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Abstract

We show how to sample in parallel from a distribution 7t over R that satisfies a log-Sobolev
inequality and has a smooth log-density, by parallelizing the Langevin (resp. underdamped
Langevin) algorithms. We show that our algorithm outputs samples from a distribution 7t that
is close to m in Kullback-Leibler (KL) divergence (resp. total variation (TV) distance), while

using only log(d)°) parallel rounds and O(d) (resp. O(Vd)) gradient evaluations in total. This
constitutes the first parallel sampling algorithms with TV distance guarantees.

For our main application, we show how to combine the TV distance guarantees of our
algorithms with prior works and obtain RNC sampling-to-counting reductions for families of
discrete distribution on the hypercube {+1}" that are closed under exponential tilts and have
bounded covariance. Consequently, we obtain an RNC sampler for directed Eulerian tours and
asymmetric determinantal point processes, resolving open questions raised in prior works.

1 Introduction

In this paper, we study the problem of designing fast parallel algorithms for sampling from con-
tinuous distributions 7t(x) o exp(=V(x)) over x € R?. Designing efficient sampling algorithms is a
ubiquitous problem, but the focus of most prior works has been to minimize sequential efficiency
criteria, such as the total number of arithmetic operations or total queries to V and its derivatives.
In contrast, in this work we focus on parallel efficiency; roughly speaking, this means that we
would like to have algorithms that sequentially take polynomial time, but can be run on a pool
of polynomially many processors (e.g., as in the PRAM model of computation) in much less time,
ideally polylogarithmic.

Our main result is to propose simple parallelizations of Langevin Monte Carlo (LMC) and un-
derdamped Langevin Monte Carlo (ULMC), two of the most widely studied sequential sampling
algorithms, and to prove that they run in log(d)°!) parallel iterations, under standard tractability
criteria on 7t: that it satisfies a log-Sobolev inequality (LSI), and that its potential V' is smooth, i.e.,
has Lipschitz gradients.

Theorem 1 (Informal main theorem). Suppose that m = exp(—V) is a density on R that satisfies a
log-Sobolev inequality and has a smooth potential V. Assume that we are given (approximate) oracle access to
VV. Then, we can produce samples from a distribution 7t with the following guarantees.

e For LMC, # is close to m in Kullback-Leibler divergence, and the algorithm uses log*(d) parallel
iterations and O(d) processors and gradient evaluations.

e For ULMC, #t is close to 1t in total variation divergence, and the algorithm uses log*(d) parallel
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iterations and O(Vd) processors and gradient evaluations.

For formal statements, see Theorem 13 and Theorem 20. Throughout this paper, when we refer
to the number of iterations, we refer to the model of adaptive complexity: here, in each round, the
algorithm makes a batch of queries to a first-order oracle for 7 (i.e., given a set of finite points
X C RY, the oracle outputs (V(x), VV(x)) for each x € X), and the adaptive complexity measures
the number of rounds. The gradient complexity measures the total number of points at which the
first-order oracle is queried.

As an immediate corollary, we obtain parallel samplers for the class of well-conditioned log-concave
distributions, i.e., those which satisfy

Bl = V*V > al,

for some constants a, f > 0, where f3 is the smoothness parameter, and « is the parameter of strong
log-concavity. This is because the LSI, a form of isoperimetric inequality, holds for all strongly
log-concave distributions, due to the Bakry—Emery criterion [ ]. However, the LSl is a weaker
condition than strong log-concavity, and it applies to even many non-log-concave distributions such
as Gaussian convolutions of distributions with bounded support [ ; ]. In addition,
unlike log-concavity, LSI is preserved under bounded perturbations and Lipschitz transformations
of the log-density function.

The state-of-the-art prior to our work was a fast parallel algorithm due to [ ], which produced
Wasserstein-approximate samples from well-conditioned log-concave distributions. We improve on
the state-of-the-art in three ways:

* We replace the strong log-concavity assumption with the weaker assumption that 7 satisfies a
log-Sobolev inequality.

* We bound the error in KL divergence and TV distance, as opposed to the weaker notion of
Wasserstein error. This difference is crucial for our main application, as explained in Section 1.3.

* Our results hold given only approximate access to VV, as opposed to exact access. This is
again crucial in some of our applications as explained in Section 1.3.

1.1 Algorithm

For the sake of exposition, here we describe the parallel LMC algorithm and defer the discussion of
parallel ULMC to Section 3.2.1.

Our algorithm is based on a parallelized discretization of the Langevin diffusion. The continuous-
time Langevin diffusion is the solution to the stochastic differential equation

dX; = —-VV(X;)dt + V2 dB; 1)

where (B¢);s0 is a standard Brownian motion in R¥. Langevin Monte Carlo (LMC) is a discretization
of the continuous Langevin diffusion, defined by the following iteration:

Xnsyh = Xnn = =1 VV(Xun) + V2 (Bus1yn — Bun) , (2)
where I > 0 is a parameter defining the step size.

If 7t satisfies a log-Sobolev inequality (LSI), then the law of the continuous-time Langevin diffusion
converges to the target distribution 7 at time ¢ = poly log(d). The discretization error, measured
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Algorithm 1 Parallelized Langevin dynamics

Input: Xo ~ o, approximate score function s : R? — R? (s ~ VV)
forn=0,..., N-1do
form =0,..., M in parallel do

| Sample Brownian motion By 4mn/m < Bun + N(0, (mh/M)1I)
fork=0,...,K-1do
form =0,..., M in parallel do
k - k
t Xflh-:—lnlh/M — th - % ZZ/:lo S(Xflh)%—m’h/M) + \/§(Bnh+mh/M - Bnh)

. K
| X+ & Xr(lh)-l—h

for example in the total variation distance, between the continuous Langevin diffusion and the
discrete process, scales like = dh, so the step size h is set to 1/d, causing LMC to take O (d) iterations
to converge. Our algorithm, explained in Algorithm 1, uses parallelization to speed up LMC, so
that the step size is ()(1) and the parallel depth is of the same order as the convergence time of the
continuous Langevin diffusion, that is, of order poly log(d).

