
OJXPerf: Featherlight Object Replica Detection for Java
Programs

Bolun Li
North Carolina State University
Raleigh, North Carolina, USA

bli35@ncsu.edu

Hao Xu
College of William and Mary
Williamsburg, Virginia, USA

hxu07@email.wm.edu

Qidong Zhao
North Carolina State University
Raleigh, North Carolina, USA

qzhao24@ncsu.edu

Pengfei Su
University of California, Merced

Merced, California, USA
psu9@ucmerced.edu

Milind Chabbi
Scalable Machines Research
milind@scalablemachines.org

Shuyin Jiao
North Carolina State University
Raleigh, North Carolina, USA

sjiao2@ncsu.edu

Xu Liu
North Carolina State University
Raleigh, North Carolina, USA

xliu88@ncsu.edu

Abstract

Memory bloat is an important source of ineociency in complex
production software, especially in software written in managed lan-
guages such as Java. Prior approaches to this problem have focused
on identifying objects that outlive their life span. Few studies have,
however, looked into whether and to what extent myriad objects of
the same type are identical. A quantitative assessment of identical
objects with code-level attribution can assist developers in refac-
toring code to eliminate object bloat, and favor reuse of existing
object(s). The result is reduced memory pressure, reduced alloca-
tion and garbage collection, enhanced data locality, and reduced
re-computation, all of which result in superior performance.

We develop OJXPerf, a lightweight sampling-based prooler,
which probabilistically identioes identical objects. OJXPerf em-
ploys hardware performance monitoring units (PMU) in conjunc-
tion with hardware debug registers to sample and compare oeld
values of diferent objects of the same type allocated at the same
calling context but potentially accessed at diferent program points.
The result is a lightweight measurement — a combination of ob-
ject allocation contexts and usage contexts ordered by duplication
frequency. This class of duplicated objects is relatively easier to
optimize. OJXPerf incurs 9% runtime and 6% memory overheads
on average. We empirically show the beneot of OJXPerf by using
its prooles to instruct us to optimize a number of Java programs, in-
cluding well-known benchmarks and real-world applications. The
results show a noticeable reduction in memory usage (up to 11%)
and a signiocant speedup (up to 25%).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proot or commercial advantage and that copies bear this notice and the full citation
on the orst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specioc permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510083

ACM Reference Format:

Bolun Li, Hao Xu, Qidong Zhao, Pengfei Su, Milind Chabbi, Shuyin Jiao,

and Xu Liu. 2022. OJXPerf: Featherlight Object Replica Detection for Java

Programs. In 44th International Conference on Software Engineering (ICSE ’22),

May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3510003.3510083

1 Introduction

Memory bloat is a common problem in managed languages, such as
Java and C#. The problem is particularly severe in large, production
software, which employs layers of abstractions, third-party libraries,
and evolves over time into complex systems not comprehendible by
any single developer. Furthermore, these programs run for a long
time (several months at a time), giving them an opportunity to grow
their memory footprint and become a source of major problems in
production environments often shared by several other programs.

An object that is not reclaimed by the garbage collector (GC)
but neither read nor written any more is considered to be <leaked=.
A memory leak happens in managed languages because useless
objects remain unreclaimed by the GC because of unnecessary
references to them. Additionally, memory spikes occur in managed
languages because of accumulated objects that are yet to be garbage
collected. Memory bloat (whether due to leaks or GC) results in
high memory pressure and poor performance. A lot of prior work
exits to detect object leaks [21, 38, 57, 59–62, 64, 65] and improve
GC [5, 10, 27, 36, 49, 66].

However, there is another cause of memory bloat and ineociency
that has hardly been studied — replica objects — which is the focus
of this paper. Two objects are replicas if their contents are identical.
Two objects are shallow replicas if their oelds are bitwise identical;
and deep replicas if the transitive closure of the constituent objects
and their respective oelds values are bitwise identical. When two
objects are bitwise identical (shallow replicas), their transitive clo-
sures are also the same. However, when two objects are not bitwise
identical and the diference occurs on one or more oelds that are
object references, it becomes necessary to chase those references to
disprove that the contents of those objects are not identical. After

1558

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA Bolun Li, Hao Xu, Qidong Zhao, Pengfei Su, Milind Chabbi, Shuyin Jiao, and Xu Liu

chasing all object references, if we can prove that their contents
are identical, then such two objects are deep replicas.

There is a temporal aspect to replica objects: one may regard two
objects as replicas either because they were identical at the time (or

a window) of observation or for their entire lifetime. Two objects are
mutable replicas if they are identical to each other, but they may
independently evolve during their lifetimes; whereas two objects
are immutable replicas if they are identical to each other and are
also immutable during their lifetimes.

