22] or
curvature arguments [CMT15; Erb+17]). This in turn has further nontrivial consequences: if the
relaxation time is 𝑂(𝑛) under all external fields, we get fractional log-concavity of the generating
polynomial, which in turn implies subadditivity of entropy and Brascamp-Lieb type inequalities
[see Ana+21a; Ali+21; Bar+11; Bla+21].

Rapid mixing from smoothness of the multilinear extension. Building on the universality of
spectral independence, we are able to prove new results concerning the mixing of the Glauber
dynamics. We would like to understand what conditions on 𝐻 naturally lead to rapid mixing of
the Glauber dynamics. For inspiration, we know that for continuous distributions on ℝ𝑛 and the
corresponding (continuous time) Langevin dynamics, strong log-concavity of the distribution implies
rapid mixing via Bakry-Emery theory [BGL+14]. For a distribution with smooth density 𝑝, this just
means that ∇2 log 𝑝 ⪯ −𝜖𝐼 for some 𝜖 > 0.

We identify a natural analogue of this fact on the discrete hypercube. First (as in e.g. [EG18]), we
identify 𝐻 with its multilinear extension 𝐻 : ℝ𝑛 → ℝ defined by

𝐻(𝑥) =
∑︂
𝑆⊂[𝑛]

𝐻̂(𝑆)
∏︂
𝑖∈𝑆

𝑥𝑖

where 𝐻̂(𝑆) := 1
2𝑛

∑︁
𝜎∈{±1}𝑛 𝐻(𝜎)∏︁𝑖∈𝑆 𝜎𝑖 is the Fourier transform of 𝐻 viewed as a function on the

hypercube [ODo14]. We prove that as long as ∇2𝐻 is spectrally small (i.e. 𝐻 is sufficiently smooth
in the usual sense), Glauber dynamics mixes rapidly:
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Theorem 2 (Combined Theorem 33 and Theorem 36). There exist absolute constants 𝐴, 𝐵 > 0 for which
the following holds. Suppose that 𝜇 is a probability measure with full support on the hypercube {±1}𝑛 , so
𝜇(𝑥) ∝ exp(𝐻(𝑥)) for some function 𝐻 : {±1}𝑛 → ℝ. Suppose furthermore that

𝛽 := max
𝜎∈{±1}𝑛

∥∇2𝐻(𝜎)∥op ≤ 𝐴.

Then we have that:

1. The spectral gap of the Glauber dynamics on 𝜇 is at least 1
(1+𝐵𝛽)𝑛 .

2. 𝜇hom, the homogenization of 𝜇 (see Definition 28), is 1
1+𝐵𝛽 -fractionally log-concave.

3. 𝜇 satisfies approximate tensorization of entropy with constant 𝐶 = 𝑂(𝑛𝐵𝛽).
4. The Glauber dynamics on 𝜇 satisfies the Modified Log-Sobolev Inequality (MLSI) with constant

𝜌 = Ω(1/𝑛1+𝐵𝛽).
5. The Glauber dynamics on 𝜇 satisfies

𝜏mix(𝜖) = 𝑂
(︂
𝑛1+𝐵𝛽[log log(1/min

𝜎
𝜇(𝜎)) + log(1/𝜖)]

)︂
.

We formally define the concepts of approximate tensorization, fractional log-concavity, etc. appear-
ing here in the preliminaries (Section 2). Note that the first conclusion by itself only implies ˜︁𝑂(𝑛2)
mixing time, whereas the final conclusion gives a much better bound (the constant 𝐴 under which
we can prove the spectral gap inequality is relatively small, and in particular 𝐴𝐵 < 1).
Remark 3 (Tightness). It is not true that 𝜇hom (see Definition 28) is a log-concave distribution
(in the sense of [Ana+19]) under the assumptions of this theorem — the relaxation to fractional
log-concavity is required. Relatedly, the functional dependence of the Poincaré constant on 𝛽 in
conclusion (1) is optimal. By this we mean that 𝛽 cannot be replaced by any function which is 𝑜(𝛽)
as 𝛽 → 0, e.g. by 𝛽2. This can be seen by examining one of various examples where the spectral
gap is known exactly — in particular the Ising model on a cycle (Theorem 15.5 of [LP17]). Going
back to the first point, if 𝜇hom were log-concave then this would imply a spectral gap of at least 1/𝑛
[Ana+19], which is not true. Finally, the result cannot be true for any value of 𝐴 > 1, because then it
would include the supercritical Curie-Weiss model for which mixing takes exponential time [LP17].
Remark 4 (Need for a two-sided assumption). Comparing to the continuous setting, we might
guess that this result would be true under only a one-sided bound on ∇2𝐻, allowing for arbitrary
large negative eigenvalues (somewhat in the spirit of Equation (4) of [ES22]). For example, if we
define a Gibbs measure with respect to the standard Gaussian distribution with Radon-Nikodym
derivative proportional to exp(𝐻(𝑥)), then we only need ∇2𝐻 ≺ (1 − 𝜖)𝐼 to apply the Bakry-Emery
criterion [BGL+14]. However, we know from [KLR22] that already in the case of quadratic/Ising
interactions, large negative eigenvalues of 𝐻 can make the spectral gap large and even make
sampling computationally hard.
Remark 5. Bounds on 𝛽 can be directly obtained from the tensor injective norm of the coefficients of
𝐻. We can apply existing results to control the coefficient tensor for natural random examples, like
the mixed 𝑝-spin model discussed below, or when 𝐻(𝑥) counts the number of satisfied constraints
in random 𝑘-XOR sat (in which case, the tensor will generally be sparse), see e.g. [ZZ21].
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Optimal mixing in the mixed 𝑝-spin model. One of the fundamental models in statistical physics
corresponds to the case where the Hamiltonian 𝐻 has random coefficients. In other words,

𝐻(𝜎) =
∞∑︂
𝑝=2

𝛽𝑝

𝑛(𝑝−1)/2

∑︂
1≤𝑖1 ,...,≤𝑖𝑝≤𝑛

𝑔𝑖1···𝑖𝑝𝜎𝑖1 · · · 𝜎𝑖𝑝 +
∑︂
𝑖

ℎ𝑖𝜎𝑖

where the sum ranges over distinct 𝑖1 , . . . , 𝑖𝑝 , each of the coefficients 𝑔𝑖1···𝑖𝑝 is i.i.d. standard Gaussian,
and we allow the external fields ℎ𝑖 to be arbitrary (in this work, they are allowed to depend on 𝑔).
The corresponding (random) measure 𝜇 ∝ exp(𝐻) on {±1}𝑛 is known as the mixed 𝑝-spin model and
it has been deeply studied in spin glass theory (see e.g. [Tal10; Pan13] for rigorous results).

In recent work (see below for more discussion of related work), Adhikari, Brennecke, Xu, and
Yau [Adh+22] established an ˜︁𝑂(𝑛2) mixing time for this model at sufficiently high temperature
(small 𝛽). Theorem 2 implies an improved mixing time bound of ˜︁𝑂(𝑛1+𝑂(𝛽)) for this model, where
𝛽 :=

∑︁
𝑝≥2

√︁
𝑝3 log 𝑝 · 𝛽𝑝 . Our next result improves this to the optimal mixing time bound by proving

that approximate tensorization of entropy (and hence, a modified Log-Sobolev inequality) holds
with a dimension-free constant.
Theorem 6. There exists an absolute constant 𝐴 > 0 for which the following holds. Suppose 𝛽0 :=∑︁

𝑝≥2
√︁
𝑝3 log 𝑝 · 𝛽𝑝 ≤ 𝐴. Let 𝛽 :=

∑︁
𝑝≥2

√︁
2𝑝𝑝3 log 𝑝 · 𝛽𝑝 . Then, for the mixed 𝑝-spin model 𝜇, with

probability ≥ 1 − exp(−Θ(𝑁)) over the randomness of the Gaussian interaction terms 𝑔,

1. 𝜇 (equivalently 𝜇hom) satisfies approximate tensorization of entropy with constant 𝐶 = 𝑂𝛽(1).
2. The discrete-time Glauber dynamics on 𝜇 satisfies the Modified Log-Sobolev Inequality (MLSI) with

constant 𝜌 = Ω𝛽(1/𝑛).
3. The discrete-time Glauber dynamics on 𝜇 satisfies

𝜏mix(𝜖) = 𝑂𝛽

(︂
𝑛(log log(1/min

𝜎
𝜇(𝜎)) + log(1/𝜖)

)︂
.

Downstream applications. The results we establish have a number of interesting downstream
applications. We discuss a few in particular:

• Consequences of the MLSI. We obtain bounds on the Modified Log-Sobolev constant which
have a number of useful consequences besides mixing time analysis. First of all, the MLSI
gives more precise control on the dynamics of mixing in the form of reverse hypercontractivity —
see [MOS13; Gro14]. Also, the MLSI implies subgaussian concentration of Lipschitz functions
and transport-entropy inequalities [Van14; Gro14]. For example, we have established for the
first time Lipschitz subguassian concentration for the high temperature mixed 𝑝-spin model.

• Spectral independence from coupling. Existence of a contractive coupling was previously
known to imply spectral independence [Liu21; Bla+21]. Since contractive couplings imply
a spectral gap, we recover this result from the universality of spectral independence (Theo-
rem 30). The resulting proof is much shorter and has some notable quantitative advantages —
we discuss this more in Section 5.1.

• Learning graphical models. It was recently observed that there is a useful connection be-
tween approximate tensorization of entropy and classical algorithms for learning distributions
from data [KHR22]. Combining this connection with our results, we are able to dramati-
cally improve the state of the art results for learning some types of graphical models from
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samples (Theorem 47). For example, we are able to learn the high-temperature SK model
in total variation distance from 𝑛3+𝑂(𝛽) samples in polynomial time, which is close to the
best information-theoretic guarantee known [DMR20]. In comparison, the best previous
algorithmic results [KM17; Vuf+16; WSD19] could guarantee sample and time complexity of
only 𝑒𝑂(𝛽

√
𝑛).

• Identity testing. Blanca, Chen, Štefankovič, and Vigoda [Bla+22] recently proved implications
of approximate tensorization of entropy for identity testing of high-dimensional distributions
in the coordinate oracle and subcube oracle query models. Combining our new results with
their framework gives improved sample complexities for solving many testing problems (e.g.
Corollary 50) – see Section 5.3 for more details.

1.2 Techniques

Universality of spectral independence. Interestingly, the proof of this result is very short once
the correct definitions are in place, so we refer the reader to Section 3.

Rapid mixing for smooth Hamiltonians. The proof of this result combines three key ingredients:
(1) universality of spectral independence, (2) a recursive spectral gap estimate ofAdhikari, Brennecke,
Xu, and Yau [Adh+22], and (3) a large body of existing tools from the high-dimensional expanders
framework.

First, we want to prove that under the smoothness condition, the Glauber dynamics has an Ω(1/𝑛)
spectral gap. In the work [Adh+22], the authors developed a recursive method to prove spectral
gap bounds for high temperature systems, provided that the spectral gap of systems with 𝑛 spins is
not much worse than that with 𝑛 − 1 spins. To make their argument work, they needed to prove a
corresponding “continuity estimate”, but their argument used facts specific to the mixed 𝑝-spin
model (random 𝐻). Our key insight is that combining the universality of spectral independence
with Oppenheim’s trickle-down theorem [Opp18] and the local-to-global argument [KO18; AL20]
proves that such continuity estimates automatically hold in a very general setting (Theorem 32). This
lets us prove the spectral gap inequality for all models satisfying the smoothness condition.

By itself, the spectral gap bound only implies ˜︁𝑂(𝑛2) time mixing. To improve the mixing time
bound we appeal to the universality of spectral independence again, which lets us derive fractional
log-concavity of the generating polynomial [Ali+21]. This implies entropic independence which in
turn implies the approximate tensorization of entropy estimate via the result of [Ana+21a]. The
MLSI and mixing time bound are immediate consequences (see Section 2).

Improved bound for random interactions (mixed 𝑝-spin model). First, we discuss the special case
of the Sherrington-Kirkpatrick (SK) model (pure 2-spin model). For sufficiently high temperature
i.e. 1/𝛽 ≫ 1/𝜖, the interaction matrix has operator norm at most 1 + 𝜖, thus the discussion above
allows us to directly lower bound the modified log Sobolev constant by 1/𝑛1+𝜖 . However, this is still
a factor of 𝑛𝜖 away from the conjectured modified log Sobolev constant of 1/𝑛, when the interaction
terms are i.i.d. Gaussians. How can we close the gap?

In the case of the SK model, after pinning 𝑁 − 𝑘 spins, the resulting Hamiltonian 𝐻(𝑘) is a 𝑘 × 𝑘

matrix with i.i.d. Gaussian entries of variance 1/𝑁 , thus the corresponding operator norm scales
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approximately like
√︁
𝑘/𝑁, so that the local to global argument gives

MLSI constant ≥ exp

(︄
−

∑︂
𝑘

(1 + ∥𝐻(𝑘)∥op)
𝑘

)︄
≈ exp

(︄
− log 𝑛 +

∑︂
𝑘

1√
𝑘𝑁

)︄
= 𝑛−1 exp(−𝑂(1)),

which is the desired lower bound for the modified log-Sobolev constant.

Unfortunately, when higher degree terms are present, pinning might still result in a subsystem with
essentially the same operator norm. To see this, consider a pure 3-spin model, i.e. the Hamiltonian
only contains terms of degree 3:

𝐻(𝜎) = 𝛽

𝑁

∑︂
𝑖 𝑗𝑘

𝑔𝑖 𝑗𝑘𝜎𝑖𝜎𝑗𝜎𝑘 ,

where 𝑔𝑖 𝑗𝑘 are standard i.i.d. Gaussians and 𝛽 > 0 is a small constant. It is well known that
∥𝐻∥ = Θ(1) with high probability. Now, for any 𝜎 ∈ {±1}𝑛 , observe that pinning 𝜎[𝑛]\{1,2}, results
in a subsystem on two spins with interaction matrix 𝐻(2) given by 𝐻

(2)
1,2 = 1

𝑁

∑︁
𝑘∉{1,2} 𝑔12𝑘𝜎𝑘 , and

note that with the choice of pinning 𝜎𝑘 := sign(𝑔12𝑘),

𝐻
(2)
1,2 =

1
𝑁

∑︂
𝑘∉{1,2}

|𝑔12𝑘| = Θ(1) w.h.p.

To circumvent the existence of these “bad pinnings”, we switch to an “average-case” version of the
local to global argument [Ali+21; ALV22]. Roughly speaking, for each 𝑖 ∈ [𝑁] and 𝜎 ∈ {±1}𝑁\{𝑖} ,
we want to establish that when pinning a random subset of 𝑁 − 𝑘 spins according to 𝜎, the operator
norm of the conditional subsystem is sufficiently small, e.g. it scales like

√︁
𝑘/𝑁 with high probability.

