
Fast parallel sampling under isoperimetry

Nima Anari1, Sinho Chewi2, and Thuy-Duong Vuong1

1Stanford University, {anari,tdvuong}@stanford.edu
2Institute for Advanced Study, schewi@ias.edu

Abstract

We show how to sample in parallel from a distribution 𝜋 over ℝ𝑑 that satisfies a log-Sobolev
inequality and has a smooth log-density, by parallelizing the Langevin (resp. underdamped
Langevin) algorithms. We show that our algorithm outputs samples from a distribution 𝜋̂ that
is close to 𝜋 in Kullback–Leibler (KL) divergence (resp. total variation (TV) distance), while
using only log(𝑑)𝑂(1) parallel rounds and ˜︁𝑂(𝑑) (resp. ˜︁𝑂(√𝑑)) gradient evaluations in total. This
constitutes the first parallel sampling algorithms with TV distance guarantees.

For our main application, we show how to combine the TV distance guarantees of our
algorithms with prior works and obtain RNC sampling-to-counting reductions for families of
discrete distribution on the hypercube {±1}𝑛 that are closed under exponential tilts and have
bounded covariance. Consequently, we obtain an RNC sampler for directed Eulerian tours and
asymmetric determinantal point processes, resolving open questions raised in prior works.

1 Introduction

In this paper, we study the problem of designing fast parallel algorithms for sampling from con-
tinuous distributions 𝜋(𝑥) ∝ exp(−𝑉(𝑥)) over 𝑥 ∈ ℝ𝑑. Designing efficient sampling algorithms is a
ubiquitous problem, but the focus of most prior works has been to minimize sequential efficiency
criteria, such as the total number of arithmetic operations or total queries to 𝑉 and its derivatives.
In contrast, in this work we focus on parallel efficiency; roughly speaking, this means that we
would like to have algorithms that sequentially take polynomial time, but can be run on a pool
of polynomially many processors (e.g., as in the PRAM model of computation) in much less time,
ideally polylogarithmic.

Our main result is to propose simple parallelizations of Langevin Monte Carlo (LMC) and un-
derdamped Langevin Monte Carlo (ULMC), two of the most widely studied sequential sampling
algorithms, and to prove that they run in log(𝑑)𝑂(1) parallel iterations, under standard tractability
criteria on 𝜋: that it satisfies a log-Sobolev inequality (LSI), and that its potential 𝑉 is smooth, i.e.,
has Lipschitz gradients.
Theorem 1 (Informal main theorem). Suppose that 𝜋 = exp(−𝑉) is a density on ℝ𝑑 that satisfies a
log-Sobolev inequality and has a smooth potential 𝑉 . Assume that we are given (approximate) oracle access to
∇𝑉 . Then, we can produce samples from a distribution 𝜋̂ with the following guarantees.

• For LMC, 𝜋̂ is close to 𝜋 in Kullback–Leibler divergence, and the algorithm uses log2(𝑑) parallel
iterations and ˜︁𝑂(𝑑) processors and gradient evaluations.

• For ULMC, 𝜋̂ is close to 𝜋 in total variation divergence, and the algorithm uses log2(𝑑) parallel

1

{anari,tdvuong}@stanford.edu
schewi@ias.edu

iterations and ˜︁𝑂(√𝑑) processors and gradient evaluations.

For formal statements, see Theorem 13 and Theorem 20. Throughout this paper, when we refer
to the number of iterations, we refer to the model of adaptive complexity: here, in each round, the
algorithm makes a batch of queries to a first-order oracle for 𝜋 (i.e., given a set of finite points
𝒳 ⊆ ℝ𝑑, the oracle outputs (𝑉(𝑥),∇𝑉(𝑥)) for each 𝑥 ∈ 𝒳), and the adaptive complexity measures
the number of rounds. The gradient complexity measures the total number of points at which the
first-order oracle is queried.

As an immediate corollary, we obtain parallel samplers for the class of well-conditioned log-concave
distributions, i.e., those which satisfy

𝛽𝐼 ⪰ ∇2𝑉 ⪰ 𝛼𝐼 ,

for some constants 𝛼, 𝛽 > 0, where 𝛽 is the smoothness parameter, and 𝛼 is the parameter of strong
log-concavity. This is because the LSI, a form of isoperimetric inequality, holds for all strongly
log-concave distributions, due to the Bakry–Émery criterion [BÉ06]. However, the LSI is a weaker
condition than strong log-concavity, and it applies to even many non-log-concave distributions such
as Gaussian convolutions of distributions with bounded support [Bar+18; CCN21]. In addition,
unlike log-concavity, LSI is preserved under bounded perturbations and Lipschitz transformations
of the log-density function.

The state-of-the-art prior to our work was a fast parallel algorithm due to [SL19], which produced
Wasserstein-approximate samples from well-conditioned log-concave distributions. We improve on
the state-of-the-art in three ways:

• We replace the strong log-concavity assumption with the weaker assumption that 𝜋 satisfies a
log-Sobolev inequality.

• We bound the error in KL divergence and TV distance, as opposed to the weaker notion of
Wasserstein error. This difference is crucial for ourmain application, as explained in Section 1.3.

• Our results hold given only approximate access to ∇𝑉 , as opposed to exact access. This is
again crucial in some of our applications as explained in Section 1.3.

1.1 Algorithm

For the sake of exposition, here we describe the parallel LMC algorithm and defer the discussion of
parallel ULMC to Section 3.2.1.

Our algorithm is based on a parallelized discretization of the Langevin diffusion. The continuous-
time Langevin diffusion is the solution to the stochastic differential equation

𝑑𝑋𝑡 = −∇𝑉(𝑋𝑡) 𝑑𝑡 +
√

2 𝑑𝐵𝑡 (1)

where (𝐵𝑡)𝑡≥0 is a standard Brownian motion inℝ𝑑 . Langevin Monte Carlo (LMC) is a discretization
of the continuous Langevin diffusion, defined by the following iteration:

𝑋(𝑛+1)ℎ − 𝑋𝑛ℎ = −ℎ ∇𝑉(𝑋𝑛ℎ) +
√

2 (𝐵(𝑛+1)ℎ − 𝐵𝑛ℎ) , (2)

where ℎ > 0 is a parameter defining the step size.

If 𝜋 satisfies a log-Sobolev inequality (LSI), then the law of the continuous-time Langevin diffusion
converges to the target distribution 𝜋 at time 𝑡 ≈ poly log(𝑑). The discretization error, measured

2

Algorithm 1 Parallelized Langevin dynamics
Input: 𝑋0 ∼ 𝜇0, approximate score function 𝑠 : ℝ𝑑 → ℝ𝑑 (𝑠 ≈ ∇𝑉)
for 𝑛 = 0, . . . , 𝑁 − 1 do

for 𝑚 = 0, . . . , 𝑀 in parallel do
𝑋
(0)
𝑛ℎ+𝑚ℎ/𝑀 ← 𝑋𝑛ℎ

Sample Brownian motion 𝐵𝑛ℎ+𝑚ℎ/𝑀 ← 𝐵𝑛ℎ + 𝒩(0, (𝑚ℎ/𝑀) 𝐼)
for 𝑘 = 0, . . . , 𝐾 − 1 do

for 𝑚 = 0, . . . , 𝑀 in parallel do
𝑋
(𝑘+1)
𝑛ℎ+𝑚ℎ/𝑀 ← 𝑋𝑛ℎ − ℎ

𝑀

∑︁𝑚−1
𝑚′=0 𝑠(𝑋

(𝑘)
𝑛ℎ+𝑚′ℎ/𝑀) +

√
2 (𝐵𝑛ℎ+𝑚ℎ/𝑀 − 𝐵𝑛ℎ)

𝑋(𝑛+1)ℎ ← 𝑋
(𝐾)
𝑛ℎ+ℎ

for example in the total variation distance, between the continuous Langevin diffusion and the
discrete process, scales like ≈ 𝑑ℎ, so the step size ℎ is set to 1/𝑑, causing LMC to take ˜︁𝑂(𝑑) iterations
to converge. Our algorithm, explained in Algorithm 1, uses parallelization to speed up LMC, so
that the step size is Ω(1) and the parallel depth is of the same order as the convergence time of the
continuous Langevin diffusion, that is, of order poly log(𝑑).
The input to the algorithm is a (potentially random) starting point𝑋0, togetherwith an “approximate
score oracle” 𝑠, which is a function ℝ𝑑 → ℝ𝑑 that we can query, and which is assumed to be
uniformly close to the gradient ∇𝑉 .

The main idea behind the algorithm is to turn the task of finding solutions to our (stochastic)
differential equation into the task of finding fixed points of what is known as the Picard iteration.
At a high level, Picard iteration takes a trajectory (𝑋𝑡)𝑡≥0 and maps it to another trajectory (𝑋′𝑡)𝑡≥0
given by

𝑋′𝑡 = 𝑋0 −
∫ 𝑡

0
∇𝑉(𝑋𝑢) 𝑑𝑢 +

√
2 𝐵𝑡 .

Now if 𝑋 = 𝑋′, then 𝑋 is a solution to the Langevin diffusion. Thus, one might hope that starting
from some trajectory 𝑋0, and applying Picard iterations multiple times, the whole trajectory con-
verges to the fixed point. The main benefit of Picard iteration is that ∇𝑉 or 𝑠 can be queried at all
points in parallel.

Note that the Picard iteration can be analogously defined for discrete-time dynamics such as LMC.
Our main result shows that Picard iteration applied to the discretized Langevin diffusion (LMC)
converges fast (in poly log(𝑑) Picard iterations) for trajectories defined over intervals of length at
most ℎ, where now ℎ can be take nto be macroscopically large (ℎ = Ω(1)). We repeat this process
until time poly log(𝑑), which requires 𝑁 = poly log(𝑑)/ℎ sequential iterations.

1.2 Analysis techniques

Many algorithms for solving stochastic differential equations, such as the Langevin dynamics
(𝑋∗𝑡)𝑡≥0, turn the problem into numerical integration. The main idea is to approximate the difference
between 𝑋∗(𝑛+1)ℎ − 𝑋

∗
𝑛ℎ

using the trapezoidal rule, i.e.,

𝑋∗(𝑛+1)ℎ − 𝑋
∗
𝑛ℎ = −

∫ (𝑛+1)ℎ

𝑛ℎ

∇𝑉(𝑋∗𝑠) 𝑑𝑠 +
√

2 (𝐵(𝑛+1)ℎ − 𝐵𝑛ℎ)

3

≈ −
∑︂

𝑤𝑖 ∇𝑉(𝑋∗𝑠𝑖) +
√

2 (𝐵(𝑛+1)ℎ − 𝐵𝑛ℎ) .

Since we cannot access the idealized process 𝑋∗, we instead start with a rough estimate 𝑋(0) and
iteratively refine our estimation to obtain 𝑋(1) , . . . , 𝑋(𝐾) that are closer and closer to the ideal 𝑋∗. The
refined estimations are obtained via another application of the trapezoidal rule, i.e., 𝑋(𝑘)𝑠𝑖 is computed
using

∫
𝑠≤𝑠𝑖 ∇𝑉(𝑋

(𝑘−1)
𝑠) 𝑑𝑠. This framework can be easily parallelized: ∇𝑉(𝑋(𝑘)𝑠𝑖) for different 𝑖’s can

be computed in parallel using one processor for each 𝑠𝑖 .