There are two performance dimensions to replica objects: total
memory consumption and total number of memory accesses. On
the one hand, an object may be large in size and replicated only
a few times, and such replicas still contribute to the overall mem-
ory bloat; also, an object may be small in size but replicated many
times, which also contributes to memory bloat; both these cases
are worth optimizing to remove the replicas. On the other hand,
an object may be small in size and replicated only a few times, but
the program may be accessing these few replicated objects a lot
of times; although this situation is not memory bloat, it can still
have a signiocant consequence to the overall performance since
it increases the memory footprint at the CPU cache level, squan-
ders potential memory reuse [6], and often results in redundant
re-computations [38, 54].

Having described the landscape of object replication (deep vs.
shallow, some time window vs. full lifespan, mutable vs. immutable,
and memory size vs. access counts), we now scope this problem to
a tractable subset driven by pragmatic tool-development factors.
First, instrumenting every allocation and memory access to identify
object replicas leads to excessive runtime overheads; we seek for
a lightweight tool that can collect prooles in production rather
than in test-only environments; we guarantee the analysis accuracy
with the theoretical bounds of a sampling technique we use. Second,
deep replica comparison is unachievable without running some-
thing analogous to the garbage collector, which can introduce high
overheads and require runtime modiocations, making it less adapt-
able; hence we restrict our tool to only shallow object comparison.
Third, if two objects are not replicas for their entire life span, they
are not easy to optimize, and hence we consider only those objects
that are replicas for their entire duration. We do not enforce objects
to be immutable for replica detection. Finally, our tool regards two
or more objects as replicas only if they were allocated in the same
calling context; the observation drives this restriction that it is sig-
niocantly easy to refactor such code to optimize compared with
optimizing replica objects allocated frommyriad code locations. We
emphasize that we want to be able to monitor replicas and prioritize
them by their access frequency.

OJXPerf, developed to meet these factors, monitors object allo-
cations and accesses at runtime via statistical sampling. The key
diferentiating aspect of OJXPerf, compared to a large class of ex-
isting proolers, is its ability to detect object replicas with minimal
byte code instrumentation and no prior knowledge of programs
makes it applicable in the production environment. A thorough eval-
uation of several real-world applications shows that pinpointing
object replicas ofers new avenues to understanding performance
losses; aggregating replica objects into one or a few objects reduces
the memory footprint, eliminates redundant computations, and
enhances performance.

1.1 Observation

With the help of OJXPerf, Figure 1 quantioes the ratio of object
replicas over the total number of objects in several real applica-
tions listed at [32] and two popular Java benchmark suites—Dacapo
9.12 [2] and Renaissance [44], showing that replicated objects are
pervasive in modern Java software packages. Based on many case
studies investigated in this paper, we observe that object replication
is the symptom of the following kinds of ineociencies.

Input-sensitive Ineociencies. Repeatedly using the same in-
put to instantiate a Java class shows up as repeatedly creating ob-
jects with the same content. Listing 1 shows a problematic method
readNext from Parquet-MR [29], which contains the Java imple-
mentation of the Parquet format. This method is invoked in a loop,
and in each invocation, it creates a new object bytes, shown on
line 93, and initializes this object via input stream <in=, as shown on
line 94. We run Parquet-MR using Parquet-Column as its input. The
Parquet-Column input is a columnar storage format for Hadoop;
this format provides eocient storage and encoding of data. As line
94 in Listing 1 shows, each time the readNext method is invoked, it
creates a copy of input contents (variable <in=), and uses this copy
to initialize many objects <bytes= (object replication). None of the
existing proolers, such as JXPerf [51] and LDoctor [50], can identify
such object replicas since they are designed only to recognize the
redundancies happening at the same memory location. Instead,
objects bytes are allocated in disjoint memory regions.

Algorithmic Ineociencies. Suboptimal choices of an algorithm
often show up as object duplications. As a practical example, Find-
bugs [45] divides a graph into tiny-size blocks and creates an object
for each block instead of creating a single object for the whole
graph. Consequently, most of the created objects have the same
content due to good value locality among adjacent blocks.

Data Structural Ineociencies. Like suboptimal algorithms,
poor data structures can easily introduce object replicas as well.
For instance, in matrix multiplication, sparse matrices with a dense
format can yield a high proportion of objects with the same content.

The major lessons that can be learned from this paper:

• Object replicas are not uncommon in real Java applications.
• Sampling-based measurement based on hardware counters and
debug registers can provide good insights and incur signiocant
low overhead.

• Developing OJXPerf that eociently interacts with of-the-shelf
JVM and LinuxOS in the production environment requires careful
design.

• The call path of object allocation and source code attribution
in a GUI are particularly useful for users to identify actionable
optimization.

1.2 Paper Contributions

In this paper, OJXPerf makes the following contributions:

• Develops a novel object-centric prooling technique. It provides
rich information to guide optimizing object replicas in JVM-based
programs, such as Java and Scala.

