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Figure 1: Given a set of unposed input images, Sparse AGS jointly infers the corresponding camera
poses and underlying 3D, allowing high-fidelity 3D inference in the wild.

Abstract

Inferring the 3D structure underlying a set of multi-view images typically requires
solving two co-dependent tasks — accurate 3D reconstruction requires precise
camera poses, and predicting camera poses relies on (implicitly or explicitly)
modeling the underlying 3D. The classical framework of analysis by synthesis
casts this inference as a joint optimization seeking to explain the observed pixels,
and recent instantiations learn expressive 3D representations (e.g., Neural Fields)
with gradient-descent-based pose refinement of initial pose estimates. However,
given a sparse set of observed views, the observations may not provide sufficient
direct evidence to obtain complete and accurate 3D. Moreover, large errors in pose
estimation may not be easily corrected and can further degrade the inferred 3D.
To allow robust 3D reconstruction and pose estimation in this challenging setup,
we propose SparseAGS, a method that adapts this analysis-by-synthesis approach
by: a) including novel-view-synthesis-based generative priors in conjunction with
photometric objectives to improve the quality of the inferred 3D, and b) explicitly
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reasoning about outliers and using a discrete search with a continuous optimization-
based strategy to correct them. We validate our framework across real-world
and synthetic datasets in combination with several off-the-shelf pose estimation
systems as initialization. We find that it significantly improves the base systems’
pose accuracy while yielding high-quality 3D reconstructions that outperform the
results from current multi-view reconstruction baselines.

1 Introduction

Consider the images of the robot shown in Fig. 1. From just these few images, we humans can easily
understand the 3D structure of this object — it has a cylindrical base supporting a tall body from
which an arm extends to the front. We do this by aggregating the information across images into a
consistent 3D mental model, e.g., the “front” view informs us of the width of the body and the “side”
view(s) about the extended arm. But how do we know which image is to the “front” or to the “side”
to begin with? As evidenced in seminal research of mental rotation [30], we understand viewpoints
by forming mental 3D models. Thus, to form mental 3D models, we need to understand the (relative)
viewpoints across images, but doing so in turn requires a mental 3D model!

This co-dependency in inferring shape and pose is one that any computational approach aiming to
recover 3D from multiple views also needs to deal with. Indeed, classical approaches like Structure-
from-Motion (SfM) [29] tackle the two together and infer 3D and camera viewpoints. However,
these correspondence-based methods can only infer sparse 3D representations and are not robust
given a small set of images with limited overlap. To allow 3D inference in such sparse-view settings,
recent learning-based approaches have pursued sparse-view reconstruction approaches [52, 45], but
assuming known precise camera poses. Separately, there have been several methods [18, 47, 48, 31]
which predict camera viewpoints given a set of images. While these methods have led to impressive
results for both 3D reconstruction and pose inference, their singular focus on only one task without
tackling the other limits their utility — the 3D reconstruction methods requiring precise cameras
cannot be easily used in real-world applications, and pose estimation methods that do not model 3D
are typically limited in their accuracy.

We present SparseAGS, a framework that unifies the advances in learning-based pose estimation and
3D reconstruction — using the former as an initialization and building on the latter for obtaining accu-
rate 3D reconstruction. Specifically, we adopt an “analysis by synthesis” approach where we jointly
optimize pose and 3D to explain the observed pixels. However, unlike prior methods [19, 42] which
simply leverage photometric-error-driven gradient-based updates for pose and 3D, we additionally
leverage generative priors [8, 33] for more complete (and accurate) 3D despite input images that
may only partially capture the object. However, current off-the-shelf novel-view generative models
[20] only allow 3-DoF camera parameterization which is insufficient beyond synthetic settings, we
finetune a SOTA model to allow 6-DoF camera variation when querying novel views. We find that
such generative priors not only contribute to the 3D reconstruction quality but also result in more
accurate camera poses. Moreover, we also explicitly account for large possible errors in initial camera
estimation and prevent these from degrading 3D reconstruction via identifying outliers, and also
improve poses via a combination of a discrete search and continuous optimization.