In [SL19], the points 𝑠𝑖 at which to evaluate ∇𝑉(𝑋𝑠𝑖) are chosen randomly; hence, their framework is
known as the randomized midpoint method. Unfortunately, there seem to be fundamental barriers
to obtaining KL or TV accuracy guarantees for randomized midpoint algorithms. To illustrate,
while accuracy in 2-Wasserstein distance can be achieved using ˜︁𝑂(𝑑1/3) gradient evaluations using
a randomized midpoint algorithm [SL19, Algorithm 1], accuracy in KL or TV distance using 𝑜(𝑑1/2)
gradient evaluations is not known.

We deviate from the approach of Shen and Lee [SL19] by keeping the 𝑠𝑖 fixed. This greatly simplifies
the algorithm and its analysis and allows us to show that parallelized LMC converges to 𝜋 in KL
divergence using the interpolation method [VW19], at the cost of using ˜︁𝑂(𝑑) gradient evaluations
instead of ˜︁𝑂(√𝑑)1 as in Shen and Lee [SL19, Algorithm 2]. In Section 3.2, we then show how to
obtain a sampler, based on ULMC, which enjoys the same parallel complexity but uses only ˜︁𝑂(√𝑑)
gradient evaluations, matching the state-of-the-art in [SL19].

For simplicity of exposition, assume that in Algorithm 1, the score function 𝑠 is exactly ∇𝑉 . We will
show via induction that

𝔼[∥∇𝑉(𝑋(𝐾)𝑠𝑖) − ∇𝑉(𝑋
(𝐾−1)
𝑠𝑖)∥2] ≲ exp(−3.5𝐾) , (3)

where 𝐾 is the depth of refinement. In other words, the approximation error decays exponentially
fast with the parallel depth.

To obtain the KL divergence bound, note that

𝑋
(𝐾)
𝑛ℎ+(𝑚+1)ℎ/𝑀 − 𝑋

(𝐾)
𝑛ℎ+𝑚ℎ/𝑀 = − ℎ

𝑀
∇𝑉(𝑋(𝐾−1)

𝑛ℎ+𝑚ℎ/𝑀) +
√

2 (𝐵𝑛ℎ+(𝑚+1)ℎ/𝑀 − 𝐵𝑛ℎ+𝑚ℎ/𝑀)

and ∇𝑉(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀) only depends on 𝑋𝑛ℎ and the Brownian motion 𝐵𝑡 for 𝑡 ≤ 𝑚ℎ/𝑀. Let 𝑋𝑡 ,

𝑚ℎ ≤ 𝑡 − 𝑛ℎ ≤ (𝑚 + 1)ℎ, be the interpolation of 𝑋(𝐾)
𝑛ℎ+𝑚ℎ/𝑀 and 𝑋(𝐾)

𝑛ℎ+(𝑚+1)ℎ/𝑀 , i.e.,

𝑋𝑡 − 𝑋(𝐾)𝑛ℎ+𝑚ℎ/𝑀 = −(𝑡 − 𝑛ℎ − 𝑚ℎ/𝑀) ∇𝑉(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀) +

√
2 (𝐵𝑡 − 𝐵𝑛ℎ+𝑚ℎ/𝑀) .

Then by a similar argument as in [VW19], if 𝜇𝑡 ≔ law(𝑋(𝐾)𝑡)we obtain

𝜕𝑡𝒟KL(𝜇𝑡 ∥ 𝜋) ≤ −
3𝛼
2 𝒟KL(𝜇𝑡 ∥ 𝜋) + 𝔼[∥∇𝑉(𝑋(𝐾)𝑡) − ∇𝑉(𝑋

(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2]

≤ −3𝛼
2 𝒟KL(𝜇𝑡 ∥ 𝜋) + 2𝔼[∥∇𝑉(𝑋(𝐾)𝑡) − ∇𝑉(𝑋

(𝐾)
𝑛ℎ+𝑚ℎ/𝑀)∥

2]

1While Shen and Lee [SL19, Algorithm 1] needs only ˜︁𝑂(𝑑1/3) gradient evaluations, its parallel round complexity is
also ˜︁Θ(𝑑1/3), which doesn’t align with our goal of getting poly log(𝑑) parallel round complexity. On the other hand, Shen
and Lee [SL19, Algorithm 2] uses poly log(𝑑) parallel rounds but needs ˜︁Θ(√𝑑) gradient evaluations [see SL19, Theorem
4].

4

+ 2𝔼[∥∇𝑉(𝑋(𝐾)
𝑛ℎ+𝑚ℎ/𝑀) − ∇𝑉(𝑋

(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2] .

We can directly bound the third term using Eq. (3). The second term can be bounded via a standard
discretization analysis, noting that the time interval is only of size ℎ/𝑀. It leads to the bound

𝔼[∥∇𝑉(𝑋(𝐾)𝑡) − ∇𝑉(𝑋
(𝐾)
𝑛ℎ+𝑚ℎ/𝑀)∥

2] ≲ 𝑑ℎ

𝑀
, (4)

where 𝑀 is the number of discretization points, i.e., the number of parallel score queries in each
round. Thus, from Eq. (3) and Eq. (4), by setting 𝐾 = ˜︁𝑂(1) and 𝑀 = ˜︁𝑂(𝑑), we can set the step size
ℎ = Ω(1) so that the parallelized Langevin algorithm takes ˜︁𝑂(1) steps to converge to the target
distribution 𝜋.
Remark 2. One may wonder if our results apply to distributions satisfying a weaker functional
inequality such as the Poincaré inequality, instead of the LSI. Unfortunately, this is not the case since
our analysis relies on the fact that the continuous-time Langevin diffusion converges to the target
distribution 𝜋 in time poly log(𝑑), which holds under the LSI but not under the weaker Poincaré
inequality [see Che+21, for details].

The above strategy based on the interpolation method no longer works for ULMC, so here we
instead use an approach based on Girsanov’s theorem. See Section 3.2.2 for details.

1.3 Applications

The main application of our results is to obtain fast parallel algorithms for several discrete sampling
problems by refining the framework obtained by [Ana+23]. Recently, [Ana+23] showed a parallel
reduction from sampling to counting for discrete distributions on the hypercube {±1}𝑛 , by combining
a faithful discretization of stochastic localization and fast parallel sampling algorithms for continuous
distributions. For a discrete distribution 𝜇 over {±1}𝑛 , their reduction involves log 𝑛 iterations, each
involving sampling from 𝜏𝑤𝜇 ∗ 𝒩 (0, 𝑐𝐼) where 𝜏𝑤𝜇 is the exponential tilt of 𝜇 by the vector 𝑤 ∈ ℝ𝑛 ,

defined as:
𝜏𝑤𝜇(𝑥) ∝ exp(⟨𝑤, 𝑥⟩)𝜇(𝑥) .

[Ana+23] showed that for some appropriately chosen parameter 𝑐 = 𝑂(1), 𝜏𝑤𝜇 ∗ 𝒩 (0, 𝑐𝐼) is a
continuous and well-conditioned log-concave distribution for a wide class of discrete distributions
𝜇 of interest, i.e., those that are fractionally log-concave [see Ali+21, for a survey on fractional
log-concavity]. In this way, they obtained a parallel reduction to the problem of sampling from
continuous and well-conditioned log-concave distributions.

The key technical challenge in their work is to control the propagation of errors resulting from the
continuous sampler. Samples in an iteration become part of the external field 𝑤 at future steps.
Assuming only the bound on 𝑊2 guaranteed by [SL19], these errors can, in the worst case, be
blown up by a factor of poly(𝑛) in each iteration, resulting in a quasipolynomial blowup by the
end. As a result, [Ana+23] only manage to obtain log(𝑛)𝑂(1) parallel time by using 𝑛𝑂(log 𝑛), that
is quasipolynomially many, processors (also known as a QuasiRNC algorithm). For some specific
distributions 𝜇, specifically strongly Rayleigh distributions [Ana+23], they circumvent this short-
coming by establishing a property they call transport-stability for the distribution of interest, but
several other notable distributions such as Eulerian tours and asymmetric determinantal point
processes fall outside the reach of this trick. Here, by replacing the𝑊2 guarantee of [SL19] with a
TV distance guarantee, we entirely remove the need for transport-stability, turning the previous
QuasiRNC algorithms into RNC algorithms.

5

Hence, our result implies an RNC-time sampler for a fractionally log-concave distribution 𝜇 given
access to an oracle which, given input 𝑤 ∈ ℝ𝑛 , approximately computes the partition function
of 𝜏𝑤𝜇. This holds more generally for all 𝜇 whose tilts have constantly bounded covariance, i.e.,
cov(𝜏𝑦𝜇) ⪯ 𝑂(1) 𝐼, analogous to [Ana+23].

The normalizing factor or partition function of 𝜏𝑤𝜇 is
∑︁
𝑥∈{±}𝑛 exp(⟨𝑤, 𝑥⟩)𝜇(𝑥). Viewed as a function

of 𝑤, the partition function is also known as the Laplace transform of 𝜇. We denote the log of the
partition function, a.k.a. the log-Laplace transform, by ℒ𝜇(𝑤) = log

∑︁
𝑥∈{±}𝑛 exp(⟨𝑤, 𝑥⟩)𝜇(𝑥). By an

abuse of notation, we expand the definition of the Laplace transform to all vectors 𝑤 ∈ (ℝ∪ {±∞})𝑛
as follows. Let 𝑆 be the set of coordinates 𝑖 where 𝑤𝑖 ∈ {±∞}, then:

ℒ𝜇(𝑤) = log
∑︂

𝑥∈{±}𝑛 , sign(𝑥𝑆)=sign(𝑤𝑆)
exp(⟨𝑤−𝑆 , 𝑥−𝑆⟩)𝜇(𝑥) .

Definition 3 (Approximate oracle for the Laplace transform). Wesay that the oracle𝒪(·) 𝜀-approximately
computes the log-Laplace transform at 𝜇 if on input 𝑤, 𝒪 outputs exp(ℒ̂) s.t.

|ℒ̂ − ℒ𝜇(𝑤)| ≤ 𝜀 .

Theorem 4. Suppose that a distribution 𝜇 on {±1}𝑛 has cov(𝜏𝑤𝜇) ⪯ 𝑂(1) 𝐼 for all 𝑤 ∈ ℝ𝑛 , and we have
an oracle for 𝑂(𝜀/

√
𝑛)-approximately computing the log-Laplace transform of 𝜇. Then we can sample from a

distribution 𝜀-close in total variation distance to 𝜇, in log(𝑛/𝜀)𝑂(1) time using (𝑛/𝜀)𝑂(1) processors.

Thus, we improve upon [Ana+23]’s reduction from sampling to counting in two ways:

• We remove the assumption that the distribution needs to satisfy a transport inequality, which
is only known to hold for strongly Rayleigh distributions and partition-constraint strongly
Rayleigh distributions [Ana+23]. Under the weaker assumption of fractional log-concavity or
bounded covariance under tilts, [Ana+23] were only able to show a QuasiRNC reduction from
sampling to counting, i.e., their sampling algorithm uses ≈ 𝑛log 𝑛 processors.

• We only require an approximate counting oracle (see Definition 3) instead of the exact counting
oracle required by [Ana+23].

Theorem 4 implies the following corollary about asymmetric determinantal point processes (DPPs)
and Eulerian tours [see Ana+23, for details and definitions].
Corollary 5. Suppose that 𝜇 is an asymmetric DPP on a ground set of size 𝑛 or the distribution of uniformly
random Eulerian tours in a digraph of size 𝑛. Then, we can sample from a distribution 𝜀-close in total
variation distance to 𝜇 in time log(𝑛/𝜀)𝑂(1) using (𝑛/𝜀)𝑂(1) processors.