The input to the algorithm is a (potentially random) starting point Xy, together with an “approximate
score oracle” s, which is a function R — R¥ that we can query, and which is assumed to be
uniformly close to the gradient VV.

The main idea behind the algorithm is to turn the task of finding solutions to our (stochastic)
differential equation into the task of finding fixed points of what is known as the Picard iteration.
At a high level, Picard iteration takes a trajectory (X;);>o and maps it to another trajectory (X/):>o
given by

t
ngxo—/ VV(X,)du +V2B;.
0

Now if X = X’, then X is a solution to the Langevin diffusion. Thus, one might hope that starting
from some trajectory Xo, and applying Picard iterations multiple times, the whole trajectory con-
verges to the fixed point. The main benefit of Picard iteration is that VV or s can be queried at all
points in parallel.

Note that the Picard iteration can be analogously defined for discrete-time dynamics such as LMC.
Our main result shows that Picard iteration applied to the discretized Langevin diffusion (LMC)
converges fast (in poly log(d) Picard iterations) for trajectories defined over intervals of length at
most &1, where now & can be take nto be macroscopically large (h = €)(1)). We repeat this process
until time poly log(d), which requires N = poly log(d)/h sequential iterations.

1.2 Analysis techniques

Many algorithms for solving stochastic differential equations, such as the Langevin dynamics
(X})t=0, turn the problem into numerical integration. The main idea is to approximate the difference

between X(*n+1)h - X7, using the trapezoidal rule, i.e.,
(n+1)h
Xineiyn = Xun = = /h VV(XZ)ds + V2 (Bgui1yn — Bun)
n



~ — Z w; VV(XZ) + V2 (Busiyn — Ban) -

Since we cannot access the idealized process X*, we instead start with a rough estimate X and
iteratively refine our estimation to obtain X M .., X&) that are closer and closer to the ideal X*. The
refined estimations are obtained via another application of the trapezoidal rule, i.e., Xs(f{) is computed
using /S <s; VV(ng_l)) ds. This framework can be easily parallelized: VV(XS(fC)) for different i’s can
be computed in parallel using one processor for each s;.

In[ ], the points s; at which to evaluate VV(Xj,) are chosen randomly; hence, their framework is
known as the randomized midpoint method. Unfortunately, there seem to be fundamental barriers
to obtaining KL or TV accuracy guarantees for randomized midpoint algorithms. To illustrate,

while accuracy in 2-Wasserstein distance can be achieved using O(d'/3) gradient evaluations using
a randomized midpoint algorithm [ , Algorithm 1], accuracy in KL or TV distance using o(d'/?)
gradient evaluations is not known.

We deviate from the approach of Shen and Lee [ ] by keeping the s; fixed. This greatly simplifies
the algorithm and its analysis and allows us to show that parallelized LMC converges to 7t in KL
divergence using the interpolation method [ ], at the cost of using O(d) gradient evaluations
instead of O (\/E)1 as in Shen and Lee | , Algorithm 2]. In Section 3.2, we then show how to

obtain a sampler, based on ULMC, which enjoys the same parallel complexity but uses only O(Vd)
gradient evaluations, matching the state-of-the-art in [ I

For simplicity of exposition, assume that in Algorithm 1, the score function s is exactly VV. We will
show via induction that

E[IVV(X{) = vv(xEV))1?] < exp(-3.5K), 3)

where K is the depth of refinement. In other words, the approximation error decays exponentially
fast with the parallel depth.

To obtain the KL divergence bound, note that

(K) (K) __ (K-1)
th+(m+1)h/M N th+mh/M - _M VV(th+mh/M) + \/Q(B”hHerl)h/M - Bnh+mh/M)

and VV(X,EI;_I) ) only depends on X, and the Brownian motion B; for t < mh/M. Let X;,

+mh/M
mh < t —nh < (m + 1)h, be the interpolation of X}glmh/M and Xg;l(mﬂ)h/M, ie.,
K K-
Xy = X0, g = —(E =l =mh/MYVV (X570 )+ V2 (By = B ) -
Then by a similar argument as in [ I if uy = law(Xt(K)) we obtain

3 -
O Dicu e || ) < = D | 1)+ ENVV X)) = VY0 DI

3a
< =2 D | )+ 2ENVVOE) = VX)L DI

While Shen and Lee [ , Algorithm 1] needs only 0 (d Y 3) gradient evaluations, its parallel round complexity is
also ©(d1/3), which doesn’t align with our goal of getting poly log(d) parallel round complexity. On the other hand, Shen

and Lee [ , Algorithm 2] uses poly log(d) parallel rounds but needs é(\/E) gradient evaluations [see , Theorem
4].



K K-
+2EIVVEG 0 = YV Gl
We can directly bound the third term using Eq. (3). The second term can be bounded via a standard
discretization analysis, noting that the time interval is only of size 11/ M. It leads to the bound

K K dh
ENVV XD = VXGPS 7 (4)
where M is the number of discretization points, i.e., the number of parallel score queries in each
round. Thus, from Eq. (3) and Eq. (4), by setting K = O(1) and M = O(d), we can set the step size
h = Q(1) so that the parallelized Langevin algorithm takes O(1) steps to converge to the target
distribution 7.

Remark 2. One may wonder if our results apply to distributions satisfying a weaker functional
inequality such as the Poincaré inequality, instead of the LSI. Unfortunately, this is not the case since
our analysis relies on the fact that the continuous-time Langevin diffusion converges to the target
distribution 7 in time poly log(d), which holds under the LSI but not under the weaker Poincaré
inequality [see , for details].

The above strategy based on the interpolation method no longer works for ULMC, so here we
instead use an approach based on Girsanov’s theorem. See Section 3.2.2 for details.

1.3 Applications

The main application of our results is to obtain fast parallel algorithms for several discrete sampling
problems by refining the framework obtained by [ ] Recently, [ ] showed a parallel
reduction from sampling to counting for discrete distributions on the hypercube {+1}", by combining
a faithful discretization of stochastic localization and fast parallel sampling algorithms for continuous
distributions. For a discrete distribution u over {+1}", their reduction involves log 7 iterations, each
involving sampling from 7, * N(0, cI) where 7, u is the exponential tilt of i by the vector w € R”,
defined as:

To ph(x) o< exp({w, x)) p(x) .