Compared to prior joint reconstruction and pose estimation methods that are designed to improve
near-perfect initial cameras [19, 38], SparseAGS can leverage off-the-shelf pose estimates, thereby
allowing robust inference in real-world scenarios. We demonstrate its efficacy using both, real-
world and synthetic datasets in conjunction with several state-of-the-art pose estimation methods as
initialization. We find that our approach significantly improves the initial camera estimates and yields
high-fidelity 3D reconstructions (and novel view renderings). In summary, our contributions are:

* We introduce an analysis-by-generative-synthesis framework that jointly estimates 3D and camera
viewpoints given a sparse set of input images, by integrating a 6-DoF novel-view generative prior
in an analysis-by-synthesis approach

* Our approach allows leveraging any off-the-shelf pose estimation system and can robustly estimate
3D and viewpoints despite large errors in the initial estimates.

* We present results across datasets and initializations and show clear improvements over the
initializations as well as outperform prior sparse-view 3D reconstruction baselines.



2 Related Work

Sparse-view Pose Estimation. Traditional correspondence-based Structure-from-Motion [32, 29]
methods often fail to estimate camera poses in sparse-view settings. Several approaches instead seek
to leverage data-driven priors, for example learning energy-based [48, 18] or denoising diffusion
[39] models to predict cameras. While these approaches predict global camera representations, some
works have demonstrated the benefit of denser camera parametrizations by predicting raymaps [47]
or pointmaps [41, 17]. As an alternative paradigm to direct camera prediction, some recent methods
[3, 43, 34] instead estimate relative poses by inverting the view-conditioned synthesis capabilities
of diffusion models [20]. While these methods have led to remarkable improvements in camera
estimation, these are still susceptible to some imprecision and occasional outliers which our 3D-
reasoning-based approach can correct.

Sparse-view 3D Reconstruction. This line of work aims to recover 3D from sparsely sampled
views, aiming to infer complete 3D representations that faithfully reflect the content captured by
the input images while making reasonable guesses for invisible areas. The progress of diffusion
models [8, 33] has greatly advanced this direction, as they are capable of learning strong natural
image priors from data. Inspired by DreamFusion [23], which generates 3D scenes given textual
descriptions leveraging a text-to-image diffusion model [26], SparseFusion [52] learns a view-
conditioned diffusion model on multi-view image collections for novel view synthesis and then
distills the learned novel-view distributions into a single consistent 3D representation. DreamSparse
[45] further improves the performance by utilizing internet-scale natural image priors learned by
Stable Diffusion [25]. Although these methods present impressive results, they assume precise camera
poses are available, which limits their applications. FORGE [ 1] addresses this by jointly inferring
both camera poses and 3D structure in a single forward pass, though the quality of its reconstructions
remains constrained by pose estimation accuracy without further refinement or correction.

Pose-free Sparse-view 3D Reconstruction. Some recent works [27, 40, 12, 13] have attempted to
bypass the reasoning about camera poses and directly infer novel views or 3D representations from
unposed images. An unposed variant of the Scene Representation Transformer [27] encodes a set of
input images into latent features and synthesizes novel views given the corresponding query rays (w.r.t.
the viewpoint of the first image) using a transformer encoder and decoder. UpFusion [13] improved
upon this by learning a diffusion model and distilling a consistent 3D representation via Score
Distillation Sampling [35], whereas LEAP [12] and PF-LRM [40] can directly predict (volumetric or
triplane) 3D representations in a feedforward manner. While these methods demonstrate promising
results, their geometry-free approach cannot easily capture the specific details across input images
and they struggle to improve the 3D estimation with additional input images.

Analysis-by-synthesis Approaches. Approaching visual perception as an inverse graphics task is
classical idea in computer vision [15, 46], and has been leveraged for inferring scene properties
(e.g., object pose) by synthesizing visual content as close to observations as possible [2, 16, 51, 50].
Closer to our setup, prior approaches jointly optimize camera pose and 3D representation (e.g., NeRF
[22]) to explain the observed images [19, 42] but these methods are designed for dense observations
and only handle small pose errors. Closer to our work, SPARF [38] focuses on the sparse-view
setup, leveraging estimated pixel correspondence [37] as prior knowledge in addition to the standard
photometric loss. However, reliably extracting such correspondences can be challenging, and false
match estimates may even confuse pose refinement, leading to degraded 3D reconstruction.

