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Abstract. Network/interdependent security games have been exten-
sively used in the literature to gain insights into how firms make optimal
security decisions when accounting for spillovers of risks from other firms
with whom they have risk interdependencies. We extend these models
by proposing K-hop network (security) games, in which agents have ex-
tended awareness of network e!ects: an agent in a K-hop network game
accounts for not only its immediate neighbors (those with whom it di-
rectly has joint operations or shared infrastructure), but also the spillover
of the (security) risks from agents up to K-hops away from it. We first es-
tablish an equivalence between our proposed K-hop network games and
a one-hop game played on an appropriately defined adjacency matrix.
Then, through analytical results and numerical examples, we illustrate
how subtle changes in a network can significantly alter equilibrium be-
haviors when accounting for multi-hop risk spillovers, emphasizing the
dependency of agents’ e!orts on the nature of their dependencies (com-
plement vs. substitute nature of e!orts), agents’ di!erent levels K of
awareness of the network e!ects, and the reactive vs. passive nature of
lower awareness (lower K) agents to those with higher awareness (higher
K). Our findings show that extended awareness of network e!ects can,
in general, benefit agents by allowing them to optimize their security
planning and resource allocation, but that decision makers who are less
sophisticated and lack this awareness can su!er, and that consequently,
overall investment levels in security may deteriorate.

Keywords: Network Games · Interdependent Security Games · Strate-
gic Awareness.

1 Introduction

The study of strategic interactions in networked environments has received sig-
nificant attention in the literature on game theory and its applications to cy-
bersecurity; see [5, 13, 18] for surveys. In this context, network (security) games
(also known as interdependent security games) are often used to model sce-
narios where each node represents a strategic decision-maker or firm, and each
connection signifies an interdependence in the firms’ security state or opera-
tions. Traditionally, these models are used to gain (qualitative) insight into the
strategic security investments of decision-makers who consider how the actions
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of their immediate (one-hop) neighbors could expose them to spillover security
risks (e.g., [7, 9, 10, 17, 25, 34]). These studies can inform us about the extent of
free-riding of agents on each other’s e!ort due to network e!ects, its impact on
equilibrium suboptimality (in terms of social welfare or other notions of cumu-
lative security costs), and potential interventions to alleviate it.

As cyber-physical systems become more complex and interconnected, it is
crucial for decision makers to better understand how their interdependence on
others should shape their organization’s security budgeting and investments,
and to do so beyond their immediate neighbors. The 2021 Kaseya Attack [21,23]
illustrates this clearly. Attackers initially compromised Kaseya’s VSA software,
then used it to distribute ransomware to Managed Service Providers (MSPs)
and their clients. This attack a!ected over 1,500 organizations, including schools,
supermarkets, and a national railway. The disruption to the railway, for example,
potentially impacted other businesses reliant on its services, highlighting the
far-reaching (multi-hop) e!ects of one firm’s security decisions on other firms in
the system. Similarly, the 2021 Colonial Pipeline attack [2] exhibits multi-hop
risk dependencies: the ransomware attack led to a shutdown of the pipeline,
causing fuel shortages and rising prices. This a!ected not just consumers but
also businesses dependent on fuel, such as airlines and logistics companies. A
formal model of network games in which agents are aware of, and best-respond
to, the e!orts of not only their immediate neighbors, but also of agents multiple
hops away, has potential to capture such events, and o!er richer insights into
strategic behavior and potential security interventions.

Motivated by this, in this paper, we extend the framework of network (secu-
rity) games considered in prior work (e.g., [3, 6, 11, 16, 19, 20, 32]) to encompass
the influence of multi-hop neighbors. These neighbors can be in the same net-
work or can be neighbors in a multiplex network. By incorporating awareness of
multi-hop security dependencies, we aim to provide a more comprehensive un-
derstanding of how strategic influences propagate through the network and a!ect
agents’ decisions to free-ride on others (and potentially underinvest in security
which is a public good).

Formally, we propose a model of K-hop network (security) games, in which
agents have extended awareness of network e!ects: an agent in a K-hop network
game considers, or is aware of, the spillover of the (security) e!orts of agents up
to K-hops away from it when selecting its own e!ort. We then explore the impli-
cations of such extended awareness on agents’ strategic security decision making
by looking into the Nash equilibria that arise as agents’ awareness of the network
(the K in the K-hop game) increases. We begin by using illustrative examples
to show that these changes are impacted by three factors: (1) the nature of the
agents’ dependencies (complement vs. substitute nature of e!orts), (2) agents’
di!erent levels K of awareness of the network e!ects, and (3) the reactive vs. pas-
sive nature of lower awareness (lower K) agents to those with higher awareness
(higher K). Accordingly, we provide analytical equilibrium characterizations and
comparisons for two settings:
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1. The Nash equilibrium when all agents have K-hop awareness, for general
K. Specifically, for a general K-hop network game, we show that the game
is equivalent to a one-hop network game played on a new network interde-
pendency matrix Ĝ, constructed from the original game matrix G, in a way
that the links ĝij between agents i and j account for the spillovers across all
paths of length at most K to agent i from agent j.

