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Abstract

Diffusion models are powerful generative models but suffer from slow sam-
pling, often taking 1000 sequential denoising steps for one sample. As a
result, considerable efforts have been directed toward reducing the number
of denoising steps, but these methods hurt sample quality. Instead of re-
ducing the number of denoising steps (trading quality for speed), in this
paper we explore an orthogonal approach: can we run the denoising steps
in parallel (trading compute for speed)? In spite of the sequential nature of
the denoising steps, we show that surprisingly it is possible to parallelize
sampling via Picard iterations, by guessing the solution of future denoising
steps and iteratively refining until convergence. With this insight, we present
ParaDiGMS, a novel method to accelerate the sampling of pretrained diffu-
sion models by denoising multiple steps in parallel. ParaDiGMS is the first
diffusion sampling method that enables trading compute for speed and is
even compatible with existing fast sampling techniques such as DDIM and
DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across
a range of robotics and image generation models, giving state-of-the-art
sampling speeds of 0.2s on 100-step DiffusionPolicy and 14.6s on 1000-step
StableDiffusion-v2 with no measurable degradation of task reward, FID
score, or CLIP score.’

1 Introduction

Diffusion models [28, 9, 32] have demonstrated powerful modeling capabilities for image gen-
eration [34, 15, 24], molecular generation [38], robotic policies [12, 4], and other applications.
The main limitation of diffusion models, however, is that sampling can be inconveniently
slow. For example, the widely-used Denoising Diffusion Probabilistic Models (DDPMs) [9]
can take 1000 denoising steps to generate one sample. In light of this, many works like
DDIM [29] and DPMSolver [18] have proposed to improve sampling speed by reducing the
number of denoising steps. Unfortunately, reducing the number of steps can come at the
cost of sample quality.

We are interested in accelerating sampling of pretrained diffusion models without sacrificing
sample quality. We ask the following question: rather than trading quality for speed, can we
instead trade compute for speed? That is, could we leverage additional (parallel) compute to
perform the same number of denoising steps faster? At first, this proposal seems unlikely to
work, since denoising proceeds sequentially. Indeed, naive parallelization can let us generate
multiple samples at once (improve throughput), but generating a single sample with faster
wall-clock time (improving latency) appears much more difficult.

We show that, surprisingly, it is possible to improve the sample latency of diffusion models
by computing denoising steps in parallel. Our method builds on the idea of Picard iterations
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to guess the full denoising trajectory and iteratively refine until convergence. Empirically,
we find that the number of iterations for convergence is much smaller than the number of
steps. Therefore, by computing each iteration quickly via parallelization, we sample from
the diffusion model much faster.

Our method ParaDiGMS (Parallel Diffusion Generative Model Sampling) is the first general
method that allows for the tradeoff between compute and sampling speed of pretrained
diffusion models. Remarkably, ParaDiGMS is compatible with classifier-free guidance [10]
and with prior fast sampling methods [29, 18] that reduce the number of denoising steps.
In other words, we present an orthogonal solution that can form combinations with prior
methods (which we call ParaDDPM, ParaDDIM, ParaDPMSolver) to trade both compute
and quality for speed.

We experiment with ParaDiGMS across a large range of robotics and image generation
models, including Robosuite Square, PushT, Robosuite Kitchen, StableDiffusion-v2, and
LSUN. Our method is strikingly consistent, providing an improvement across all tasks and
all samplers (ParaDDPM, ParaDDIM, ParaDPMSolver) of around 2-4x speedup with no
measurable decrease in quality on task reward, FID score, or CLIP score. For example, we
improve the sample time of the 100-step action generation of DiffusionPolicy from 0.74s to
0.2s, and the 1000-step image generation of StableDiffusion-v2 on A100 GPUs from 50.0s to
14.6s. Our improvements also extend to few-step image generation, showing speedups for as
low as 50-step DDIM. By enabling these faster sampling speeds without quality degradation,
ParaDiGMS can enhance exciting applications of diffusion models such as real-time execution
of diffusion policies or interactive generation of images.

2 Background

Diffusion models [28, 9] such as Denoising Diffusion Probabilistic Models (DDPM) were
introduced as latent-variable models with a discrete-time forward diffusion process where
q(xo) is the data distribution, « is a scalar function, with latent variables {x; : t < T}
defined as

qzy | o) = N (x5 1/ alt)zo, (1 — a(t)I).