3 Method

3.1 Overview

Analysis by Synthesis. Given a set of sparse-view images, denoted as I = {I,} ,, our goal is
to reconstruct the underlying 3D structure # and infer the camera poses corresponding to the input
images IT = {m;} ¥ ;. This can be done by solving an analysis-by-synthesis problem
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where fp is a rendering function. Eq. 1 demonstrates that we want to find a scene description
consisting of a 3D representation # and camera configurations II that well explain the observed input
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Figure 2: (a) Overview of SparseAGS: Given estimated camera poses from off-the-shelf models,
our method iteratively reconstructs 3D and optimizes poses leveraging diffusion priors. (b) Detailed
View of Each Component: We use rendering loss and multi-view SDS loss for 3D reconstruction
while the rendering loss is propagated back to refine camera poses. At the end of each reconstruction
iteration, we identify outliers by checking if their involvement in 3D inference yields larger errors in
other views, implying the inconsistency of their poses with others.

images. If fy is differentiable, we can jointly optimize the 3D representation and camera poses via
gradient descent [ 19, 42]. However, this approach may not work well in the sparse-view setting [38]
(i.e., N is small) as the 3D representation can overfit to the input images without forming a plausible
structure, degrading both, pose estimation and 3D reconstruction.

Analysis by Generative Synthesis. To address this issue, we propose to introduce generative priors
into analysis by synthesis, so we term our method analysis by generative synthesis. In addition to

the known-view objective (Eq. 1), we leverage diffusion priors [8, 33] to optimize renderings from
randomly sampled novel views (7r) as well
Hleil’l E‘IT - IOg p¢(f0(7T)|7T,H,H) (2)

where py, is the likelihood of the novel view rendering conditioned on the viewpoint 7 and inputs
(I, II), modeled by the diffusion model ¢. The gradients for this objective can be obtained via
Score Distillation Sampling (SDS) [23], and intuitively, they encourage the renderings of the 3D
representation to be plausible based on image distributions learned by the diffusion model.

In the following, we first introduce a few preliminaries about an efficient single-view-to-3D approach
(Sec. 3.2), on which we build our multi-view reconstruction method, MV-DreamGaussian, enabling
analysis by generative synthesis in the wild (Sec. 3.3). Then, we present our complete framework
that involves dealing with imprecise cameras (Sec. 3.4). An illustration of our approach is in Fig. 2.

3.2 Preliminaries: DreamGaussian

DreamGaussian [36] generates 3D from a single image with a two-stage approach, achieving a
satisfactory trade-off between speed and fidelity. The first stage optimizes 3D Gaussians [14]
(parameterized by ) using a combination of photometric loss (Eq. 1, except that the camera pose
is not optimized) and SDS loss (Eq. 3) with a view-conditioned diffusion model, Zero-1-to-3 [20].
Specifically, for a randomly sampled novel view 7, scheduled noise € at timestep ¢ is added to
the latent of its rendering (the noisy latent is denoted by z;). The training objective minimizes the
difference between the predicted noise and the added noise, approximating the negative log-likelihood
of the rendered image. The gradient of SDS loss is given by

8f9 (71')

VoLsps = Asps Bt e |w(t)(€g(ze;t, I, AT) — €) 20

3)



where w(t) is a weighting function, €4(-) is a U-Net trained to predict the added noise given the
noisy latent z;, conditioned on the timestep ¢, reference image I, and the relative camera pose Ar.
This stage efficiently builds the geometry of the object with rough texture, which takes 500 training
steps (in about 1 minute). In the second stage, 3D Gaussians are converted to a textured mesh with
Marching Cubes [21], and only its texture is optimized. This stage takes another 50 steps and can
finish within 30 seconds on a single GPU.