2. A mixture of one aware (e.g., K = 2) and N → 1 unaware (e.g., K = 1)
agents in games of pure strategic substitutes/complements. For this case, we
show that in a game of strategic substitutes, the agent can free-ride more
on others by increasing its awareness compared to other agents. This means
that awareness can benefit the aware agent by allowing it to attain the same
security outcomes while lowering its e!ort (and therefore, overall increasing
its utility), but that at the same time, it will hurt the other unaware and
passive agents, as they will be (incorrectly) assuming that the aware agent is
exerting higher e!ort than it truly is. We also provide a lower bound for the
e!ort of an agent with two-hop awareness in a game of strategic complements,
constructed from the agent’s e!orts in one-hop awareness games.

Finally, we explore the K-hop equilibrium structure and provide numerical ex-
periments for special network structures (e.g., Stars, Directed Acyclic Graphs,
and Random Graphs).

To summarize, our main contributions include: (i) proposing a new model to
capture extended network awareness in network security games, (ii) showing an
equivalence between our proposed K-hop games and a one-hop game played on
an appropriately defined adjacency matrix, and (iii) elaborating on the impacts
of K-hop awareness on agents’ security e!orts, as well as on the equilibrium’s
quality (in terms of agents sum of e!orts), both analytically and through numer-
ical experiments. Our findings show that extended awareness of network e!ects
can, in general, benefit agents by allowing them to optimize their security plan-
ning and resource allocation, but that decision makers who are less sophisticated
and lack this awareness can su!er, and that consequently, overall investment lev-
els in security are highly dependant on network structure and they may improve
or deteriorate.

The remainder of this paper is organized as follows. We review the work most
closely related to our paper in Section 1.1. In Section 2, we review the commonly
studied model of (one-hop) network security games, and then introduce our
proposed model of K-hop network games. We analyze the equilibria of this model
in Section 3, and illustrate our findings on special network structures and using
numerical experiments in Section 4. We conclude with directions for future work
in Section 5.

1.1 Related Work

Game-theoretical studies of security decision making on networks have adopted
di!erent modeling choices. We contrast the interdependent/network security
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game models we consider here, with two other prominent models: network in-
terdiction games, and attack graph models. Network interdiction games focus
on the strategic disruption of networks facing adversarial attackers, by identi-
fying and neutralizing critical nodes or links to impede the adversary’s opera-
tions [26,28,29]. Attack graphs, on the other hand, model the possible pathways
an attacker could take to compromise a network, helping defenders understand
potential vulnerabilities and prioritize defenses [1,15,24,27,33]. Network security
games in general, and our model included, do not consider the potential evolving
or stepping-stone nature of attacks, but rather the equilibrium state. That is, un-
like network interdiction games and attack graph models, an agent in a network
security game model decides on its security investments once, as a best-response
to an equilibrium state of the network, before attacks are launched, and does not
adjust any links or investments in response to an evolving attack in the graph.

Our work is most closely related to the literature on network games. Some
previous works on general network games (not restricted to the security context)
include [11, 16, 19, 20, 22, 31, 32, 35]. [19] has specifically discussed the existence
and uniqueness Nash equilibrium for security decision making using linear influ-
ence networks while [20, 22] have looked at existence, uniqueness, and stability
of one-hop network games where necessary and su"cient conditions for guar-
anteed uniqueness are introduced. [11] characterizes the price of anarchy in the
strategic form game and compares the benefits of improving security technology
and improving incentives, and shows that improving technology alone may not
o!set the price of anarchy. [16] has summarized the modeling assumptions and
categorized the equilibrium solutions in interdependent security games, [31, 35]
explore the bounded rationality of players using quantal response model and
prospect theory. Our framework can also be seen as a discussion of boundedly
rational agents (those who lack awareness of all network risk spillovers a!ecting
them).

Access to information about other firms’ security decisions, and decisions
regarding information sharing, can significantly impact firms’ security posture,
as noted by [4]. Despite the potential benefits, various concerns such as confi-
dentiality often hinder information sharing. To address this, legislation such as
the Cybersecurity Information Sharing Act of 2015 [8] and guidance from the
National Institute of Standards and Technology (NIST) [12] encourage firms to
share intelligence.