We emphasize that while the average case argument allows us to consider subsystems resulting
from pinning a random subset of spins according to 𝜎, we must still consider all possible 𝜎; in
particular, if we are to use the union bound over 𝜎, we need to avoid bad events with exponentially
(in 𝑛) small probability, even though the quantities involved (norms of subsystems on 𝑘 spins)
have order governed by 𝑘. Moreover, unlike in [ALV22], there are choices of 𝑖 and 𝜎 for which
we cannot expect the “good event” of avoiding a bad link to hold with a very high probability,
e.g. 1 − 1/𝑁10. Indeed, going back to the pure 3-spin example above, for the choice of 𝜎 there
and for 𝑖 = 1, 𝐻(2)

1,2 = Θ(1), so that with probability Ω(𝑘/𝑁), a random pinning of 𝑁 − 𝑘 spins
includes vertex 2 among the free spins and thus results in a subsystem with operator norm Θ(1)
(instead of 𝑂(

√︁
𝑘/𝑁), as we might hope for). To summarize, we have to address two challenges:

(i) prove a “norm-decay” statement for random 𝑘 × 𝑘 sub-matrices which holds with probability
exponentially small in 𝑛 (as opposed to 𝑘), and (ii) overcome the very heavy-tailed nature of the
norm of random 𝑘 × 𝑘 sub-matrices for use in the average case local-to-global argument [Ali+21;
ALV22]. We note that while the expected norm-decay of random submatrices of a matrix has been
extensively studied in the random matrix theory literature (see, e.g. [RV07]), our requirement that
the probability bounds hold with exponentially small probability in 𝑛 (as opposed to 𝑘) makes
existing techniques ineffective and needs a completely different argument.

We conclude by briefly discussing the ideas needed to overcome these challenges. As later detailed
in Section 4, the average case local-to-global argument requires us to show that for any 𝜎, in a
random ordering of pinnings according to 𝜎, a quantity roughly of the form 𝔼[exp(∑︁𝑘 ∥∇2𝐻𝑘∥op/𝑘)]
is bounded above by an absolute constant; here, 𝐻𝑘 is the induced Hamiltonian on the 𝑘 unpinned
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spins and the randomness is induced by the random ordering. Using standard concentration
estimates for the norm of random sub-Gaussian matrices, we can bound the contribution of terms
of degree at least 3 in the induced Hamiltonian by (𝑘/𝑁)Ω(1), so that the main challenge lies in
bounding the contribution of quadratic term in the induced Hamiltonian. As explained above, this
term can have operator norm 1 with very large probability (at least (𝑘/𝑁)) and hence, we need a
significantly more careful analysis of the average-case local to global iteration than in [ALV22]. In
particular, we show that except with exponentially small (in 𝑛) probability over the randomness of
the Hamiltonian, for all 𝜎, over the randomness of the random ordering of pinnings, ∥∇2𝐻𝑘∥op is
bounded by a small constant 𝑐 with probability 1 (this is straightforward, given existing results), and
crucially, it is bounded by (𝑘/𝑁)1/2−𝛼 with probability at least 1−(𝑘/𝑁)𝛼, for some 𝛼 ∈ [𝑐, 1/2). Even
then, we have to control exp(∑︁𝑘 ∥∇2𝐻𝑘∥op/𝑘), where the challenge is in the complex dependencies
among𝐻𝑘 (arising from one random permutation of the pinning order). We achieve this by breaking
terms based on the typical and tail behavior, and combine these heavy-tailed random variables in a
careful way with an appropriately weighted Hölder’s inequality.

1.3 Related Work

Many works have studied techniques for analyzing discrete Markov chains which were inspired by
Bakry-Emery theory and related notions, see e.g. [Erb+17; Oll09; ELL17; CDP09] and references
within for a few examples. These are quite different in nature from our results, and in particular they
have not been used to obtain results for systems with spin glass interactions like the Sherrington-
Kirkpatrick and mixed 𝑝-spin models from statistical physics (see e.g. [Tal10] for more background
on these models).

There have been many recent works studying sampling problems in spin glass models. For spherical
spin glasses, Gheissari and Jagannath [GJ19] showed that the Bakry-Emery criterion can be applied
to provemixing of the Langevin dynamics at high temperature. For the Sherrington-Kirkpatrick (SK)
model on the hypercube, after a line of recent works [BB19; EKZ21; Ana+21a] the optimal 𝑂(𝑛 log 𝑛)
time mixing bound is known up to inverse temperature 𝛽 < 0.25 (see also [CE22] for an alternative
proof). All of these works only need that the interaction matrix has sufficiently small operator norm,
which is exactly the same as the assumption of Theorem 2 specialized to the case of Ising models.
Interestingly, although the proof in [Ana+21a] is partially based on the high-dimensional expansion
approach, none of these works could prove that approximate tensorization of entropy holds (with
a dimension-free constant). The present work finally proves that approximate tensorization of
entropy holds for sufficiently small 𝛽.

Using a different algorithmic approach, the works [AMS22; Cel22] constructed a sampler which
sample up to the conjectured sharp threshold 𝛽 < 1 in the SK model, albeit in a weaker metric
(sublinearWasserstein). Finally, as discussed above, the recent work of Adhikari, Brennecke, Xu, and
Yau [Adh+22] which we build upon proved spectral gap for the mixed 𝑝-spin model for sufficiently
small 𝛽 (i.e. at sufficiently high temperature).

The works [ES22; Ali+21] and references within studied a few related analogues of (semi, fractional,
etc.) “log-concavity” on the discrete hypercube. In this work, we have explicitly showed one such
notion (fractional log-concavity of the generating polynomial) follows from a condition on the
Hessian of the log-likelihood in the spirit of strong log-concavity.
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2 Preliminaries

In this paper, we use the perspective on sampling arising from the theory of generating polynomials
and high-dimensional expansion. This means, for example, that the Glauber dynamics on {±1}𝑛 is
interpreted via homogenization as the 𝑛 ↔ 𝑛 − 1 down-up walk on

(︁[2𝑛]
𝑛

)︁
(see Section 2.4 below).

We discuss this and other important background in this preliminaries section.

2.1 Down-Up Walk, Links, and Trickle-Down

Definition 7 (Down operator). For a ground set Ω, and |Ω| ≥ 𝑘 ≥ ℓ , the down operator 𝐷𝑘→ℓ ∈
ℝ(Ω𝑘 )×(Ωℓ ) is defined to be

𝐷𝑘→ℓ (𝑆, 𝑇) =
{︄ 1
(𝑘ℓ)

if 𝑇 ⊆ 𝑆,

0 otherwise.

Note that 𝐷𝑘→ℓ𝐷ℓ→𝑚 = 𝐷𝑘→𝑚 .
Definition 8 (Up operator). For a ground set Ω, |Ω| ≥ 𝑘 ≥ ℓ , and density 𝜇 :

(︁
Ω

𝑘

)︁
→ ℝ≥0, the up

operator𝑈ℓ→𝑘 ∈ ℝ(Ωℓ )×(Ω𝑘 ) is defined to be

𝑈ℓ→𝑘(𝑇, 𝑆) =
{︄

𝜇(𝑆)∑︁
𝑆′⊇𝑇 𝜇(𝑆′) if 𝑇 ⊆ 𝑆,

0 otherwise.

Definition 9 (Down-up walk). For a ground set Ω, |Ω| ≥ 𝑘 ≥ ℓ , and density 𝜇 :
(︁
Ω

𝑘

)︁
→ ℝ≥0, the

𝑘 ↔ ℓ down-up walk is defined by the row-stochastic matrix 𝐷𝑘→ℓ𝑈ℓ→𝑘 . Similarly, the up-down
walk is defined by𝑈ℓ→𝑘𝐷𝑘→ℓ .
Proposition 10 ([see, e.g., KO18; AL20; ALO20]). The operators 𝐷𝑘→ℓ𝑈ℓ→𝑘 and 𝑈ℓ→𝑘𝐷𝑘→ℓ both define
Markov chains that are time-reversible and have nonnegative eigenvalues. Moreover 𝜇 and 𝜇𝐷𝑘→ℓ are
respectively their stationary distributions.
Definition 11 (Link). Given 𝜇 a distribution on

(︁
Ω

𝑘

)︁
, and a set 𝑇 ⊂ Ω with |𝑇| ≤ 𝑘, we define 𝜇𝑇 , the

induced distribution on the link of 𝑇, to be the probability distribution over Ω \
(︁

𝑇
𝑘−|𝑇|

)︁
given by the

conditional law 𝜇𝑇(𝑆′) = ℙ𝑆∼𝜇[𝑆 = 𝑆′ ∪ 𝑇 | 𝑇 ⊂ 𝑆].
We will slightly abuse terminology and often refer to the induced distribution of 𝜇 on the link of 𝑇
simply as the link of 𝜇 at 𝑇.

Oppenheim’s Trickle-Down. Oppenheim’s trickle-down theorem inductively bounds the high-
dimensional expansion of simplicial complexes, i.e. the spectral gap of certain up-down walks.
Theorem 12 ([Opp18]). Let 𝜇 be a distribution on

(︁
Ω

𝑘

)︁
with 𝑘 ≥ 3, let 𝑃 denote the corresponding 1 ↔ 𝑘

up-down walk, and suppose that 𝜆2(𝑃) < 1. For 𝑖 ∈ Ω, let 𝜇𝑖 denote the link of 𝜇 at 𝑖, and let 𝑃𝑖 denote the
corresponding 1 ↔ 𝑘 − 1 up-down walk. Suppose that for all 𝑖 ∈ Ω, 𝜆2(𝑃𝑖) ≤ 𝜆. Then

𝜆2(𝑃) ≤
(1 − 2/𝑘)𝜆

1 − 𝜆
.

Remark 13 (Lazy vs active walk). With our definition, the 1 ↔ 𝑘 up-down walk has a probability
of 1/𝑘 of staying at the same vertex. If 𝑃 denotes this “lazy” walk and 𝑃′ denotes the “active”
walk which always moves to a new vertex, we have 𝑃 = 1

𝑘 𝐼 + 𝑘−1
𝑘 𝑃′ so 𝜆2(𝑃) = 1

𝑘 + 𝑘−1
𝑘 𝜆2(𝑃′). The

more common “active” form of trickle-down states that if 𝜆2(𝑃′) < 1 and 𝜆2(𝑃′
𝑖
) ≤ 𝜆′ for all 𝑖,
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then 𝜆2(𝑃′) ≤ 𝜆′
1−𝜆′ . Noting that 𝜆2(𝑃) < 1 if and only if 𝜆2(𝑃′) < 1 and 𝜆2(𝑃𝑖) ≤ 𝜆 if and only if

𝜆2(𝑃′
𝑖
) ≤ 𝜆′ := (𝜆 − (1/𝑘 − 1)) · (𝑘 − 1)/(𝑘 − 2), we have

𝜆2(𝑃) ≤
1
𝑘
+ 𝑘 − 1

𝑘

𝜆′

1 − 𝜆′ =
1
𝑘
+ 𝑘 − 1

𝑘

𝑘−2
𝑘−1𝜆

′

𝑘−2
𝑘−1 − 𝑘−2

𝑘−1𝜆
′

=
1
𝑘
+ 𝑘 − 1

𝑘

𝜆 − 1/(𝑘 − 1)
1 − 𝜆

=
1
𝑘
+ (𝑘 − 1)𝜆 − 1

𝑘 − 𝑘𝜆
=

(1 − 2/𝑘)𝜆
1 − 𝜆

,

matching our statement of the trickle-down theorem.

2.2 Generating Polynomial, Tilts, and Fractional Log-Concavity

Definition 14. The multivariate generating polynomial 𝑔𝜇 ∈ ℝ[𝑧1 , . . . , 𝑧𝑛] associated to a density
𝜇 : 2[𝑛] → ℝ≥0 is given by

𝑔𝜇(𝑧1 , . . . , 𝑧𝑛) :=
∑︂
𝑆

𝜇(𝑆)
∏︂
𝑖∈𝑆

𝑧𝑖 =
∑︂
𝑆

𝜇(𝑆)𝑧𝑆 ,

Here we have used the standard notation that for 𝑆 ⊆ [𝑛], 𝑧𝑆 =
∏︁

𝑖∈𝑆 𝑧𝑖 .
Definition 15 (Measure tilted by external field). For a distribution 𝜇 on 2[𝑛] and vector 𝜆 =

(𝜆1 , . . . ,𝜆𝑛) ∈ ℝ𝑛
>0, which we refer to as the external field, we denote the measure 𝜇 tilted by

external field 𝜆 by the notation 𝜆 ∗ 𝜇, formally defined as

ℙ𝜆∗𝜇[𝑆] =
1
𝑍𝜆

𝜇(𝑆) ·
∏︂
𝑖∈𝑆

𝜆𝑖 ,

where the normalizing constant 𝑍𝜆 is defined so that 𝜆 ∗ 𝜇 is a probability measure. Note that for
any (𝑧1 , . . . , 𝑧𝑛) ∈ ℝ𝑛

≥0,
𝑔𝜆∗𝜇(𝑧1 , . . . , 𝑧𝑛) ∝ 𝑔𝜇(𝜆1𝑧1 , . . . ,𝜆𝑛𝑧𝑛).

In [Ali+21], the notion of fractional log-concavity of the multivariate generating polynomial was
developed, generalizing the concept of log-concave polynomials (see e.g. [Ana+19]).
Definition 16 (Fractional log-concavity). Consider a homogeneous distribution 𝜇 :

(︁[𝑛]
𝑘

)︁
→ ℝ≥0

and let 𝑔𝜇(𝑧1 , . . . , 𝑧𝑛) be its multivariate generating polynomial. For 𝛼 ∈ [0, 1], we say that 𝜇 is
𝛼-fractionally log-concave (𝛼-FLC) if log 𝑔𝜇(𝑧𝛼1 , . . . , 𝑧𝛼𝑛 ) is concave, viewed as a function over ℝ𝑛

≥0.

2.3 Spectral and Entropic Independence

Definition 17 (Correlation matrix). Let 𝜇 be a probability distribution over 2[𝑛]. Its correlation matrix
Ψcor

𝜇 ∈ ℝ𝑛×𝑛 is defined by

Ψcor
𝜇 (𝑖 , 𝑗) =

{︄
1 − ℙ𝜇[𝑖] if 𝑗 = 𝑖 ,

ℙ𝜇[𝑗 | 𝑖] − ℙ𝜇[𝑗] otherwise.