We find DreamGaussian to be a suitable starting point to perform analysis by generative synthesis,
but note that it has some key limitations: (1) 3-DoF Camera Parameterization. DreamGaussian
adopts a 3-DoF camera parameterization (i.e., radius, elevation, and azimuth) to accommodate the
camera definition in Zero-1-to-3 [20]. While this parameterization is sufficient for synthetic data,
it cannot well represent the 6-DoF camera poses of real-world images. (2) Single Input Image.
DreamGaussian is designed for the singe-view-to-3D task. In contrast, we aim for the reconstructed
3D to reflect the details captured by multiple input images faithfully. This requires an approach to
handling information from multi-view images.

3.3 Leveraging Generative Priors for Sparse-view 3D in the Wild

We adapt DreamGaussian’s two-stage method and extend it to (1) handle real-world images with
6-DoF camera parameters and (2) utilize sparse-view images as input.

Generative Priors in the Wild. Zero-1-to-3 [20] offers desirable generative priors that enable
single-view-to-3D generation of DreamGaussian. However, it assumes no in-plane camera rotation
and that all possible camera poses are strictly directed toward a common origin. We find these
assumptions are over-restrictive for real-world images. Therefore, we propose to replace the 3-DoF
camera condition in Zero-1-to-3 with a 6-DoF one, represented as an 18-dimensional vector:

[Flatten(7rre), log(fier), log(f2)] )

where 7 is the relative extrinsic matrix (4 x 4) between the source view and target view, and f%,
(f2) is the ratio of the focal length along the z- (y-) axis between them. We include the focal length
term to account for the object scale change due to cropping. This simple camera parameterization
effectively represents 6-DoF cameras in the wild. Details regarding finetuning Zero-1-to-3 for 6-DoF
camera conditioning are deferred to Sec. C in the appendix. We note that recent work, ZeroNVS [28],
also discussed this 3-DoF issue of Zero-1-to-3 and proposed a “6-DoF+-1" camera parameterization
for scene-level novel view synthesis. However, this approach is not directly applicable to our object-
centric setting, as it is trained using images with complex backgrounds and leverages depth priors to
address scale ambiguity.

Leveraging the Generative Priors from Multiple Views. DreamGaussian only uses the generative
priors from a single reference image via SDS loss. To make Lgps aware of the visual cues from
multiple input images, we modify Eq. 3 as
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N is the total number of input views, I; is the i*" input image, and A, is its relative camera pose
w.r.t. the sampled novel view 7. We average the noise predictions from all input views that share
the same timestep ¢. This method draws inspiration from the implementation of Stable-Dreamfusion
[35], but we do not weigh the predicted noises based on the relative closeness of camera poses. The
rationale behind this is that the camera poses in our setting are not always reliable, and relying too
heavily on “close” views could introduce significant conflicts during the 3D optimization process.

With these modifications, our multi-view reconstruction approach, termed MV-DreamGaussian, is
capable of reconstructing 3D from sparse images in the wild by leveraging diffusion priors. When
describing its use in our overall framework, we use the notation § = MV-DG(I, IT) to denote the 3D
representation inferred via this pipeline given a set of input images I and associated viewpoints II.

3.4 3D Reconstruction with Imperfect Cameras

Here, we introduce the complete framework of SparseAGS (see Fig. 2 for an overview) that: a)
leverages off-the-shelf pose estimation methods and b) incorporates our multi-view reconstruction



approach MV-DG (Sec. 3.3) to jointly infer accurate 3D and camera viewpoints. A key challenge we
seek to overcome is that the estimated camera viewpoints may have significant errors and that naively
using all images to infer 3D can result in suboptimal estimates.

Pose Refinement via Gradient Descent. During 3D reconstruction via MV-DreamGaussian, we back-
propagate gradients from the photometric loss (Eq. 1) back to update camera poses (implementing
custom CUDA kernels to enable this gradient computation). This process allows the camera poses
to become more precisely aligned as 3D reconstruction progresses. We denote by IT' = GD(I, 4, IT)
the resulting camera viewpoints from this optimization given the set of input images I, and 3D
reconstruction # and initial poses II.