Hence, we resolve [Ana+21]’s question about designing an RNC sampler for directed Eulerian tours.

Note that for the distributions studied in [Ana+23], counting can be done exactly via determinant
computations, or in other words, there is exact access to the log-Laplace transform. But there
are several non-exact approximate counting techniques in the literature that can be efficiently
parallelized. A notable one is Barvinok’s polynomial interpolation method [see, e.g., BB21]. As
an example of a distribution where Barvinok’s method can be applied, consider a distribution 𝜇
on the hypercube {±1}𝑛 defined by a polynomial Hamiltonian: 𝜇(𝑥) = exp(𝑝(𝑥)). [BB21] showed
that for quadratic and cubic polynomials 𝑝, assuming the coefficients of degree 2 and 3 terms are
not too large (see [BB21] for exact conditions),

∑︁
𝑥∈{±}𝑛 𝜇(𝑥) can be approximately computed in

quasipolynomial time. It can be observed that the approximation algorithm can be parallelized into
a QuasiRNC one since it simply involves computing 𝑛log 𝑛 separate quantities. We note that because

6

the condition on 𝑝 does not involve the linear terms, we can also apply the same algorithm to 𝜏𝑤𝜇,
whose potential differs from 𝜇 only in the linear terms. In other words, Barvinok’s method gives
us the oracle in Definition 3. In the same paper, [BB21] prove that the partition functions of these
models are root-free in a sector, a condition known as sector-stability, which is known to imply
fractional log-concavity [Ali+21]. As a result, by plugging in Barvinok’s approximate counting
algorithm into our result, we obtain QuasiRNC sampling algorithms, which at least in the case of
cubic 𝑝 were not known before.

2 Preliminaries

We let log denote the natural logarithm. For 𝑥 ∈ ℝ𝑑, ∥𝑥∥ denotes the usual Euclidean norm of 𝑥.

For two distributions 𝜌 and 𝜋, we use 𝑑TV(𝜌,𝜋) to denote their total variation distance defined as
sup{𝜌(𝐸) − 𝜋(𝐸) | 𝐸 is an event}.
A stronger notion of distance is the Kullback–Leibler (KL) divergence.
Definition 6 (Kullback–Leibler divergence). For two probability densities 𝜌,𝜋 we define

𝒟KL(𝜌 ∥ 𝜋) = 𝔼𝜌 log(𝜌/𝜋) .

We have the following relation between the KL divergence and TV distance, known as the Pinsker
inequality.

𝑑TV(𝜌,𝜋) ≤
√︃

1
2𝒟KL(𝜌 ∥ 𝜋) .

2.1 Log-concave distributions

Consider a density function 𝜋 : ℝ𝑑 → ℝ≥0 where 𝜋(𝑥) = exp(−𝑉(𝑥)). We call 𝑉 the potential
function for 𝜋. Throughout the paper, we will assume that 𝑉 is twice continuously differentiable
for simplicity of exposition.
Definition 7 (Smoothness). For 𝛽 > 0, we say 𝜋 is 𝛽-smooth if the gradients of the potential are
𝛽-Lipschitz, that is

∥∇𝑉(𝑥) − ∇𝑉(𝑦)∥ ≤ 𝛽 ∥𝑥 − 𝑦∥ , for all 𝑥, 𝑦 ∈ ℝ𝑑 .

For twice differentiable 𝑉 , this is equivalent to

−𝛽𝐼 ⪯ ∇2𝑉 ⪯ 𝛽𝐼 .

When 𝑉 is convex, we call 𝜋 a log-concave density. A strengthening of this condition is:
Definition 8 (Strong log-concavity). For 𝛼 > 0, we say 𝜋 is 𝛼-strongly log-concave if

0 ≺ 𝛼𝐼 ⪯ ∇2𝑉 .

2.2 Log-Sobolev and transport-entropy inequalities

Definition 9 (Log-Sobolev inequality). We say𝜋 satisfies a log-Sobolev inequality (LSI)with constant
𝛼 if for all smooth 𝑓 : ℝ𝑑 → ℝ,

Ent𝜋[𝑓 2] ≔ 𝔼𝜋[𝑓 2 log(𝑓 2/𝔼𝜋(𝑓 2))] ≤ 2
𝛼
𝔼𝜋[∥∇ 𝑓 ∥2] .

7

By the Bakry–Émery criterion [BÉ06], if 𝜋 is 𝛼-strongly log-concave then 𝜋 satisfies LSI with constant
𝛼. The right-hand side of the above inequality can also be written as the relative Fisher information.
Definition 10 (Relative Fisher information). The relative Fisher information of 𝜌 w.r.t. 𝜋 is

FI(𝜌 ∥ 𝜋) = 𝔼𝜌[∥∇ log(𝜌/𝜋)∥2] . (5)

The LSI is equivalent to the following relation between KL divergence and Fisher information:

𝒟KL(𝜌 ∥ 𝜋) ≤
1

2𝛼 FI(𝜌 ∥ 𝜋) for all probability measures 𝜌 .

Indeed, take 𝑓 =
√︁
𝜌/𝜋 in the above definition of the LSI.

Definition 11 (Wasserstein distance). We denote by𝑊2 the Wasserstein distance between 𝜌 and 𝜋,
which is defined as

𝑊2
2 (𝜌,𝜋) = inf

{︁
𝔼(𝑋,𝑌)∼Π[∥𝑋 − 𝑌∥2] | Π is a coupling of 𝜌,𝜋

}︁
,

where the infimum is over coupling distributions Π of (𝑋,𝑌) such that 𝑋 ∼ 𝜌, 𝑌 ∼ 𝜋.

The log-Sobolev inequality implies the following transport-entropy inequality, known as Talagrand’s
𝑇2 inequality [OV00]:

𝛼
2 𝑊

2
2 (𝜌,𝜋) ≤ 𝒟KL(𝜌 ∥ 𝜋) . (6)

3 Parallel sampling guarantees

In this section, we formally state our main parallel sampling guarantees.

3.1 LMC

We state the formal version of Theorem 1 for LMC as Theorem 13. Our assumption throughout is
that the score function 𝑠 is a pointwise accurate estimate of ∇𝑉 :
Assumption 12. The score function 𝑠 : ℝ𝑑 → ℝ satisfies ∥𝑠(𝑥) − ∇𝑉(𝑥)∥ ≤ 𝛿 for all 𝑥 ∈ ℝ𝑑 .

Theorem 13. Suppose that 𝑉 is 𝛽-smooth and 𝜋 satisfies a log-Sobolev inequality with constant 𝛼, and the
score function 𝑠 is 𝛿-accurate. Let 𝜅 ≔ 𝛽/𝛼. Suppose

𝛽ℎ ≤ 1/10 , 𝛿 ≤ 2
√
𝛼𝜀 , 𝑀 ≥ 7 max{𝜅𝑑/𝜀2 , 𝜅2} ,

𝐾 ≥ 2 + log𝑀 , 𝑁ℎ ≥ 𝛼−1 log
2𝒟KL(𝜇0 ∥ 𝜋)

𝜀2 .

(7)

Then, the output distribution 𝜇𝑁ℎ of Algorithm 1 satisfies

max
{︂√𝛼

2 𝑊2(𝜇𝑁ℎ ,𝜋), 𝑑TV(𝜇𝑁ℎ ,𝜋)
}︂
≤
√︃
𝒟KL(𝜇𝑁ℎ ∥ 𝜋)

2 ≤ 𝜀.

Tomake the guarantee more explicit, we can combine it with the following well-known initialization
bound, see, e.g., Dwivedi, Chen, Wainwright, and Yu [Dwi+19, §3.2].

8

Corollary 14. Suppose that 𝜋 = exp(−𝑉) with 0 ≺ 𝛼𝐼 ⪯ ∇2𝑉 ⪯ 𝛽𝐼, and let 𝜅 ≔ 𝛽/𝛼. Let 𝑥★ be the
minimizer of 𝑉 . Then, for 𝜇0 = 𝒩(𝑥★, 𝛽−1𝐼), it holds that𝒟KL(𝜇0 ∥ 𝜋) ≤ 𝑑

2 log 𝜅.

Consequently, setting

ℎ =
1

10𝛽 , 𝛿 = 2
√
𝛼𝜀 , 𝑀 = 7 max

{︁𝜅𝑑
𝜀2 , 𝜅

2}︁ , 𝐾 = 3 log𝑀 , 𝑁 = 10𝜅 log 𝑑 log 𝜅
𝜀2 ,

then Algorithm 1 initialized at 𝜇0 outputs 𝜇𝑁ℎ satisfying

max
{︁√𝛼

2 𝑊2(𝜇𝑁ℎ ,𝜋), 𝑑TV(𝜇𝑁ℎ ,𝜋)
}︁
≤
√︃
𝒟KL(𝜇𝑁ℎ ∥ 𝜋)

2 ≤ 𝜀 .

Also, Algorithm 1 uses a total of 𝐾𝑁 = ˜︁𝑂(𝜅 log2(𝑑/𝜀2)) parallel rounds and 𝑀 𝛿-approximate gradient
evaluations in each round.

The proofs for this section are given in §A.

3.2 ULMC

In this section, we design a parallel sampler based on underdamped LangevinMonte Carlo (ULMC),
also called kinetic Langevin, which has similar parallel iteration complexity as LMC but requires
less total work. Since there are difficulties applying the interpolation method without higher-order
smoothness assumptions (see the discussion in [Ma+21; Zha+23]), we will use a different proof
technique based on Girsanov’s theorem, as in [AltChe23warm; Zha+23]. Note that since we seek
TV guarantees, we cannot apply the coupling arguments of Cheng, Chatterji, Bartlett, and Jordan
[Che+18] and Dalalyan and Riou-Durand [DR20].

3.2.1 Algorithm

In continuous time, the underdamped Langevin diffusion is the coupled system of SDEs

𝑑𝑋𝑡 = 𝑃𝑡 𝑑𝑡 ,

𝑑𝑃𝑡 = −∇𝑉(𝑋𝑡) 𝑑𝑡 − 𝛾𝑃𝑡 𝑑𝑡 +
√︁

2𝛾 𝑑𝐵𝑡 ,

where 𝛾 > 0 is the friction parameter. Throughout, we will simply set 𝛾 =
√︁

8𝛽, where 𝛽 is the
smoothness parameter.

The idea for developing a parallel sampler is similar as before: we parallelize Picard iteration. How-
ever, in order to eventually apply Girsanov’s theorem to analyze the algorithm, the discretization
must be chosen so that 𝑑𝑋𝑡 = 𝑃𝑡 𝑑𝑡 is preserved. Hence, we will use the exponential Euler integrator.

We use the following notation: 𝜏(𝑡) is the largest multiple of ℎ/𝑀 which is less than 𝑡, i.e., 𝜏(𝑡) =
⌊𝑡/ ℎ𝑀 ⌋ ℎ

𝑀 . We define a sequence of processes (𝑋(0) , 𝑃(0)), (𝑋(1) , 𝑃(1)), etc., so that

𝑑𝑋
(𝑘+1)
𝑡 = 𝑃

(𝑘+1)
𝑡 𝑑𝑡 ,

𝑑𝑃
(𝑘+1)
𝑡 = −∇𝑉(𝑋(𝑘)

𝜏(𝑡)) 𝑑𝑡 − 𝛾𝑃(𝑘+1)
𝑡 𝑑𝑡 +

√︁
2𝛾 𝑑𝐵𝑡 .