In relation to our paper, we suggest that information shared by firms can
also be viewed as a means of increasing their network awareness, providing them
information about other firms’ security behavior and of potential multi-hop risk
spillovers (in our terminology, helping them change from passive to reactive
agents, even if they do not possess multi-hop awareness). Specifically, we argue
that lack of awareness can hurt decision makers when other agents have ex-
tended network awareness; mandating or incentivizing information sharing can
help alleviate such issues.
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2 Model

2.1 One-hop Model

We consider a network of N interconnected decision-makers; these can include
device owners/operators, various divisions within a larger organization, or dif-
ferent sectors of the economy. We specify this network using a graph G := ↑V, G↓
with the N agents as the set of vertices V, and a weighted and directed in-
terdependency matrix G specifying their connections, where gij ↔ R captures
the dependence of agent i’s security outcomes on agent j’s security e!orts (as
detailed shortly).

Each agent i selects an e!ort xi ↔ R→0; this could represent the agent’s in-
vestment in security (hardware, software, employee training, etc.). This e!ort
impacts not only the agent itself, but also other agents in the network, as cap-
tured by the interdependency matrix G. Specifically, when gij ↗ 0, we call i
and j’s relationship a strategic substitute; this means that if agent j is better
protected, it is less likely that it is compromised and used to launch an attack on
agent i, and as a result, i can invest less in security and achieve the same security
outcomes. In contrast, gij ↘ 0 is a strategic complement relation; meaning, if
agent j increases its security e!ort, it is less likely to be attacked, making agent
i more likely to be the target of an attack instead, so that i has to invest more
in security in order to achieve the same security outcome.

The agent’s utility is determined by its own action, as well as the actions of
its one-hop neighboring agents. Let x ↔ RN↑1 denote the vector of all agents’
actions. Then, agent i’s utility is given by:

ui(x;G) = bi(xi +
N∑

j=1

gijxj)→ cixi , (1)

where bi(·) : R ≃ R is a twice-di!erentiable, strictly increasing, and strictly con-
cave benefit function, which has as its argument the aggregate e!ort experienced
by the agent from its one-hop neighbors in the graph, and ci > 0 is the unit cost
of e!ort for agent i.

The (one-hop) network game involving a set of N agents, their e!orts x, and
their utility functions ui(x;G), has been extensively analyzed in previous studies
(e.g., [3, 6, 11, 19, 20]). These games are known as games of linear best-replies,
where the Nash equilibrium x↓ is characterized by a set of linear best-response
equations:

x↓
i = max{0, qi →

∑

j↔Ni

gijx
↓
j}, (2)

where qi satisfies b↗i(qi) = ci. This condition ensures that the agent’s e!ort is
optimal, balancing marginal benefits and costs. The best-response (2) indicates
that agent i exerts an e!ort x↓

i to reach the aggregate e!ort level qi, considering
the spillover

∑
j gijx

↓
j from its one-hop neighbors’ e!orts at equilibrium. If the
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combined e!ort from neighboring agents already meets or exceeds qi, agent i will
exert no additional e!ort.

We next propose an extension of this model: K-hop network (security) games,
in which agents are more “aware” as they account for the impacts of actions taken
by those further away in the network on their security.

2.2 K-hop Model

We consider the same set of agents on the same network but with an extended
awareness: an agent in a K-hop network game considers, or is aware of, the
spillover of the (security) e!orts of other agents up to K-hop away when selecting
its e!ort.

Formally, the utility of an agent i with K-hop awareness is given by:

u(K)
i (x;G) = bi(xi +

K∑

k=1

N∑

j=1

g(k)ij xj )→ cixi , (3)

where for agents i and j, g(k)ij is the element in the ith row and jth column of the
kth power of the adjacency matrix G, and captures the impact of an agent j who
is k-hops away on agent i’s utility. By summing over the possible k’s (from 1 to
K), we are considering the impact of all possible e!ort spillovers from neighbors
within k-hops of agent i on its utility.

This model also leads to a network game of linear best-replies. The Nash
equilibrium x↓

(K) for agents with K-hop awareness is determined by:

x↓
i(K)

= max{0, qi →
K∑

k=1

N∑

j=1

g(k)ij x↓
j(K)

} (4)

Note that this model captures the commonly studied network security game
model of Section 2.1 when K = 1. As K increases, the agent has more awareness
of other agents further away in the network. As a special case, for K ≃ ⇐,
we say the agent attains omni-vision, as the agent will be accounting for, and
best-responds to, the e!orts of all other (reachable) agents in the network and all
paths through which risk spillovers can propagate and reach it. For this setting,
if all agents have omni-vision, agent i’s utility (3) at the ⇐-hop game’s Nash
equilibrium is given by:

u(↘)
i (x↓

(↘);G) = bi
((

(I +G+G2 +G3 + . . .)x↓
(↘)

)
i

)
→ cixi , (5)