Definition 18 (Spectral independence). For 𝜂 ≥ 0, a distribution 𝜇 : 2[𝑛] → ℝ≥0 is said to be
𝜂-spectrally independent (at the link ∅) if

𝜆max(Ψcor
𝜇 ) ≤ 𝜂.
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Remark 19. The original definition of spectral independence in [ALO20] imposes such a requirement
on 𝜇 as well as all of its links. Here, we follow the convention in [Ana+21a] and use the term
spectral independence to refer only to a spectral norm bound on the correlation matrix of 𝜇, with
the understanding that in applications, we will require spectral independence of all links of 𝜇 as
well.
Fact 20 (Remark 70 of [Ali+21]). A distribution 𝜇 on

(︁[𝑛]
𝑘

)︁
is 𝜂-spectrally independent iff

∇2 log 𝑔𝜇(𝑧1/𝜂
1 , . . . , 𝑧

1/𝜂
𝑛 )

|︁|︁|︁
𝑧=1⃗

= (1/𝜂)2𝐷Ψcor
𝜇 − (1/𝜂)𝐷 ⪯ 0

where 𝐷 is the diagonal matrix with entries 𝐷𝑖𝑖 = ℙ𝜇[𝑖].
Moreover, 𝜇 is 1/𝜂-FLC iff 𝜆 ∗ 𝜇 is 𝜂-spectrally independent for all external fields 𝜆 ∈ ℝ𝑛

≥0.
Lemma 21 ([ALO20]). Suppose 𝑃 = 𝑈1→𝑘𝐷𝑘→1 is the transition operator for the 1 ↔ 𝑘 up-down walk for
a distribution 𝜇 on

(︁[𝑛]
𝑘

)︁
. Then

𝜆2(𝑃) =
𝜆max(Ψcor

𝜇 )
𝑘

.

Proof. We include the proof of this result for completeness. From the definitions we see that for the
vector 𝑑 with 𝑑𝑖 = ℙ[𝑖], we have that

Ψcor
𝜇 = 𝑘𝑃 − 1⃗𝑑𝑇 = 𝑘

(︂
𝑃 − 1

𝑘
1⃗𝑑𝑇

)︂
,

i.e. 𝑃 = 1
𝑘 1⃗𝑑𝑇 + 1

𝑘Ψ
cor
𝜇 . Observe that 1

𝑘 𝑑 is the stationary distribution of 𝑃, so 𝑃 is self-adjoint [LP17]
with respect to the inner product ⟨·,Π·⟩ where Π := 1

𝑘diag(𝑑) and ⟨·, ·⟩ denotes the Euclidean dot
product. We see by using the variational characterization of eigenvalues that

𝜆2(𝑃) = sup
𝑣

⟨𝑣,Π(𝑃 − 1
𝑘 1⃗𝑑𝑇)𝑣⟩

⟨𝑣,Π𝑣⟩ = sup
𝑣

⟨𝑣, 1
𝑘ΠΨcor

𝜇 𝑣⟩
⟨𝑣,Π𝑣⟩ =

𝜆max(Ψcor
𝜇 )

𝑘
.

Definition 22 (Entropic independence). A probability distribution 𝜇 on
(︁[𝑛]
𝑘

)︁
is said to be 𝐶-

entropically independent, for 𝐶 ≥ 1, if for all probability distributions 𝜈 on
(︁[𝑛]
𝑘

)︁
,

𝒟KL(𝜈𝐷𝑘→1 ∥ 𝜇𝐷𝑘→1) ≤
𝐶

𝑘
𝒟KL(𝜈 ∥ 𝜇).

This is an exact analogue of spectral independence, replacing variance by entropy. It is also a
generalization of subadditivity of entropy which itself is equivalent to a generalized Brascamp-Lieb
inequality, see e.g. [Ana+21a; Bar+11; Che+22; Bla+21] for discussion.
Theorem 23 ([Ana+21a]). A distribution 𝜇 on

(︁[𝑛]
𝑘

)︁
is (1/𝐶)-FLC if and only if 𝜆 ∗ 𝜇 is 𝐶-entropically

independent for all external fields 𝜆 ∈ ℝ𝑛
>0 (in particular, all links of 𝜇 are 𝐶-entropically independent).

2.4 Functional Inequalities

Let 𝑃 be the transition matrix of an ergodic, reversible Markov chain on a finite set Ω, with (unique)
stationary distribution 𝜇. The Dirichlet form of 𝑃 is defined, for 𝑓 , 𝑔 : Ω → ℝ, by

ℰ𝑃( 𝑓 , 𝑔) := 1
2

∑︂
𝑥,𝑦∈Ω

𝜇(𝑥)𝑃(𝑥, 𝑦)( 𝑓 (𝑥) − 𝑓 (𝑦))(𝑔(𝑥) − 𝑔(𝑦)).

For later use, we record an equivalent expression for the Dirichlet form of down-up walks.
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Lemma 24. Let 𝜇 be a distribution on Ω :=
(︁[𝑛]
𝑘

)︁
and let 𝑃 denote the transition matrix of the 𝑘 ↔ 𝑘 − 1

down-up walk. Then, for any 𝑓 , 𝑔 : Ω → ℝ,

ℰ𝑃( 𝑓 , 𝑔) = 𝔼𝑆𝑘−1∼𝜇𝐷𝑘→𝑘−1[Cov( 𝑓 (𝑆), 𝑔(𝑆) | 𝑆𝑘−1)].

Proof. For notational convenience, let 𝜇𝑘−1 := 𝜇𝐷𝑘→𝑘−1 and Ω𝑘−1 :=
(︁ [𝑛]
𝑘−1

)︁
. We have,

ℰ𝑃( 𝑓 , 𝑔) =
1
2

∑︂
𝑥,𝑦∈Ω

∑︂
𝑧∈Ω𝑘−1

𝜇(𝑥)𝐷𝑘→𝑘−1(𝑥, 𝑧)𝑈𝑘−1→𝑘(𝑧, 𝑦)( 𝑓 (𝑥) − 𝑓 (𝑦))(𝑔(𝑥) − 𝑔(𝑦))

=
1
2

∑︂
𝑧∈Ω𝑘−1

∑︂
𝑥,𝑦∈Ω

𝜇𝑘−1(𝑧)𝑈𝑘−1→𝑘(𝑧, 𝑥)𝑈𝑘−1→𝑘(𝑧, 𝑦)( 𝑓 (𝑥) − 𝑓 (𝑦))(𝑔(𝑥) − 𝑔(𝑦))

=

∑︂
𝑧∈Ω𝑘−1

𝜇𝑘−1(𝑧)
𝔼𝑋∼𝜇|𝑧,𝑌∼𝜇|𝑧[( 𝑓 (𝑋) − 𝑓 (𝑌))(𝑔(𝑋) − 𝑔(𝑌))]

2

= 𝔼𝑆𝑘−1∼𝜇𝑘−1[Cov( 𝑓 (𝑆), 𝑔(𝑆) | 𝑆𝑘−1)].

Definition 25. The spectral gap or Poincaré constant of 𝑃 is defined to be 𝛾, where 𝛾 is the largest
value such that for every 𝑓 : Ω → ℝ,

𝛾 Var𝜇[ 𝑓 ] ≤ ℰ𝑃( 𝑓 , 𝑓 ).

The modified log-Sobolev constant of 𝑃 is defined to be the the largest value 𝜌 such that for every
𝑓 : Ω → ℝ≥0,

𝜌Ent𝜇[ 𝑓 ] ≤ ℰ𝑃( 𝑓 , log 𝑓 ),
where Ent𝜇[ 𝑓 ] = 𝔼𝜇[ 𝑓 log 𝑓 ] − 𝔼𝜇[ 𝑓 ] log(𝔼𝜇[ 𝑓 ]).
Definition 26. Let 𝑃 be an ergodic Markov chain on a finite state space Ω and let 𝜇 denote its
(unique) stationary distribution.For any 𝜀 ∈ (0, 1), we define the 𝜀-total variation mixing time to be

𝜏mix(𝜀) = max
{︁
min{𝑡 ≥ 0 | 𝑑𝑇𝑉 (𝟙𝑥𝑃

𝑡 , 𝜇) ≤ 𝜀}
|︁|︁ 𝑥 ∈ Ω

}︁
,

where 𝟙𝑥 is the point mass supported at 𝑥 and 𝑑𝑇𝑉 is the total variation distance [CT12].

The following relationships between the 𝜀-(total variation) mixing time of 𝑃, 𝜏mix(𝜀), and its Poincaré
and modified log-Sobolev constants is standard (see, e.g., [BT06; LP17]):

(𝛾−1 − 1) log
(︂ 1
2𝜀

)︂
≤ 𝜏mix(𝜀) ≤ 𝛾−1 log

(︃
1
𝜀
· 1

min𝑥∈Ω 𝜇(𝑥)

)︃
, (1)

𝜏mix(𝜀) ≤ 𝜌−1
(︃
log log

(︃
1

min𝑥∈Ω 𝜇(𝑥)

)︃
+ log

(︂ 1
2𝜀2

)︂)︃
.

Definition 27 (Approximate tensorization of entropy). A distribution 𝜇 on
(︁
Ω

𝑛

)︁
satisfies approximate

tensorization of entropy with constant 𝐶 if for all probability distributions 𝜈 on
(︁
Ω

𝑛

)︁
,

𝒟KL(𝜈𝐷𝑛→𝑛−1 ∥ 𝜇𝐷𝑛→𝑛−1) ≤ (1 − 1/(𝐶𝑛))𝒟KL(𝜈 ∥ 𝜇).

This is a generalization of the classical definition of approximate tensorization of entropy (see
[Mar15; CMT15]), as we observe in the following remark. Explaining this also requires introducing
the important concept of homogenization which we use throughout this paper:
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Definition 28 (Homogenization). Let 𝜇 be a distribution on a product spaceΩ′ = Ω′
1×· · ·×Ω′

𝑛 . Then
𝜇 can naturally be viewed as a distribution 𝜇hom over

(︁
Ω

𝑛

)︁
, where Ω = ∪𝑛

𝑖=1Ω
′
𝑖
× {𝑖} by identifying

𝜎 ∈ Ω′ with the set {(𝜎1 , 1), (𝜎2 , 2), . . . , (𝜎𝑛 , 𝑛)}. Note that under this identification, the Glauber
dynamics corresponds to the 𝑛 ↔ 𝑛 − 1 down-up walk.
Remark 29. Let 𝜇 be a distribution on a product space and define its homogenization 𝜇hom as above.
In this case, approximate tensorization of entropy with constant 𝐶 for 𝜇hom is equivalent to the
assertion that for any positive measurable function 𝑓 ,

Ent𝜇[ 𝑓 ] ≤ 𝐶

𝑛∑︂
𝑣=1

𝔼𝜇[Ent𝑣[ 𝑓 ]]

where
Ent𝑘[ 𝑓 ] := Ent𝜇(𝜎𝑘=·|𝜎∼𝑘 )[ 𝑓 ]

is the entropy functional with respect to the conditional measure of 𝜎𝑘 ∈ Ω′
𝑘
given 𝜎𝑗 ∈ Ω′

𝑗
for all

𝑗 ≠ 𝑘 and for 𝜎 ∼ 𝜇.

It is an immediate consequence of the data processing inequality (see, e.g., [Ana+21a]) that if 𝜇
satisfies approximate tensorization of entropy with constant 𝐶, then the 𝑛 ↔ 𝑛 − 1 down-up walk
for 𝜇 has modified log-Sobolev constant at least 1/𝐶𝑛.

3 Universality of Spectral Independence

In this section, we present our key result on the universality of spectral independence, Theorem 30,
in the general setting of down-up walks (on pure simplicial complexes).

3.1 𝑘 ↔ 𝑘 − 1 Spectral Gap Implies Spectral Independence

Theorem 30. Let 𝜇 be a distribution on
(︁[𝑛]
𝑘

)︁
. If the 𝑘 ↔ 𝑘 − 1 down-up walk has spectral gap 1

𝐶𝑘 , then 𝜇 is
𝐶-spectrally independent.

Proof. From Fact 20, 𝐶-spectral independence is equivalent to the inequality 𝐷Ψcor
𝜇 ⪯ 𝐶𝐷, where

𝐷 is the diagonal matrix with entries 𝐷𝑖𝑖 = ℙ𝜇[𝑖]. This is equivalent to showing that for all vectors
𝑣 ∈ ℝ𝑛 ,

Var𝑆∼𝜇

[︄∑︂
𝑖∈𝑆

𝑣𝑖

]︄
≤ 𝐶 𝔼𝑆∼𝜇

[︄∑︂
𝑖∈𝑆

𝑣2
𝑖

]︄
.

From the definition of the spectral gap and Lemma 24, we have for any function 𝑓 :
(︁[𝑛]
𝑘

)︁
→ ℝ that

Var𝑆∼𝜇[ 𝑓 (𝑆)] ≤ 𝐶𝑘 · 𝔼𝑆𝑘−1∼𝜇𝐷𝑘→𝑘−1[Var[ 𝑓 (𝑆) | 𝑆𝑘−1]].
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Applying this inequality to the function 𝑓 (𝑆) = ∑︁
𝑖∈𝑆 𝑣𝑖 , we observe that

1
𝐶𝑘

Var𝑆∼𝜇

[︄∑︂
𝑖∈𝑆

𝑣𝑖

]︄
≤ 𝔼𝑆𝑘−1∼𝜇𝐷𝑘→𝑘−1

[︄
Var

[︄∑︂
𝑖∈𝑆

𝑣𝑖 | 𝑆𝑘−1

]︄ ]︄
= 𝔼𝑆𝑘−1∼𝜇𝐷𝑘→𝑘−1

⎡⎢⎢⎢⎢⎣Var
⎡⎢⎢⎢⎢⎣

∑︂
𝑖∈𝑆\𝑆𝑘−1

𝑣𝑖 | 𝑆𝑘−1

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

≤ 𝔼𝑆𝑘−1∼𝜇𝐷𝑘→𝑘−1

⎡⎢⎢⎢⎢⎣𝔼
⎡⎢⎢⎢⎢⎣

∑︂
𝑖∈𝑆\𝑆𝑘−1

𝑣2
𝑖 | 𝑆𝑘−1

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦ =

1
𝑘
𝔼𝑆∼𝜇

[︄∑︂
𝑖∈𝑆

𝑣2
𝑖

]︄
,

as desired. Here, in the second inequality we have used that Var[ 𝑓 (𝑋)] ≤ 𝔼[ 𝑓 (𝑥)2] and the fact
that the sum is over the set 𝑆 \ 𝑆𝑘−1 which has size exactly one, and in the last equality we used
symmetry.

Remark 31. It is well-known that a bounded Poincaré constant implies that the largest eigenvalue
of the covariance matrix is also bounded. In contrast, Theorem 30 shows spectral independence,
which is a much stronger property. Spectral independence exactly controls the largest eigenvalue of
the influence matrix rather than the covariance; reinterpreted in terms of the covariance matrix, it
asserts a PSD upper bound not just by a multiple of the identity, but by a multiple of the diagonal
matrix 𝐷 of marginals, which is often much smaller. For example, for the uniform distribution on(︁[𝑛]

𝑘

)︁
, spectral independence tells us that the largest eigenvalue of the covariance matrix is 𝑂(𝑘/𝑛),

rather than just 𝑂(1).