By setting a(T) close to 0, g(x7) converges to N (0, I), allowing us to sample data xy by
using a standard Gaussian prior and a learned inference model pg(@;—; | ;). The inference
model py is parameterized as a Gaussian with predicted mean and time-dependent variance

o?, and can be used to sample data by sequential denoising, i.e., pp(xo) = HZ;I po(xi—1 | x),

po(Ti—y | @) = N (my—1; po(xy),071) . (1)

Many works [32, 18] alternatively formulate diffusion models as a Stochastic Differential
Equation (SDE) by writing the forward diffusion process in the form

dae = f(t)@:dt + g(t)dwe, @0 ~ q(T0), (2)

with the standard Wiener process w;, where f and g are position-independent functions that
can be appropriately chosen to match the transition distribution g(x; | o) [18, 15]. These
works use an important result from [2] that the reverse process of Eq. (2) takes on the form

day = (f(t)@, — g*(t)Valog qi(x)) dt + g(t) dw,, @1 ~ q(z7), (3)
drift s \U:/

where w; is the standard Wiener process in reverse time. This perspective allows us to treat
the sampling process of DDPM as solving a discretization of the SDE where the DDPM
inference model py can be used to compute an approximation pg(@i—1 | x¢) — @, of the drift
term in Eq. (3).

Since the focus of this paper is on sampling from a pretrained diffusion model, we can assume
Dy is given. For our purposes, we only need two observations about sampling from the reverse
process in Eq. (3): we have access to an oracle that computes the drift at any given point,
and the SDE has position-independent noise. We will use the latter observation in Section 3.



2.1 Reducing the number of denoising steps

DDPM typically uses a T" = 1000 step discretization of the SDE. These denoising steps
are computed sequentially and require a full pass through the neural network py each step,
so sampling can be extremely slow. As a result, popular works such as DDIM [29] and
DPMSolver [18] have explored the possibility of reducing the number of denoising steps,
which amounts to using a coarser discretization with the goal of trading sample quality for
speed.

Empirically, directly reducing the number of steps of the stochastic sampling process of
DDPM hurts sample quality significantly. Therefore many works [29, 32, 18] propose using
an Ordinary Differential Equation (ODE) to make the sampling process more amenable to
low-step methods. These works appeal to the probability flow ODE [20], a deterministic
process with the property that the marginal distribution p(x;) at each time ¢ matches that
of the SDE;, so in theory sampling from the probability flow ODE is equivalent to sampling
from the SDE:

dzy = (f(t)wt - %g2(t)vw logqt(w)> dt, xr~N(0,I).

drift s

By sampling from the ODE instead of the SDE, works such as DDIM and DPMSolver (which
have connections to numerical methods such as Euler and Heun) can reduce the quality
degradation of few-step sampling (e.g., 50 steps).

As a summary, the current landscape of sampling from pretrained diffusion models is com-
prised of full-step DDPM or accelerated sampling techniques such as DDIM and DPMSolver
that trade quality for speed by reducing the number of denoising steps.

Notation We write [a,b] to denote the set {a,a + 1,...,b} and [a,b) to denote the set
{a,a+1,...,b—1} for b > a. We write x,. to denote the set {x; : i € [a,b)}. Since our
focus is on sampling, in the rest of the paper we denote time as increasing for the reverse
process.

3 Parallel computation of denoising steps

Rather than investigating additional techniques for reducing the number of denoising steps,
which can lead to quality degradation, we look towards other approaches for accelerating
sampling. In particular, we investigate the idea of trading compute for speed: can we
accelerate sampling by taking denoising steps in parallel? We clarify that our goal is not
to improve sample throughput — that can be done with naive parallelization, producing
multiple samples at the same time. Our goal is to improve sample latency — minimize the
wall-clock time required for generating a single sample by solving the denoising steps for a
single sample in parallel. Lowering sample latency without sacrificing quality can greatly
improve the experience of using diffusion models, and enable more interactive and real-time
generation applications.