Let S := I + G + G2 + G3 + . . .. It is easy to see that S(I → G) = I, or
S = (I→G)≃1, provided that S converges. It is known that limk⇐↘ Gk = 0 if and
only if ω(G) < 1, where ω(G) is the spectral radius of G; absolute convergence of
S is guaranteed under this condition [30,36]. Using this relation, in our analysis
of K-hop games in Section 3.1, we will establish a relation between the K-hop
game’s Nash equilibrium characterization and the matrix (I →G)≃1.
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3 Impacts of Extended Awareness: Nash Equilibria of
K-hop Network Games

In this section, we explore the implications of agents’ extended awareness on
their strategic security decision making by looking into the Nash equilibria that
arise as agents’ awareness of the network (the K in the K-hop game) increases.

Warm-up: no awareness (K = 0) to one-hop awareness (K = 1). In order to
illustrate the impacts of extended awareness, we start with a warm-up case:
increasing awareness from K = 0 (no awareness; ignoring all network e!ects) to
K = 1 (the commonly studied one-hop network security game). The equilibrium
of the K = 0 game is x↓ = q↓ (i.e., each agent i investing at its respective
indi!erence point qi). When awareness is upgraded to K = 1, the new optimal
e!ort levels depend on whether only some or all agents access a higher awareness.
We first consider the case where only one agent (w.l.o.g., agent i = 1) can
upgrade its awareness from K = 0 to K = 1: the equilibrium will be x↓

1 =
max{0, q1→

∑
j g1jqj}, and x↓

j = qj , ⇒j ⇑= 1. We can see that the change in agent
1’s e!ort depends on the nature of the game graph. For instance, for games of
strategic substitutes (resp. complements) where gij ↗ 0, ⇒j (resp. gij ↘ 0, ⇒j),
agent 1 lowers (resp. increases) its e!orts and its free riding increases (resp.
decreases) as the agent becomes aware of its dependence on other agents. At the
other extreme, if all agents can upgrade their awareness from K = 0 to K = 1,
the NE is given by the fixed point of best-responses in (2); again, depending
on the substitute/complement e!ects, the e!ort of each agent i may increase or
decrease compared to the K = 0 case.

An illustrative example: one-hop (K = 1) to two-hop awareness (K = 2). From
the above warm-up case, we can see that the impacts of increasing awareness
on agents’ e!orts depend on (1) the strategic or complement nature of their
dependencies, and (2) the potential di!erences in the awareness levels of agents.
In the following numerical example, we highlight the same e!ects when awareness
increases from immediate neighbors (K = 1) to two-hop away neighbors (K = 2),
and further show that an additional consideration arises: (3) whether agents with
lower awareness are passive or reactive. In the passive case, less aware agents
(here, those with 1-hop awareness) best-respond assuming all other agents have
lower awareness, too. Reactive (but still less aware) agents, on the other hand,
best-respond to the observed level of e!ort of all agents, including the higher-
awareness agents. The rationale is that these lower awareness agents assume any
higher awareness agents are behaving sub-optimally without attributing a reason
to their (perceived) sub-optimal e!orts.

Example 1. Consider two network games represented by the adjacency matrices
A =

(
0 0.3 0.2

≃0.3 0 0.5
0.2 0.5 0

)
and B =

(
0 ≃0.3 0.2

≃0.3 0 0.5
0.2 0.5 0

)
, and with q = [1, 1, 1]T .

The only di!erence between the two networks is in edge g12. As illustrated
by Figure 1 we can see that by changing only this one link in the network, the
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(a) Network A of agents (top) and their
actions (bottom)

(b) Network B of agents (top) and their
actions (bottom)

Fig. 1: Two di!erent scenarios arise for two largely similar networks as levels of
awareness increase.

equilibrium in each scenario (all one-hop aware, only agent 1 two-hop aware and
others passive/reactive, and all two-hop aware) changes.

Focusing on Figure 1a first, we can see that agent 1 can free-ride more by
being two-hop aware. If other agents are unaware themselves but reactive to
agent 1’s two-hop awareness, they adjust their e!orts according to agent 1’s
lowered investment, agent 2 by decreasing its e!ort due to the negative link
and agent 3 by increasing its own e!ort due to the positive link. If these agents
manage to acquire resources to also become two-hop away, then agent 1 will
increase its e!ort since agents 2 and 3 will also free-ride more by becoming
two-hop aware.

Looking at Figure 1b next, we see a di!erent change in the equilibrium, even
though, compared to Figure 1a, the networks are not very di!erent. Specifically,
when other agents become reactive to agent 1’s 2-hop awareness, they will have
two di!erent reactions: (i) agent 2 will also start free-riding more due to the
negative link, (ii) agent 3 tries to make up for this with a higher e!ort. Lastly,
when all agents have two-hop awareness, agents 1 and 2 will free-ride more, and
agent 3 will try to make up for this by its own e!ort.