3.2 Trickle-Down of 𝑘 ↔ 𝑘 − 1 Spectral Gap

As a consequence of the result established in the previous section, we can prove an analogue of the
trickle-down theorem (which bounds spectral gaps of 𝑘 ↔ 1 walks inductively) for the 𝑘 ↔ 𝑘 − 1
walk. This follows by combining Theorem 30 with Oppenheim’s trickle-down theorem [Opp18]
and the “local-to-global” argument [AL20; KO18].
Theorem 32. Let 𝜇 be a distribution on

(︁[𝑛]
𝑘

)︁
with 𝑘 ≥ 3 so that for every 𝑖 ∈ [𝑛], the 𝑘−1 ↔ 𝑘−2 down-up

walk on the link 𝜇𝑖 has spectral gap at least 1/𝐶(𝑘 − 1), and such that the 𝑘 ↔ 𝑘 − 1 down-up walk on 𝜇 is
ergodic. Then the 𝑘 ↔ 𝑘 − 1 down-up walk on 𝜇 has spectral gap at least 1/𝐶′′𝑘, where 𝐶′′ := 𝐶 𝑘−1−𝐶

𝑘−2𝐶 .

Proof. Theorem 30 implies that each link 𝜇𝑖 is 𝐶-spectrally independent for every 𝑖. We claim that 𝜇
is 𝐶′-spectrally independent for 𝐶′ := 𝐶(𝑘−2)/(𝑘−1)

1−𝐶/(𝑘−1) . Indeed, using Lemma 21 and Theorem 12:

𝜆max(Ψcor
𝜇 ) = 𝑘𝜆2(𝑃) ≤ 𝑘

(1 − 2/𝑘)𝐶/(𝑘 − 1)
1 − 𝐶/(𝑘 − 1) =

𝐶(𝑘 − 2)/(𝑘 − 1)
1 − 𝐶/(𝑘 − 1) = 𝐶′.

Next, we use spectral independence to perform a step of the local-to-global argument. By the law
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of total variance, for any function 𝑓

Var𝜇[ 𝑓 ] = Var𝑖∼𝜇𝐷𝑘→1

[︁
𝔼𝜇

[︁
𝑓 | 𝑖

]︁ ]︁
+ 𝔼𝑖∼𝜇𝐷𝑘→1

[︁
Var𝜇

[︁
𝑓 | 𝑖

]︁ ]︁
= Var𝜇𝐷𝑘→1

[︁
𝑈1→𝑘 𝑓

]︁
+ 𝔼𝑖∼𝜇𝐷𝑘→1

[︁
Var𝜇

[︁
𝑓 | 𝑖

]︁ ]︁
= 𝔼[(𝑈1→𝑘( 𝑓 − 𝔼[ 𝑓 ]))2] + 𝔼𝑖∼𝜇𝐷𝑘→1

[︁
Var𝜇

[︁
𝑓 | 𝑖

]︁ ]︁
= 𝔼[( 𝑓 − 𝔼[ 𝑓 ])(𝐷𝑘→1𝑈1→𝑘( 𝑓 − 𝔼[ 𝑓 ]))] + 𝔼𝑖∼𝜇𝐷𝑘→1

[︁
Var𝜇

[︁
𝑓 | 𝑖

]︁ ]︁
≤ 𝜆2(𝐷𝑘→1𝑈1→𝑘)Var𝜇

[︁
𝑓
]︁
+ 𝔼𝑖∼𝜇𝐷𝑘→1

[︁
Var𝜇

[︁
𝑓 | 𝑖

]︁ ]︁
≤ 𝐶′

𝑘
Var𝜇

[︁
𝑓
]︁
+ 𝔼𝑖∼𝜇𝐷𝑘→1

[︁
Var𝜇

[︁
𝑓 | 𝑖

]︁ ]︁
,

where in the last step we used 𝜆2(𝐷𝑘→1𝑈1→𝑘) = 𝜆2(𝑈1→𝑘𝐷𝑘→1) ≤ 𝐶′/𝑘 via Lemma 21 and spectral
independence.

Hence, rearranging and applying the spectral gap bound for the 𝑘 − 1 ↔ 𝑘 − 2 walks of the links,
we have

Var𝜇[ 𝑓 ] ≤
1

1 − 𝐶′/𝑘 𝔼𝑖∼𝜇𝐷𝑘→1

[︁
Var𝜇

[︁
𝑓 | 𝑖

]︁ ]︁
≤ 𝐶(𝑘 − 1)

1 − 𝐶′/𝑘 𝔼𝑆𝑘−1∼𝜇𝐷𝑘→𝑘−1

[︁
Var𝜇

[︁
𝑓 | 𝑆𝑘−1

]︁ ]︁
,

which bounds the inverse spectral gap of the 𝑘 ↔ 𝑘 − 1 walk by 1/𝐶′′𝑘 for

𝐶′′ := 𝐶(1 − 1/𝑘)
1 − 𝐶′/𝑘 =

𝐶(1 − 1/𝑘)
1 − 𝐶(𝑘−2)/(𝑘−1)

𝑘−𝐶𝑘/(𝑘−1)
=

𝐶(𝑘 − 1)(1 − 𝐶/(𝑘 − 1))
𝑘 − 𝐶𝑘/(𝑘 − 1) − 𝐶(𝑘 − 2)/(𝑘 − 1) =

𝐶(𝑘 − 1 − 𝐶)
𝑘 − 2𝐶 .

4 Results for Gibbs Measures on the Hypercube

Notation. In this section, we consider distributions of the form 𝜇(𝜎) ∝ exp(𝐻(𝜎)) where 𝐻 :
{±1}𝑛 → ℝ. Following [EG18], we identify 𝐻 with its multilinear extension 𝐻 : ℝ𝑛 → ℝ defined by

𝐻(𝑥) =
∑︂
𝑆⊂[𝑛]

𝐻̂(𝑆)
∏︂
𝑖∈𝑆

𝑥𝑖

where 𝐻̂(𝑆) := 1
2𝑛

∑︁
𝜎∈{±1}𝑛 𝐻(𝜎)∏︁𝑖∈𝑆 𝜎𝑖 is the Fourier transform of 𝐻 viewed as a function on the

hypercube [ODo14]. This is also known as the harmonic extension since the Laplacian of 𝐻 vanishes,
and for 𝑥 ∈ [−1, 1]𝑛 it admits an equivalent expression

𝐻(𝑥) = 𝔼𝜎∼⊗𝑖 Ber±(𝑥𝑖)[𝐻(𝜎)] (2)

where Ber±(𝑥) denotes the distribution of a random variable valued in {±1} with mean 𝑥. For
𝜎 ∈ {±1}𝑛 , define

𝐵 𝑗(𝜎) := 𝜕𝑗𝐻(𝜎)
to be the cavity field at site 𝑗, where 𝜕𝑗𝐻 is the usual partial derivative applied to the multilinear
extension of 𝐻. Because 𝐻 is multilinear, the cavity field 𝐵 𝑗 does not depend on 𝜎𝑗 .

Note that in our notational convention, 𝐵 𝑗 refers to the same object as in [Adh+22] but 𝜕𝑗 can differ
in sign from their definition. More generally, following [Adh+22] we define versions of 𝐻 and
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𝐵 𝑗 for reduced versions of the original system which appear when performing induction. The
generalization of 𝐻 is parameterized by disjoint sets 𝐴, 𝐵 ⊂ [𝑛] and 𝜎𝐴 ∈ {±1}𝐴 and given by

𝐻
[𝐴,𝐵]
𝜎𝐴 (𝜎(𝐴∪𝐵)𝑐 ) :=

∑︂
𝑆⊂𝐵𝐶

𝐻̂(𝑆)
∏︂
𝑖∈𝑆

𝜎𝑖 .

In the other words, this is the multilinear extension of 𝐻 evaluated at the vector (𝜎𝐴 , 𝜎(𝐴∪𝐵)𝐶 , 0𝐵).
Similarly, we define

𝐵
[𝐴,𝐵]
𝑗

(𝜎(𝐴∪𝐵)𝑐 ) := 𝜕𝑗𝐻
[𝐴,𝐵]
𝜎𝐴 (𝜎(𝐴∪𝐵)𝑐 )

where on the left hand side, the dependence on 𝜎𝐴 is omitted from the notation for convenience.

4.1 Results under the Smoothness Condition

In the main result of this section, we prove that smallness of the Hessian of 𝐻 implies that the
Gibbs measure 𝜇(𝑥) ∝ exp(𝐻(𝑥)) is fractionally log-concave and the Glauber dynamics has Ω(1/𝑛)
spectral gap (i.e. relaxation time 𝑂(𝑛)). Afterwards, in Theorem 36 we prove that by combining our
fractional log-concavity estimate with the entropic independence framework [Ana+21a], we obtain
strong bounds on the mixing time, MLSI constant, and approximate tensorization constant of 𝜇.
Theorem 33. There exist absolute constants 𝐴, 𝐵 > 0 for which the following holds. Suppose that 𝜇 is
a probability measure with full support on the hypercube {±1}𝑛 , so 𝜇(𝑥) ∝ exp(𝐻(𝑥)) for some function
𝐻 : {±1}𝑛 → ℝ. Suppose furthermore that

𝛽 := max
𝜎∈{±1}𝑛

∥∇2𝐻(𝜎)∥op ≤ 𝐴.

Then we have that:

1. The Poincaré constant (spectral gap) for the discrete-time Glauber dynamics on 𝜇 is at least 1
(1+𝐵𝛽)𝑛 .

2. 𝜇hom is 1
1+𝐵𝛽 -fractionally log-concave.

This result will be proved by combining the results we established in Section 3 with an important
estimate established in [Adh+22], which we now recall.

We start with some notation. Let

𝑇 := sup
𝐴,𝐵:𝐴∩𝐵=∅

sup
𝜎𝐴∈{±1}|𝐴|

sup
𝜎∈{±1}𝑁−|𝐴∪𝐵|

∥︁∥︁∥︁∥︁(︂𝜕𝑖𝐵[𝐴,𝐵]
𝑗

(𝜎)
)︂

1≤𝑖 , 𝑗≤𝑁−|𝐴∪𝐵|

∥︁∥︁∥︁∥︁
op

and for any 0 ≤ 𝑘 ≤ 𝑁 , let 𝑎𝑁−𝑘 be the worst-case dimension-free Poincaré constant among all
subsystems with |𝐴 ∪ 𝐵| = 𝑘. Precisely, 𝑎𝑁−𝑘 is defined to be the smallest positive number so that
for all 𝐴, 𝐵 disjoint with |𝐴 ∪ 𝐵| = 𝑘 and all 𝜎𝐴 ∈ {±1}𝐴, the Glauber dynamics for every measure
of the form 𝜇[𝐴,𝐵]

𝜎𝐴 (𝜎) ∝ exp(𝐻[𝐴,𝐵]
𝜎𝐴 (𝜎)) on {±1}(𝐴∪𝐵)𝑐 has spectral gap at least 1

𝑎𝑁−𝑘 (𝑁−𝑘) .

The following key result from [Adh+22] relates the values of 𝑎𝑁−𝑘 between different values of 𝑘:
Lemma 34 (Proposition 4.1 of [Adh+22]). There exist absolute constants 𝐶, 𝛽0 > 0 for which the following
holds. Let 𝐶𝑟 := (𝐶𝑟)2𝑒𝐶𝑟 = Θ𝐶(𝑟2) for 𝑟 ≤ 1/𝐶. Suppose that 𝛽 < 𝛽0 and 𝜖 ∈ (0, 10−2) are such that
𝑇 ≤ 5𝛽 and 𝑎𝑁−𝑘−1 < 𝜖/𝐶𝛽. Then(︃

1 − 𝐶𝛽2𝑒𝐶𝛽 max(1, 𝑎𝑁−𝑘)2
𝜖(𝑁 − 𝑘)

)︃
𝑎𝑁−𝑘 ≤

(︂
1 − 1

𝑁 − 𝑘

)︂
𝑎𝑁−𝑘−1 +

(1 + 4𝜖)5
𝑁 − 𝑘

.
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The key difficulty in using this relation to inductively bound the spectral gap is the presence of the
term max(1, 𝑎𝑁−𝑘)2 which, if large, will make the bound trivial. In [Adh+22], this was overcome
using a “continuity argument” (Section 3 there) which uses properties specific to the 𝑝-spin model
(random𝐻). It turns out we can eliminate the need for a specialized continuity argument completely
using the general results established in Section 3.

We first check that the assumption on 𝑇 is satisfied. Actually, it ends up to be equivalent to our
definition of 𝛽.
Lemma 35. With the notation above, 𝑇 = 𝛽.

Proof. Observe that for any point 𝑥 ∈ [−1, 1]𝑛 , by linearity and (2) we have

∇2𝐻(𝑥) = 𝔼𝜎∼⊗𝑖 Ber±(𝑥𝑖)[∇2𝐻(𝜎)].

So by the triangle inequality ∥∇2𝐻(𝑥)∥op ≤ max𝜎∈{±1}𝑛 ∥∇2𝐻(𝜎)∥op, and hence

sup
𝑥∈[−1,1]𝑛

∥∇2𝐻(𝑥)∥op = max
𝜎∈{±1}𝑛

∥∇2𝐻(𝜎)∥op.

From the definition, it’s clear that 𝑇 ≥ 𝛽 and since 𝐻[𝐴,𝐵](𝜎(𝐴∪𝐵)𝑐 ) is the multilinear extension of 𝐻
evaluated at the vector (𝜎𝐴 , 𝜎(𝐴∪𝐵)𝐶 , 0𝐵), it follows from the above argument that 𝑇 ≤ 𝛽.

Proof of Theorem 33. First, we observe that if we establish conclusion (1) concerning the spectral gap,
it will automatically imply conclusion (2) regarding fractional log-concavity via Theorem 30. Indeed,
by Fact 20, we know that establishing 𝜇hom is 1

1+𝐵𝛽 -FLC is equivalent to showing that for all external
fields 𝜆, the tilted measure 𝜆 ∗ 𝜇hom is (1 + 𝐵𝛽)-spectrally independent. Note that tilting 𝜇hom is
equivalent to first changing the degree-one part of𝐻, and then homogenizing the resulting measure.
Furthermore, changing the degree-one part of 𝐻 does not change ∇2𝐻 and hence the assumption
of this theorem is invariant to arbitrary tilts by external fields. Since the Glauber dynamics is the
𝑛 ↔ 𝑛 − 1 down-up walk on 𝜇hom, it therefore suffices to prove that the spectral gap of the Glauber
dynamics is at least 1/(1 + 𝐵𝛽)𝑛, which is precisely what conclusion (1) says.