Parallelizing the denoising steps, however, seems challenging due to the sequential nature of
existing sampling methods. The computation graph has a chain structure (Fig. 1), so it is
difficult to propagate information quickly down the graph. To make headway, we present
the method of Picard iteration, a technique for solving ODEs through fixed-point iteration.
An ODE is defined by a drift function s(ax,t) with position and time arguments, and initial
value xg. In the integral form, the value at time ¢ can be written as

t
T = Tg +/ $(@y, u)du.
0

In other words, the value at time ¢ must be the initial value plus the integral of the derivative
along the path of the solution. This formula suggests a natural way of solving the ODE
by starting with a guess of the solution {zf : 0 < t < 1} at initial iteration k = 0, and



Figure 1: Computation graph of sequential Figure 2: Computation graph of Picard itera-
sampling by evaluating pg(@;+1 | ¢), from tions, which introduces skip dependencies.
the perspective of reverse time.

iteratively refining by updating the value at every time ¢ until convergence:
t
(Picard Iteration) Pt =k 4 / sk, u)du. (4)
0

Under mild conditions on s, such as continuity in time and Lipschitz continuity in position
as in the well-known Picard-Lindel6f theorem, the iterates form a convergent sequence, and
by the Banach fixed-point theorem, they converge to the unique solution of the ODE with
initial value &y [cf. 5]. To perform Picard iterations numerically, we can write the discretized
form of Eq. (4) with step size 1/T, for t € [0,T]:

t—1

s(xy,i/T). (5)
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Examining the iterative update rule in Eq. (5), we see that an update at time ¢ depends on all
previous timesteps instead of just the previous timestep ¢ — 1. This amounts to introducing
skip dependencies in the computation graph (Fig. 2), which enables information to propagate
quickly down the chain and accelerate sampling.

The key property of interest is that each Picard iteration can be parallelized by performing
the expensive computations {s(z¥, #) + 1 € [0,T)} in parallel and then, with negligible
cost, collecting their outputs into prefix sums. Given enough parallel processing power, the
sampling time then scales with the number of iterations K until convergence, instead of the

number of denoising steps 7.

The number of iterations until convergence depends on the drift function s. More con-
cretely, sequential evaluation can be written as a nested evaluation of functions =}, =
hi(...ha(h1(xo))) on the initial value &y where h;(x) = x+s(x,i/T)/T. If, for all timesteps,
the drift at the true solution can be accurately obtained using the drift at the current guess,
then the parallel evaluation will converge in one step.

Proposition 1. (Proof in Appendix A)

s(acf,z/T) = 8(hi—1(... ha(h1(x0))),i/T) Vi<t = a:fjll =z,

It is also easy to see that even in the worst case, exact convergence happens in K < T
iterations since the first k points x.;, must equal the sequential solution xf),; after k iterations.
In practice, the number of iterations until (approximate) convergence is typically much
smaller than T, leading to a large empirical speedup.

The idea of Picard iterations is powerful because it enables the parallelization of denoising
steps. Remarkably, Picard iterations are also fully compatible with prior methods for reducing
the number of denoising steps. Recall that the drift term s(ay,t/T)/T can be written as
hi(x:) — x; and approximated using FEuler discretization as pg(a¢41 | ¢) — ¢, but it can
also be readily approximated using higher-order methods on py. In our experiments, we
demonstrate the combination of the two axis of speedups to both reduce the number of
denoising steps and compute the steps in parallel.
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Figure 3: ParaDiGMS algorithm: accelerating an ODE solver by computing the drift at
multiple timesteps in parallel. During iteration k, we process in parallel a batch window of

size p spanning timesteps [t,t + p). The new values at a point a:fj_rjl are updated based on

the value :lcé€ at the left end of the window plus the cumulative drift 1/7 Zfii “ls(ak,i/T)
of points in the window. We then slide the window forward until the error is greater than

our tolerance, and repeat for the next iteration.

3.1 Practical considerations

Implementing Picard iteration on diffusion models presents a few practical challenges, the
most important being that of GPU memory. Performing an iteration requires maintaining
the entire array of points xg.p over time, which can be prohibitively large to fit into GPU
memory. To address this, we devise the technique of (mini-)batching which performs Picard
iteration only on points ..+, inside a window of size p that can be chosen appropriately to
satisfy memory constraints. Moreover, instead of iterating on @..4, until convergence of
the full window before advancing to the next window, we use a sliding window approach
to aggressively shift the window forward in time as soon as the starting timesteps in the
window converge.

One other issue is the problem of extending Picard iteration to SDEs, since we rely on
the determinism of ODEs to converge to a fixed point. Fortunately, since the reverse SDE
(Eq. (3)) has position-independent noise, we can sample the noise up-front and absorb these
fixed noises into the drift of the (now deterministic) differential equation. Note that the
resulting ODE is still Lipschitz continuous in position and continuous in time, guaranteeing
the convergence of Picard iteration.