[ ] showed that for some appropriately chosen parameter ¢ = O(1), 7,1 * N(0,cl) is a
continuous and well-conditioned log-concave distribution for a wide class of discrete distributions
u of interest, i.e., those that are fractionally log-concave [see , for a survey on fractional
log-concavity]. In this way, they obtained a parallel reduction to the problem of sampling from
continuous and well-conditioned log-concave distributions.

The key technical challenge in their work is to control the propagation of errors resulting from the
continuous sampler. Samples in an iteration become part of the external field w at future steps.
Assuming only the bound on W, guaranteed by [ ], these errors can, in the worst case, be
blown up by a factor of poly(n) in each iteration, resulting in a quasipolynomial blowup by the
end. As aresult, [ ] only manage to obtain log(n)°W parallel time by using n©Uogn) that
is quasipolynomially many, processors (also known as a QuasiRNC algorithm). For some specific
distributions y, specifically strongly Rayleigh distributions [ ], they circumvent this short-
coming by establishing a property they call transport-stability for the distribution of interest, but
several other notable distributions such as Eulerian tours and asymmetric determinantal point
processes fall outside the reach of this trick. Here, by replacing the W, guarantee of [ ] with a
TV distance guarantee, we entirely remove the need for transport-stability, turning the previous
QuasiRNC algorithms into RNC algorithms.



Hence, our result implies an RNC-time sampler for a fractionally log-concave distribution u given
access to an oracle which, given input w € R", approximately computes the partition function
of 7, u. This holds more generally for all u whose tilts have constantly bounded covariance, i.e.,
cov(tyu) < O(1)1, analogous to [ ].

The normalizing factor or partition function of Ty 1t is X x4y exp({w, x)) pi(x). Viewed as a function
of w, the partition function is also known as the Laplace transform of u. We denote the log of the
partition function, a.k.a. the log-Laplace transform, by £, (w) = log ¥’ e(4}» exp((w, x)) u(x). By an
abuse of notation, we expand the definition of the Laplace transform to all vectors w € (R U {+oc0})"
as follows. Let S be the set of coordinates i where w; € {0}, then:

Ly(w) = log >, exp((w-s, x-)) (%) .

xe{£}", sign(xg)=sign(ws)

Definition 3 (Approximate oracle for the Laplace transform). We say that the oracle O(-) e-approximately
computes the log-Laplace transform at y if on input w, O outputs exp(L) s.t.

Z-Luw) <.

Theorem 4. Suppose that a distribution y on {+1}" has cov(t,u) < O(1) I for all w € R", and we have
an oracle for O (e //n)-approximately computing the log-Laplace transform of . Then we can sample from a
distribution e-close in total variation distance to u, in log(n/ €)°W time using (n/e)°M processors.

Thus, we improve upon [ I’s reduction from sampling to counting in two ways:

¢ We remove the assumption that the distribution needs to satisfy a transport inequality, which
is only known to hold for strongly Rayleigh distributions and partition-constraint strongly
Rayleigh distributions [ ]. Under the weaker assumption of fractional log-concavity or
bounded covariance under tilts, [ ] were only able to show a QuasiRNC reduction from
sampling to counting, i.e., their sampling algorithm uses = nlogn processors.

* We only require an approximate counting oracle (see Definition 3) instead of the exact counting
oracle required by [ ].

Theorem 4 implies the following corollary about asymmetric determinantal point processes (DPPs)
and Eulerian tours [see , for details and definitions].

Corollary 5. Suppose that 1 is an asymmetric DPP on a ground set of size n or the distribution of uniformly
random Eulerian tours in a digraph of size n. Then, we can sample from a distribution e-close in total
variation distance to u in time log(n/e)°® using (n/e)P® processors.

Hence, we resolve [ I's question about designing an RNC sampler for directed Eulerian tours.

Note that for the distributions studied in [ ], counting can be done exactly via determinant
computations, or in other words, there is exact access to the log-Laplace transform. But there
are several non-exact approximate counting techniques in the literature that can be efficiently
parallelized. A notable one is Barvinok’s polynomial interpolation method [see, e.g., ]. As
an example of a distribution where Barvinok’s method can be applied, consider a distribution u
on the hypercube {+1}" defined by a polynomial Hamiltonian: u(x) = exp(p(x)). [ ] showed
that for quadratic and cubic polynomials p, assuming the coefficients of degree 2 and 3 terms are
not too large (see [ ] for exact conditions), > yc(4}» 1(x) can be approximately computed in
quasipolynomial time. It can be observed that the approximation algorithm can be parallelized into
a QuasiRNC one since it simply involves computing 1'°¢" separate quantities. We note that because



the condition on p does not involve the linear terms, we can also apply the same algorithm to 7, u,
whose potential differs from p only in the linear terms. In other words, Barvinok’s method gives
us the oracle in Definition 3. In the same paper, [ ] prove that the partition functions of these
models are root-free in a sector, a condition known as sector-stability, which is known to imply
fractional log-concavity [ ]. As a result, by plugging in Barvinok’s approximate counting
algorithm into our result, we obtain QuasiRNC sampling algorithms, which at least in the case of
cubic p were not known before.

2 Preliminaries

We let log denote the natural logarithm. For x € R4, || x|| denotes the usual Euclidean norm of x.

For two distributions p and 7, we use drv(p, ) to denote their total variation distance defined as
sup{p(E) — (E) | E is an event}.

A stronger notion of distance is the Kullback-Leibler (KL) divergence.
Definition 6 (Kullback-Leibler divergence). For two probability densities p, = we define

Dxr(p || m) = Eplog(p/m).

We have the following relation between the KL divergence and TV distance, known as the Pinsker

inequality.
1
drv(p, 1) < 4/ 3 Dxrlp || m).

2.1 Log-concave distributions

Consider a density function 7 : RY — R.o where 1(x) = exp(=V(x)). We call V the potential
function for 7. Throughout the paper, we will assume that V' is twice continuously differentiable
for simplicity of exposition.