It remains to prove conclusion (1). We bound 𝑎𝑁−𝑘 by induction on (𝑁−𝑘). The induction hypothesis
is 𝑎𝑁−𝑘 ≤ 1 + 𝛿 with 𝛿 ≤ 1/2 to be chosen later. For base cases, we have the bound when 𝑁 − 𝑘 ≤ 2
because in this case the measure is an Ising model (on one or two sites), so the desired bound
follows from Theorem 1 of [EKZ21].

Let 𝑘 ≤ 𝑁 − 3 and assume that 𝑎𝑁−𝑘−1 ≤ 1 + 𝛿. We will prove 𝑎𝑁−𝑘 ≤ 1 + 𝛿.

By Theorem 32,

𝑎𝑁−𝑘 ≤ 𝑎𝑁−𝑘−1
𝑁 − 𝑘 − 1 − 𝑎𝑁−𝑘−1
𝑁 − 𝑘 − 2𝑎𝑁−𝑘−1

= 𝑎𝑁−𝑘−1𝑇𝑁−𝑘−1

with
𝑇𝑁−𝑘−1 := 1

2 + (𝑁 − 𝑘)/2 − 1
𝑁 − 𝑘 − 1 − 𝑎𝑁−𝑘−1

≤ 1
2 + 3/2

2 − 3/2
= 7/2

for 𝑘 ≤ 𝑁 − 3.

Let 𝜖 = 𝛿/10. Below, we will choose 𝛿 = 𝜔𝛽→0(𝛽2). In particular, for 𝛽0 sufficiently small, we have

𝑎𝑁−𝑘−1 ≤ 1 + 𝛿 ≤ 𝜖
𝐶𝛽

.
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Hence, by Lemma 34 we have(︄
1 −

𝑇2
𝑁−𝑘−1𝐶𝛽

2𝑒𝐶𝛽(1 + 𝛿)2

𝜖(𝑁 − 𝑘)

)︄
𝑎𝑁−𝑘 ≤

(︂
1 − 1

𝑁 − 𝑘

)︂
𝑎𝑁−𝑘−1 +

(1 + 4𝜖)5
𝑁 − 𝑘

thus

𝑎𝑁−𝑘 ≤
(︂
1 − 1

𝑁 − 𝑘

)︂
𝑎𝑁−𝑘−1 + 𝑎𝑁−𝑘

𝑇2
𝑁−𝑘−1𝐶𝛽

2𝑒𝐶𝛽(1 + 𝛿)2

𝜖(𝑁 − 𝑘) + (1 + 4𝜖)5
𝑁 − 𝑘

Since 𝑎𝑁−𝑘 ≤ 𝑎𝑁−𝑘−1𝑇𝑁−𝑘−1, we can bound the second term by 𝑇3
𝑁−𝑘−1𝐶𝛽

2𝑒𝐶𝛽(1+𝛿)2
𝜖(𝑁−𝑘) 𝑎𝑁−𝑘−1. Assuming

𝜖 ≥ 3𝛿−1𝑇3
𝑁−𝑘−1𝐶𝛽

2𝑒𝐶𝛽 we have

𝑎𝑁−𝑘 ≤
(︃
1 − 1

𝑁 − 𝑘
+ 𝛿

3(𝑁 − 𝑘)

)︃
𝑎𝑁−𝑘−1 +

(1 + 4𝜖)5
𝑁 − 𝑘

≤
(︃
1 + 𝛿/3 − 1

𝑁 − 𝑘

)︃
(1 + 𝛿) + (1 + 4𝜖)5

𝑁 − 𝑘

≤ (1 + 𝛿) + 1
𝑁 − 𝑘

(︁
(𝛿/3 − 1)(𝛿 + 1) + (1 + 4𝜖)5

)︁
.

Recall that 𝜖 = 𝛿/10. Substituting this in the second term, we can verify that for all 𝜖 = [0, 0.01],
𝑔(𝜖) = (10𝜖/3 − 1)(10𝜖 + 1) + (1 + 4𝜖)5 < 0, so that the induction holds provided that 𝜖 ≥
3𝛿−1𝑇3

𝑁−𝑘−1𝐶𝛽
2𝑒𝐶𝛽 (i.e. 10𝜖2 > 3𝑇3

𝑁−𝑘−1𝐶𝛽
2𝑒𝐶𝛽) and 𝛿 = 𝜔𝛽→0(𝛽2). Since 𝑇𝑁−𝑘−1 ≤ 7/2 under

the inductive hypothesis, it is readily seen that taking 𝜖 = Ω𝐶(𝛽) suffices for the induction to hold.

Finally, the bound on the Poincaré constant is 𝑎𝑁 ≤ 1 + 𝛿 = 1 + Θ𝐶(𝛽).
Theorem 36. Suppose 𝜇 and 𝛽 satisfy the same assumptions as Theorem 33. Then, with the notation there,
we have:

1. 𝜇 (equivalently 𝜇hom) satisfies approximate tensorization of entropy with constant 𝐶 = 𝑂(𝑛𝐵𝛽).
2. The discrete-time Glauber dynamics on 𝜇 satisfy the Modified Log-Sobolev Inequality (MLSI) with

constant 𝜌 = Ω(1/𝑛1+𝐵𝛽).
3. The discrete-time Glauber dynamics on 𝜇 satisfy

𝜏mix(𝜖) = 𝑂
(︂
𝑛1+𝐵𝛽(log log(1/min

𝜎
𝜇(𝜎)) + log(1/𝜖)

)︂
.

The proof of this theorem requires the following intermediate lemma showing approximate entropy
tensorization for a system satisfying the conditions of Theorem 36 under pinning with 𝑁 − 𝑘 = 𝑂(1)
free (unpinned) spins. [CMT14, Lemma 2.2] showed this result only for 2-spin systems, but the
proof applies more generally. We repeat the proof for the sake of completeness. The details are in
Appendix B.
Lemma 37. Let 𝜇 be a distribution satisfying the assumptions of Theorem 36. Any pinning of 𝜇 where the
number of free spins 𝑁 − 𝑘 is constant (𝑁 − 𝑘 = 𝑂(1)) has approximate entropy tensorization with constant
𝐶 = exp(𝑂(𝛽)).

Proof of Theorem 36. The second and third conclusion followdirectly from approximate tensorization
of entropy (see Section 2).

18



Let 𝛼 = 1/(1 + 𝐵𝛽). By Theorem 5 of [Ana+21a], we have that if the measure 𝜇hom is 𝛼-FLC then for
any measure 𝜈 absolute continuous with respect to 𝜇 and 𝑘0 = ⌈1/𝛼⌉,

𝒟KL(𝜈𝐷𝑛→(𝑛−𝑘0) ∥ 𝜇hom𝐷𝑛→(𝑛−𝑘0)) ≤ (1 − 𝜅)𝒟KL(𝜈 ∥ 𝜇hom)

where

𝜅 =
(3 − 1/𝛼)1/𝛼−⌈1/𝛼⌉ ∏︁⌈1/𝛼⌉−1

𝑖=0 (2 − 𝑖)
(𝑛 + 1)1/𝛼

≥ 𝑛1/𝛼−1 = 𝑛𝐵𝛽

This is equivalent to block approximate entropy tensorization with block size 𝑘0 [Bla+21, Eq.(1.5)]
i.e.

𝑘0
𝑛

Ent𝜇[ 𝑓 ] ≤ 𝑛𝐵𝛽 1(︁
𝑛
𝑘0

)︁ ∑︂
𝑆∈([𝑛]

𝑘0
)
𝔼𝜇[Ent𝑆[ 𝑓 ]].

Since |𝑆| = 𝑘0 = 𝑂(1 + 𝐵𝛽) = 𝑂(1) and 𝛽 = 𝑂(1), combining this with Lemma 37 gives

1
𝑛

Ent𝜇[ 𝑓 ] ≤ 𝑛𝐵𝛽 exp(𝑂(𝛽))
𝑘0

(︁
𝑛
𝑘0

)︁ ∑︂
𝑆∈([𝑛]

𝑘0
)

∑︂
𝑣∈𝑆

𝔼𝜇[Ent𝑣[ 𝑓 ]] = 𝑛𝐵𝛽 exp(𝑂(𝛽))
𝑛

∑︂
𝑣∈[𝑛]

𝔼𝜇[Ent𝑣[ 𝑓 ]],

as required.

4.2 Results for the 𝑝-Spin Model

In this subsection, we prove Theorem 6. As mentioned in the introduction, we will need to rely on
an average case local to global argument. Specifically, we will need the following theorem, which is
a slight modification of [ALV22, Theorem 20] and follows from the same proof.
Theorem 38. Consider a distribution 𝜇 :

(︁[𝑛]
𝑘

)︁
→ ℝ≥0. Suppose that for every set 𝑇 of size ≤ 𝑘 − 2, 𝜇𝑇 is

(𝑘 − |𝑇|)(1 − 𝜌(𝑇))-entropically independent i.e.

𝒟KL(𝜈𝐷𝑘−|𝑇|→1 ∥ 𝜇𝑇𝐷𝑘−|𝑇|→1) ≤ (1 − 𝜌(𝑇))𝒟KL(𝜈 ∥ 𝜇𝑇).

Suppose also that there exist constants 𝑘0 ≥ 2 and 𝐶(𝑘0) such that for all 𝑇 with |𝑇| ≥ 𝑘 − 𝑘0, 𝜇𝑇 satisfies
approximate entropy tensorization with constant 𝐶(𝑘0).
Finally, for a set 𝑇 of size ≥ 𝑘 − 1, define the harmonic mean

𝛾𝑇 := 𝔼𝑒1 ,...,𝑒|𝑇|∼uniformly random permutation of 𝑇

[︂ (︁
𝜌(∅)𝜌({𝑒1})𝜌({𝑒1 , 𝑒2}) · · · 𝜌({𝑒1 , . . . , 𝑒𝑘−𝑘0})

)︁−1
]︂−1

.

Then the operator 𝐷𝑘→(𝑘−1) satisfies

𝒟KL(𝜈𝐷𝑘→(𝑘−1) ∥ 𝜇𝐷𝑘→(𝑘−1)) ≤ (1 − 𝜅)𝒟KL(𝜈 ∥ 𝜇),

with
𝜅 := 𝐶(𝑘0)−1 min

{︃
𝛾𝑇

|︁|︁|︁|︁ 𝑇 ∈
(︃
[𝑛]
𝑘 − 1

)︃}︃
.

Notation. For each 𝑘, let 𝐴𝑘 be a uniformly random set of 𝑘 spins1. We will bound the norm of the
tensor associated to 𝐴𝑘 when 𝐴𝑐

𝑘
is fixed according to 𝜎. It will be more convenient to work with

1Note that for this subsection, 𝑘 is the number of free (unpinned) spins, unlike in Section 4.1.
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the normalization 𝜎 ∈ {±1}𝑁/
√
𝑁 . For a sequence 𝑆 of coordinates and a spin configuration 𝜎 on a

set of coordinates containing 𝑆, we denote 𝜎𝑆 =
∏︁

𝑖∈𝑆 𝜎𝑖 . We write |𝑆| for the length of 𝑆, and write
𝑆 ⊂ 𝐴 if all entries of 𝑆 are in 𝐴. For sequences 𝑆, 𝑇 of coordinates, we denote by 𝑔(𝑆,𝑇) the entry of
the disorder indexed by (𝑆, 𝑇); and 𝑔{𝑆,𝑇} the sum of all entries whose index is the union of 𝑆 and 𝑇

(with the same order of elements within 𝑆 and 𝑇). For a given realisation of 𝐴𝑘 , disjoint subsets
𝐴′, 𝐵′ of 𝐴𝑘 and 𝜎′ ∈ {±1}𝐴𝑘\𝐵′/

√
𝑁 , we define the matrix Δ[𝐴′,𝐵′], with rows and columns indexed

by 𝐴𝑘 \ (𝐴′ ∪ 𝐵′) (here, we are suppressing dependence on 𝜎, 𝜎′, 𝐴𝑘):

Δ
[𝐴′,𝐵′]
𝑖 , 𝑗

=

∑︂
𝑝≥2

1√
𝑁
𝛽𝑝

∑︂
𝑠+𝑠′=𝑝−2

∑︂
𝑆⊂𝐴𝑐

𝑘
,|𝑆|=𝑠,

𝑆′⊂𝐴𝑘\𝐵′,|𝑆′|=𝑠′

𝑔{𝑖 , 𝑗 ,𝑆,𝑆′}𝜎𝑆𝜎
′
𝑆′ , (3)

i.e. 𝜕𝑖𝐵[𝐴′,𝐵′]
𝑗

(𝜎′) = Δ
[𝐴′,𝐵′]
𝑖 , 𝑗

.

The key additional ingredient we need to prove Theorem 6 using Theorem 38 is the following
estimate.
Proposition 39. There exists a constant 𝐶 > 0 such that, with notation as in the proof of Theorem 6, with
probability at least 1 − exp(−Θ(𝑁)) over the choice of the Hamiltonian 𝐻 = 𝐻(𝑔),

sup
𝐼∈[𝑁],𝜎∈{±1}[𝑁]\{𝐼}

𝔼𝜋∈Sym(𝑁−{𝐼})

[︄
exp

(︄
𝐵
∑︁

𝑁≥𝑘>𝑘0 sup𝐴′,𝐵′⊂𝐴𝑘
sup𝜎′∈{±1}𝐴𝑘\𝐵′ ∥Δ[𝐴′,𝐵′]∥op

𝑘

)︄]︄
≤ 𝐶. (4)

Here 𝐴𝑘 is the union of {𝐼} and the last 𝑘 − 1 elements according to the permutation 𝜋 on [𝑁] \ {𝐼}.

The proof of Proposition 39 is presented at the end of this section.

Given Theorem 36, Theorem 38 and Proposition 39, the proof of Theorem 6 is immediate.

Proof of Theorem 6. Let 𝐵 be the constant appearing in Theorem 33. For 𝐴 ⊆ [𝑛] and 𝜎𝐴 ∈ {±1}𝐴,
as in Section 4.1, let 𝐻𝜎𝐴 be the Hamiltonian of the subsystem where the spins in 𝐴 are pinned
according 𝜎𝐴.