With this pose-and-3D co-optimization, we can instantiate a version of our analysis-by-generative-
synthesis framework by iteratively refining poses and reconstructing 3D given initial pose estimates
Iy from an off-the-shelf system:

Fork=1---K: Qk = MV—DG(]I, Hk71)§ Hk = GD(]I, 9k7 Hk,1) (7)

For clarity, we present separate formulas for the reconstructed 3D 6;, and the updated poses I,
though they are part of the same optimization process. Notably, in each iteration, we initialize the
camera poses using the output from the previous iteration (IT;_1), while the 3D representation (6y,) is
reset and reconstructed from scratch.

Dealing with Outliers. Although the above iterative optimization framework can allow us to infer
consistent poses and 3D reconstructions, it is susceptible to local optima and not robust to large
errors in initial pose estimates. To overcome this, we additionally detect “outliers”, i.e., images
with possibly large pose errors that degrade the quality of 3D reconstruction. We then modify our
approach to leverage only the estimated inliers for 3D reconstruction while also separately performing
a discrete search to update the outlier viewpoints.

Iterative Outlier Identification. Our key insight is that an “outlier” image not only exhibits high
reprojection error, making it difficult to reconstruct on its own, but also that including it as a training
image for 3D reconstruction degrades the overall quality, thus leading to poorer reconstruction even
from other views! We operationalize this insight by classifying an image as an outlier if removing it
from training significantly improves performance on other images. More formally, let I~* denote the
set of images after removing the i*" one and let £(6, I, 1) denote the average reprojection error of a
3D representation # over images I with (predicted) poses II. We consider an image 4 as an outlier if

EMV-DG(IL, ), 1% I~*) >> EMV-DG(I~*, I1~%), T~ T1*) ®)

i.e., adding the image to training set significantly increases the error for other views. For efficiency,
instead of considering all images as outlier candidates, we iterate over images in decreasing order of
reprojection error. Given this procedure to detect outliers, at each iteration (except £ = 1) we modify
the above framework to first filter out the outliers found in previous iterations (along with the new
“outlier candidate” that gives the largest reprojection error at the last iteration):

LT TG = filter-outliers(l, 601, _1) 9)

and only use the estimated inliers for optimizing 3D: 6, = MV-DG(I3*4e, TI}*!1°*). This filter-and-
reconstruct loop stops when either the selected outlier candidate is determined to be an inlier (i.e., the
condition 8 is not satisfied) or the number of remaining inliers falls below a threshold (e.g., 4).

Correcting Outlier Poses. While identifying the outliers allows us to prevent them from influencing
the 3D inference, the finally recovered model may not capture the details from all images. We
thus also attempt to “correct” the pose estimates for the outliers via a discrete search (followed by
continuous optimization). Using the currently estimated 3D (reconstructed from only the inliers),
for each image in the outlier set, we re-estimate its camera pose via render-and-compare. We first
densely sample pose candidates on a sphere and render images from the current 3D. We rank the
pose candidates by measuring both pixel-space error (i.e., MSE) and perception error (i.e., LPIPS
[49]). The pose candidate with the highest cumulative rank is selected as the optimal solution. Once
all identified outliers are corrected, another reconstruction is performed to form a consistent 3D
representation with all images using the updated poses.

Our overall framework is very efficient (largely due to an efficient implementation of the recon-
struction step), typically taking 5-10 minutes given 8 input images, with increased inference time
depending on the number of estimated outliers. We include a brief analysis of the inference time of
our system in Sec. B.
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Figure 3: Qualitative Comparison on Camera Pose Accuracy. Given poses from off-the-
shelf methods (top to bottom: DUSt3R [4 1], Ray Diff. [47] and RelPose++ [18]), the refined poses
from SPARF [38] are compared with the output of SparseAGS. The estimated cameras are aligned
with ground truth (in black) with an optimal similarity transform. More results are available in Fig. 8.