Motivated by the above examples, we next provide analytical results for two
settings: Section 3.1 characterizes the equilibrium when all agents have K-hop
awareness for general K, while Section 3.2 considers a mixture of one aware (e.g.,
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K = 2) and N → 1 unaware (e.g., K = 1) agents in games of pure strategic sub-
stitutes/complements, and the impacts of the unaware agents’ passive behavior
on the ability of the one aware agent to free-ride on them.1

3.1 All K-hop Aware Agents

In this section, we consider games where all agents are aware of their K-hop
neighbors (and are reactive). We start with the scenario K < ⇐, which rep-
resents a case in which agents may not have the resources to be aware of all
reachable agents and, at best, only take some into account. We also discuss the
special case of K ≃ ⇐; this case is important as it represents an ideal scenario
where agents have unlimited resources and can best-respond to all reachable
agents regardless of how distant they are, which we call omni-vision. We com-
pare the two cases, and illustrate the di!erences using an example at the end of
the subsection.

Nash equilibria of K-hop network games. In the following proposition, we iden-
tify an equivalence between the Nash equilibria of such K-hop games and that
of a one-hop game with a specific adjacency matrix.

Proposition 1. If ω(G) < 1, then best-response of agents in a K-hop network
game is the same as the best-response of agents in a one-hop game on a network
with adjacency matrix Ĝ = (I →G)≃1(I →GK+1)→ I.

Proof. If ω(G) < 1 we can define SK := I +G+G2 + . . .+GK = (I →G)≃1(I →
GK+1), we can write agent i’s K-hop best-response (4) as:

x↓
i(K)

= max{0, qi →
N∑

j=1

[SK → I]ij x
↓
j(K)

}

= max{0, qi + x↓
i(K)

→
N∑

j=1

[(I →G)≃1(I →GK+1)]ij x
↓
j(K)

} (6)

which is equivalent to the best-response (2) of a one-hop game on a network
with adjacency matrix (I →G)≃1(I →GK+1)→ I.

In Proposition 1, we are constructing a new network interdependency matrix Ĝ
from the original matrix G in a way that the links ĝij between agents i and j
account for the spillovers across all paths of length at most K to agent i from
agent j in the original game.

The following corollary considers the special case of an ⇐-hop game where all
agents have omni-vision, i.e., they are aware of, and best-respond to, the e!orts
of all other agents.
1 We will illustrate similar impacts when K → 2 and in general games of mixed

strategic complements/substitutes through numerical experiments in Section 4.
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Corollary 1. If ω(G) < 1, then the best-response of agents in a ⇐-hop network
game is the same as the best-response of agents in a one-hop game on a network
with adjacency matrix Ĝ = G(I →G)≃1.

The proof follows from noting that if ω(G) < 1, then limK⇐↘ GK+1 = 0, and
that the infinite sum S = I +G+G2 + . . . can be re-written S → I = G(I +G+
G2 + . . .) = GS = G(I →G)≃1.

By reducing a K-hop game to a one-hop game on an appropriately trans-
formed network, analysts can more easily predict and manage the propagation
of risks and the strategic interactions between di!erent entities in the network.
This reduction allows for the application of existing tools and methodologies de-
signed for one-hop games, which are often more mature and better understood.
For example, this approach can be applied to verify the uniqueness of the Nash
equilibrium in a K-hop network game which we know the Nash equilibrium of
the one-hop network game is unique.

3.2 Mixture of Aware and Unaware Agents

The previous subsection analyzed the K-hop game’s Nash equilibrium when all
agents can attain K-hop awareness. However, it may not be possible for all agents
to attain this awareness. One reason could be limited resources to gather intel-
ligence about other agents’ security decisions or the high cost of processing all
available information. For instance, higher-level agents in a hierarchical network
are expected to have full knowledge of the branches below them, but they may
only have limited awareness due to the constraints of the human mind [14].

Motivated by this, we consider a scenario in which only one agent is able
to upgrade its awareness (e.g., best-responding to both immediate and 2-hop
away neighbors), while others are passive and remain at a lower awareness level
(e.g., considering only their immediate neighbors). We discuss the change in
the e!ort of the aware agent, and its ability to free-ride on others given their
passive and unaware strategies. We present this analysis for two special network
structures: games of strategic substitutes and games of strategic complements,
where gij ↗ 0 and gij ↘ 0, respectively, for all i, j. The former captures networks
where a security compromise of one agent negatively impacts others connected
to it (due to, e.g., the spread of the attack or disruption of joint operations).
The latter is most closely related to networks where attackers are interested in
identifying the weakest targets.