Definition 7 (Smoothness). For f > 0, we say 7 is f-smooth if the gradients of the potential are
B-Lipschitz, that is

IVV(x)=VV(W)l < Bllx—yll, forallx,y € RY.
For twice differentiable V, this is equivalent to
—BI < V*V < BI.
When V is convex, we call 7t a log-concave density. A strengthening of this condition is:
Definition 8 (Strong log-concavity). For a > 0, we say 7 is a-strongly log-concave if

0<al <V?V.

2.2 Log-Sobolev and transport-entropy inequalities

Definition 9 (Log-Sobolev inequality). We say 7 satisfies a log-Sobolev inequality (LSI) with constant
a if for all smooth f : R? — R,

Entel ] = Exlf log(F/Ex(f)] < = Ex[IVFI1].
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By the Bakry—Emery criterion [ ], if 7t is a-strongly log-concave then 7t satisfies LSI with constant
a. The right-hand side of the above inequality can also be written as the relative Fisher information.
Definition 10 (Relative Fisher information). The relative Fisher information of p w.r.t. 7t is

Fl(p || m) = Ep[llVlog(p/m)II*] . 5)
The LSl is equivalent to the following relation between KL divergence and Fisher information:
1
Dxrlp |l m) < By Fl(p || m) for all probability measures p .

Indeed, take f = 4/p/m in the above definition of the LSI.
Definition 11 (Wasserstein distance). We denote by W, the Wasserstein distance between p and 7,
which is defined as

W22(p, ) = inf{[E(X/y)NH[HX —Y||?] | ITis a coupling of p, n} ,

where the infimum is over coupling distributions IT of (X, Y) such that X ~ p,Y ~ 7.

The log-Sobolev inequality implies the following transport-entropy inequality, known as Talagrand’s
T> inequality [ I

SWip,m) < Dialp | ). ©)

3 Parallel sampling guarantees

In this section, we formally state our main parallel sampling guarantees.

3.1 LMC

We state the formal version of Theorem 1 for LMC as Theorem 13. Our assumption throughout is
that the score function s is a pointwise accurate estimate of VV:

Assumption 12. The score function s : R — R satisfies ||s(x) — VV(x)|| < 6 for all x € R,
Theorem 13. Suppose that V is f-smooth and 1 satisfies a log-Sobolev inequality with constant v, and the
score function s is 0-accurate. Let k = f/a. Suppose

ph < 1/10, 6 < 2Vae, M > Tmax{xd/e?,x?},
7)
2D (
K22+logM, NhZa_llogW_

Then, the output distribution uny, of Algorithm 1 satisfies

o D i
maX{g Wa(unn, m), dTV([JNh/n)} < \/M <¢

To make the guarantee more explicit, we can combine it with the following well-known initialization
bound, see, e.g., Dwivedi, Chen, Wainwright, and Yu [ ,§3.2].



Corollary 14. Suppose that 7 = exp(=V) with 0 < al < V2V < BI, and let x := B/a. Let x* be the
minimizer of V. Then, for pg = N(x*, 711), it holds that Dx1,(uo || 7) < 4logx.

Consequently, setting
1 d dl
h= 1o 5 = 2vae, M=7max{1z—2,1<2}, K=3logM, N =10xlog ;g",

then Algorithm 1 initialized at Lo outputs uny satisfying

Dxr.(unn || 7 <

a

Also, Algorithm 1 uses a total of KN = O(x log?(d/€2)) parallel rounds and M 6-approximate gradient
evaluations in each round.

The proofs for this section are given in §A.

3.2 ULMC

In this section, we design a parallel sampler based on underdamped Langevin Monte Carlo (ULMC),
also called kinetic Langevin, which has similar parallel iteration complexity as LMC but requires
less total work. Since there are difficulties applying the interpolation method without higher-order
smoothness assumptions (see the discussion in [ ; 1), we will use a different proof
technique based on Girsanov’s theorem, as in [AltChe23warm; ]. Note that since we seek
TV guarantees, we cannot apply the coupling arguments of Cheng, Chatterji, Bartlett, and Jordan
[ ] and Dalalyan and Riou-Durand [ ].

3.2.1 Algorithm
In continuous time, the underdamped Langevin diffusion is the coupled system of SDEs
dX; = Py dt,
dP; = —=VV(X;)dt — yP; dt + 2y dB;,
where y > 0 is the friction parameter. Throughout, we will simply set y = \/@, where f is the
smoothness parameter.

The idea for developing a parallel sampler is similar as before: we parallelize Picard iteration. How-
ever, in order to eventually apply Girsanov’s theorem to analyze the algorithm, the discretization
must be chosen so that dX; = P; dt is preserved. Hence, we will use the exponential Euler integrator.

We use the following notation: 7(t) is the largest multiple of i /M which is less than t, i.e., 7(t) =
Lt/%] % We define a sequence of processes (X(©, P(©), (x(), p), etc., so that

(k+1) <k) (k+1)
dp; ) = -VV (X o) dt = rP; D dt + 2y dB; .

This is a linear SDE, so it can be integrated exactly, yielding

(k+1) _xle ) 1 —exp(~=yh/M) plk+)
nh+(m+1)h/M ~— ““nh+mh/M y nh+mh/M



Algorithm 2 Parallelized underdamped Langevin dynamics

Input: (X, Py) ~ po, approximate score function s : RY — R (s = VV)
forn=0,..., N-1do
form =0,..., M in parallel do

(0) (0)
(th+mh/M’Pnh+mh/M) — (Xiuh, Pun)

| Sample correlated Gaussian vectors according to Eq. (10)
fork=0,...,K-1do
form =0,..., M in parallel do

k k . . .
t Compute (Xfl }:731 n/m P;(1 hiln)1 0 A) using Eq. (8) and Eq. (9), replacing VV with s

K K
| Xasnyn, Paurnyn) < (Xr(lhlh, P,ghlh)

h/M — (1 —exp(=yh/M))/
AU gy, 0
(k+1) B (k+1) 1 —exp(—yh/M) (x) P
nh+(m+1)h/M ~— exp(—)/h/M) Pnh+mh/M - VV(th+mh/M) e, (9)

where (X, EP) is a correlated Gaussian vector in R? x R? with law N(0, X), where

(Bl - 20— exp(—yh/M)) + & (1 - exp(=2yh/M)] ‘

r= 1 , (10)
5 (1 -2exp(=yh/M) + exp(=2yh/M)) 1 —exp(—-2yh/M)

and the upper-left entry marked * is determined by symmetry.