Finally, we need to choose a stopping criterion for the fixed-point iteration, picking a low
tolerance to avoid degradations of sample quality. A low enough tolerance ensures that the
outcome of parallel sampling will be close to the outcome of the sequential sampling process
in total variation distance.

Proposition 2. (Proof in Appendix B) Assuming the iteration rule in Eq. (5) has a linear
convergence rate with a factor > 2, using the tolerance ||z — 2712 < 4¢26?/T? ensures

that samples of & are drawn from a distribution with total variation distance at most €
from the DDPM model distribution of Eq. (1).

The above is based on a worst-case analysis, and in our experiments, we find that using a
much more relaxed tolerance such as” %H:Bf“ —x¥|? < 7202, with 7 = 0.1 and D being
the dimensionality of data, gives reliable speedups without any measurable degradation in
sample quality.

In Algorithm 1 we present the complete procedure of ParaDiGMS, incorporating sliding
window over a batch, up-front sampling of noise, and tolerance of Picard iterations (Fig. 3).
The loop starting on Line 4 performs a sliding window over the batch of timesteps [t,¢ + p)
in each iteration. Line 5 computes the drifts, which is the most compute-intensive part of the
algorithm, but can be efficiently parallelized. Line 6 obtains their prefix sums in parallel to
run the discretized Picard iteration update, and Lines 7-8 check the error values to determine
how far forward we can shift the sliding window.

*For ODE methods (DDIM, DPMSolver) we still pick a tolerance value relative to the noise
variance of the corresponding SDE of DDPM.



Algorithm 1: ParaDiGMS: parallel sampling via Picard iteration over a sliding
window

Input: Diffusion model pg with variances o2, tolerance 7, batch window size p,
dimension D
Output: A sample from py

1 t,k<+0,0

2 z; ~ N(0, 0’?1) Vi€ [0,T) // Up-front sampling of noise (for SDE)
3 zc§ ~ N(0,1), :l:i€ — 33’5 Vi € [1,p] // Sample initial condition from prior
4 while t < T do

5 Yitj pg(a:,]f_,,_j, t+j)— a:f;;j V5 € [0,p) // Compute drifts in parallel
6 wfilerl —xF+ Zf:g Y + Zfii z; Vj€][0,p) // Discretized Picard iteration
7 €ITOr 4— {%Hmf_tjl - :137’;_]»”2 :Vjiell,p)} // Store error value for each timestep
8 stride +— min ({j : error; > 720‘]2} U {p}) // Slide forward until we reach tolerance
9 mﬁ-_pl-&-j — :ij__pl V4 € [1,stride] // Initialize new points that the window now covers
10 t < t + stride, k+—k+1

11 p < min(p, T —t)

k
12 return @

The ParaDiGMS algorithm is directly compatible with existing fast sequential sampling
techniques such as DDIM and DPMSolver, by swapping out the Euler discretization in Lines
5-6 for other solvers, such as higher-order methods like Heun. As we see in our experiments,
the combination of reducing the number of steps and solving the steps in parallel leads to
even faster sample generation.

4 Experiments

We experiment with our method ParaDiGMS on a suite of robotic control tasks [41] including
Square [11], PushT, Franka Kitchen [7], and high-dimensional image generation models
including StableDiffusion-v2 [24] and LSUN Church and Bedroom [39]. We observe a
consistent improvement of around 2-4x speedup relative to the sequential baselines without
measurable degradation in sample quality as measured by task reward, FID score, or CLIP
score.

4.1 Diffusion policy

Recently, a number of works have demonstrated the advantages of using diffusion models in
robotic control tasks for flexible behavior synthesis or robust imitation learning on multimodal
behavior [12, 4, 22, 36]. We follow the setup of DiffusionPolicy [4], which is an imitation
learning framework that models action sequences. More specifically, DiffusionPolicy first
specifies a prediction horizon h and a replanning horizon r. At each environment step [,
DiffusionPolicy conditions on a history of observations and predicts a sequence of actions
{ar.1+n}. Then, the policy executes the first r actions {a;.;4.} of the prediction. Therefore,
for an episode of length L and scheduler with T steps, executing a full trajectory can take
T x L/r denoising steps over a dimension of |a| X h, which can be inconveniently slow.