4 Experiments

4.1 Experimental Setup

Datasets. We primarily evaluate our Typle 1: Comparison of Camera Rotation and Center
method on a real-world multi-view Accuracy with SPARF [38]. We use three pose estima-
object-centric dataset NAVI [9]. This tjon baselines (RelPose++ [ 18], Ray Diff. [47], DUSt3R
dataset includes high-quality foreground  [.11) and measure rotation accuracy at two thresholds (5
masks, precise camera poses, and 3D 454 15 degrees) and camera center accuracy at a threshold

meshes. For each of the 35 objects in  of (.1 (of the scene scale). Eight images are used.
NAVI, we randomly select 5 multi-view

. . Method Rot.@5°1 Rot.@15°1 CC@O0.11
sequences for pose estimation and recon-
struction. Additionally, we assess our ~ RelPose++ 10.9 56.4 26.0
method on synthetic datasets, including ~ W/ SPARF 28.6( ) 51.9(-4.5) 379 )
GSO [7], ABO [4], and OmniObject3D w/ SparseAGS  42.1( ) 67.6( ) 53.3( )
[44]. Results for the synthetic datasets Ray Diff. 13.5 735 38.3

are provided in Sec. E of the appendix. w/ SPARF 46.0( ) 76.1( ) 65.8( )

Baselines. To evaluate camera pose ac- W/ SparseAGS  60.3( ) 88X ) 804 )

curacy, we select three sparse-view pose ~ DUSt3R 523 93.8 82.2
estimation baseline methods: RelPose++ W/ SPARF 59.7(+7.4) 87.8(-6.0)  81.9(-0.3)
[18], Ray Diffusion [47], and DUS3R _ W/ SparseAGS  83.7( ) 96.2(+2.4)  93.5( )
[41]. The first two are trained exclusively

on CO3D [24], while DUS(3R is trained on a mixture of eight datasets, representing different levels of
precision in initial camera poses. Our method initializes and improves the pose estimates from these
baselines, and we also compare with SPARF [38], a sparse-view pose-NeRF co-optimization method.
For evaluation of novel view synthesis, we mainly compare our method with unposed sparse-view
reconstruction approaches, LEAP [12] and UpFusion [13] (we include comparison with SPARF in
Sec. D). We conduct experiments with varying numbers of input images (N = 6, 8, 10, 16).

Metrics. For pose accuracy, we follow prior works [ 18, 47] and report the following metrics: (1)
Rotation accuracy: we compare pairwise relative rotation between the predicted cameras and ground
truth. We report the proportion of samples with errors less than a specified threshold, such as 5
and 15 degrees. (2) Camera center accuracy: we align the predictions and ground truth using an
optimal similarity transform and report the proportion of camera centers within 10% of the scene



SparseAGS
Input LEAP (DUSt3R)

An 08 LY

Figure 4: Qualitative Comparison with LEAP [12] on Novel View Synthesis. We use two pose
estimation baselines (Ray Diffusion [47] and DUSt3R [41]). SparseAGS better preserves details from
the input images and shows enhanced performance with more accurate initial camera poses. More
results are available in Fig. 9 of the appendix.

scale relative to the ground truth. We evaluate our 3D representation via novel-view synthesis and
report PSNR and LPIPS [49] for the rendered views. In our ablation study, we also assess the 3D
geometry using the F1 score, comparing our recovered geometry against the ground truth 3D meshes.

Table 2: Evaluation of Camera Pose Accuracy with Varying Numbers of Input Images on NAVI
[9]. Here we use the same evaluation protocols as Tab. 1.