We start with the impacts of one agent unilaterally upgrading its awareness
in a game of strategic substitutes.2

Proposition 2. Consider a network game of strategic substitutes, where agent
i has K-hop awareness, while agents j ⇑= i have K ↗ < K awareness. Then, agent
i’s e!ort will be lower compared to a game where it also had K ↗-awareness if and
only if there is at least one agent l with e!ort x↓

l,(K→) > 0 is K ↗ < k ↘ K hops

2 The results of Proposition 2 also hold for the case of general networks if all paths
with distance K have an even number of complement (negative weight) edges.
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away from agent i. If no such agent exists, agent i’s e!ort will be the same as
the game where it also had K ↗-awareness.

Proof. When agent i is aware of up to K-hop neighbors in its best-response,
while other agents are only aware of others at most K ↗ < K hops away, we can
write:

x↓
i(k)

= max{0, qi →
N∑

j=1

K→∑

l=1

g(l)ij x
↓
j(K→)

→
N∑

j=1

K∑

l=K→+1

g(l)ij x
↓
j(K→)

} (7)

For a game of strategic substitutes, we know g(l)ij ↗ 0 for all l. Therefore we
can conclude that

∑N
j=1

∑k
l=K→+1 g

(l)
ij x

↓
j(K→)

↗ 0 and will strictly be positive if at
least one agent with positive e!ort is reachable with K ↗ < k ↘ K hops.

Proposition 2 states that if an agent becomes more aware than others in a
game of strategic substitutes, it can (weakly) increase its free-riding on others.
As a special case, if for the aware agent x↓

i(K→)
= 0 at some K ↗, then x↓

i(K)
= 0 for

all K > K ↗. This means that awareness can benefit the aware agent by allowing
it to attain the same security outcomes while lowering its e!ort (and therefore,
overall increasing its utility), but that at the same time, it will hurt the other
unaware and passive agents, as they will be (incorrectly) assuming that the aware
agent is exerting higher e!ort than it truly is.

For games of strategic complements, on the other hand, we cannot make a
statement as general as Proposition 2, since the sign of all entries of the powers
of the adjacency matrix will be alternating, i.e., g(2n≃1)

ij ↘ 0, g(2n)ij ↗ 0 for all
i and j. In other words, even though the odd-hop away neighbors maintain a
strategic complement relation to agent i’s e!ort, neighbors even number of hops
away are turned into strategic substitutes from the viewpoint of agent i. That
said, we can comment on the e!orts at equilibrium when awareness increases
from K to K+1 hops. Specifically, by defining ḡi as the impact of agent i’s most
influential neighbor, i.e., ḡi = {gij : |gij | ↗ |gik| , ⇒k}, we can state the following
result.

Proposition 3. Consider a game of strategic complements where agent i has
two-hop awareness while agents j ⇑= i have one-hop awareness. Then agent i’s
e!ort will be lower compared to a game where it also had one-hop awareness,
assuming qi > 0, at most by ḡi

∑
j

∑
k gkjx

↓
j .

Proof. Since qi > 0, we can write x↓
i(1)

= qi →
∑N

j=1 gijx
↓
j(1)

↗ 0 and accordingly
write x↓

i(2)
as:

x↓
i(2)

= max{0, qi →
N∑

j=1

(gij +
N∑

k=1

gikgkj)x
↓
j(1)

}

= max{0, x↓
i(1)

→
N∑

j=1

N∑

k=1

gikgkjx
↓
j(1)

} (8)
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Further, since we know gij ↘ 0 we can further write
∑N

k=1 gikgkjx
↓
j ↘ ḡi

∑
k gkjx

↓
j

where ḡi is the element with largest absolute value in row i, i.e. most influential
neighbor of agent i. Therefore, we can write:

x↓
i(1)

→ ḡi

N∑

j=1

N∑

k=1

gkjx
↓
j(1)

↘ x↓
i(2)

↘ x↓
i(1)

(9)

The second term on the LHS bound in (9) is non-negative, confirming that for
this setting, upgrading the awareness will not make the agents put in more e!ort.

The term
∑N

j=1

∑N
k=1 gkjx

↓
j could be interpreted in the network as the sum of

the spillovers of all agents if they all had one-hop awareness. Therefore, the
amount that agent i can free-ride by having two-hop awareness, compared to
one-hop awareness, is bounded by the sum of spillovers of all agents over the
network, weighted by the most influential neighbors of the agents.

We next take advantage of the knowledge of specific network structures and
numerical experiments to discuss the more general cases and remove the con-
straints on edge weights.