Note that each processor m =1, ..., M can independently generate a correlated Gaussian vector
according to the above law and store it. Then, the updates for the above discretization can be
computed quickly in parallel. We summarize the algorithm below as Algorithm 2.

3.2.2 Analysis

We now give our guarantees for Algorithm 2. Compared to Theorem 13, it improves the number of
processors by roughly a factor of Vid/e. Although it is stated for strongly log-concave measures
for simplicity, similarly to §3.1, the discretization guarantees only require 7t to satisfy a log-Sobolev
inequality and smoothness; see Theorem 20 for a more precise statement. The proof is given in §B.
Theorem 15. Assume that V is a-strongly convex and B-smooth; let « = p/a. Assume that V is minimized
at x*. Consider Algorithm 2 initialized at uy = N(x*, 1) ® N(0, I) and with

h=e(1/yE), 556(\/‘{%), M:é(@), K=0(lo50), N=8(xlog %),

Then, the law of the output of Algorithm 2 is e-close in total variation distance to . The algorithm uses a
total of KN = ©(x log*(d/&?)) parallel rounds and M S-approximate gradient evaluations in each round.

4 Implications for sampling from discrete distributions

In this section, we prove Theorem 4. For simplicity, we only state our parallel guarantees using
parallel LMC, for which the initialization is more straightforward, but it is easy to combine the
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Algorithm 3 Framework for discrete sampling via continuous sampling

Initialize wy < 0
fori=0,...,T—-1do
L xi+1 < (approximate) sample from 7., u * N(0, cI)
Wity < Wi + Xjz1/c
return sign(wr) € {+1}"

results of this section with parallel ULMC as well. For concreteness, we restate [ I's sampling-
to-counting reduction. Then, Theorem 4 is a consequence of Anari, Huang, Liu, Vuong, Xu, and Yu
[ , Lemma 7], our fast parallel sampler with TV guarantee, and a modified version of Anari,
Huang, Liu, Vuong, Xu, and Yu [ , Proposition 27]. We include the proofs for completeness
in §C.

We give the overall algorithm as Algorithm 3. The following lemma shows that the step of sampling
from distributions of the form 7, u * N(0, cI) is a well-conditioned log-concave sampling problem,
and moreover, that the score can be approximated quickly in parallel.

Lemma 16 ([ D). Let v =tu+N(O,cl). Then, v oc exp(=V') with
V() = mean(Ty/crwf) Yy 1 Lre(zpr Xexp((y/c +w, x)) p(x) y
c ¢ ¢ Dyetmprexp((y/c+w,x))ulx) ¢
and
V2V (y) = ——COV(Tz/Q”w“ ), é .

If cov(typ) < §1 forall y € R", then v is well-conditioned strongly log-concave with condition number
k=0(),ie., forally € R":

1 1
—I1<VV(y) < -1I.
5o 1 = (y)_c

Furthermore, a 6-approximate score function s for VV can be computed in O(1) parallel iterations using n
machines, each making O(1) calls to an € = O(0+/c/n)-approximate oracle for the Laplace transform of u.

The next lemma states that if the samples from the continuous densities 7,1 * N(0, cI) are accurate,
then the output of Algorithm 3 outputs an approximate sample from p1.

Lemma 17 (Anari, Huang, Liu, Vuong, Xu, and Yu [ , Lemma 7]). If the continuous samples are
exact in Algorithm 3, then for T = Q(c log(n/¢)), the distribution of cwr /T is p* N(0, <I) and output of
the algorithm is e-close in total variation distance to u.

These results, together with an initialization bound (see Lemma 23), then yield the proof of Theo-
rem 4. Details are given in §C.
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A Proofs for LMC

In this section, we give the proofs for §3.1. Let i, := law(Xy,;,). We first need the following recursive
bound, which shows that the error decays exponentially fast in the parallel refinement.

Lemma 18. Suppose that V is p-smooth, and that the score function s is 6-accurate. Assume that h < 1/10
and that T satisfies Talagrand’s T, inequality with constant «. Then,

(K) _ X(K—l) M”2]

mgllaXM [E[||Xﬂh+mh/M nh+mh/

8 2h2
< 34 exp(-3.5K) (1.4dh + ﬁa Dxr(tnn | n)) +8.26%h2.
Proof. Let
— (k) (k-1) 2
Ex = mfllf”fM [E[”th+mh/M - th+mh/M” I
Foranym=1,..., M,
-1
et —x® 1 = B[ mZ( & —sex
nh+mh/M nh+mh/M - M § nh+m’h|/M § nh+m’h/M
m’=1
-1
<IN e x® s
- M2 § nh+m’h/M § nh+m’h/M
m’=1

2 (k) (k-1) 2 21,2
< 3h m,r:nlaxm [E[||VV(th+m,h/M) - VV(th+m,h/M)|| 1+ 66“h

< 38%h? & + 662 h*
and hence Ex41 < 3p2h% Ex + 66%h2. Also,
h?m? o, dhm
Ve E[lls(Xun)ll "] + M
< 26%h% + 2h% E[||VV (X)) + dh

ELIX, = Xunll?] =

and thus &; is bounded by the right-hand side above. Iterating the recursion and using h < 10,

Ex < exp(=3.5(K—1))E; +6.26%h?
< exp(=3.5(K = 1)) {26%h? + 20 E[|| VV (Xup)II?] + dh} + 6.20% K2 .
Also, by Vempala and Wibisono [ , Lemma 10],
2 4p°
E[IVV(Xun)lI7] < 28d + 7DKL(Pnh | 7).
Substituting this in and using fh < 1/10 yields the result. O

(K)

Proof of Theorem 13. We will use the interpolation method. Let X, j,1pun/m = X emn M

see that

It is easy to

h _
th+(m+1)h/M = th+mh/M - M S(XIEI:HZFL/M) + \/é(Bnh+(m+1)h/M - Bnh+mh/M) .