We examine our method on the Robosuite Square, PushT, and Robosuite Kitchen tasks.
Each environment uses a prediction horizon of 16, and replanning horizon 8. The Square task
uses state-based observations with a maximum trajectory length of 400 and a position-based
action space of dimensionality 7. This means the diffusion policy takes 50 samples per
episode, with each sample being a series of denoising steps over a joint action sequence of
dimension 112. The PushT task also uses state-based observations and has a maximum
trajectory length of 300 and action space of 2, which results in 38 samples with denoising
steps over a joint action sequence of dimension 32. Lastly, the Kitchen task uses vision-based
observations and has a maximum trajectory length of 1200 with an action space of 7, giving



150 samples per episode and denoising steps over a joint action sequence of dimensionality
112. For all three tasks, we use a convolution-based architecture.

The DDPM scheduler in DiffusionPolicy [4] uses 100 step discretization, and the DDIM/DPM-
Solver schedulers use 15 step discretization. For example, a trajectory in the Kitchen task
requires 1200/8 = 150 samples, which amounts to 150 x 100 = 15000 denoising steps over
an action sequence of dimensionality 112 with the DDPM scheduler.

In Table 1, we present results on DDPM, DDIM, DPMSolver, and their parallel variants
(ParaDDPM, ParaDDIM, ParaDPMSolver) when combined with ParaDiGMS. We plot the
model evaluations (number of calls to the diffusion model py), the task reward, and the
sampling speed reported in time per episode. Although parallelization increases the total
number of necessary model evaluations, the sampling speed is more closely tied to the number
of parallel iterations, which is much lower. We see that ParaDDPM gives a speedup of 3.7x,
ParaDDIM gives a speedup of 1.6x, and ParaDPMSolver gives a speedup of 1.8x, without a
decrease in task reward. Table 2 presents similar findings on the PushT task, where we see
speedups on all three methods with up to 3.9x speedup on ParaDDPM.

Table 1: Robosuite Square with ParaDiGMS using a tolerance of 7 = 0.1 and a batch window
size of 20 on a single A40 GPU. Reward is computed using an average of 200 evaluation
episodes, with sampling speed measured as time to generate 400/8 = 50 samples.

Sequential ParaDiGMS
Robosuite | Model Time per | Model Parallel Time per
Square Evals Reward Episode Evals Iters Reward Episode Speedup
DDPM 100 0.85 £ 0.03 37.0s 392 25 0.85 £ 0.03 10.0s 3.7x
DDIM 15 0.83 + 0.03 5.72s 47 7 0.85 £ 0.03 3.58s 1.6x
DPMSolver 15 0.85 £ 0.03 5.80s 41 6 0.83 £ 0.03 3.28s 1.8x

Table 2: PushT task with ParaDiGMS using a tolerance of 7 = 0.1 and a batch window size
of 20 on a single A40 GPU. Reward is computed using an average of 200 evaluation episodes,
with sampling speed measured as time to generate [300/8] = 38 samples.

Sequential ParaDiGMS
. Model Time per | Model Parallel Time per
PushT Evals Reward Episode Evals Iters Reward Episode Speedup
DDPM 100 0.81 £ 0.03 32.3s 386 24 0.83 £ 0.03 8.33s 3.9x
DDIM 15 0.78 + 0.03 4.22s 46 7 0.77 £ 0.03 2.54s 1.7x
DPMSolver 15 0.79 £ 0.03 4.22s 40 6 0.79 £ 0.03 2.15s 2.0x

Table 3: FrankaKitchen with ParaDiGMS using a tolerance of 7 = 0.1 and a batch window
size of 20 on a single A40 GPU. Reward is computed using an average of 200 evaluation
episodes, with sampling speed measured as time to generate 1200/8 = 150 samples.

Sequential ParaDiGMS
Franka Model Time per | Model Parallel Time per
Kitchen Evals Reward Episode Evals Iters Reward Episode Speedup
DDPM 100 0.85 £ 0.03 112s 390 25 0.84 £ 0.03 33.3s 3.4x
DDIM 15 0.80 + 0.03 16.9s 47 7 0.80 £ 0.03 9.45s 1.8x
DPMSolver 15 0.79 £ 0.03 17.4s 41 6 0.80 £ 0.03 8.89s 2.0x

The final robotics task we study is FrankaKitchen, a harder task with predicted action
sequences of dimension 112 and an episode length of 1200. In Table 3 we notice some decline
in performance when sampling with a reduced number of steps using DDIM and DPMSolver.
On the other hand, ParaDDPM is able to maintain a high task reward. Similar to before,
ParaDiGMS consistently achieves a speedup across all 3 sampling methods, giving a speedup
of 3.4x with ParaDDPM, 1.8x with ParaDDIM, and 2.0x with ParaDPMSolver. These
improvements translate to a significant decrease in the time it takes to roll out an episode in
the Kitchen task from 112s to 33.3s.