This is a linear SDE, so it can be integrated exactly, yielding

𝑋
(𝑘+1)
𝑛ℎ+(𝑚+1)ℎ/𝑀 = 𝑋

(𝑘+1)
𝑛ℎ+𝑚ℎ/𝑀 +

1 − exp(−𝛾ℎ/𝑀)
𝛾

𝑃
(𝑘+1)
𝑛ℎ+𝑚ℎ/𝑀

9

Algorithm 2 Parallelized underdamped Langevin dynamics
Input: (𝑋0 , 𝑃0) ∼ 𝜇0, approximate score function 𝑠 : ℝ𝑑 → ℝ𝑑 (𝑠 ≈ ∇𝑉)
for 𝑛 = 0, . . . , 𝑁 − 1 do

for 𝑚 = 0, . . . , 𝑀 in parallel do
(𝑋(0)

𝑛ℎ+𝑚ℎ/𝑀 , 𝑃
(0)
𝑛ℎ+𝑚ℎ/𝑀) ← (𝑋𝑛ℎ , 𝑃𝑛ℎ)

Sample correlated Gaussian vectors according to Eq. (10)
for 𝑘 = 0, . . . , 𝐾 − 1 do

for 𝑚 = 0, . . . , 𝑀 in parallel do
Compute (𝑋(𝑘+1)

𝑛ℎ+𝑚ℎ/𝑀 , 𝑃
(𝑘+1)
𝑛ℎ+𝑚ℎ/𝑀) using Eq. (8) and Eq. (9), replacing ∇𝑉 with 𝑠

(𝑋(𝑛+1)ℎ , 𝑃(𝑛+1)ℎ) ← (𝑋(𝐾)𝑛ℎ+ℎ , 𝑃
(𝐾)
𝑛ℎ+ℎ)

− ℎ/𝑀 − (1 − exp(−𝛾ℎ/𝑀))/𝛾
𝛾

∇𝑉(𝑋(𝑘)
𝑛ℎ+𝑚ℎ/𝑀) + 𝜉𝑋 , (8)

𝑃
(𝑘+1)
𝑛ℎ+(𝑚+1)ℎ/𝑀 = exp(−𝛾ℎ/𝑀)𝑃(𝑘+1)

𝑛ℎ+𝑚ℎ/𝑀 −
1 − exp(−𝛾ℎ/𝑀)

𝛾
∇𝑉(𝑋(𝑘)

𝑛ℎ+𝑚ℎ/𝑀) + 𝜉𝑃 , (9)

where (𝜉𝑋 , 𝜉𝑃) is a correlated Gaussian vector in ℝ𝑑 ×ℝ𝑑 with law 𝒩(0,Σ), where

Σ =

[︄ 2
𝛾 [ℎ𝑀 − 2

𝛾 (1 − exp(−𝛾ℎ/𝑀)) + 1
2𝛾 (1 − exp(−2𝛾ℎ/𝑀))] ∗

1
𝛾 (1 − 2 exp(−𝛾ℎ/𝑀) + exp(−2𝛾ℎ/𝑀)) 1 − exp(−2𝛾ℎ/𝑀)

]︄
, (10)

and the upper-left entry marked ∗ is determined by symmetry.

Note that each processor 𝑚 = 1, . . . , 𝑀 can independently generate a correlated Gaussian vector
according to the above law and store it. Then, the updates for the above discretization can be
computed quickly in parallel. We summarize the algorithm below as Algorithm 2.

3.2.2 Analysis

We now give our guarantees for Algorithm 2. Compared to Theorem 13, it improves the number of
processors by roughly a factor of

√
𝜅𝑑/𝜀. Although it is stated for strongly log-concave measures

for simplicity, similarly to §3.1, the discretization guarantees only require 𝜋 to satisfy a log-Sobolev
inequality and smoothness; see Theorem 20 for a more precise statement. The proof is given in §B.
Theorem 15. Assume that𝑉 is 𝛼-strongly convex and 𝛽-smooth; let 𝜅 ≔ 𝛽/𝛼. Assume that𝑉 is minimized
at 𝑥★. Consider Algorithm 2 initialized at 𝜇0 = 𝒩(𝑥★, 𝛽−1𝐼) ⊗ 𝒩(0, 𝐼) and with

ℎ = Θ
(︁
1/
√︁
𝛽
)︁
, 𝛿 ≤ ˜︁𝑂 (︁ √𝛼𝜀√

log 𝑑
)︁
, 𝑀 = ˜︁Θ (︁√𝜅𝑑

𝜀

)︁
, 𝐾 = Θ

(︁
log 𝜅𝑑

𝜀2
)︁
, 𝑁 = ˜︁Θ (︁

𝜅 log 𝑑

𝜀2
)︁
.

Then, the law of the output of Algorithm 2 is 𝜀-close in total variation distance to 𝜋. The algorithm uses a
total of 𝐾𝑁 = ˜︁Θ(𝜅 log2(𝑑/𝜀2)) parallel rounds and 𝑀 𝛿-approximate gradient evaluations in each round.

4 Implications for sampling from discrete distributions

In this section, we prove Theorem 4. For simplicity, we only state our parallel guarantees using
parallel LMC, for which the initialization is more straightforward, but it is easy to combine the

10

Algorithm 3 Framework for discrete sampling via continuous sampling
Initialize 𝑤0 ← 0
for 𝑖 = 0, . . . , 𝑇 − 1 do

𝑥𝑖+1 ← (approximate) sample from 𝜏𝑤𝑖𝜇 ∗ 𝒩 (0, 𝑐𝐼)
𝑤𝑖+1 ← 𝑤𝑖 + 𝑥𝑖+1/𝑐

return sign(𝑤𝑇) ∈ {±1}𝑛

results of this section with parallel ULMC as well. For concreteness, we restate [Ana+23]’s sampling-
to-counting reduction. Then, Theorem 4 is a consequence of Anari, Huang, Liu, Vuong, Xu, and Yu
[Ana+23, Lemma 7], our fast parallel sampler with TV guarantee, and a modified version of Anari,
Huang, Liu, Vuong, Xu, and Yu [Ana+23, Proposition 27]. We include the proofs for completeness
in §C.

We give the overall algorithm as Algorithm 3. The following lemma shows that the step of sampling
from distributions of the form 𝜏𝑤𝜇 ∗ 𝒩 (0, 𝑐𝐼) is a well-conditioned log-concave sampling problem,
and moreover, that the score can be approximated quickly in parallel.
Lemma 16 ([Ana+23]). Let 𝜈 = 𝜏𝑤𝜇 ∗ 𝒩 (0, 𝑐𝐼). Then, 𝜈 ∝ exp(−𝑉) with

−∇𝑉(𝑦) =
mean(𝜏𝑦/𝑐+𝑤𝜇)

𝑐
− 𝑦
𝑐
=

1
𝑐

∑︁
𝑥∈{±}𝑛 𝑥 exp(⟨𝑦/𝑐 + 𝑤, 𝑥⟩)𝜇(𝑥)∑︁
𝑥∈{±}𝑛 exp(⟨𝑦/𝑐 + 𝑤, 𝑥⟩)𝜇(𝑥) −

𝑦

𝑐

and

∇2𝑉(𝑦) = −
cov(𝜏𝑦/𝑐+𝑤𝜇)

𝑐2 + 𝐼
𝑐
.

If cov(𝜏𝑦𝜇) ⪯ 𝑐
2 𝐼 for all 𝑦 ∈ ℝ𝑛 , then 𝜈 is well-conditioned strongly log-concave with condition number

𝜅 = 𝑂(1), i.e., for all 𝑦 ∈ ℝ𝑛 :
1
2𝑐 𝐼 ⪯ ∇

2𝑉(𝑦) ⪯ 1
𝑐
𝐼 .

Furthermore, a 𝛿-approximate score function 𝑠 for ∇𝑉 can be computed in 𝑂(1) parallel iterations using 𝑛
machines, each making 𝑂(1) calls to an 𝜀 = 𝑂(𝛿

√︁
𝑐/𝑛)-approximate oracle for the Laplace transform of 𝜇.

The next lemma states that if the samples from the continuous densities 𝜏𝑤𝜇 ∗ 𝒩 (0, 𝑐𝐼) are accurate,
then the output of Algorithm 3 outputs an approximate sample from 𝜇.
Lemma 17 (Anari, Huang, Liu, Vuong, Xu, and Yu [Ana+23, Lemma 7]). If the continuous samples are
exact in Algorithm 3, then for 𝑇 = Ω(𝑐 log(𝑛/𝜀)), the distribution of 𝑐𝑤𝑇/𝑇 is 𝜇 ∗ 𝒩 (0, 𝑐𝑇 𝐼) and output of
the algorithm is 𝜀-close in total variation distance to 𝜇.

These results, together with an initialization bound (see Lemma 23), then yield the proof of Theo-
rem 4. Details are given in §C.

Acknowledgements

SC acknowledges the support of the Eric and Wendy Schmidt Fund at the Institute for Advanced
Study.

11

A Proofs for LMC

In this section, we give the proofs for §3.1. Let 𝜇𝑛ℎ ≔ law(𝑋𝑛ℎ). We first need the following recursive
bound, which shows that the error decays exponentially fast in the parallel refinement.
Lemma 18. Suppose that𝑉 is 𝛽-smooth, and that the score function 𝑠 is 𝛿-accurate. Assume that 𝛽ℎ ≤ 1/10
and that 𝜋 satisfies Talagrand’s 𝑇2 inequality with constant 𝛼. Then,

max
𝑚=1,...,𝑀

𝔼[∥𝑋(𝐾)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋

(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2]

≤ 34 exp(−3.5𝐾)
(︂
1.4𝑑ℎ + 8𝛽2ℎ2

𝛼
𝒟KL(𝜇𝑛ℎ ∥ 𝜋)

)︂
+ 8.2𝛿2ℎ2 .

Proof. Let

ℰ𝑘 ≔ max
𝑚=1,...,𝑀

𝔼[∥𝑋(𝑘)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋

(𝑘−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] .