12



Let X denote the interpolation of XX je., fort € [nh+mh/M,nh + (m+1)h/M], let

K-1
Xt = Xun+mnym — (£ = nh —mh /M) S(szthngh/M) + V2 (Bt = Bupmiym) -

Note that s(XffZ;lm) 0 M) is a constant vector field given X (K- h+ h M Let y; be the law of X;. The same
argument as in Vempala and Wibisono [ , Proof of Lemma 3] yields the differential inequality
(K-1) pe(Xt)
2 D (s Il 7) = = Fllg || ) + E(VV(Xy) = (X570 ), Vlog H(Xt)> .
3 -
< =7 FlGu || 0 +E[IVV(X) = s(X)5 70 )l1]
where we used (a,b) < ||a||? + 11|b]|? and E[||V log if((;t))lﬁ] = FI(y: || 7). Next, we bound
E[VV(X) = s(X5 I
(K-1) 2 (K-1) (K-1)
< 2EIVV 00 = VYOG, I +IVVOGT ) =S
< 2E[|VV(X;) - YV (XS allP1 4267
< 2B2E[||X; - X$+2h/Ml| ]+262.
Moreover,
ELIX = X all?] < 201X = Xoomnymall 2]+ 2ENIXS, 0 = XG0 121 (13)

The first term above is

EN Xt = Xnsmnynall?] = (8 = nh = mh /M E[ls(XS7Y 2]+ d (t = nh — mh/M)

nh+mh/M
2h? (K-1) 9 262h2 dh
< SHENVVX T DIPT+ S+ T
/32 h? (K-1) Lo 28%h%  dh
ENXe = X, snyaall 71+ [E[”VV(Xt)” I+ Mz M
Substituting this into Eq. (13) and using ph < 1/10 yields
(K=1) o9y  4A4h? 2.26%h%  1.1dh
ELIX: = X allP] < S BNV + =20 + =
(K) x &1
+2.2E(1 X nh+mh/M” I.
Now, Chewi, Erdogdu, Li, Shen, and Zhang [ , Lemma 16] yields

E[IVV(XI*] < Fl(ue || ) +26d.
For the last term, we can apply Lemma 18.

Substituting everything into Eq. (11) and cleaning up the terms yields

dr Dxr(ut || m) < —0.66F1(yt || ) + 2.562
21,2

4282 [P L 75 exp(=3.5K) (1.4an + Dttt | n))] .

13



Assuming that K > 1.3 + 0.3log M, and using the LSI,
6.882dh . 16B4h?

d < -1 2.56° :
t Dxr(ue || ) £ =1.3a Dy (u || ) +2.50° + M M Dxr(Unn || 7)
Integrating this inequality,
16pn* 6.88%dh*

DKL(P(;Hl)h || 7'() < [exp(—l.Sah) + fM DKL(IJnh || T() + 2.552h + ﬁT .

Provided M > 6.4x2, then exp(—1.3ah) + 1%4 aM < exp(—ah). Iterating,
2.86% 7.5p%dh
< —aNh .
Dxvr(pnn I ) < exp(=aNh) Dwpo | m) + ——+ — 7

Thus we obtain the guarantee in KL divergence. The guarantees in TV and W distance follow from
Pinsker’s and Talagrand’s inequality respectively. O

B Proofs for ULMC

We turn towards the analysis of Algorithm 2. We start by bounding the discretization error between
the algorithm and the continuous-time process using Girsanov’s theorem. Throughout, let uyy,
denote the law of the output of the algorithm, and let 77; denote the marginal law of the continuous-
time Langevin diffusion at time ¢ started from pj.

First, we need a lemma.
Lemma19. Let (X¢, Py);»0 denote the continuous-time underdamped Langevin diffusion, started at (Xo, Po) ~
Lo. Assume that V is B-smooth, and that 7 o exp(—V) satisfies Talagrand’s Ty inequality with constant a.
Let m = nX ® N(0,I). Then,
2 4p? 2
ENIVVXOIT] < 2pd + - = Dxlpo | 1), E[lIPI"] < 2d + Dxw(po | 7) -

Proof. For the first bound, we use a similar proof as Vempala and Wibisono [ , Lemma 10].
Namely, by Lipschitzness of VV/, the transport inequality, and the data-processing inequality,

E[IVV(X)II*] < 2 Exx[IVVII*] + 28° Wy (law(X;), %) < 2Bd + g Dy (law(Xy) || %)
< 2Bd + 4752 Dk (law(Xy, Py) || ) < 28d + %@ Dk (o || ).
Similarly,
E[IIPe1*] < 2 Engo,nll1%] + 2 W5 (law(Py), N(0, 1) < 2d + 4 Dxr.(uo || 7).

This completes the proof. O

We now state and prove our main discretization bound.
Theorem 20. Suppose that V is f-smooth and that % o exp(—V) satisfies Talagrand’s Ty inequality with
constant av. Let k = B/a. Assume that the parallel depth satisfies K 2 log M (for a sufficiently large implied
constant) and that h < 1/ \/B (for a sufficiently small implied constant). Then, it holds that

ﬁ2 d h2 ‘32 h?