4.2 Diffusion image generation

Next, we apply parallel sampling to diffusion-based image generation models, both for
latent-space and pixel-space models. For latent-space models, we test out StableDiffusion-
v2% [26, 24], which generates 768x768 images using a diffusion model on a 4x96x96 latent
space. For pixel-space models, we study pretrained models on LSUN Church*/Bedroom”
from Huggingface [9, 35], which run a diffusion model directly over the 3x256x256 pixel
space.

4.2.1 Latent-space diffusion models

Even with the larger image models, there is no issue fitting a batch window size of 20 on a
single GPU for parallelization. However, the larger model requires more compute bandwidth,
so the parallel efficiency quickly plateaus as the batch window size increases, as the single
GPU becomes bottlenecked by floating-point operations per second (FLOPS). Therefore, for
image models, we leverage multiple GPUs to increase FLOPS and improve the wall-clock
sampling speed.
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Figure 4: StableDiffusion-v2 generating text-conditioned 768x768 images by running ParaD-
DPM over a 4x96x96 latent space for 1000 steps, on A100 GPUs. In Fig. 4e algorithm
inefficiency in gray denotes the relative number of model evaluations required as the parallel
batch window size increases. The colored lines denote the hardware efficiency provided by
the multi-GPUs. As the batch window size increases, the hardware efficiency overtakes the
algorithm inefficiency. In Fig. 4f we normalize the algorithm inefficiency to 1, to show the
net wall-clock speedup of parallel sampling.
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In Fig. 4 we examine the net speedup of ParaDDPM relative to DDPM on StableDiffusion-v2
using 1000-step diffusion on A100 GPUs. The net speedup is determined by the interplay
between algorithm inefficiency and hardware efficiency. Algorithm inefficiency refers to the
relative number of model evaluations of ParaDDPM compared to DDPM, which arises from
the parallel algorithm taking multiple iterations until convergence. We see in Fig. 4e that as
the batch window size grows, ParaDDPM can require 2-3x more model evaluations. On the
other hand, hardware efficiency refers to the relative empirical speedup of performing a batch
of model evaluations. For example, in Fig. 4e we see that evaluating a batch window size
of 80 on 4 GPUs (20 per GPU) is roughly 5x faster than performing 80 model evaluations
sequentially. In Fig. 4f, we divide the hardware efficiency by the algorithm inefficiency to
obtain the net relative speedup of ParaDDPM over DDPM. We observe over 3x speedup by
using a batch window size of 80 spread across 8 A100s. Finally, in Table 4 we verify that
ParaDiGMS increases sampling speed for ParaDDPM, ParaDDIM, and ParaDPMSolver
without degradation in sample quality as measured by CLIP score [8] on ViT-g-14 [23, 11].

One important consideration is that the algorithm inefficiency is agnostic to the choice of
GPU. Therefore, as the parallel efficiency of GPUs in the future improve for large batch
window sizes, we will see an even larger gap between hardware efficiency and algorithm
inefficiency. With enough hardware efficiency, the wall-clock time of sampling will be limited
only by the number of parallel iterations, leading to much larger net speedup. For example,
observe that in Table 4 the number of parallel iterations of ParaDDPM is 20x smaller than
the number of sequential steps.

Table 4: Evaluating CLIP score of ParaDiGMS on StableDiffusion-v2 over 1000 random
samples from the COCO2017 captions dataset, with classifier guidance w = 7.5. CLIP score
is evaluated on ViT-g-14, and sample speed is computed on A100 GPUs.