4 Special Network Structures

In this section, we examine specific network structures and analyze each, both
analytically and numerically. We identify equilibria in synthetic networks where
all agents have K-hop awareness with varying K. We employ the sum of e!orts
as a baseline metric to assess the "quality" of the game. This evaluation is further
extended by comparing

∑
i qi with the outcomes from games incorporating K-

hop awareness, represented by
∑

i x
↓
i(K)

. Our analysis begins with elementary
graph configurations, such as cycles and star graphs, before advancing to a more
general case of directed acyclic graphs.

One-way Cycle: It is relatively easier to understand the changes in the e!orts
of the agents in cycle graphs. Consider a directed one-way cycle graph with sim-
ilar connections between agents, meaning that each agent i only has an outgoing
link to agent i + 1 with weight g. For this case, we have gi,i≃1 = 0. This way,
the best-response of agents will come down to:

x↓
i(k)

= max{0, qi →
k∑

l=1

glx↓
i+l(k)

} (10)

As previously noted, for g > 0, it holds that x↓
i(k)

↘ x↓
i(k→)

for k > k↗. Con-
versely, if g < 0, oscillations occur due to the alternating sign of the summation
term in (10). For |g| < 1, these oscillations will converge as the number of con-
sidered hops grows, limn⇐↘ gn = 0. However, if |g| > 1, the powers of g will
diverge, also with alternating signs. In cases of high awareness levels, an agent
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may completely free-ride and have, x↓
i(2k↑1)

= 0, if aware of an even number of
hops and exert significant e!ort, x↓

i(2k)
⇓ 0, when aware of an odd number of

hops. This analysis underscores that even in a straightforward case of a one-way
cycle with uniform link weights, the increase in agents’ awareness can lead to a
range of outcomes.

Fig. 2: Game quality comparison for 10 randomly generated one-way cycle net-
works with 5 K-hop aware agents (K from 1 to 10) with the no awareness case
(dashed red line).

To relax the conditions on the connections in this case, with the aim to
comment on the impact of network structure, we work with randomly generated
weights within the range (→1, 1) and calculate the equilibrium. In Figure 2,
each data point represents the game quality on a randomly generated network
of 5 agents for when agents are aware of K-hops with K going from 1 to 10.
We can see that after a few hops the game quality converges, however, we can
see that game quality can be either above or below the starting point which is
no awareness. This indicates that by considering more hops, the spillovers are
becoming less and less important. Also, the jump in game quality after going
from one-hop to two-hop is significant.

Star Network: Another simple structure that can be of interest is star net-
works. Star networks have been studied in various applications, such as the
structure of the internet [37]. Consider an undirected star network with the
central node labeled as 1, and the remaining nodes are only connected to the
central node. This way we have one node with n → 1 connections and n → 1
nodes with 1 connection, the adjacency matrix of this network will have the

form G =

(
0 gT1·
g1· 0

)
and G2 =

(
⇔g1·⇔22 0

0 g1·gT1·

)
, where the bottom right block is

an n → 1 ↖ n → 1 matrix with ith row being: [g12g1i, gi3g1i, . . . , g2ii, . . . , g1ng1i].
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Therefore, the agents’ e!orts after considering two hops will be as follows:

x↓
1(2)

= max{0, q1 → gT1·x
↓
(2) → ⇔g1·⇔22x↓

1(2)
} (11)

x↓
i(2)

= max{0, qi → g1i(x
↓
1(2)

+
∑

k

g1kx
↓
k(2)

)} (12)

We can see for the central agent, the rebound of its own e!ort (⇔g1·⇔22x↓
1(2)

) is
allowing it to free-ride more and have a lower e!ort, while q1→gT1·x

↓
(2) is similar

to one-hop awareness, with the only di!erence of accounting for other agents
being two-hop aware. The case for non-central agents is rather simple as well.
The two-hop spillovers are weighted by the two-hop neighbors’ connection to the
central agent and then summed with the e!ort of the only one-hop neighbor of
agent i, agent 1. Again, for an easier conclusion, we turn to numerical simulation
on synthetic networks with edge weights randomly generated in the range (→1, 1)
with 5 agents.

Fig. 3: Game quality comparison for 10 randomly generated star networks with
5 K-hop aware agents (K from 1 to 10) with the no awareness case (dashed red
line).

As seen in Figure 3, in terms of game quality, this case is very similar to the
case of the one-way cycle, even though the e!ort profiles can be very di!erent.

Directed Acyclic Graph: Hierarchical structures are pervasive across vari-
ous domains seen in technological systems, such as the Internet, organizational
structures, and software architectures. Directed Acyclic Graphs (DAGs) are a
specific type of hierarchical network characterized by a directed graph with no
cycles, meaning there is a unidirectional flow from one node to another without
returning to the starting node.

These types of networks can be represented by upper triangular adjacency
matrices with zero diagonals, given that loops are not allowed. Normally, in
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hierarchical matrices, the higher nodes have the full awareness of the sub-network
below them, we can use k-hop model to capture this property of these networks.