Mz T M2

T
Dxr(nr || ur) € —= (62 +

VB

(1+ 253) Dl | 1)

14



Proof. Let P denote the Wiener measure on [0, T], under which (B;)¢[o,r] is a standard Brownian
motion. Using this Brownian motion, we define the algorithm process, i.e.,

dXt(k+1) — P(k+1) dt,
apV = —s(x“))) dt —yP*™V dt + 2y dB; .
We also drop the superscripts for parallel depth K, i.e., (Xt(K), Pt(K)) = (X, Pt). We now write
dP; = =VV(X;)dt — yP; dt + 2y dB;

where dB; = dB; — (s(X(ﬁ) 1)) —VV(X})) dt. By Girsanov’s theorem [see , §5.6], if we define

the path measure Q Vla

T
9. / U = Ve, By - o= IR e a),

then under Q the process B is a standard Brownian motion. It follows readily that under Q, the
process (X, P) is the continuous-time underdamped Langevin diffusion. By the data-processing
inequality and Eq. (14),

Dxr(rr || pr) < Dxr(Q || P) = Eqlog Z—g
T
Q[% [ sl - vy, amo - o / 55— v )12 e
T
7= | sl vy, aby + /0 1550y — vy ) |

- 5 o / 155 VYKl dt (15)

From now on, all expectations are taken under Q and we drop the subscript Q from the notation.
We focus on ¢ lying in the interval [nh, (n + 1)h].

Of course, using the fact that we have 6-accurate gradient evaluations,

Ells(X{ ") = VV (XD < 6% + EIVV(X{Y) - YV (X)II]

< 8%+ 7 ElIXL, Y - X (16)
We split this into two terms:
_ K-
ENX{G Y = Xill2] < ENIX0 = Xooll 2]+ EL Xegy - X5 V12 (17)

We begin with the recursive term (the second one).

Foranyk=1,...,K, let

. (k) (k-1)
E = o E[ll X nh+mh/M th+mh/M” I

15



To bound this quantity, we start with

nh+mh /M 2
X5, 00~ X = E[] [ -] ]
:h+mh/M
< h/h E[PY - PEV)12] 4t (18)
n

Next,

k k—
E[IP* - P12

2
/ (X80 = s (X2 —y (0~ Py s |

k— k k k—
< / X~ s + 7P = P
n

By Gronwall’s inequality,

t
E[IPY - PYV)12] < hexp(O(y2h%) / h Ellls(xS™) = s(x U2 ds
n

Recall that y? =< B. We assume throughout that 1 < 1/ \/E for a sufficiently small implied constant,
so that y2h? < 1. Therefore,

k k- k- k
ElNIPY - P2 < / Ellls(xY) - s(x )2 ds

nh

t
<822+ h | E[IVVXED) - v x® 212145
- 7(s) ©(s)

< 8°h* +B%h /ht ENNXS" - X712 ds < 62K + B2h2 s .
Substituting this into Eq. (18), we obtain
Er S O*ht + BPht &y .
Using & < 1/+/B and iterating this bound,
Ex < exp(-Q(K)) &1 + 6%h*. (19)
We must now bound &;. To do so, we note that

M nh+mh|/M M nh+mh/M M
BN, e~ Xunll?] = P! dt” ] < h/n E[IPY)21dE. (20)

Also,

2
B[P < ENIPl —s(Xu) - P} ds + 2y (B - B |

t
< E[|Panl|?] + b2 E[lls(Xkn)lI2] + y2h / E[|P{V||%] ds

nh

by BB = Bl + E[| [ X5 - vvixoas| |

16



t
< P+ 1252+ h2G +y2h / ENIPY)2]) ds + ydh + h2A.
nh

In the above bound, we were careful to recall that we are working under Q, for which B is the
Brownian motion (not B). Also, we have defined the following quantities:

P = sup E[IP?], G:= sup E[IVV(X)I?],
tE[O,T] tE[O,T]

and

K
A= swp Ells(X ") - VDI
te[nh,(n+1)h]

Applying Gronwall’s inequality again,
E[IPV|I%] s P + h%6 + h°G + ydh + h2A.
Substituting this into Eq. (20),
E1 < WP + h'6% + h'G + ydh® + hiA.
Substituting this into Eq. (19) now yields
Ex < exp(-Q(K)) (B*P + h'G + ydh® + hA) + 6%h* .

Recalling the definition of A and from Eq. (16) and Eq. (17), we have proven that

As62+ﬁ2( sup  E[l|X; = Xenll?]
te[nh,(n+1)h]

+ exp(=Q(K)) (h2P + WG + ydl® + h1A) + 52h4) .
Using h < 1/ \/ﬁ, this yields
AP+ s ElIX - XolIP] + exp(-Q(K) (P + G + ydh?)) .
te[nh,(n+1)h]

We also note that

1%~ Xol?) = || [ P[] < 2.

(t)
The quantities P, G are controlled via Lemma 19. Now assume that exp(—Q(K)) < 1/M*, which
only requires K 2 log M for a sufficiently large absolute constant. When the dust settles,

52 dh2 ﬁZ h2

2
A< O+ Ve +M2

(1+ 253) Do | )

Substituting this into Eq. (15), and recalling that y < +/B, we finally obtain
2 dh 2 2 h2

Dualrr |l un) s vzt U e

This completes the proof. O

~5) Dict (gt | )

17



We must complement the discretization bound with a continuous-time convergence result, which
can be obtained from off-the-shelf results. See Zhang, Chewi, Li, Balasubramanian, and Erdogdu
[ , Lemma 5] for a statement which is convenient for our setting (adapted from [ ], which
in turn followed the original entropic hypocoercivity due to Villani [ |; see also Mon23HMC
for the corresponding result for idealized Hamiltonian Monte Carlo).

Theorem 21. Assume that 'V is f-smooth and that X o exp(=V) satisfies the LSI with constant a. Consider
the functional

PGl 0 = Dl 0+ B [0 Vg B, = [1/(4ﬁ) 1/\@]@1.

1/\28 4
Then, forall t > 0,

at

10428

F (|| 7) < exp(-——=) F (o || 7).

We are now ready to prove Theorem 15.
Proof of Theorem 15. Let us show that pp = N(x*, B71I) ® N(0,I) satisfies
d
F(uo || m) < 3 (2 +logx).

From Corollary 14, we know that Dxr,(uo || 7) < % log k. Also,

1 N(x*, 1)
£y 072 V10 E2F) = 2 oo [ 10 25—
1 p
= E |EX~N(x*,/3’11) [”VV(JC) - 5 (x - x*)||2]

1 B2

< % Exnier g0 [[IVV(x) = VV()1° + vy [l = x*|?]
< B Evenerprplllx —x*1P1 < d.