Sequential ParaDiGMS

Stable Model CLIP Time per | Tol. Model Parallel CLIP Time per Speed
Diffusion-v2 | Evals  Score Sample T Evals Iters Score Sample peedup

DDPM 1000 32.1 50.0s le-1 2504 50 32.1 14.6s 3.4x
DPMSolver 200 31.7 10.3s le-1 422 15 31.7 2.6s 4.0x

DDIM 200 31.9 10.3s le-1 432 15 31.9 2.6s 4.0x

DDIM 100 31.9 5.3s 5e-2 229 19 31.9 2.0s 2.7x

DDIM 50 31.9 2.6s He-2 91 17 31.9 1.1s 2.4x

DDIM 25 31.7 1.3s le-2 93 17 31.7 1.0s 1.3x

4.2.2 Pixel-space diffusion models

Next, we test out ParaDiGMS on pretrained diffusion models on LSUN Church and Bedroom,
which perform diffusion directly on a 3x256x256 pixel space. In Fig. 5 in Appendix D, we
plot the net speedup of 1000-step ParaDDPM by dividing the hardware efficiency by the
algorithm inefficiency. We observe a similar trend of over 3x speedup when using multiple
GPUs. Finally, we verify in Table 5 that ParaDiGMS maintains the same sample quality as
the baseline methods as measured by FID score on 5000 samples of LSUN Church®.

We highlight that 500-step DDIM gives a noticeably worse FID score than 1000-step DDPM,
whereas using ParaDDPM allows us to maintain the same sample quality as DDPM while
accelerating sampling (to be two times faster than 500-step DDIM). The ability to generate
an image without quality degradation in 6.1s as opposed to 24.0s can significantly increase
the viability of interactive image generation for many applications.

4.3 Related work

Apart from DDIM [29] and DPMSolver [18], there are a number of other fast sampling
techniques for pretrained diffusion models [14, 17, 19, 40]. Most of these techniques are
based on higher-order ODE-solving and should also be compatible with parallelization using

SDPMSolver is not yet integrated with the LSUN model in the Diffusers library, so we omit its
comparison.



Table 5: Evaluating FID score (lower is better) of ParaDiGMS on LSUN Church using 5000
samples. Sample speed is computed on A100 GPUs. We use tolerance 5e-1 for DDPM and
le-3 for DDIM.

Sequential ParaDiGMS
Model FID  Time per | Model Parallel FID  Time per
LSUN Church Evals  Score Sample Evals ITters Score Sample Speedup
DDPM 1000 12.8 24.0s 2583 45 12.9 6.1s 3.9x
DDIM 500 15.5 12.2s 1375 41 15.3 3.7s 3.3x
DDIM 100 15.1 2.58 373 23 14.8 1.0s 2.5x
DDIM 50 15.3 1.2s 168 17 15.7 0.7s 1.7x
DDIM 25 15.6 0.6s 70 15 15.9 0.6s 1.0x
ParaDiGMS. Other lines of work focus on distilling a few-step model [25, 21, 30] or learning
a sampler [37], but these methods are more restrictive as they require additional training.

Besides diffusion models, many works have studied accelerating the sampling of autore-
gressive models using various approaches such as parallelization [33, 31], distillation [13],
quantization [6], or rejection sampling [3, 16]. Of particular note is [31], which samples
from autoregressive models by iterating on a system of equations until convergence. While
these methods are not immediately applicable to diffusion models due to the differences
in computational structure and inference efficiency of autoregressive models, there may be
potential for further investigation.

Parallelization techniques similar to Picard iteration have been explored in theoretical works
for sampling from log-concave [27] and determinantal distributions [1]. Our work is the first
application of parallel sampling on diffusion models, enabling a new axis of trading compute
for speed.

5 Conclusion

Limitations Since our parallelization procedure requires iterating until convergence, the
total number of model evaluations increases relative to sequential samplers. Therefore,
our method is not suitable for users with limited compute who wish to maximize sample
throughput. Nevertheless, sample latency is often the more important metric. Trading
compute for speed with ParaDiGMS makes sense for many practical applications such as
generating images interactively, executing robotic policies in real-time, or serving users who
are insensitive to the cost of compute.

Our method is also an approximation to the sequential samplers since we iterate until the
errors fall below some tolerance. However, we find that using ParaDiGMS with the reported
tolerances results in no measurable degradations of sample quality in practice across a range
of tasks and metrics. In fact, on more difficult metrics such as FID score on LSUN Church,
ParaDDPM gives both higher sample quality and faster sampling speed than 500-step DDIM.