For any 𝑚 = 1, . . . , 𝑀,

𝔼[∥𝑋(𝑘+1)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋

(𝑘)
𝑛ℎ+𝑚ℎ/𝑀∥

2] = 𝔼
[︂∥︁∥︁∥︁ ℎ
𝑀

𝑚−1∑︂
𝑚′=1

(︁
𝑠(𝑋(𝑘)

𝑛ℎ+𝑚′ℎ/𝑀) − 𝑠(𝑋
(𝑘−1)
𝑛ℎ+𝑚′ℎ/𝑀)

)︁∥︁∥︁∥︁2]︂
≤ ℎ2𝑚

𝑀2

𝑚−1∑︂
𝑚′=1

𝔼[∥𝑠(𝑋(𝑘)
𝑛ℎ+𝑚′ℎ/𝑀) − 𝑠(𝑋

(𝑘−1)
𝑛ℎ+𝑚′ℎ/𝑀)∥

2]

≤ 3ℎ2 max
𝑚′=1,...,𝑚

𝔼[∥∇𝑉(𝑋(𝑘)
𝑛ℎ+𝑚′ℎ/𝑀) − ∇𝑉(𝑋

(𝑘−1)
𝑛ℎ+𝑚′ℎ/𝑀)∥

2] + 6𝛿2ℎ2

≤ 3𝛽2ℎ2 ℰ𝑘 + 6𝛿2ℎ2

and hence ℰ𝑘+1 ≤ 3𝛽2ℎ2 ℰ𝑘 + 6𝛿2ℎ2. Also,

𝔼[∥𝑋(1)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋𝑛ℎ∥

2] = ℎ2𝑚2

𝑀2 𝔼[∥𝑠(𝑋𝑛ℎ)∥2] +
𝑑ℎ𝑚

𝑀

≤ 2𝛿2ℎ2 + 2ℎ2 𝔼[∥∇𝑉(𝑋𝑛ℎ)∥2] + 𝑑ℎ

and thus ℰ1 is bounded by the right-hand side above. Iterating the recursion and using 𝛽ℎ ≤ 10,

ℰ𝐾 ≤ exp(−3.5 (𝐾 − 1)) ℰ1 + 6.2𝛿2ℎ2

≤ exp(−3.5 (𝐾 − 1)) {2𝛿2ℎ2 + 2ℎ2 𝔼[∥∇𝑉(𝑋𝑛ℎ)∥2] + 𝑑ℎ} + 6.2𝛿2ℎ2 .

Also, by Vempala and Wibisono [VW19, Lemma 10],

𝔼[∥∇𝑉(𝑋𝑛ℎ)∥2] ≤ 2𝛽𝑑 + 4𝛽2

𝛼
𝒟KL(𝜇𝑛ℎ ∥ 𝜋) .

Substituting this in and using 𝛽ℎ ≤ 1/10 yields the result.

Proof of Theorem 13. We will use the interpolation method. Let 𝑋𝑛ℎ+𝑚ℎ/𝑀 = 𝑋
(𝐾)
𝑛ℎ+𝑚ℎ/𝑀 . It is easy to

see that

𝑋𝑛ℎ+(𝑚+1)ℎ/𝑀 = 𝑋𝑛ℎ+𝑚ℎ/𝑀 −
ℎ

𝑀
𝑠(𝑋(𝐾−1)

𝑛ℎ+𝑚ℎ/𝑀) +
√

2 (𝐵𝑛ℎ+(𝑚+1)ℎ/𝑀 − 𝐵𝑛ℎ+𝑚ℎ/𝑀) .

12

Let 𝑋 denote the interpolation of 𝑋(𝐾), i.e., for 𝑡 ∈ [𝑛ℎ + 𝑚ℎ/𝑀, 𝑛ℎ + (𝑚 + 1)ℎ/𝑀], let

𝑋𝑡 = 𝑋𝑛ℎ+𝑚ℎ/𝑀 − (𝑡 − 𝑛ℎ − 𝑚ℎ/𝑀) 𝑠(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀) +

√
2 (𝐵𝑡 − 𝐵𝑛ℎ+𝑚ℎ/𝑀) .

Note that 𝑠(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀) is a constant vector field given 𝑋(𝐾−1)

𝑛ℎ+𝑚ℎ/𝑀 . Let 𝜇𝑡 be the law of 𝑋𝑡 . The same
argument as in Vempala and Wibisono [VW19, Proof of Lemma 3] yields the differential inequality

𝜕𝑡𝒟KL(𝜇𝑡 ∥ 𝜋) = −FI(𝜇𝑡 ∥ 𝜋) + 𝔼
⟨︂
∇𝑉(𝑋𝑡) − 𝑠(𝑋(𝐾−1)

𝑛ℎ+𝑚ℎ/𝑀),∇ log
𝜇𝑡(𝑋𝑡)
𝜋(𝑋𝑡)

⟩︂
≤ −3

4 FI(𝜇𝑡 ∥ 𝜋) + 𝔼[∥∇𝑉(𝑋𝑡) − 𝑠(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2]
(11)

where we used ⟨𝑎, 𝑏⟩ ≤ ∥𝑎∥2 + 1
4 ∥𝑏∥2 and 𝔼[∥∇ log 𝜇𝑡 (𝑋𝑡)

𝜋(𝑋𝑡) ∥
2] = FI(𝜇𝑡 ∥ 𝜋). Next, we bound

𝔼[∥∇𝑉(𝑋𝑡) − 𝑠(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2]

≤ 2𝔼[∥∇𝑉(𝑋𝑡) − ∇𝑉(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2 + ∥∇𝑉(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀) − 𝑠(𝑋

(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2]

≤ 2𝔼[∥∇𝑉(𝑋𝑡) − ∇𝑉(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2] + 2𝛿2

≤ 2𝛽2 𝔼[∥𝑋𝑡 − 𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] + 2𝛿2 .

(12)

Moreover,

𝔼[∥𝑋𝑡 − 𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] ≤ 2𝔼[∥𝑋𝑡 − 𝑋𝑛ℎ+𝑚ℎ/𝑀∥2] + 2𝔼[∥𝑋(𝐾)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋

(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] . (13)

The first term above is

𝔼[∥𝑋𝑡 − 𝑋𝑛ℎ+𝑚ℎ/𝑀∥2] = (𝑡 − 𝑛ℎ − 𝑚ℎ/𝑀)2 𝔼[∥𝑠(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2] + 𝑑 (𝑡 − 𝑛ℎ − 𝑚ℎ/𝑀)

≤ 2ℎ2

𝑀2 𝔼[∥∇𝑉(𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀)∥

2] + 2𝛿2ℎ2

𝑀2 +
𝑑ℎ

𝑀

≤ 4𝛽2ℎ2

𝑀2 𝔼[∥𝑋𝑡 − 𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] + 4ℎ2

𝑀2 𝔼[∥∇𝑉(𝑋𝑡)∥2] +
2𝛿2ℎ2

𝑀2 +
𝑑ℎ

𝑀
.

Substituting this into Eq. (13) and using 𝛽ℎ ≤ 1/10 yields

𝔼[∥𝑋𝑡 − 𝑋(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] ≤ 4.4ℎ2

𝑀2 𝔼[∥∇𝑉(𝑋𝑡)∥2] +
2.2𝛿2ℎ2

𝑀2 + 1.1𝑑ℎ
𝑀

+ 2.2𝔼[∥𝑋(𝐾)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋

(𝐾−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] .

Now, Chewi, Erdogdu, Li, Shen, and Zhang [Che+21, Lemma 16] yields

𝔼[∥∇𝑉(𝑋𝑡)∥2] ≤ FI(𝜇𝑡 ∥ 𝜋) + 2𝛽𝑑 .

For the last term, we can apply Lemma 18.

Substituting everything into Eq. (11) and cleaning up the terms yields

𝜕𝑡𝒟KL(𝜇𝑡 ∥ 𝜋) ≤ −0.66 FI(𝜇𝑡 ∥ 𝜋) + 2.5𝛿2

+ 2𝛽2
[︂2𝑑ℎ
𝑀
+ 75 exp(−3.5𝐾)

(︂
1.4𝑑ℎ + 8𝛽2ℎ2

𝛼
𝒟KL(𝜇𝑛ℎ ∥ 𝜋)

)︂]︂
.

13

Assuming that 𝐾 ≥ 1.3 + 0.3 log𝑀, and using the LSI,

𝜕𝑡𝒟KL(𝜇𝑡 ∥ 𝜋) ≤ −1.3𝛼𝒟KL(𝜇𝑡 ∥ 𝜋) + 2.5𝛿2 + 6.8𝛽2𝑑ℎ

𝑀
+ 16𝛽4ℎ2

𝛼𝑀
𝒟KL(𝜇𝑛ℎ ∥ 𝜋) .

Integrating this inequality,

𝒟KL(𝜇(𝑛+1)ℎ ∥ 𝜋) ≤
[︂
exp(−1.3𝛼ℎ) + 16𝛽4ℎ3

𝛼𝑀

]︂
𝒟KL(𝜇𝑛ℎ ∥ 𝜋) + 2.5𝛿2ℎ + 6.8𝛽2𝑑ℎ2

𝑀
.

Provided 𝑀 ≥ 6.4𝜅2, then exp(−1.3𝛼ℎ) + 16𝛽4

ℎ3 𝛼𝑀 ≤ exp(−𝛼ℎ). Iterating,

𝒟KL(𝜇𝑁ℎ ∥ 𝜋) ≤ exp(−𝛼𝑁ℎ)𝒟KL(𝜇0 ∥ 𝜋) +
2.8𝛿2

𝛼
+ 7.5𝛽2𝑑ℎ

𝛼𝑀
.

Thus we obtain the guarantee in KL divergence. The guarantees in TV and𝑊2 distance follow from
Pinsker’s and Talagrand’s inequality respectively.

B Proofs for ULMC

We turn towards the analysis of Algorithm 2. We start by bounding the discretization error between
the algorithm and the continuous-time process using Girsanov’s theorem. Throughout, let 𝜇𝑁ℎ
denote the law of the output of the algorithm, and let 𝜋𝑡 denote the marginal law of the continuous-
time Langevin diffusion at time 𝑡 started from 𝜇0.

First, we need a lemma.
Lemma 19. Let (𝑋𝑡 , 𝑃𝑡)𝑡≥0 denote the continuous-time underdamped Langevin diffusion, started at (𝑋0 , 𝑃0) ∼
𝜇0. Assume that 𝑉 is 𝛽-smooth, and that 𝜋𝑋 ∝ exp(−𝑉) satisfies Talagrand’s 𝑇2 inequality with constant 𝛼.
Let 𝜋 = 𝜋𝑋 ⊗ 𝒩(0, 𝐼). Then,

𝔼[∥∇𝑉(𝑋𝑡)∥2] ≤ 2𝛽𝑑 + 4𝛽2

𝛼
𝒟KL(𝜇0 ∥ 𝜋) , 𝔼[∥𝑃𝑡∥2] ≤ 2𝑑 +𝒟KL(𝜇0 ∥ 𝜋) .

Proof. For the first bound, we use a similar proof as Vempala and Wibisono [VW19, Lemma 10].
Namely, by Lipschitzness of ∇𝑉 , the transport inequality, and the data-processing inequality,

𝔼[∥∇𝑉(𝑋𝑡)∥2] ≤ 2 𝔼𝜋𝑋 [∥∇𝑉∥2] + 2𝛽2𝑊2
2 (law(𝑋𝑡),𝜋𝑋) ≤ 2𝛽𝑑 + 4𝛽2

𝛼
𝒟KL(law(𝑋𝑡) ∥ 𝜋𝑋)

≤ 2𝛽𝑑 + 4𝛽2

𝛼
𝒟KL(law(𝑋𝑡 , 𝑃𝑡) ∥ 𝜋) ≤ 2𝛽𝑑 + 4𝛽2

𝛼
𝒟KL(𝜇0 ∥ 𝜋) .

Similarly,

𝔼[∥𝑃𝑡∥2] ≤ 2 𝔼𝒩(0,𝐼)[∥·∥2] + 2𝑊2
2 (law(𝑃𝑡),𝒩(0, 𝐼)) ≤ 2𝑑 + 4𝒟KL(𝜇0 ∥ 𝜋) .

This completes the proof.