Method N=6 N=10 N=16
ethol

Rot.@5° Rot.@15° CC@0.1 Rot.@5° Rot.@15° CC@0.1 Rot.@5° Rot.@15° CC@0.1
RelPose++ 11.0 57.0 28.6 / / / / / /
+ SparseAGS  27.3(+16.3)  60.2(+3.2)  47.0(+18.4) / / / / / /
Ray Diff. 13.3 74.3 44.1 12.9 73.4 36.1 12.6 74.0 34.0
+ SparseAGS  44.9(+31.6)  83.6(+9.3) 73.6(+29.5) 70.0(+57.1) 89.6(+16.2) 83.4(+47.3) 82.3(+69.7) 93.2(+19.2) 89.0(+55.0)
DUSt3R 50.3 93.4 82.1 52.9 95.0 84.4 55.5 94.9 84.2

+ SparseAGS  74.3(+24.0)  95.1(+1.7) 92.3(+10.2) 87.0(+34.1)  97.3(+2.3) 94.3(+9.9) 91.1(+35.6) 97.7(+2.8)  95.0(+10.8)

4.2 Evaluation

Camera Pose Accuracy. We compare Sparse AGS with SPARF [38] on pose accuracy given eight
input images quantitatively in Tab. 1 (numbers are in percentage) and qualitatively in Fig. 3. We find
that SparseAGS consistently yields larger improvements than SPARF, which sometimes even leads
to degraded accuracy (marked by red numbers). We attribute this to the unreliable correspondences
extracted by SPARF (we include an example in Fig. 7), as the input images in NAVI may exhibit
more significant viewpoint changes compared to scene-level datasets, e.g., DTU [10] where SPARF



Table 3: Quantitative Comparison of 3D Reconstruction on NAVI [9]. We compare our method
with two unposed approaches: LEAP [12] and UpFusion [13], using varying numbers of input images
(N). We adopt two pose initializations (Ray Diff. [47], DUSt3R [41]) reporting PSNR and LPIPS.

Initial N=6 N=38 N=10
Method
Cam. Pose pSNR+ LPIPS| PSNRt LPIPS| PSNRt LPIPS |
LEAP X 12.84 0.2918 12.93 0.2902 12.98 0.2890
UpFusion X 13.30 0.2747 13.27 0.2744 / /

SparseAGS  Ray Diff. 13.63 0.2697 15.30 0.2304 16.80 0.1960
SparseAGS DUSt3R 15.56 0.2173 17.03 0.1870 18.03 0.1660

is originally tested. Note that training SPARF (or other NeRF-based methods) is far more expensive
than ours, and it may take more than 10 hours. Whereas our method typically finishes in 5-10 minutes.
More analysis and detailed comparisons with SPARF on pose accuracy and novel view synthesis are
in Sec. D.

We vary the number of input images (N = 6, 10, 16) and report camera pose accuracy in Tab. 2 (we
only test RelPose++ [ 18] with six images as inference with more than eight images is not supported).
SparseAGS consistently enhances baseline performance for both rotation and camera center accuracy,
with particularly significant gains for stricter metrics (e.g., Rot. @5°). Moreover, the improvements
tend to further increase with the number of input images. These results demonstrate that our method
is robust to varying levels of initial camera poses and generalizes well across different input numbers.

SparseAGS

3D Reconstruction. In Table 3, we compare Input (N = 6) (DUSOR)
SparseAGS with two unposed approaches, LEAP & % @ @ 4 4 4
[12] and UpFusion [13], reporting metrics for 3D &

reconstruction (novel view synthesis). Our method v, a

consistently outperforms both baselines across dif- @ 3 * ﬁ ﬁ ﬁ ‘

ferent numbers of input images and with two pose - P %
estimation initializations. While SparseAGS shows ‘&% « “‘ % § Q %
continuous improvements with an increasing num- £

ber of input images, the performance of LEAP and : e ’ ,
UpFusion nearly saturates in terms of both PSNR k w Q » ~ ﬁ ”‘
and LPIPS. We hypothesize that unposed methods
struggle to utilize additional input images beyond
their training capacity without further training ad-
justments (LEAP is trained using five views, while
UpFusion is trained with a maximum of six images).
In contrast, our method is flexible w.r.t. the number
of input images, eliminating the need for re-training.
A qualitative comparison with LEAP and UpFusion
is presented in Fig. 4 and Fig. 5, respectively. The
results show that SparseAGS better preserves the details in input images by explicitly modeling
cameras and produces higher-quality novel view synthesis with more precise initial camera poses.