We want to establish approximate tensorization of entropy, which is the same as entropy contraction
of 𝐷𝑁→(𝑁−1) for 𝜇hom. The set 𝑇 of size 𝑁 − 1 in Theorem 38 corresponds to a tuple (𝑖 , 𝜎) ∈ [𝑁] ×
{±1}[𝑁]\{𝑖}. Each permutation 𝑒1 , . . . , 𝑒|𝑇| of 𝑇 corresponds to a permutation 𝜋 of [𝑁] \ {𝑖}. For each
𝑘, 𝜌({𝑒 𝑗 | 𝑗 ≤ 𝑁 − 𝑘}) corresponds to the KL-divergence contraction of the 𝐷𝑘→1 operator wrt 𝜇𝜎𝐴𝑐

𝜋,𝑘

where 𝐴𝑐
𝜋,𝑘 = {𝑒 𝑗 | 𝑗 ≤ 𝑁 − 𝑘}.

By Theorem 33, 𝜇𝜎𝐴𝑐
𝜋,𝑘

is 1
1+𝐵𝑇𝜎

𝐴𝑐
𝜋,𝑘

-fractionally log concave so by Theorem 23 the 𝐷𝑘→1 operator

contracts KL-divergence by

𝜌(𝜎𝐴𝑐
𝜋,𝑘
) = 1 −

1 + 𝐵𝑇𝜎𝐴𝑐
𝜋,𝑘

𝑘

with 𝑇𝜎𝐴𝑐
𝜋,𝑘

= sup𝐴′,𝐵′⊆𝐴𝜋,𝑘
∥Δ[𝐴′,𝐵′]∥op.
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Let 𝑘0 be a constant to be chosen later. Then, by Lemma 37 and Theorem 38

max 𝛾−1
𝑇 ≡ sup

𝜎,𝑖
𝛾−1
𝜎,𝑖

= exp(𝛽𝑘0) sup
𝜎,𝑖

𝔼𝜋

⎡⎢⎢⎢⎢⎣
∏︂

𝑁≥𝑘>𝑘0

(︄
1 −

1 + 𝐵𝑇𝜎𝐴𝑐
𝜋,𝑘

𝑘

)︄−1⎤⎥⎥⎥⎥⎦
≤ exp(𝛽𝑘0) sup

𝜎,𝑖
𝔼𝜋

[︄
exp

(︄ ∑︂
𝑁≥𝑘>𝑘0

1
𝑘
+

𝐵
∑︁

𝑁≥𝑘>𝑘0 sup𝐴′,𝐵′⊂𝐴𝑘
sup𝜎′∈{±1}𝐴𝑘\𝐵′ ∥Δ[𝐴′,𝐵′]∥op

𝑘

)︄]︄
≤ 𝑁 exp(𝛽𝑘0 + 𝐶)

where the last inequality holds with probability ≥ 1 − exp(Θ(𝑁)) by Proposition 39, and 𝑘0 and 𝐶

are chosen according to Proposition 39.

Finally, we prove Proposition 39.

Proof of Proposition 39. Throughout we fix an index 𝐼 ∈ [𝑁] according to Proposition 39 and let 𝐴𝑘

denote a random set of size 𝑘 which has the distribution of 𝐼 together with a uniformly random
subset of [𝑁] \ {𝐼} of size 𝑘 − 1. We also fix 𝜎 ∈ {±1}𝑁/

√
𝑁 .

Recall the definition of the matrix Δ[𝐴′,𝐵′] from Eq. (3). Note that 𝑔{𝑖, 𝑗 ,𝑆,𝑆′} is a sum of 𝑂
(︂ (︁𝑝

2
)︁ (︁𝑝−2

𝑠′
)︁ )︂

independent standard Gaussians (the union 𝑆∪𝑆′∪{𝑖 , 𝑗} has size at most 𝑝; given this union, we can
uniquely recover 𝑆 as the part of the union belonging to 𝐴𝑐

𝑘
; we can then choose the indices 𝑖 , 𝑗 from

the remaining elements, and together with size constraints, this determines 𝑆′ up to constantly many
choices. Finally, there are at most

(︁𝑝−2
𝑠′

)︁
ways to choose the positions of the indices corresponding to

𝑆′). We write (suppressing the dependence on 𝜎, 𝜎′):

Δ[𝐴′,𝐵′] = Δ
[𝐴′,𝐵′]
0 + Δ

[𝐴′,𝐵′]
1 ,

where Δ[𝐴′,𝐵′]
0 includes the terms with 𝑠′ = 0 and Δ

[𝐴′,𝐵′]
1 consists of the remaining terms (i.e. those

with 𝑠′ ≥ 1). We also denote Δ[𝐴′,𝐵′]
0,𝑝 and Δ

[𝐴′,𝐵′]
1,𝑝 to denote the parts of these matrices stratified by

𝑝 ≥ 2.

For notational convenience, given 𝑝 ≥ 2, 𝜎 ∈ {±1}𝑁/
√
𝑁 , 𝑆′ ⊂ 𝐴𝑘 \ (𝐴′ ∪ 𝐵′) of size 𝑠′ ≥ 0 and

𝑖 , 𝑗 ∈ 𝐴𝑘 \ 𝐵′, we define
𝑋

𝑖 , 𝑗 ,𝑆′
𝜎,𝑝 :=

∑︂
𝑆⊂𝐴𝑐

𝑘

1√
𝑁

𝑔{𝑖 , 𝑗 ,𝑆′,𝑆}𝜎𝑆 .

Note that these are independent (over the choice of 𝑆′, 𝑖 , 𝑗) Gaussians with variance 𝑂
(︂
𝑝2 (︁𝑝−2

𝑠′
)︁
𝑁−1

)︂
.

Claim 40. With notation as above,

ℙ𝑔

⎡⎢⎢⎢⎢⎣∀𝑝, sup
𝜎,𝐴𝑘 ,𝐴′,𝐵′,𝑆′,𝜎′

∥Δ[𝐴′,𝐵′]
1,𝑝 ∥op ≥ 𝐶𝛽𝑝

√︁
log 𝑝

∑︂
1≤𝑠′≤𝑝−2

(︃
𝑝

𝑠′

)︃1/2

(𝑘/𝑁)𝑠′/2
⎤⎥⎥⎥⎥⎦ ≤ exp(−1000𝑁).

21



Proof. Theproof of this claim is standard. Note that the (𝑖 , 𝑗)𝑡ℎ entry of 𝛽−1
𝑝 Δ

[𝐴′,𝐵′]
1,𝑝 is

∑︁
𝑆′⊆𝐴𝑘\𝐵′ 𝑋

𝑖 , 𝑗 ,𝑆′
𝜎 𝜎𝑆′ ,

which is a Gaussian of mean 0 and variance 𝑂(𝑝2 (︁𝑝−2
𝑠′

)︁
𝑁−1𝑘𝑠

′/𝑁 𝑠′). Moreover, the entries of the ma-
trix are independent. Therefore, by the concentration of the norm of random subgaussian matrices
(e.g. [Ver18, Theorem 4.4.5]), we have that

∥Δ[𝐴′,𝐵′]
1,𝑝 ∥op ≳ 𝛽𝑝𝑝

√︁
log 𝑝

∑︂
1≤𝑠′≤𝑝−2

(︃
𝑝

𝑠′

)︃1/2

(𝑘/𝑁)𝑠′/2

with probability at most exp(−100𝑁 log 𝑝). We can then comfortably take the union bound over all
choices appearing in the supremum.

Furthermore, observe that∑︂
𝑝≥2

𝑁∑︂
𝑘=𝑘0

1
𝑘
𝛽𝑝𝑝

√︁
log 𝑝

∑︂
1≤𝑠′≤𝑝−2

(︃
𝑝

𝑠′

)︃1/2

(𝑘/𝑁)𝑠′/2 ≤
∑︂
𝑝≥2

𝛽𝑝
√︁
𝑝3 log 𝑝2𝑝/2 ,

which shows that on the event in Claim 40, for all choices of 𝜎, 𝐼 and for all permutations 𝜋,

exp ⎛⎜⎝
𝐵
∑︁

𝑁≥𝑘>𝑘0 sup𝐴′,𝐵′⊂𝐴𝑘
sup𝜎′∈{±1}𝐴𝑘\𝐵′ ∥Δ

[𝐴′,𝐵′]
1 ∥op

𝑘

⎞⎟⎠ ≲ 1. (5)

It therefore remains to prove Proposition 39withΔ replaced byΔ0. Note that so far, in our analysis of
Δ
[𝐴′,𝐵′]
1 , we did not need to use the randomness in the choice of 𝐴𝑘 . This will be crucial in controlling

∥Δ[𝐴′,𝐵′]
0 ∥op. Observe that Δ[𝐴′,𝐵′]

0 does not depend on 𝜎′. Given 𝜎 and 𝐼, we say that 𝐴𝑘 is bad if
sup𝑝 sup𝐴′,𝐵′⊆𝐴𝑘

∥Δ[𝐴′,𝐵′]
0,𝑝 ∥op/(𝛽𝑝𝑝

√︁
log 𝑝) ≥ 𝐶(𝑘/𝑁)1/2−𝛼, where 𝛼 < 1/2 is a constant (for instance,

𝛼 = 1/4 is sufficient for us).

Claim 41. For any 𝜎 and 𝐼, the probability that the number of bad 𝐴𝑘 exceeds
(︁
𝑁−1
𝑘−1

)︁
· (𝑘/𝑁)𝛼 is at most

exp(−1000𝑁(𝑁/𝑘)𝛼). Hence, with probability at least 1 − exp(−900𝑁(𝑁/𝑘)𝛼), simultaneously for all 𝜎
and 𝐼, the number of bad 𝐴𝑘 is at most

(︁
𝑁−1
𝑘−1

)︁
· (𝑘/𝑁)𝛼.

Proof. In proving this claim, we may assume without loss of generality that 𝑘 − 1 divides 𝑁 − 1.
Then, to any permutation 𝜋 of [𝑁 − 1], we naturally associate (𝑁 − 1)/(𝑘 − 1) disjoint sets of size
𝑘 − 1. Together with 𝐼, these give (𝑁 − 1)/(𝑘 − 1) sets of size 𝑘: 𝑇1 , . . . , 𝑇(𝑁−1)/(𝑘−1). By symmetry
and double counting, it suffices to show that for any fixed permutation, with probability at least
1 − exp(−1000𝑁 log(𝑁/𝑘) log 𝑝), the fraction of 𝑇1 , . . . , 𝑇(𝑁−1)/(𝑘−1) which are bad is at most (𝑘/𝑁)𝛼.
By [Ver18, Theorem 4.4.5] and a union bound, the probability that a fixed 𝑇𝑖 is bad is at most
exp(−𝐶𝑘(𝑁/𝑘)2𝛼). Since the Gaussians appearing in the matrices corresponding to distinct 𝑇𝑖 are
different (and in particular, independent), it follows that the probability that the number of bad 𝑇𝑖
exceeds (𝑁/𝑘)1−𝛼 is at most exp(−𝐶𝑁(𝑁/𝑘)𝛼). The final assertion follows by a union bound.

The key claim in the proof of Proposition 39 is the following.
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Claim 42. With probability at least 1 − exp(−100𝑁) over the choice of the Hamiltonian 𝐻 = 𝐻(𝑔),

sup
𝐼 ,𝜎

𝔼𝜋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp

(︄∑︁𝑁
𝑘=𝑘0

sup𝐴′,𝐵′ ∥Δ[𝐴′,𝐵′]
0 ∥op

𝑘

)︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

:=𝑍

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≲ 1.

Proof. We consider a ‘good’ realisation of the Hamiltonian i.e. a realisation satisfying (i) the conclu-
sion of Claim 41 and (ii) sup𝐼 ,𝜎,𝐴𝑘 ,𝐴′,𝐵′ ∥∑︁

𝑝≥2 Δ
[𝐴′,𝐵′]
0,𝑝 ∥ ≤ 𝑐, for a sufficiently small constant 𝑐 to be

chosen later. By Claim 41 and [Adh+22, Lemma 6.1], this indeed holds with probability at least
1 − exp(−100𝑁), provided that 𝛽0 :=

∑︁
𝑝≥2

√︁
𝑝3 log 𝑝𝛽𝑝 is sufficiently small depending on 𝑐. We

show that for a good realisation, the conclusion of Claim 42 is satisfied.

To every permutation 𝜋, we naturally associate a sequence of sets 𝐴𝑁 , . . . , 𝐴𝑘 , . . . , 𝐴𝑘0 . Let 𝑁𝑘

denote the operator norm of the submatrix corresponding to 𝐴𝑘 . Let ℬ𝑘 denote the event that 𝐴𝑘 is
bad and 𝒢𝑘 denote the complementary event that 𝐴𝑘 is good. We write the random variable 𝑍 as

𝑍 = exp

(︄
𝑁∑︂

𝑘=𝑘0

𝑁𝑘 · 1𝒢𝑘
+ 𝑁𝑘 · 1ℬ𝑘

𝑘

)︄
.

Deterministically,

𝑁∑︂
𝑘=𝑘0

𝑁𝑘 · 1𝒢𝑘

𝑘
≲ ⎛⎜⎝

∑︂
𝑝≥2

𝛽𝑝𝑝
√︁

log 𝑝
⎞⎟⎠

𝑁∑︂
𝑘=𝑘0

𝑘−1(𝑘/𝑁)1/2−𝛼 ≲ 1,

so it suffices to show that

sup
𝜎,𝐼

𝔼𝜋

[︄
exp

(︄
𝑁∑︂

𝑘=𝑘0

𝑁𝑘 · 1ℬ𝑘

𝑘

)︄]︄
≲ 1. (6)

This follows fromHölder’s inequality. Indeed, let 𝑞𝑘 = 𝛾𝑘2, where 𝛾 is an absolute constant ensuring
that

∑︁𝑁
𝑘=𝑘0

𝑞−1
𝑘

= 1. By Claim 41, 𝔼𝐴𝑘
[1ℬ𝑘

] ≤ (𝑘/𝑁)𝛼 and we can always bound 𝑁𝑘 ≤ 𝑐 for a good
realisation. Hence, we have

𝔼𝐴𝑘

[︃
exp

(︃
𝑞𝑘 ·

𝑁𝑘 · 1ℬ𝑘

𝑘

)︃]︃
≤ exp(𝑐𝑞𝑘/𝑘)(𝑘/𝑁)𝛼 ,

thus, using Hölder’s inequality i.e. 𝔼[𝑟𝑘0 . . . 𝑟𝑁 ] ≤ 𝔼[𝑟𝑞𝑘0
𝑘0

]
1

𝑞𝑘0 . . .𝔼[𝑟𝑞𝑁
𝑁

]
1
𝑞𝑁 for 𝑟𝑘 = exp(𝑁𝑘1ℬ𝑘

/𝑘), we
can bound the left hand side of Eq. (6) by

𝑁∏︂
𝑘=𝑘0

exp(𝑐/𝑘)
𝑁∏︂

𝑘=𝑘0

(𝑘/𝑁)𝛼/𝑞𝑘 ≲ 𝑁 𝑐𝑁−𝛼 ≲ 1,

provided 𝛽0 =
∑︁

𝑝≥2
√︁
𝑝3 log 𝑝𝛽𝑝 is small enough so that 𝑐 ≤ 𝛼(= 1/4).