We now state and prove our main discretization bound.
Theorem 20. Suppose that 𝑉 is 𝛽-smooth and that 𝜋𝑋 ∝ exp(−𝑉) satisfies Talagrand’s 𝑇2 inequality with
constant 𝛼. Let 𝜅 ≔ 𝛽/𝛼. Assume that the parallel depth satisfies 𝐾 ≳ log𝑀 (for a sufficiently large implied
constant) and that ℎ ≲ 1/

√︁
𝛽 (for a sufficiently small implied constant). Then, it holds that

𝒟KL(𝜋𝑇 ∥ 𝜇𝑇) ≲
𝑇√︁
𝛽

(︂
𝛿2 + 𝛽2𝑑ℎ2

𝑀2 +
𝛽2ℎ2

𝑀2
(︁
1 + 𝜅

𝑀2
)︁
𝒟KL(𝜇0 ∥ 𝜋)

)︂
.

14

Proof. Let P denote the Wiener measure on [0, 𝑇], under which (𝐵𝑡)𝑡∈[0,𝑇] is a standard Brownian
motion. Using this Brownian motion, we define the algorithm process, i.e.,

𝑑𝑋
(𝑘+1)
𝑡 = 𝑃

(𝑘+1)
𝑡 𝑑𝑡 ,

𝑑𝑃
(𝑘+1)
𝑡 = −𝑠(𝑋(𝑘)

𝜏(𝑡)) 𝑑𝑡 − 𝛾𝑃(𝑘+1)
𝑡 𝑑𝑡 +

√︁
2𝛾 𝑑𝐵𝑡 .

We also drop the superscripts for parallel depth 𝐾, i.e., (𝑋(𝐾)𝑡 , 𝑃
(𝐾)
𝑡) = (𝑋𝑡 , 𝑃𝑡). We now write

𝑑𝑃𝑡 = −∇𝑉(𝑋𝑡) 𝑑𝑡 − 𝛾𝑃𝑡 𝑑𝑡 +
√︁

2𝛾 𝑑𝐵̃𝑡

where 𝑑𝐵̃𝑡 = 𝑑𝐵𝑡 − 1√
2𝛾 (𝑠(𝑋

(𝐾−1)
𝜏(𝑡)) − ∇𝑉(𝑋𝑡)) 𝑑𝑡. By Girsanov’s theorem [see Le 16, §5.6], if we define

the path measure Q via

𝑑Q
𝑑P = exp

(︂ 1√
2𝛾

∫ 𝑇

0
⟨𝑠(𝑋(𝐾−1)

𝜏(𝑡)) − ∇𝑉(𝑋𝑡), 𝑑𝐵𝑡⟩ −
1

8𝛾

∫ 𝑇

0
∥𝑠(𝑋(𝐾−1)

𝜏(𝑡)) − ∇𝑉(𝑋𝑡)∥
2 𝑑𝑡

)︂
, (14)

then under Q the process 𝐵̃ is a standard Brownian motion. It follows readily that under Q, the
process (𝑋, 𝑃) is the continuous-time underdamped Langevin diffusion. By the data-processing
inequality and Eq. (14),

𝒟KL(𝜋𝑇 ∥ 𝜇𝑇) ≤ 𝒟KL(Q ∥ P) = 𝔼Q log 𝑑Q
𝑑P

= 𝔼Q

[︂ 1√
2𝛾

∫ 𝑇

0
⟨𝑠(𝑋(𝐾−1)

𝜏(𝑡)) − ∇𝑉(𝑋𝑡), 𝑑𝐵𝑡⟩ −
1

8𝛾

∫ 𝑇

0
∥𝑠(𝑋(𝐾−1)

𝜏(𝑡)) − ∇𝑉(𝑋𝑡)∥
2 𝑑𝑡

]︂
= 𝔼Q

[︂ 1√
2𝛾

∫ 𝑇

0
⟨𝑠(𝑋(𝐾−1)

𝜏(𝑡)) − ∇𝑉(𝑋𝑡), 𝑑𝐵̃𝑡⟩ +
1

8𝛾

∫ 𝑇

0
∥𝑠(𝑋(𝐾−1)

𝜏(𝑡)) − ∇𝑉(𝑋𝑡)∥
2 𝑑𝑡

]︂
=

1
8𝛾 𝔼Q

∫ 𝑇

0
∥𝑠(𝑋(𝐾−1)

𝜏(𝑡)) − ∇𝑉(𝑋𝑡)∥
2 𝑑𝑡 . (15)

From now on, all expectations are taken under Q and we drop the subscript Q from the notation.
We focus on 𝑡 lying in the interval [𝑛ℎ, (𝑛 + 1)ℎ].
Of course, using the fact that we have 𝛿-accurate gradient evaluations,

𝔼[∥𝑠(𝑋(𝐾−1)
𝜏(𝑡)) − ∇𝑉(𝑋𝑡)∥

2] ≲ 𝛿2 + 𝔼[∥∇𝑉(𝑋(𝐾−1)
𝜏(𝑡)) − ∇𝑉(𝑋𝑡)∥

2]

≤ 𝛿2 + 𝛽2 𝔼[∥𝑋(𝐾−1)
𝜏(𝑡) − 𝑋𝑡∥

2] . (16)

We split this into two terms:

𝔼[∥𝑋(𝐾−1)
𝜏(𝑡) − 𝑋𝑡∥

2] ≲ 𝔼[∥𝑋𝑡 − 𝑋𝜏(𝑡)∥2] + 𝔼[∥𝑋𝜏(𝑡) − 𝑋(𝐾−1)
𝜏(𝑡) ∥

2] . (17)

We begin with the recursive term (the second one).

For any 𝑘 = 1, . . . , 𝐾, let

ℰ𝑘 ≔ max
𝑚=1,...,𝑀

𝔼[∥𝑋(𝑘)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋

(𝑘−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] .

15

To bound this quantity, we start with

𝔼[∥𝑋(𝑘)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋

(𝑘−1)
𝑛ℎ+𝑚ℎ/𝑀∥

2] = 𝔼
[︂∥︁∥︁∥︁∫ 𝑛ℎ+𝑚ℎ/𝑀

𝑛ℎ

(𝑃(𝑘)𝑡 − 𝑃
(𝑘−1)
𝑡) 𝑑𝑡

∥︁∥︁∥︁2]︂
≤ ℎ

∫ 𝑛ℎ+𝑚ℎ/𝑀

𝑛ℎ

𝔼[∥𝑃(𝑘)𝑡 − 𝑃
(𝑘−1)
𝑡 ∥2] 𝑑𝑡 . (18)

Next,

𝔼[∥𝑃(𝑘)𝑡 − 𝑃
(𝑘−1)
𝑡 ∥2] = 𝔼

[︂∥︁∥︁∥︁∫ 𝑡

𝑛ℎ

{−(𝑠(𝑋(𝑘−1)
𝜏(𝑠)) − 𝑠(𝑋

(𝑘−2)
𝜏(𝑠))) − 𝛾 (𝑃(𝑘)𝑠 − 𝑃(𝑘−1)

𝑠)} 𝑑𝑠
∥︁∥︁∥︁2]︂

≲ ℎ

∫ 𝑡

𝑛ℎ

𝔼[∥𝑠(𝑋(𝑘−1)
𝜏(𝑠)) − 𝑠(𝑋

(𝑘−2)
𝜏(𝑠))∥

2 + 𝛾2 ∥𝑃(𝑘)𝑠 − 𝑃(𝑘−1)
𝑠 ∥2] 𝑑𝑠 .

By Grönwall’s inequality,

𝔼[∥𝑃(𝑘)𝑡 − 𝑃
(𝑘−1)
𝑡 ∥2] ≲ ℎ exp(𝑂(𝛾2ℎ2))

∫ 𝑡

𝑛ℎ

𝔼[∥𝑠(𝑋(𝑘−1)
𝜏(𝑠)) − 𝑠(𝑋

(𝑘−2)
𝜏(𝑠))∥

2] 𝑑𝑠 .

Recall that 𝛾2 ≍ 𝛽. We assume throughout that ℎ ≲ 1/
√︁
𝛽 for a sufficiently small implied constant,

so that 𝛾2ℎ2 ≲ 1. Therefore,

𝔼[∥𝑃(𝑘)𝑡 − 𝑃
(𝑘−1)
𝑡 ∥2] ≲ ℎ

∫ 𝑡

𝑛ℎ

𝔼[∥𝑠(𝑋(𝑘−1)
𝜏(𝑠)) − 𝑠(𝑋

(𝑘−2)
𝜏(𝑠))∥

2] 𝑑𝑠

≲ 𝛿2ℎ2 + ℎ
∫ 𝑡

𝑛ℎ

𝔼[∥∇𝑉(𝑋(𝑘−1)
𝜏(𝑠)) − ∇𝑉(𝑋

(𝑘−2)
𝜏(𝑠))∥

2] 𝑑𝑠

≲ 𝛿2ℎ2 + 𝛽2ℎ

∫ 𝑡

𝑛ℎ

𝔼[∥𝑋(𝑘−1)
𝜏(𝑠) − 𝑋

(𝑘−2)
𝜏(𝑠) ∥

2] 𝑑𝑠 ≤ 𝛿2ℎ2 + 𝛽2ℎ2 ℰ𝑘−1 .

Substituting this into Eq. (18), we obtain

ℰ𝑘 ≲ 𝛿2ℎ4 + 𝛽2ℎ4 ℰ𝑘−1 .

Using ℎ ≲ 1/
√︁
𝛽 and iterating this bound,

ℰ𝐾 ≲ exp(−Ω(𝐾)) ℰ1 + 𝛿2ℎ4 . (19)

We must now bound ℰ1. To do so, we note that

𝔼[∥𝑋(1)
𝑛ℎ+𝑚ℎ/𝑀 − 𝑋𝑛ℎ∥

2] = 𝔼
[︂∥︁∥︁∥︁∫ 𝑛ℎ+𝑚ℎ/𝑀

𝑛ℎ

𝑃
(1)
𝑡 𝑑𝑡

∥︁∥︁∥︁2]︂
≤ ℎ

∫ 𝑛ℎ+𝑚ℎ/𝑀

𝑛ℎ

𝔼[∥𝑃(1)𝑡 ∥2] 𝑑𝑡 . (20)

Also,

𝔼[∥𝑃(1)𝑡 ∥2] ≲ 𝔼[∥𝑃𝑛ℎ∥2] + 𝔼
[︂∥︁∥︁∥︁∫ 𝑡

𝑛ℎ

{−𝑠(𝑋𝑛ℎ) − 𝛾𝑃(1)𝑠 } 𝑑𝑠 +
√︁

2𝛾 (𝐵𝑡 − 𝐵𝑛ℎ)
∥︁∥︁∥︁2]︂

≲ 𝔼[∥𝑃𝑛ℎ∥2] + ℎ2 𝔼[∥𝑠(𝑋𝑘ℎ)∥2] + 𝛾2ℎ

∫ 𝑡

𝑛ℎ

𝔼[∥𝑃(1)𝑠 ∥2] 𝑑𝑠

+ 𝛾 𝔼[∥𝐵̃𝑡 − 𝐵̃𝑛ℎ∥2] + 𝔼
[︂∥︁∥︁∥︁∫ 𝑡

𝑛ℎ

(𝑠(𝑋(𝐾−1)
𝜏(𝑠)) − ∇𝑉(𝑋𝑠)) 𝑑𝑠

∥︁∥︁∥︁2]︂
16

≲ 𝒫 + ℎ2𝛿2 + ℎ2𝒢 + 𝛾2ℎ

∫ 𝑡

𝑛ℎ

𝔼[∥𝑃(1)𝑠 ∥2] 𝑑𝑠 + 𝛾𝑑ℎ + ℎ2Δ .