1559

OJXPerf: Featherlight Object Replica Detection for Java Programs ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA

Figure 1: Percentage of replicated objects over all the objects in various Java applications.

90 private void readNext () {

91 ...

92 currentBuffer = new int[currentCount];

93 �byte[] bytes = new byte[numGroups * bitWidth];

94 �new DataInputStream(in).readFully(bytes);

95 for (int valueIndex = 0, byteIndex = 0; ...; ...) {

96 �packer.unpack8Values(bytes , byteIndex , currentBuffer ,

valueIndex);

97 }

98 }

Listing 1: Object replicas in Parquet MR. The replica object

bytes is allocated on line 93, initialized on line 94 and used

on line 96.

• Employs PMU in conjunction with hardware debug registers and
minimal byte code instrumentation, which typically incurs 9%
runtime and 6% memory overheads.

• Quantioes the theoretical lower and upper bounds of replication
ratios of OJXPerf’s statistical approach.

• Applies to unmodioed Java (and languages based on JVM, e.g.,
Scala) applications, the of-the-shelf Java virtual machine, and
Linux operating system, running on commodity CPU processors,
which can be directly deployed in the production environment.

• Provides intuitive optimization guidance for developers. We
evaluate OJXPerf with popular Java benchmarks (Dacapo [35],
NPB [16], Grande [9], SPECjvm2008 [14], and the most recent Re-
naissance [44]) and more than 20 real-world applications. Guided
by OJXPerf, we are able to obtain signiocant speedups by elim-
inating object replicas in various Java programs. We have up-
streamed some of the patches to the software repositories.

1.3 Paper Organization

The paper is organized as follows. Section 2 covers the related
work and distinguishes OJXPerf. Section 3 ofers some background
knowledge. Section 4 depicts OJXPerf’s methodology. Section 5 de-
scribes the implementation details of OJXPerf. Section 6 discusses
the theoretical guarantee of OJXPerf’s analysis accuracy. Section 7
evaluates OJXPerf’s accuracy and overhead. Section 8 describes
case studies of OJXPerf. Section 9 discusses the threats to validity.
Finally, Section 10 presents our conclusions.

Table 1: Comparing OJXPerf with other state-of-the-art inef-

ociency analysis tools/approaches.

2 Related Work

Performance prooling techniques abound in the Java community,
which fall into two categories: hardware and software approaches.
Each category can be further classioed into hotspot and ineociency
analyses. We also compare the related Java tools in table 1.

2.1 Software Approaches

Hotspot Analysis. Netbeans Prooler [42], JProoler [19],
YourKit [24], VisualVM [13], and Oracle Developer Studio Perfor-
mance Analyzer [11] are hotspot analysis proolers, which identify
execution hotspots in CPU time or memory usage. They typically
introduce negligible overhead by leveraging OS timers as the sam-
pling engines to deliver periodic samples. The hotspot analysis is
indispensable but fails to tell whether a resource is being used in a
productive manner and contributes to a program’s overall eocien-
cies. A hotspot does not need to be an ineocient code region and
vice versa. Hence, a heavy burden is on users to make a judgment
on whether the reported hotspots are actionable.

Ineociency Analysis. Unlike hotspot analysis, ineociency
analysis tools identify code regions leading to resource wastage
instead of resource usage. Cachetor [31] combines value prooling
and dependence prooling to pinpoint operations that repeatedly
generate an identical value. MemoizeIt [15] identioes methods that
repeatedly perform identical computation. JOLT [48] identioes and
optimizes object churn in a virtual machine. Toddler [39] identioes
redundant memory load operations in loop nests. The follow-up
work [50] applies a static-dynamic analysis to reduce Toddler’s over-
head. However, it identioes ineociencies within a small number of

1560

ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA Bolun Li, Hao Xu, Qidong Zhao, Pengfei Su, Milind Chabbi, Shuyin Jiao, and Xu Liu

suspicious loops instead of the entire program. Xu et al. [58] intro-
duce copy prooling that optimizes data copies to remove the objects
that carry copied values, and the method calls that allocate and
populate these objects. Their follow-up work [63] develops prac-
tical static and dynamic analyses that identify ineociently-used
containers, such as overpopulated containers and underutilized
containers. They also present a run-time technique [56] to iden-
tify reusable data structures to avoid frequent object allocations.
OEP [37] identioes mergeability among live objects, which requires
the measurement of object reachability. In contrast, OJXPerf an-
alyzes objects allocated in the same call path regardless of their
liveness. OEP leverages bytecode instrumentation, which incurs
orders of magnitude of overhead compared to OJXPerf.

OJXPerf is a prooler but applies a hardware approach to address
a diferent ineociency problem — object replication.

2.2 Hardware Approaches

There aremany hardware-assisted proolers. In this paper, we review
only PMU- or debug register-assisted Java proolers.