Combining Eq. (5) and Claim 42 finishes the proof.
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5 Applications

5.1 Spectral Independence from a Contractive Coupling

As a quick application of Theorem 30, we provide a short and transparent alternate proof of recent
results of Liu [Liu21] and Blanca et al. [Bla+21] showing, for instance, that for a measure 𝜇 on a
product space, the existence of a contractive coupling for the Glauber dynamics implies that 𝜇 is
spectrally independent.

More precisely, let Ω = Ω1 × · · · × Ω𝑛 be a product space, let 𝑑 be a metric on Ω, and let 𝜇 be a
measure on Ω. For 𝜅 ∈ (0, 1), we say that 𝜇 satisfies property (†) with parameter 𝜅 with respect to
the metric 𝑑 if the following holds.

(†) For all valid configurations (𝑋0 , 𝑌0) ∈ Ω ×Ω, there exists a coupling (𝑋0 , 𝑌0) → (𝑋1 , 𝑌1) of the
Glauber dynamics 𝑃 satisfying

𝔼[𝑑(𝑋1 , 𝑌1) | (𝑋0 , 𝑌0)] ≤ 𝜅𝑑(𝑋0 , 𝑌0).

Theorem 43 (cf. Theorem 1.10 in [Bla+21]). If 𝜇 satisfies property (†) with parameter 𝜅 ≤ (1 − 𝜖/𝑛) with
respect to any metric 𝑑, then 𝜇 is 𝜂-spectrally independent with constant 𝜂 = 1/𝜖.

Proof. Since 𝜅 ≤ (1 − 𝜖/𝑛), it follows by [LP17, Theorem 13.1] that

𝛾 ≥ 1 − 𝜅 ≥ 𝜖
𝑛
.

and finally, applying Theorem 30, we conclude that 𝜇 is 1(/𝜖)-spectrally independent.

Remark 44. (1) There are two important advantages of the above theorem, compared to [Bla+21,
Theorem 1.10]. First, our bound on 𝜂 depends only on the contractive constant 𝜅 and not on
the underlying metric (as in [Bla+21]). Second, even in the case of weighted Hamming metrics,
our bound on 𝜂 is a factor of 2 better than the corresponding bound in [Bla+21]. This factor
of 2 is important in applications where 𝜖 ≈ 1, in which case our spectral independence bound
can potentially be combined with local-to-global arguments to yield, e.g. modified log-Sobolev
inequalities, with near-optimal dependence on 𝑛, whereas the bound of [Bla+21] will necessarily
give a quadratically sub-optimal bound.

(2) While the above theorem is stated only for the Glauber dynamics for simplicity, the same proof
can be used to cover situations where (a) the contractive coupling is with respect to a different
Markov chain and (b) the spectral gaps of this Markov chain is within a constant factor of the spectral
gap of the Glauber dynamics. Indeed, this is the situation for the so-called flip dynamics for the
uniform distribution on 𝑞-colorings of graphs of maximum degree Δ (with 𝑞 > (11/6 − 𝜖0)Δ for a
small absolute constant 𝜖0), and therefore, allows us to easily recover one of the main applications
of [Liu21; Bla+21].

(3) While the approaches in [Bla+21; Liu21] generally lead to looser spectral independence guar-
antees than ours, their methods can still be useful as a way to bound the ∞-norm of the influence
matrix.

5.2 Learning and Statistical Estimation

There is a vast literature on learning exponential families and graphical models from data. In terms
of learning these distributions (say in the total variation distance), there are easy to use guarantees

24



known information-theoretically via computationally inefficient algorithms, e.g. [DMR20]. There are
also guarantees for learning via polynomial time algorithms, e.g. the result of [KM17]. In some
settings, the computationally efficient guarantees are extremely suboptimal in terms of their sample
complexity. Is this an inherent limitation?

An example where existing results fail: spin glass inversion. Suppose we are given 𝑚 i.i.d.
samples from a Sherrington-Kirkpatrick model at inverse temperature 𝛽 > 0 on 𝑛 sites. As a
reminder, this is the special case of the mixed 𝑝-spin model with quadratic interactions, so 𝜇(𝑥) ∝
exp(1

2⟨𝑥, 𝐽𝑥⟩) where 𝐽 is a symmetric matrix with 𝐽𝑖 𝑗 ∼ 𝑁(0, 𝛽2/𝑛), so 𝐽 is proportional to a GOE
random matrix. The computationally inefficient result of [DMR20] implies that obtaining total
variation distance 0.01 can be done with high probability from 𝑚 = 𝑂̃(𝑛2) samples.

Applying a state of the art algorithmic result such as [WSD19; KM17; Vuf+16], the best we can get
is a sample complexity of 𝑒𝑂(𝛽

√
𝑛) for obtaining guarantees for learning this distribution in total

variation distance. The reason is that the ℓ1 norm of a row of 𝐽 is approximately 𝛽
√
𝑛, and these

results depend exponentially on this quantity (or worse, on the degree) — see e.g. Theorem 7.3 of
[KM17]. This is a fundamental limitation of the analyses in all of these works.
Remark 45. The SK model was prominently studied in a different context in statistical estimation
[Cha07], where 𝐽 is known up to normalization and the goal was to estimate a single parameter (the
inverse temperature 𝛽) from a single sample. Here we are trying to estimate the entire distribution
which requires many more samples from the distribution. Our problem has been considered under
the name of spin glass inversion in the statistical physics literature [MV09; MM09], where heuristic
message passing algorithms have been proposed.

A different analysis via approximate tensorization. Many algorithms in the literature on learning
discrete graphical models, including those referenced above, can be understood as variants of
maximum likelihood (see e.g. [Van00]) or pseudolikelihood estimation [Bes75]. Pseudolikelihood
estimation minimizes the loss

𝐿̂𝑝(𝑞) :=
𝑛∑︂
𝑗=1

1
𝑚

𝑚∑︂
𝑖=1

ˆ︁𝔼𝑋[log 𝑞((𝑋𝑖)𝑗 | (𝑋𝑖)∼𝑗)]

where 𝑋1 , . . . , 𝑋𝑚 are i.i.d. samples from the ground truth distribution 𝑝 and (𝑋𝑖)𝑗 denotes co-
ordinate 𝑗 of sample 𝑋𝑖 . It was recently observed that approximate tensorization of entropy has
immediate consequences for the sample complexity of pseudolikelihood estimation [KLR22].
Theorem 46 (Special case of Theorem 4 of [KHR22]). Suppose that 𝒫 is a class of probability distributions
containing 𝑝 and 𝐶𝐴𝑇(𝒫) := sup𝑞∈𝒫 𝐶𝐴𝑇(𝑞) is the worst-case approximate tensorization constant in the
class of distributions. Let

ℛ𝑚 := 𝔼𝑋1 ,...,𝑋𝑚 ,𝜖1 ,...,𝜖𝑚

⎡⎢⎢⎢⎢⎣sup
𝑞∈𝒫

1
𝑚

𝑚∑︂
𝑖=1

𝜖𝑖

⎡⎢⎢⎢⎢⎣
𝑛∑︂
𝑗=1

log 𝑞((𝑋𝑖)𝑗 | (𝑋𝑖)∼𝑗)
⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

be the expected Rademacher complexity of the class given 𝑚 samples 𝑋1 , . . . , 𝑋𝑚 ∼ 𝑝 i.i.d. and independent
𝜖1 , . . . , 𝜖𝑚 ∼ 𝑈𝑛𝑖{±1} i.i.d. Rademacher random variables. Let 𝑝̂ be the pseudolikelihood estimator from 𝑛

i.i.d. samples from 𝑝, in other words let 𝑝̂ = arg min𝑞∈‘𝒫 𝐿̂𝑝(𝑞). Then

𝔼[𝒟KL(𝑝 ∥ 𝑝̂)] ≤ 2𝐶𝐴𝑇(𝒫)ℛ𝑚 .
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Since in this work we established bounds on the approximate tensorization constant of a large class
of distributions, they can be directly combined with this result to obtain new learning guarantees.
The precise choice of the class 𝒫 will depend on the application (larger classes 𝒫 will require more
sample complexity to learn).

Exponential improvement in the example. We revisit the example of learning distributions like
the SK model from data. We observe that when 𝛽 is small enough so that approximate tensorization
is satisfied, we get a dramatically improved guarantee for learning the distribution from samples:
Theorem 47. Suppose 𝑝 is a distribution lying in 𝒫 , which is defined to be the class of distributions of the
form

𝑝𝐽 ,ℎ(𝑥) ∝ exp
(︂1
2⟨𝑥, 𝐽𝑥⟩ + ⟨ℎ, 𝑥⟩

)︂
under the assumption that for some 𝑅 > 0:

1. ∥𝐽∥𝑂𝑃 ≤ 𝛼 < 𝐴 where 𝐴 > 0 is the constant from Theorem 33.

2. ℎ 𝑗 ≤ 𝑅 for every 𝑗, and ∥𝐽𝑗∥1 ≤ 𝑅 for every row 𝐽𝑗 .

Let Θ denote the set of (𝐽 , ℎ) pairs satisfying these conditions. Let 𝑝̂ be the pseudolikelihood estimator from
𝑛 i.i.d. samples from 𝑝, in other words let 𝑝̂ = arg min𝑞∈‘𝒫 𝐿̂𝑝(𝑞). (This is a convex program which can be
efficiently optimized.) Then

𝔼[𝒟KL(𝑝 ∥ 𝑝̂)] = 𝑂
(︂
𝑅𝑛1+𝐵𝛼

√︁
log(𝑛)/𝑚

)︂
where 𝐵 is as defined in Theorem 33.

Proof. First, observe that the conditional density is

𝑝𝐽 ,ℎ(𝑥 𝑗 | 𝑥∼𝑗) =
𝑒⟨𝐽𝑗 ,𝑥⟩𝑥 𝑗+ℎ 𝑗𝑥 𝑗

𝑒⟨𝐽𝑗 ,𝑥⟩𝑥 𝑗+ℎ 𝑗𝑥 𝑗 + 𝑒−⟨𝐽𝑗 ,𝑥⟩𝑥 𝑗−ℎ 𝑗𝑥 𝑗
=

1
1 + 𝑒−2⟨𝐽𝑗 ,𝑥⟩𝑥 𝑗−2ℎ 𝑗𝑥 𝑗

where 𝐽𝑗 denotes row 𝑗 of the matrix 𝐽. So
log 𝑝𝐽 ,ℎ(𝑥 𝑗 | 𝑥∼𝑗) = −ℓ (−⟨𝐽𝑗𝑥⟩𝑥 𝑗 − ℎ 𝑗𝑥 𝑗)

where ℓ (𝑧) = log(1 + 𝑒2𝑧) is the logistic loss, which is a 1-Lipschitz function. We can now bound the
Rademacher complexity of this class:

ℛ𝑛 = 𝔼𝑋1 ,...,𝑋𝑛 ,𝜖1 ,...,𝜖𝑛

⎡⎢⎢⎢⎢⎣ sup
𝐽 ,ℎ∈Θ

1
𝑚

𝑚∑︂
𝑖=1

𝜖𝑖

⎡⎢⎢⎢⎢⎣
𝑛∑︂
𝑗=1

ℓ (−(𝑋𝑖)𝑗(⟨𝐽𝑗 , 𝑋𝑖⟩ + ℎ 𝑗))
⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

≤
𝑛∑︂
𝑗=1

𝔼𝑋1 ,...,𝑋𝑛 ,𝜖1 ,...,𝜖𝑛

[︄
sup
𝐽 ,ℎ∈Θ

1
𝑚

𝑚∑︂
𝑖=1

𝜖𝑖ℓ (−(𝑋𝑖)𝑗(⟨𝐽𝑗 , 𝑋𝑖⟩ + ℎ 𝑗))
]︄

≤
𝑛∑︂
𝑗=1

𝔼𝑋1 ,...,𝑋𝑛 ,𝜖1 ,...,𝜖𝑛

[︄
sup
𝐽 ,ℎ∈Θ

1
𝑚

𝑚∑︂
𝑖=1

𝜖𝑖(𝑋𝑖)𝑗(⟨𝐽𝑗 , 𝑋𝑖⟩ + ℎ 𝑗)
]︄

=

𝑛∑︂
𝑗=1

𝔼𝑋1 ,...,𝑋𝑛 ,𝜖1 ,...,𝜖𝑛

[︄
sup
𝐽 ,ℎ∈Θ

1
𝑚
⟨𝐽𝑗 ,

𝑚∑︂
𝑖=1

𝜖𝑖𝑋𝑖(𝑋𝑖)𝑗⟩ +
ℎ 𝑗

𝑚

𝑚∑︂
𝑖=1

𝜖𝑖(𝑋𝑖)𝑗

]︄
≤

𝑛∑︂
𝑗=1

𝔼𝑋1 ,...,𝑋𝑛 ,𝜖1 ,...,𝜖𝑛

[︄
1
𝑚
𝑅

∥︁∥︁∥︁∥︁∥︁ 𝑚∑︂
𝑖=1

𝜖𝑖𝑋𝑖(𝑋𝑖)𝑗

∥︁∥︁∥︁∥︁∥︁
∞
+ 𝑅

𝑚

|︁|︁|︁|︁|︁ 𝑚∑︂
𝑖=1

𝜖𝑖(𝑋𝑖)𝑗

|︁|︁|︁|︁|︁
]︄
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where in the first inequality wemoved the supremum inside the sum over 𝑗, in the second inequality
we used Talagrand’s contraction principle (Exercise 6.7.7 of [Ver18]), and in the last inequality we
used Holder’s inequality. Using Hoeffding’s inequality and a standard tail bound for the maximum
of subgaussian random variables (Exercise 2.5.10 of [Ver18]), we conclude that

ℛ𝑛 ≤ 𝑛𝑅

√︃
2 log 𝑛

𝑚
+ 𝑛𝑅

√︁
1/𝑚 ≤ 4𝑅𝑛

√︃
log 𝑛

𝑚
.

Appealing to Theorem 46 and Theorem 36 proves the result.

Going back to the example of the SK model, we have 𝑅 = 𝑂̃(𝛽
√
𝑛) so for 𝛽 sufficiently small this

implies we can learn the distribution to KL divergence 𝑜(1), hence also TV distance 𝑜(1) by Pinsker’s
inequality [CT12], with 𝑚 = 𝑂̃(𝑛3+2𝐵𝛽) samples. This is not much worse than the sample com-
plexity required for the inefficient method of [DMR20] and exponentially improves the previously
mentioned algorithmic guarantees. We remark that this analysis can be adapted to the estimators
proposed in [KM17; WSD19; Vuf+16] and other works, since their algorithms are based on similar
principles to, though not identical to, the standard pseudolikelihood estimator. The key difference
is our analysis of the estimator.