The initialization bound follows.

The setting of parameters is such that from Theorem 20 and Theorem 21 respectively, we have
OxL(minn || pnn) S €2 and Dki(rivy || ) S €2, The result now follows from Pinsker’s inequality
and the triangle inequality for TV. O

C Proofs for sampling from discrete distributions

We begin with the proof of Lemma 16.

Proof of Lemma 16. The first two statements are from [ ]. We only need to verify the last
statement. We only need to show that we can approximate mean(7,u) for all z € R”, given the
oracle for the Laplace transform of u. Since p is supported on the hypercube, we can rewrite the
j-th entry of mean(t,u) in term of Laplace transforms of y, i.e.,

2 er{i}”, xj=+ exp((z, x)) u(x) _
er{i}” exp((z, x)) u(x)

(mean(t,p)); = 2T u(xj =+)— 1=

18



_2exp(z)) Dixe(ayr, =+ XP(Z-j, X)) pi(x) B
- Dxefapn exp((z, X)) pu(x)
= 2exp(zj +Ly(z") - LF(Z)) -1,

where z* (resp. z7) is a vector with all entries equal to z except for the j-th entry being +oo (resp.
—o0). Using the oracle, we can compute A, s.t. |[Ay — (Lu(z%) — L,(2))] < O(¢). Thus,

|2exp(zj + Ay) — 1 — (mean(t: 1)),
= 2exp(z)) exp(Lu(z") = Lu(2)) [exp(As = (Lu(z%) = Lu(2)) - 1
(mean(t,u)); + 1
2
where the inequality follows from exp(x)—1 < 2x for x € [0, 1/2). We use n machines, each of which

computes one entry of mean(7, ) using 2 oracle calls and O(1) parallel iterations. The estimated
score function s satisfies |[|s(y) = VV(y)|| < {2 €2 = 6. O

< O(e) exp(z)) exp(Ly(z") = Lu(2)) = O(¢) =0(e)

We also need another initialization lemma, since Corollary 14 requires knowledge of the minimizer
of V which is not necessarily the case for the present application.
Lemma 22. Let uo = N(y, 021) for some fixed y € R" and 0 > 0. If © oc exp(=V) with V2V < BI, then

Dicw(jio || 7) < V(y) +log Z + 5 (Bo? ~ log(2mea?))
where Z = fexp(—V(x)) dx.

Proof. By smoothness, V(x) < V(y) +(VV(y),x —y) + g l|x — yl||?, thus

2

vy V) < V) + (V). Evopo ¥ = 1) + 5 B = yl12 = V) + B2

and

a’n
P 5 +logZ,

n
Dxr(po || ) = Exvyo log po(x) + V(x) +log Z = ~3 log(2mea?) + V(y) +
which is the desired bound. O

Lemma 23. Consider a density function v : {£1}" — Ryq. Let m = v+ N(0, cI) and uo = N(0, cI). Then,
n
Dkr(po || m) < %

Proof. We can write
— -n/2 “y _'x“2
n(y) = (2mc) Z v(x)exp(—T) .
xe{£1}"
This distribution is normalized so that Z = 1, and

m(0) = 2me) " Y v(x)exp(-52) = (2re) " exp(- 1)

xe{x1}n
Thus, V(0) = —log m(0) = 4 log(27c) + 4. By Lemma 16, V2V < I/c. Thus, we can apply Lemma 22
with B = ¢7! and 02 = c. Rearranging gives the desired inequality. O

19



Proof of Theorem 4. Let c be such that cov(t,u) < 5I for all y € R". Suppose we have two executions
of Algorithm 3: one using the approximate continuous sampling algorithm resulting in wy, ..., wr,
and one using exact samples resulting in wy, ..., w’T Note that w; = w;_1 + x;/c where x; is the
output of Algorithm 1 oninput 7t = 7w, , uxN(0, cI) and w} = wi_, +x;/c where x] ~ 1y uxN(0, cI).
We choose the parameter of Algorithm 1 so that

drv(law(x;), Tw,_, p* N(0,cl)) < 7

for some 1 to be specified later.

Recall that the total variation distance is also characterized as the smallest probability of error when
we couple two random variables according to the two measures, i.e.,

drv(p1, p2) = inf{H(X1 # X3) | ITis a coupling of (p1, pg)} .

On the first iteration, we can couple x; with x] so that they are equal to each other with probability
atleast1 —n. If x; = xi, then wy = wi, and repeating the argument on this event we can couple x»
to xJ, so that xo = x/, with probability at least 1 — . After T iterations, by the union bound, we have
wr = w7, with probability at least 1 — T1.

By triangle inequality, the data-processing inequality, and Lemma 17,

drv(law(sign(wr)), ) < drv(law(sign(wr)), law(sign(w?.))) + drv(law(sign(w?)), 1)
<Tn+e¢/2,

provided we choose T = ©(c log(n/¢)) so that dry(law(sign(w?.)), ) < &/2. We then choose 1 =
¢/(2T), which ensures that drv(law(sign(wr)), u) < .

In each iteration of the “for” loop in Algorithm 3, we want to approximately sample from 7 = 757 1+

N(0, cI), which is (2¢)~!-strongly log concave and ¢~ !-log-smooth by Lemma 16. By Lemma 23,
Dxr(uo || 1) < poly(n) for uo = N(0, cI). Thus, by Theorem 13, to sample x/ such that dv (law(x’), Tw!_ H*
N0, cl)) < O(e/(clog(n/¢))), Algorithm 1 uses P = O(log®(cn/ €)) parallel iterations, M = O(c2n/&2)
processors,and MP = O(c?n/¢2) 6-approximate gradient evaluations with 6 = ©(¢/+/c). By Lemma 16,
each gradient evaluation can be implemented using O(n) processors, O(1) parallel iterations, and
O(n) total calls to O(6v/c/n) = O(e/n)-approximate Laplace transform oracles.

Hence, Algorithm 3 takes PT = O(c log®(cn/€)) parallel iterations, M = O(c?n?/e2) processors, and
O(c?n?/€?) total calls to O(e/n)-approximate Laplace transform oracles. O
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