In the above bound, we were careful to recall that we are working under Q, for which 𝐵̃ is the
Brownian motion (not 𝐵). Also, we have defined the following quantities:

𝒫 ≔ sup
𝑡∈[0,𝑇]

𝔼[∥𝑃𝑡∥2] , 𝒢 ≔ sup
𝑡∈[0,𝑇]

𝔼[∥∇𝑉(𝑋𝑡)∥2] ,

and

Δ ≔ sup
𝑡∈[𝑛ℎ,(𝑛+1)ℎ]

𝔼[∥𝑠(𝑋(𝐾−1)
𝜏(𝑡)) − ∇𝑉(𝑋𝑡)∥

2] .

Applying Grönwall’s inequality again,

𝔼[∥𝑃(1)𝑡 ∥2] ≲ 𝒫 + ℎ2𝛿2 + ℎ2𝒢 + 𝛾𝑑ℎ + ℎ2Δ .

Substituting this into Eq. (20),

ℰ1 ≲ ℎ2𝒫 + ℎ4𝛿2 + ℎ4𝒢 + 𝛾𝑑ℎ3 + ℎ4Δ .

Substituting this into Eq. (19) now yields

ℰ𝐾 ≲ exp(−Ω(𝐾)) (ℎ2𝒫 + ℎ4𝒢 + 𝛾𝑑ℎ3 + ℎ4Δ) + 𝛿2ℎ4 .

Recalling the definition of Δ and from Eq. (16) and Eq. (17), we have proven that

Δ ≲ 𝛿2 + 𝛽2
(︂

sup
𝑡∈[𝑛ℎ,(𝑛+1)ℎ]

𝔼[∥𝑋𝑡 − 𝑋𝜏(𝑡)∥2]

+ exp(−Ω(𝐾)) (ℎ2𝒫 + ℎ4𝒢 + 𝛾𝑑ℎ3 + ℎ4Δ) + 𝛿2ℎ4
)︂
.

Using ℎ ≲ 1/
√︁
𝛽, this yields

Δ ≲ 𝛿2 + 𝛽2
(︂

sup
𝑡∈[𝑛ℎ,(𝑛+1)ℎ]

𝔼[∥𝑋𝑡 − 𝑋𝜏(𝑡)∥2] + exp(−Ω(𝐾)) (ℎ2𝒫 + ℎ4𝒢 + 𝛾𝑑ℎ3)
)︂
.

We also note that

𝔼[∥𝑋𝑡 − 𝑋𝜏(𝑡)∥2] = 𝔼
[︂∥︁∥︁∥︁∫ 𝑡

𝜏(𝑡)
𝑃𝑠 𝑑𝑠

∥︁∥︁∥︁2]︂
≤ ℎ2

𝑀2 𝒫 .

The quantities 𝒫 , 𝒢 are controlled via Lemma 19. Now assume that exp(−Ω(𝐾)) ≤ 1/𝑀4, which
only requires 𝐾 ≳ log𝑀 for a sufficiently large absolute constant. When the dust settles,

Δ ≲ 𝛿2 + 𝛽2𝑑ℎ2

𝑀2 +
𝛽2ℎ2

𝑀2
(︁
1 + 𝜅

𝑀2
)︁
𝒟KL(𝜇0 ∥ 𝜋)

Substituting this into Eq. (15), and recalling that 𝛾 ≍
√︁
𝛽, we finally obtain

𝒟KL(𝜋𝑇 ∥ 𝜇𝑇) ≲
𝑇√︁
𝛽

(︂
𝛿2 + 𝛽2𝑑ℎ2

𝑀2 +
𝛽2ℎ2

𝑀2
(︁
1 + 𝜅

𝑀2
)︁
𝒟KL(𝜇0 ∥ 𝜋)

)︂
.

This completes the proof.

17

We must complement the discretization bound with a continuous-time convergence result, which
can be obtained from off-the-shelf results. See Zhang, Chewi, Li, Balasubramanian, and Erdogdu
[Zha+23, Lemma 5] for a statementwhich is convenient for our setting (adapted from [Ma+21], which
in turn followed the original entropic hypocoercivity due to Villani [Vil09]; see also Mon23HMC
for the corresponding result for idealized Hamiltonian Monte Carlo).
Theorem 21. Assume that𝑉 is 𝛽-smooth and that 𝜋𝑋 ∝ exp(−𝑉) satisfies the LSI with constant 𝛼. Consider
the functional

ℱ (𝜇 ∥ 𝜋) ≔ 𝒟KL(𝜇 ∥ 𝜋) + 𝔼𝜇

[︁∥︁∥︁𝔐1/2 ∇ log
𝜇

𝜋

∥︁∥︁2]︁
, 𝔐 ≔

[︃
1/(4𝛽) 1/

√︁
2𝛽

1/
√︁

2𝛽 4

]︃
⊗ 𝐼 .

Then, for all 𝑡 ≥ 0,

ℱ (𝜋𝑡 ∥ 𝜋) ≤ exp
(︂
− 𝛼𝑡

10
√︁

2𝛽

)︂
ℱ (𝜋0 ∥ 𝜋) .

We are now ready to prove Theorem 15.

Proof of Theorem 15. Let us show that 𝜇0 = 𝒩(𝑥★, 𝛽−1𝐼) ⊗ 𝒩(0, 𝐼) satisfies

ℱ (𝜇0 ∥ 𝜋) ≤
𝑑

2 (2 + log 𝜅) .

From Corollary 14, we know that𝒟KL(𝜇0 ∥ 𝜋) ≤ 𝑑
2 log 𝜅. Also,

𝔼𝜇0

[︁∥︁∥︁𝔐1/2 ∇ log
𝜇0

𝜋

∥︁∥︁2]︁
=

1
4𝛽 𝔼𝒩(𝑥★,𝛽−1𝐼)

[︁∥︁∥︁∇ log
𝒩(𝑥★, 𝛽−1𝐼)

𝜋𝑋
∥︁∥︁2]︁

=
1
4𝛽 𝔼𝑥∼𝒩(𝑥★,𝛽−1𝐼)

[︁∥︁∥︁∇𝑉(𝑥) − 𝛽

2 (𝑥 − 𝑥
★)
∥︁∥︁2]︁

≤ 1
2𝛽 𝔼𝑥∼𝒩(𝑥★,𝛽−1𝐼)

[︁
∥∇𝑉(𝑥) − ∇𝑉(𝑥★)∥2 + 𝛽2

4 ∥𝑥 − 𝑥
★∥2

]︁
≤ 𝛽 𝔼𝑥∼𝒩(𝑥★,𝛽−1𝐼)[∥𝑥 − 𝑥★∥2] ≤ 𝑑 .

The initialization bound follows.

The setting of parameters is such that from Theorem 20 and Theorem 21 respectively, we have
𝒟KL(𝜋𝑁ℎ ∥ 𝜇𝑁ℎ) ≲ 𝜀2 and𝒟KL(𝜋𝑁ℎ ∥ 𝜋) ≲ 𝜀2. The result now follows from Pinsker’s inequality
and the triangle inequality for TV.

C Proofs for sampling from discrete distributions

We begin with the proof of Lemma 16.

Proof of Lemma 16. The first two statements are from [Ana+23]. We only need to verify the last
statement. We only need to show that we can approximate mean(𝜏𝑧𝜇) for all 𝑧 ∈ ℝ𝑛 , given the
oracle for the Laplace transform of 𝜇. Since 𝜇 is supported on the hypercube, we can rewrite the
𝑗-th entry of mean(𝜏𝑧𝜇) in term of Laplace transforms of 𝜇, i.e.,

(mean(𝜏𝑧𝜇))𝑗 = 2 𝜏𝑧𝜇(𝑥 𝑗 = +) − 1 =
2
∑︁
𝑥∈{±}𝑛 , 𝑥 𝑗=+ exp(⟨𝑧, 𝑥⟩)𝜇(𝑥)∑︁
𝑥∈{±}𝑛 exp(⟨𝑧, 𝑥⟩)𝜇(𝑥) − 1

18

=
2 exp(𝑧 𝑗)

∑︁
𝑥∈{±}𝑛 , 𝑥 𝑗=+ exp(⟨𝑧−𝑗 , 𝑥−𝑗⟩)𝜇(𝑥)∑︁
𝑥∈{±}𝑛 exp(⟨𝑧, 𝑥⟩)𝜇(𝑥) − 1

= 2 exp
(︁
𝑧 𝑗 +ℒ𝜇(𝑧+) − ℒ𝜇(𝑧)

)︁
− 1 ,

where 𝑧+ (resp. 𝑧−) is a vector with all entries equal to 𝑧 except for the 𝑗-th entry being +∞ (resp.
−∞). Using the oracle, we can compute 𝐴̂+ s.t. |𝐴̂+ − (ℒ𝜇(𝑧+) − ℒ𝜇(𝑧))| ≤ 𝑂(𝜀). Thus,

|2 exp(𝑧 𝑗 + 𝐴̂+) − 1 − (mean(𝜏𝑧𝜇))𝑗|
= 2 exp(𝑧 𝑗) exp(ℒ𝜇(𝑧+) − ℒ𝜇(𝑧))

|︁|︁exp
(︁
𝐴̂+ − (ℒ𝜇(𝑧+) − ℒ𝜇(𝑧))

)︁
− 1

|︁|︁
≤ 𝑂(𝜀) exp(𝑧 𝑗) exp(ℒ𝜇(𝑧+) − ℒ𝜇(𝑧)) = 𝑂(𝜀)

(mean(𝜏𝑧𝜇))𝑗 + 1
2 = 𝑂(𝜀)

where the inequality follows from exp(𝑥)−1 ≤ 2𝑥 for 𝑥 ∈ [0, 1/2). We use 𝑛machines, each of which
computes one entry of mean(𝜏𝑧𝜇) using 2 oracle calls and 𝑂(1) parallel iterations. The estimated
score function 𝑠 satisfies ∥𝑠(𝑦) − ∇𝑉(𝑦)∥ ≲

√︁
𝑛
𝑐 𝜀

2 = 𝛿.

We also need another initialization lemma, since Corollary 14 requires knowledge of the minimizer
of 𝑉 which is not necessarily the case for the present application.
Lemma 22. Let 𝜇0 = 𝒩(𝑦, 𝜎2𝐼) for some fixed 𝑦 ∈ ℝ𝑛 and 𝜎2 > 0. If 𝜋 ∝ exp(−𝑉) with ∇2𝑉 ⪯ 𝛽𝐼, then

𝒟KL(𝜇0 ∥ 𝜋) ≤ 𝑉(𝑦) + log𝑍 + 𝑛2 (𝛽𝜎
2 − log(2𝜋𝑒𝜎2))

where 𝑍 =
∫

exp(−𝑉(𝑥)) 𝑑𝑥.

Proof. By smoothness, 𝑉(𝑥) ≤ 𝑉(𝑦) + ⟨∇𝑉(𝑦), 𝑥 − 𝑦⟩ + 𝛽
2 ∥𝑥 − 𝑦∥2, thus

𝔼𝑥∼𝜇0 𝑉(𝑥) ≤ 𝑉(𝑦) + ⟨∇𝑉(𝑦),𝔼𝑥∼𝜇0 𝑥 − 𝑦⟩ +
𝛽

2 𝔼𝑥∼𝜇0 ∥𝑥 − 𝑦∥2 = 𝑉(𝑦) + 𝛽𝜎2𝑛

2
and

𝒟KL(𝜇0 ∥ 𝜋) = 𝔼𝑥∼𝜇0 log𝜇0(𝑥) +𝑉(𝑥) + log𝑍 = −𝑛2 log(2𝜋𝑒𝜎2) +𝑉(𝑦) + 𝛽𝜎2𝑛

2 + log𝑍 ,

which is the desired bound.