This results also works for many other models, e.g. diluted spin glasses, with similar improvements
(exponential improvement in the dependence on the degree 𝑑). Finally, we note that while the
guarantee of Theorem 46 is in expectation, it is straightforward to obtain a strong high probability
guarantee by combining the same argument with standard tools from generalization theory (see
[KHR22; SB14]).
Remark 48. Obviously, this result (and the identity testing result in the next section) can be general-
ized to the case of higher-order interactions. In the special case of the Ising model, it is possible to
tweak the above and obtain a version of the result for a larger value of ∥𝐽∥𝑂𝑃 by using the result
of [EKZ21] and appealing to comparison inequalities to bound the log-Sobolev or approximate
tensorization constant; this results in a worse dependence on the dimension and on the size of the
external field.

5.3 Identity Testing

In the identity testing problem, given an explicitly visible distribution 𝜇 and oracle access to samples
from an unknown/hidden distribution 𝜋, the goal is to determine if these distributions are identical
using as few samples from 𝜋 as possible. [Bla+22] shows efficient identity testing algorithms for
distributions 𝜇 satisfying approximate tensorization of entropy.
Theorem 49 ([Bla+22, Theorem 7.5]). Consider distribution 𝜇 : {±1}[𝑛] → ℝ≥0 satisfying approximate
tensorization of entropy with parameter 𝐶 and 𝑏-marginally bounded assumption i.e. if for every Λ ⊆ [𝑛],
every 𝑥 ∈ {±1}Λ with 𝜇(𝑋Λ = 𝑥) > 0, every 𝑖 ∈ [𝑛] \Λ, and every 𝑎 ∈ {±1}, one has

either 𝜇(𝑋𝑖 = 𝑎|𝑋Λ = 𝑥) = 0 or 𝜇(𝑋𝑖 = 𝑎|𝑋Λ = 𝑥) ≥ 𝑏

with 𝑏 := 𝑏(𝑛) satisfying log log(𝑏) = 𝑂(log 𝑛).
Suppose that there is FPRAS to estimate the marginals of 𝜇 i.e. estimating 𝜇𝑖(·|𝑥−𝑖) for any 𝑥−𝑖 ∈ {±1}[𝑛]\{𝑖}.
Given query access to the Subcube oracle, there exist an identity testing algorithm for KL divergence with
distance parameter 𝜖 with query complexity

𝑂
(︂
log

(︂1
𝑏

)︂
𝑛 log

(︂
𝑛

𝜖

)︂)︂
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This immediately implies efficient identity testing algorithm for 𝜇 satisfying the preconditions
Theorem 47, since 𝜇 is 𝑏(𝑛) = exp(−𝜃(𝛼

√
𝑛 + 𝑅))-marginally bounded by the same argument as in

proof of Theorem 47.
Corollary 50. Let 𝑝 be the distribution satisfying the assumptions in Theorem 47. There exists identity
testing algorithm for KL divergence with distance parameter 𝜖 with query complexity 𝑂(𝑛3/2+𝐵𝛽+𝑅 log(𝑛/𝜖))
with 𝐵 being a constant, the same as in Theorem 36.
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A Miscellaneous Facts

Equivalent expressions for the Dirichlet form. Let

𝜈(𝜎) ∝ exp(𝐻(𝜎))

be a binary spin system on the hypercube {±1}𝑛 . Note that the conditional law at site 𝑗 is

𝜈(𝜎𝑗 | 𝜎∼𝑗) =
exp(𝜎𝑗𝜕𝑗𝐻(𝜎))

exp(𝜎𝑗𝜕𝑗𝐻(𝜎)) + exp(−𝜎𝑗𝜕𝑗𝐻(𝜎)) =
1

1 + exp(−2𝜎𝑗𝜕𝑗𝐻(𝜎))

Recall that the Dirichlet form for Glauber dynamics is

ℰ( 𝑓 , 𝑓 ) :=
∑︂
𝜎∼𝜏

𝜈(𝜎)𝜈(𝜏)
𝜈(𝜎) + 𝜈(𝜏) ( 𝑓 (𝜎) − 𝑓 (𝜏))2 =

1
2

∑︂
𝜎

𝜈(𝜎)
𝑛∑︂
𝑗=1

𝜈(𝜎̂ 𝑗)
𝜈(𝜎𝑗) + 𝜈(𝜎̂ 𝑗)

( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

where 𝜎̂ 𝑗 denotes 𝜎 with the spin at site 𝑗 flipped. Note that

𝜈(𝜎̂ 𝑗)
𝜈(𝜎𝑗) + 𝜈(𝜎̂ 𝑗)

=
1

𝜈(𝜎𝑗)/𝜈(𝜎̂ 𝑗) + 1
=

1
1 + exp(2𝜎𝑗𝜕𝑗𝐻(𝜎)) .

This lets us establish the following fact which shows consistency with the notation in [Adh+22]:
Lemma 51 (Standard, see e.g. [Adh+22]). For all functions 𝑓 , we have

ℰ( 𝑓 , 𝑓 ) = 1
4

∑︂
𝜎

𝜈(𝜎)
𝑛∑︂
𝑗=1

cosh−2(𝜕𝑗𝐻(𝜎))( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

Proof. We have (using that cosh(𝜕𝑗𝐻) = cosh(𝜎𝑗𝜕𝑗𝐻) by evenness)

1
4

∑︂
𝜎

𝜈(𝜎)
𝑛∑︂
𝑗=1

cosh−2(𝜕𝑗𝐻(𝜎))( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

=

∑︂
𝜎

𝜈(𝜎)
𝑛∑︂
𝑗=1

1
(exp(𝜎𝑗𝜕𝑗𝐻(𝜎)) + exp(−𝜎𝑗𝜕𝑗𝐻(𝜎)))2 ( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

=
1
2

∑︂
𝜎

𝜈(𝜎)
𝑛∑︂
𝑗=1

1
1 + (exp(2𝜎𝑗𝜕𝑗𝐻(𝜎)) + exp(−2𝜎𝑗𝜕𝑗𝐻(𝜎)))/2

( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

=
1
2

∑︂
𝜎

𝑛∑︂
𝑗=1

𝜈(𝜎∼𝑗)
𝜈(𝜎𝑗 | 𝜎∼𝑗)

1 + (exp(2𝜎𝑗𝜕𝑗𝐻(𝜎)) + exp(−2𝜎𝑗𝜕𝑗𝐻(𝜎)))/2
( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

=
1
2

∑︂
𝜎

𝑛∑︂
𝑗=1

𝜈(𝜎∼𝑗)
1

2 + exp(2𝜎𝑗𝜕𝑗𝐻(𝜎)) + exp(−2𝜎𝑗𝜕𝑗𝐻(𝜎)) ( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

where in the last step we averaged over pairs of 𝜎 agreeing on 𝜎∼𝑗 and used that

𝜈(𝜎𝑗 = +1 | 𝜎∼𝑗) + 𝜈(𝜎𝑗 = −1 | 𝜎∼𝑗)
2 =

1
2 .
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On the other hand, the Dirichlet form is

ℰ( 𝑓 , 𝑓 ) = 1
2

∑︂
𝜎

𝑛∑︂
𝑗=1

𝜈(𝜎∼𝑗)
𝜈(𝜎𝑗 | 𝜎∼𝑗)

1 + exp(2𝜎𝑗𝜕𝑗𝐻(𝜎)) ( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

=
1
2

∑︂
𝜎

𝑛∑︂
𝑗=1

𝜈(𝜎∼𝑗)
1

(1 + exp(−2𝜎𝑗𝜕𝑗𝐻(𝜎)))(1 + exp(2𝜎𝑗𝜕𝑗𝐻(𝜎))) ( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

=
1
2

∑︂
𝜎

𝑛∑︂
𝑗=1

𝜈(𝜎∼𝑗)
1

2 + exp(−2𝜎𝑗𝜕𝑗𝐻(𝜎)) + exp(2𝜎𝑗𝜕𝑗𝐻(𝜎)) ( 𝑓 (𝜎) − 𝑓 (𝜎̂ 𝑗))2

so we established the desired equality.

B Deferred Proofs from Section 4

Proof of Lemma 37. Consider 𝐴 ⊆ [𝑛] and a pinning 𝜎𝐴 , then the pinned subsystem on [𝑛] \ 𝐴 is of
the form

𝜇[𝐴,∅]
𝜎𝐴 (𝜎) ∝ exp(𝐻[𝐴,∅]

𝜎𝐴 (𝜎))

Let 𝐻𝐴 := 𝐻
[𝐴,∅]
𝜎𝐴 and consider the multilinear extension of 𝐻𝐴:

𝐻𝐴(𝑥) =
∑︂

𝑆⊂[𝑛]\𝐴
𝐻̂(𝑆)

∏︂
𝑖∈𝑆

𝜎𝑖

Let 𝜇0(𝜎) ∝ exp(∑︁𝑖∈𝐴 𝐻̂𝐴({𝑖})𝜎𝑖), so that 𝜇0 is a product distribution and hence satisfies approximate
entropy tensorization with 𝐶 = 1. Let

𝐻𝐴,≥2(𝜎) =
∑︂

𝑆⊂[𝑛]\𝐴,|𝑆|≥2

𝐻̂(𝑆)
∏︂
𝑖∈𝑆

𝜎𝑖 ,

so that 𝜇(𝜎) ∝ exp(𝐻𝐴,≥2(𝜎))𝜇0(𝑥). Then,

|𝐻𝐴,≥2(𝜎)| = |
∑︂
𝑆⊆𝐴

𝐻̂(𝑆)
∏︂
𝑖∈𝑆

𝜎𝑖| = |𝜎⊺∇2𝐻𝐴,≥2𝜎| ≤ ∥∇2𝐻𝐴,≥2∥OP∥𝜎∥2
2 = (𝑁 − 𝑘)∥∇2𝐻𝐴,≥2∥OP ≤ 𝑂(𝛽)

by Lemma 35. The required assertion then follows from Lemma 52 below.

Lemma 52 (Comparison theorem for approximate entropy tensorization). Consider distributions
𝜇 and 𝜇′ over Ω satisfying 𝜇(𝑥) ∝ 𝜇′(𝑥) exp(𝑊(𝑥)). Let ∥𝑊∥∞ = sup𝑥|𝑊(𝑥)|. Then, for any function
𝑓 : Ω → (0,∞),

Ent𝜇[ 𝑓 ] ≤ exp(2∥𝑊∥∞)Ent𝜇′[ 𝑓 ].
Consequently, if 𝜇′ satisfies approximate entropy tensorization with constant 𝐶, then 𝜇 satisfies approximate
entropy tensorization with constant exp(6∥𝑊∥∞)𝐶.

Proof. Let 𝑍𝜇 =
∫
𝑑𝜇 and 𝑍𝜇′ =

∫
𝑑𝜇′ be normalization constants of 𝜇 and 𝜇′ respectively. It is easy

to see that
𝑍𝜇′ =

∫
exp(−𝑊(𝑥))𝑑𝜇(𝑥) ≤ exp(∥𝑊∥∞)𝑍𝜇.

Thus exp(−∥𝑊∥∞)𝜇′(𝑥) ≤ 𝜇(𝑥) ≤ exp(∥𝑊∥∞)𝜇′(𝑥).
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By the Donsker-Varadhan theorem,

Ent𝜇[ 𝑓 ] = inf
𝑡>0

∫
( 𝑓 log 𝑓 − 𝑓 log 𝑡 − 𝑓 + 𝑡)𝑑𝜇

where 𝑓 log 𝑓 − 𝑓 log 𝑡 − 𝑓 + 𝑡 = 𝑓 (− log(𝑡/ 𝑓 ) + (𝑡/ 𝑓 − 1)) ≥ 0 sine log 𝑥 ≤ 𝑥 − 1 for 𝑥 ∈ (0,∞). Thus

Ent𝜇[ 𝑓 ] = inf
𝑡>0

∫
( 𝑓 log 𝑓 − 𝑓 log 𝑡 − 𝑓 + 𝑡)𝑑𝜇(𝑥)

= inf
𝑡>0

∫
( 𝑓 (𝑥) log 𝑓 (𝑥) − 𝑓 (𝑥) log 𝑡 − 𝑓 (𝑥) + 𝑡) exp(𝑊(𝑥))𝑍−1

𝜇 𝑍𝜇′𝑑𝜇′(𝑥)

≤ inf
𝑡>0

∫
( 𝑓 (𝑥) log 𝑓 (𝑥) − 𝑓 (𝑥) log 𝑡 − 𝑓 (𝑥) + 𝑡) exp(2∥𝑊∥∞)𝑑𝜇′(𝑥)

= exp(2∥𝑊∥∞) inf
𝑡>0

∫
( 𝑓 (𝑥) log 𝑓 (𝑥) − 𝑓 (𝑥) log 𝑡 − 𝑓 (𝑥) + 𝑡)𝑑𝜇′(𝑥)

= exp(2∥𝑊∥∞)Ent𝜇′[ 𝑓 ]

Next, since 𝜇′ satisfies approximate entropy tensorization with constant 𝐶

Ent𝜇[ 𝑓 ] ≤ exp(2∥𝑊∥∞)Ent𝜇′[ 𝑓 ] ≤ exp(2∥𝑊∥∞)𝐶
∑︂
𝑖

𝔼𝑥−𝑖∼𝜇′[Ent𝜇′
|𝑥−𝑖

[ 𝑓|𝑥−𝑖 ]]

≤ exp(4∥𝑊∥∞)𝐶
∑︂
𝑖

𝔼𝑥−𝑖∼𝜇′[Ent𝜇|𝑥−𝑖
[ 𝑓|𝑥−𝑖 ]]

≤ exp(6∥𝑊∥∞)𝐶
∑︂
𝑖

𝔼𝑥−𝑖∼𝜇[Ent𝜇|𝑥−𝑖
[ 𝑓|𝑥−𝑖 ]]

where in the penultimate inequality we use the first statement and the fact that

exp(−2∥𝑊∥∞) ≤ 𝜇′
|𝑥−𝑖 (𝑥𝑖)/𝜇|𝑥−𝑖 (𝑥𝑖) =

𝜇′(𝑥)
𝜇(𝑥) · 𝜇(𝑥−𝑖)

𝜇′(𝑥−𝑖)
=

𝜇′(𝑥)
𝜇(𝑥) ·

∫
𝑦:𝑦−𝑖=𝑥−𝑖

𝜇(𝑦)∫
𝑦:𝑦−𝑖=𝑥−𝑖

𝜇′(𝑦)
≤ exp(2∥𝑊∥∞),

and in the last inequality, we just use 𝜇′(𝑥−𝑖) ≤ exp(2∥𝑊∥∞)𝜇(𝑥).
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