Discussion We present ParaDiGMS, the first accelerated sampling technique for diffusion
models that enables the trade of compute for speed. ParaDiGMS improves sampling speed
by using the method of Picard iterations, which computes multiple denoising steps in parallel
through iterative refinement. Remarkably, ParaDiGMS is compatible with existing sequential
sampling techniques like DDIM and DPMSolver, opening up an orthogonal axis for optimizing
the sampling speed of diffusion models. Our experiments demonstrate that ParaDiGMS
gives around 2-4x speedup over existing sampling methods across a range of robotics and
image generation models, without sacrificing sample quality. As GPUs improve, the relative
speedup of ParaDiGMS will also increase, paving an exciting avenue of trading compute for
speed that will enhance diffusion models for many applications.
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A Proof of exact convergence

Proof of Proposition 1. Assume by induction that ™' = x*. Then

t .
1 i
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B Total variation analysis

Proof of Proposition 2. A linear convergence rate with factor > 2 ensures our error from
the solution =} given by sequential sampling at each timestep ¢ is bounded by the chosen
tolerance:
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Then, for each timestep ¢, since the inference model samples from a Gaussian with variance
o2, we can bound the total variation distance:
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Finally, we make use of the data processing inequality, that drv (f(P), f(Q)) < drv(P,Q),
so the total variation distance d; between the sample and model distribution after ¢ timesteps
does not increase when transformed by pg. Then by the triangle inequality, we get that
di < di—q1 +¢/T. giving a total variation distance dp of at most Te/T = € for the final
timestep T'. O

C Parallel Computation on Multiple GPUs

We experimented with two different approaches to implementing parallel computa-
tion on multiple GPUs in PyTorch: 1) using torch.nn.DataParallel and 2) using
torch.multiprocessing. DataParallel is very easy to implement, but performed more
poorly than multiprocessing. For multiprocessing, we use a producer/consumer design where
we spawn a single producer process on GPU 0 to run the main loop in Algorithm 1, and N
consumer processes (one for each of the N GPUs) to run Line 5 of Algorithm 1 in parallel.
Empirically, this worked better than dedicating the producer process with its own GPU and
using only N — 1 consumer processes, since the producer process requires very little GPU
resources.
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D Additional experiments

D.1 LSUN Church and LSUN Bedroom

In Fig. 5 we plot wallclock speedup of ParaDDPM as a function of batch window size and
number of GPUs on LSUN Church and LSUN Bedroom. These experiments on LSUN show
a similar trend as the experiments on StableDiffusion-v2 in Fig. 4f.

Net speedup of ParaDDPM on LSUN church, A100 Net speedup of ParaDDPM on LSUN bedroom, A100
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Figure 5: Unconditional generation of 256x256 images on diffusion models pretrained on the
LSUN Church and Bedroom dataset, running ParaDDPM for 1000 steps on A100 GPUs.
We plot the net speedup after dividing the hardware efficiency by the algorithm inefficiency
as the batch window size increases. Note that Table 5 shows better speedups because for
Table 5 we use a better parallel implementation with multiprocessing instead of DataParallel.

D.2 Ablation

In Table 6, we run an ablation study on the tolerance parameter 7 for 200-step ParaDDIM. A
lower tolerance means the algorithm takes more parallel iterations and attains better sample
quality, whereas a higher tolerance means the algorithm slides the batch window forward
more aggressively leading to fewer iterations and faster sampling. We see in Table 6 that
for 200-step ParaDDIM on StableDiffusion-v2, a good choice of 7 is le-1. Lower tolerance
levels give less speedup without noticeable increase in CLIP score, and higher tolerance levels
exhibit a drop in CLIP score.

Table 6: Ablation on the effect of error tolerance on sample quality and speed on
StableDiffusion-v2. Samples are generated using ParaDiGMS with 200-step DDIM. CLIP
score is computed over 1000 samples. Sample speed is computed on A100 GPUs.

o Parallel CLIP Time per
StableDiffusion-v2 | Steps Tolerance 7 Tters Score Sample Speedup

DDIM | 200 sequential 200 31.9 10.3s -

DDIM 200 5e-3 36 31.9 7.4s 1.4x
DDIM 200 le-2 28 31.9 5.1s 2.0x
DDIM 200 5e-2 19 31.9 3.3s 3.1x
DDIM 200 le-1 15 31.9 2.6s 4.0x
DDIM 200 5e-1 13 31.5 2.1s 4.9x
DDIM 200 le-0 12 31.5 1.9s 5.4x
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