Lemma 23. Consider a density function 𝜈 : {±1}𝑛 → ℝ≥0. Let 𝜋 = 𝜈 ∗ 𝒩 (0, 𝑐𝐼) and 𝜇0 = 𝒩(0, 𝑐𝐼). Then,

𝒟KL(𝜇0 ∥ 𝜋) ≤
𝑛

2𝑐 .

Proof. We can write

𝜋(𝑦) = (2𝜋𝑐)−𝑛/2
∑︂

𝑥∈{±1}𝑛
𝜈(𝑥) exp

(︁
−∥𝑦 − 𝑥∥

2

2𝑐
)︁
.

This distribution is normalized so that 𝑍 = 1, and

𝜋(0) = (2𝜋𝑐)−𝑛/2
∑︂

𝑥∈{±1}𝑛
𝜈(𝑥) exp

(︁
− 𝑛2𝑐

)︁
= (2𝜋𝑐)−𝑛/2 exp

(︁
− 𝑛2𝑐

)︁
.

Thus, 𝑉(0) = − log𝜋(0) = 𝑛
2 log(2𝜋𝑐) + 𝑛

2𝑐 . By Lemma 16, ∇2𝑉 ⪯ 𝐼/𝑐. Thus, we can apply Lemma 22
with 𝛽 = 𝑐−1 and 𝜎2 = 𝑐. Rearranging gives the desired inequality.

19

Proof of Theorem 4. Let 𝑐 be such that cov(𝜏𝑦𝜇) ⪯ 𝑐
2 𝐼 for all 𝑦 ∈ ℝ𝑛 . Suppose we have two executions

of Algorithm 3: one using the approximate continuous sampling algorithm resulting in 𝑤0 , . . . , 𝑤𝑇 ,
and one using exact samples resulting in 𝑤′0 , . . . , 𝑤

′
𝑇
. Note that 𝑤𝑖 = 𝑤𝑖−1 + 𝑥𝑖/𝑐 where 𝑥𝑖 is the

output of Algorithm 1 on input𝜋 = 𝜏𝑤𝑖−1𝜇∗𝒩 (0, 𝑐𝐼) and𝑤′𝑖 = 𝑤′𝑖−1+𝑥′𝑖/𝑐where 𝑥′
𝑖
∼ 𝜏𝑤′

𝑖−1
𝜇∗𝒩 (0, 𝑐𝐼).

We choose the parameter of Algorithm 1 so that

𝑑TV(law(𝑥𝑖), 𝜏𝑤𝑖−1𝜇 ∗ 𝒩 (0, 𝑐𝐼)) ≤ 𝜂

for some 𝜂 to be specified later.

Recall that the total variation distance is also characterized as the smallest probability of error when
we couple two random variables according to the two measures, i.e.,

𝑑TV(𝜌1 , 𝜌2) = inf
{︁
Π(𝑋1 ≠ 𝑋2)

|︁|︁ Π is a coupling of (𝜌1 , 𝜌2)
}︁
.

On the first iteration, we can couple 𝑥1 with 𝑥′1 so that they are equal to each other with probability
at least 1 − 𝜂. If 𝑥1 = 𝑥′1, then 𝑤1 = 𝑤′1, and repeating the argument on this event we can couple 𝑥2
to 𝑥′2 so that 𝑥2 = 𝑥′2 with probability at least 1 − 𝜂. After 𝑇 iterations, by the union bound, we have
𝑤𝑇 = 𝑤′

𝑇
with probability at least 1 − 𝑇𝜂.

By triangle inequality, the data-processing inequality, and Lemma 17,

𝑑TV(law(sign(𝑤𝑇)), 𝜇) ≤ 𝑑TV(law(sign(𝑤𝑇)), law(sign(𝑤′𝑇))) + 𝑑TV(law(sign(𝑤′𝑇)), 𝜇)
≤ 𝑇𝜂 + 𝜀/2 ,

provided we choose 𝑇 = Θ(𝑐 log(𝑛/𝜀)) so that 𝑑TV(law(sign(𝑤′
𝑇
)), 𝜇) ≤ 𝜀/2. We then choose 𝜂 =

𝜀/(2𝑇), which ensures that 𝑑TV(law(sign(𝑤𝑇)), 𝜇) ≤ 𝜀.

In each iteration of the “for” loop in Algorithm 3, wewant to approximately sample from𝜋 = 𝜏𝑤′
𝑖−1
𝜇∗

𝒩 (0, 𝑐𝐼), which is (2𝑐)−1-strongly log concave and 𝑐−1-log-smooth by Lemma 16. By Lemma 23,
𝒟KL(𝜇0 ∥ 𝜋) ≤ poly(𝑛) for𝜇0 = 𝒩(0, 𝑐𝐼). Thus, by Theorem13, to sample 𝑥′

𝑖
such that 𝑑TV(law(𝑥′

𝑖
), 𝜏𝑤′

𝑖−1
𝜇∗

𝒩 (0, 𝑐𝐼)) ≤ 𝑂(𝜀/(𝑐 log(𝑛/𝜀))), Algorithm1uses𝑃 = 𝑂(log2(𝑐𝑛/𝜀))parallel iterations,𝑀 = ˜︁𝑂(𝑐2𝑛/𝜀2)
processors, and𝑀𝑃 = ˜︁𝑂(𝑐2𝑛/𝜀2) 𝛿-approximate gradient evaluationswith 𝛿 = Θ(𝜀/

√
𝑐). By Lemma16,

each gradient evaluation can be implemented using 𝑂(𝑛) processors, 𝑂(1) parallel iterations, and
𝑂(𝑛) total calls to 𝑂(𝛿

√
𝑐/𝑛) = 𝑂(𝜀/𝑛)-approximate Laplace transform oracles.

Hence, Algorithm 3 takes 𝑃𝑇 = 𝑂(𝑐 log3(𝑐𝑛/𝜖)) parallel iterations,𝑀 = ˜︁𝑂(𝑐2𝑛2/𝜀2) processors, and˜︁𝑂(𝑐2𝑛2/𝜀2) total calls to 𝑂(𝜀/𝑛)-approximate Laplace transform oracles.

References
[Ali+21] Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong.

“Fractionally log-concave and sector-stable polynomials: counting planar matchings and
more”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.
STOC 2021. Virtual, Italy: Association for Computing Machinery, 2021, pp. 433–446.

[Ana+21] Nima Anari, Nathan Hu, Amin Saberi, and Aaron Schild. “Sampling arborescences in
parallel”. In: 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January
6-8, 2021, Virtual Conference. Ed. by James R. Lee. Vol. 185. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 83:1–83:18.

20

[Ana+23] Nima Anari, Yizhi Huang, Tianyu Liu, Thuy-Duong Vuong, Brian Xu, and Katherine Yu.
“Parallel discrete sampling via continuous walks”. In: STOC’23—Proceedings of the 55th
Annual ACM Symposium on Theory of Computing. ACM, New York, 2023, pp. 103–116.

[Bar+18] Jean-Baptiste Bardet, Nathaël Gozlan, Florent Malrieu, and Pierre-André Zitt. “Func-
tional inequalities for Gaussian convolutions of compactly supported measures: explicit
bounds and dimension dependence”. In: Bernoulli 24.1 (2018), pp. 333–353.

[BB21] Alexander Barvinok and Nicholas Barvinok. “More on zeros and approximation of the
Ising partition function”. In: Forum of Mathematics, Sigma. Vol. 9. Cambridge University
Press. 2021, e46.

[BÉ06] Dominique Bakry and Michel Émery. “Diffusions hypercontractives”. In: Séminaire de
Probabilités XIX 1983/84: Proceedings. Springer, 2006, pp. 177–206.

[CCN21] Hong-Bin Chen, Sinho Chewi, and Jonathan Niles-Weed. “Dimension-free log-Sobolev
inequalities for mixture distributions”. In: Journal of Functional Analysis 281.11 (2021),
p. 109236.

[Che+18] XiangCheng,Niladri S. Chatterji, Peter L. Bartlett, andMichael I. Jordan. “Underdamped
Langevin MCMC: a non-asymptotic analysis”. In: Proceedings of the 31st Conference on
Learning Theory. Ed. by Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet. Vol. 75.
Proceedings of Machine Learning Research. PMLR, July 2018, pp. 300–323.

[Che+21] Sinho Chewi, Murat A. Erdogdu, Mufan (Bill) Li, Ruoqi Shen, and Matthew S. Zhang.
“Analysis of Langevin Monte Carlo from Poincaré to log-Sobolev”. In: arXiv preprint
2112.12662 (2021).

[DR20] Arnak S. Dalalyan and Lionel Riou-Durand. “On sampling from a log-concave density
using kinetic Langevin diffusions”. In: Bernoulli 26.3 (2020), pp. 1956–1988.

[Dwi+19] Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. “Log-concave sampling:
Metropolis–Hastings algorithms are fast”. In: Journal of Machine Learning Research 20.183
(2019), pp. 1–42.

[Le 16] Jean-François LeGall.Brownian motion, martingales, and stochastic calculus. French. Vol. 274.
Graduate Texts in Mathematics. Springer, [Cham], 2016, pp. xiii+273.

[Ma+21] Yi-An Ma, Niladri S. Chatterji, Xiang Cheng, Nicolas Flammarion, Peter L. Bartlett,
and Michael I. Jordan. “Is there an analog of Nesterov acceleration for gradient-based
MCMC?” In: Bernoulli 27.3 (2021), pp. 1942–1992.

[OV00] Felix Otto and Cédric Villani. “Generalization of an inequality by Talagrand and links
with the logarithmic Sobolev inequality”. In: J. Funct. Anal. 173.2 (2000), pp. 361–400.

[SL19] Ruoqi Shen and Yin Tat Lee. “The randomized midpoint method for log-concave sam-
pling”. In: Advances in Neural Information Processing Systems 32 (2019).

[Vil09] Cédric Villani. “Hypocoercivity”. In: Mem. Amer. Math. Soc. 202.950 (2009), pp. iv+141.
[VW19] Santosh Vempala and AndreWibisono. “Rapid convergence of the unadjusted Langevin

algorithm: isoperimetry suffices”. In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett. Curran Associates, Inc., 2019, pp. 8094–8106.

[Zha+23] Matthew S. Zhang, Sinho Chewi, Mufan (Bill) Li, Krishnakumar Balasubramanian,
and Murat A. Erdogdu. “Improved discretization analysis for underdamped Langevin
Monte Carlo”. In: Proceedings of Thirty Sixth Conference on Learning Theory. Ed. by Gergely
Neu and Lorenzo Rosasco. Vol. 195. Proceedings of Machine Learning Research. PMLR,
July 2023, pp. 36–71.

21

	Introduction
	Algorithm
	Analysis techniques
	Applications

	Preliminaries
	Log-concave distributions
	Log-Sobolev and transport-entropy inequalities

	Parallel sampling guarantees
	LMC
	ULMC
	Algorithm
	Analysis

	Implications for sampling from discrete distributions
	Proofs for LMC
	Proofs for ULMC
	Proofs for sampling from discrete distributions