Figure 5: Qualitative Comparison with Up-
Fusion [13] on Novel View Synthesis. We
use two pose estimation baselines (Ray Diffu-
sion [47] and DUSt3R [41]) as in Fig. 4. Note
that the left eye and symbol ) of the Chicken
Racer is missing in UpFusion’s output, prob-
ably because of the “first-image bias”, while
Sparse AGS preserves these details.

Table 4: Ablation Study. Using initial poses from Ray Diffusion [47] for eight input images, we
ablate the effect of each proposed component of our approach.

Method Rot.@5°t Rot.@15°t CC@0.11 PSNRtT LPIPS| FI1@0.011
Ray Diffusion 13.5 73.5 383 / / /

+ Pose-3D Co-opt. (w/o SDS) (1) 28.4 79.9 57.7 12.72 0.3100 46.3

+ SDS (vanilla Zero123 [20]) 2) 30.2 78.3 57.3 13.04  0.2999 49.9

+ SDS (Our 6-DoF Zero123) 3) 34.6 83.1 65.3 13.44  0.2793 57.2

+ Outlier Removal & Correction  (4) 60.3 88.2 80.4 1530  0.2304 68.2

4.3 Ablation Study

We ablate the effectiveness of each component in our approach (Tab. 4) using initial pose estimates
from Ray Diffusion [47] with eight input images. In addition to camera pose metrics and novel-view



Input (N=28) Novel Views & Normal
GT w/o SDS w/ SDS w/o SDS w/ SDS

Figure 6: Qualitative Comparison with No-Generative-Piror Setup (N = 8). Novel Views (NV)
& Normal: From left to right — GT, NV w/o SDS, NV w/ SDS, Normal w/o SDS, Normal w/ SDS.
Leveraging generative priors in the form of SDS contributes to a consistent 3D representation.

metrics, we report the F1 score of reconstructed meshes, which reflects their alignment with ground
truth meshes.

(Appropriate) Generative Priors Improve Analysis by Synthsis. We find that adding generative
priors (Eq. 2) to naive pose-3D co-optimization (Eq. 1) improves both pose accuracy and 3D
reconstruction quality (comparison between (1) and (3) shows consistent improvements in all metrics).
However, vanilla Zero-1-to-3 [20] is not suitable for providing such priors in real-world scenarios, as
we observed a drop in camera rotation and center accuracy (compare (1) with (2) in Rot.@15° and
CC@0.1). This is because 3-DoF camera parameterization cannot well represent the camera poses in
the wild. Although the numerical improvements may appear marginal (e.g., in PSNR), Fig. 6 presents
a qualitative comparison of 3D reconstruction with and without our 6-DoF novel-view generative
priors. Supervision on novel views via SDS helps form a consistent 3D representation.

Outlier Removal and Correction. The presence of outlier initial cameras introduces significant chal-
lenges to pose-3D co-optimization. Our iterative outlier removal and correction pipeline effectively
addresses this issue. For instance, comparing (3) with (4) shows a substantial improvement: Rot.@5°
increased from 34.6% to 60.3% (25.7% absolute improvement), PSNR improved from 13.44 to 15.30,
and F1@0.01 increased from 57.2 to 68.2 (11.0 point absolute improvement). These results confirm
the effectiveness of our approach.

5 Conclusion

In this work, we presented Sparse AGS, a framework for joint pose estimation and 3D reconstruction —
combining off-the-shelf pose estimation methods with a novel-view synthesis generative prior for
robust inference in real-world sparse-view captures.

Limitations. While our experiments demonstrated clear improvements over initializations and
stronger performance compared to prior 3D reconstruction methods, there are several challenges
that remain. First, our approach does rely on some reasonable off-the-shelf pose estimates and
cannot succeed if a large fraction of the predictions have a large error. Secondly, SparseAGS (similar
to existing baselines) does not deal with truncation or occlusion and cannot be directly applied to
scenarios with close-up images of parts of objects or cluttered scenes with one object occluding the
other. Finally, we focused here on an object-centric setting, and it would be interesting to extend our
approach to broader settings, e.g., deploying our framework in conjunction with methods that learn
novel-view generative priors for scenes.
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