For these networks, we can iteratively calculate all equilibrium e!orts by
starting from the bottom of the hierarchy (agents that have no outgoing links)
and moving upwards. This is possible because The kth power of an upper trian-
gular matrix with zero diagonals is an upper triangular matrix with zero diagonal
and k → 1 zero superdiangonals above.3

We can see that for a hierarchical network with n agents, the lowest positioned
agent will not be able to take a strategic e!ort since Gn = 0. the following
example illustrates how this iterative procedure works:

Example 2. Consider a hierarchical network with the adjacency matrix G =( 0 g12 g13
0 0 g23
0 0 0

)
where we know G2 =

(
0 0 g12g23
0 0 0
0 0 0

)
and Gk = 0 for k ↗ 3. For the

scenario where each agent is aware of two hops, we can write (assuming qi >
0 , ⇒i):

x↓
3(2)

= q3 (13)

x↓
2(2)

= max{0, q2 → g23q3} (14)

x↓
1(2)

= max{0, q1 → g12x
↓
2(2)

→ (g13 + g12g23)q3} (15)

As seen in these equations, we can start from the lowest nodes to find the
equilibrium for these types of networks. For tree graphs, this model is equivalent
to each agent considering the whole branch below them and not being aware
of the branches above or parallel. Starting from the lowest nodes, we can find
their equilibrium e!ort independently from other nodes (13), then we move to
the nodes in the higher branches (14), and (15) until we know all the e!orts in
the network.

The numerical experiments for DAGs are more intriguing than previous cases.
For these networks, we increased the number of agents to 10 and the range of edge
weights to (→2.5, 2.5). With these changes, we see that, as expected, all cases will
converge. Even though this is not guaranteed for DAGs, all the random cases
have higher game quality than the no awareness scenario. Also, the damping
rate fluctuations in Figure 4 depend on the edge weights; if the edge weights are
large, then they can continue on as many hops as there are agents; however, the
fluctuations will definitely end since there exists a k for which Gk = 0.

3 We can write the elements of the second power of A as [A2]ij =
∑

k aikakj . Given
ai· = [0, 0, ..., 0, ai,i+1, ..., ain] and aT

·j = [a1j , ..., aj→1,j , 0, 0, ..., 0] we can easily see
for j = i+ 1 we have [A2]ij = 0 since the first i elements of ai· are zero and the last
n ↑ j + 1 = n ↑ i elements of a·j are zero, similarly for j < i + 1. We can continue
this process for higher powers of A and show the results.
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Fig. 4: Game quality comparison for 10 randomly generated DAGs with 10 K-
hop aware agents (K from 1 to 10) with the no awareness case (dashed red line).

5 Conclusion

In this study, we extend the traditional framework of network security games by
introducing K-hop network games, where agents possess extended awareness of
risk spillovers up to K hops away. Our analysis highlights several key findings:

We demonstrate that agents’ strategic security decisions and equilibrium be-
haviors are significantly influenced by their level of awareness. Increasing aware-
ness results in changes in optimal e!ort levels, contingent upon the network struc-
ture and the nature of dependencies (complements vs. substitutes). In strategic
substitutes games, agents with higher awareness can lower their e!orts and in-
crease free-riding, particularly if they are aware of agents with positive e!orts
within their extended network. In strategic complements games, the benefits
of increased awareness from one-hop to two-hop are bounded, with e!orts po-
tentially decreasing for two-hop awareness but not leading to increased e!orts
compared to one-hop awareness scenario. Our examination of specific network
structures shows varied impacts of increased awareness on agents’ e!orts. In
one-way cycles, we analytically showed that e!orts can oscillate with awareness
levels, while in star networks, due to two-hop awareness, central agents can free-
ride more compared to one-hop awareness. In hierarchical DAGs, agents’ e!orts
are determined iteratively from the lowest to the highest nodes. Our numeri-
cal experiments indicate that the overall game quality, measured by the sum
of agents’ e!orts, can both improve and deteriorate with increased awareness.
The extent and direction of this change depend on network structure and edge
weights.

In conclusion, extended awareness in network security games enables agents
to optimize their security investments more e!ectively, but also exposes poten-
tial pitfalls for less aware agents. These insights can inform better policies and
resource allocation strategies, emphasizing the necessity for sophisticated aware-
ness in managing K-hop risk dependencies.
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Future research can expand on these findings by exploring more complex
and dynamic network structures, where agents’ awareness levels may change
over time. Further studies could also consider the impact of partial or evolving
awareness, where agents gradually gain or lose information about their network
environment. These extensions would enhance our understanding of strategic in-
teractions in networks and contribute to the development of more robust models
for predicting and optimizing agents’ e!orts in various domains.
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