Hotspot Analysis. Linux Perf [34], Async-prooler [43], and
Oproole [3] employ PMU as the sampling engines to deliver peri-
odic samples. PMU-based hotspot proolers ofer slightly better intu-
ition than the OS timer-based ones since they can classify hotspots
according to various forms of performance metrics collected from
PMU, such as instruction numbers, cache misses, bandwidth, and
many others. However, they are not panaceas; users still have to
distinguish ineocient hotspots from eocient ones manually.

Ineociency Analysis. Sweeney et al. [20] develop a system
that provides a graphical interface to alleviate the dioculty in inter-
preting PMU results. Hauswirth et al. [25] present vertical prooling
that captures and correlates performance problems across multiple
execution layers (application, VM, OS, and hardware). Georges et
al. [23] study methods exhibit similar and dissimilar behaviors by
measuring the execution time for each method invocation using
PMU. Lau et al. [33] present a technique that allows a VM to deter-
mine whether an optimization improved or degraded by measuring
CPU cycles. Remix [18] employs PMU to identify inter-thread false
sharing on the ny. JXPerf [51] detects redundant memory oper-
ations by using PMU to sample memory locations accessed by a
program and using debug registers to monitor subsequent accesses
to the same location.

Orthogonal to the aforementioned ineociency analysis proolers,
OJXPerf addresses a diferent ineociency problem with a diferent
usage of PMU and debug registers. To the best of our knowledge,
OJXPerf is the orst lightweight sampling-based prooler to pinpoint
object replicas in Java.

3 Background

We introduce some essential facilities that OJXPerf leverages based
on Java virtual machines (JVM) and CPU processors.

Java Virtual Machine Tool Interface (JVMTI). JVMTI, a na-
tive programming interface of the JVM, is loaded during the ini-
tialization of the JVM. JVMTI provides a VM interface for the full
breadth of tools that need access to VM state, including but not

limited to prooling, debugging, monitoring, thread analysis, and
coverage analysis tools.

Hardware Performance Monitoring Unit (PMU). PMU is
hardware built inside a processor to measure its performance pa-
rameters. We can measure parameters like instruction cycles, cache
hits, cache misses, branch misses, and many others, depending on
the supported hardware. PMU supports lightweight measurement.

Intel processors also support Precise Event-Based Sampling
(PEBS) [30]. PEBS is a prooling mechanism that logs a snapshot
of the processor state at the time of the event, allowing users to
attribute performance events to actual instruction pointers (IPs).
Also, PEBS provides an efective address (EA) at the time of the
sample when the sample is for a memory load or store instruction.
In PEBS, the event type may be chosen from an extensive list of
performance-related events to monitor, e.g., cache misses, remote
cache hits, branch mispredictions. AMD processors provide similar
capabilities via instruction-based sampling.

Hardware Debug Register. Modern x86 processors provide de-
bug facilities for developers in debugging code and monitoring
system behaviors. Such debug support is accessed using hardware
debug registers. Hardware debug registers [17, 47] enable trap-
ping the CPU execution for debugging when the program counter
(PC) reaches an address (breakpoint) or an instruction accesses a
designated address (watchpoint). Hardware debug registers allow
programmers to selectively enable various debug conditions asso-
ciated with a set of four debug addresses because our current x86
processors have four debug registers.

4 Methodology

As previously alluded, we restrict the deonition of object replicas
to those allocated in the same calling context.

Deonition 4.1. Object Replicas: ÿ1 and ÿ2 are two objects that

have the same allocation context. If the contents of ÿ1 and ÿ2 are

identical, ÿ1 is a replica of ÿ2 and 〈ÿ1,ÿ2〉 is an object replication

pair.

A straightforward detection approach is monitoring every alloca-
tion context and comparing all oelds of all object instances created
at that allocation context at any use points. However, performing
such whole-heap object tracing can introduce a prohibitively high
overhead (70~300× slowdown reported in [26]).

Instead of exhaustive duplication detection, OJXPerf takes ad-
vantage of sampling to perform lightweight replica detection. We
neither compare all objects allocated in the same context nor com-
pare all oelds when comparing two objects. Instead, our algorithm
chooses random oelds (ofsets in terms of memory locations) at
random points.

Example 1 shows an object replica detection example that keeps
allocating an objectÿ inside a while loop. As the while loop iterates
4 times, the program allocates a sequence of objects {ÿ1,ÿ2,ÿ3,ÿ4},
which have the same allocation context and are sorted by the al-
location timestamp during program execution. First, in each loop
iteration, we intercept the allocation of the object on line 3. This
interception ofers two pieces of information: 1) the calling context
of allocation, and 2) the memory address range occupied by each
object. We maintain this information for future use. For all objects

1561

OJXPerf: Featherlight Object Replica Detection for Java Programs ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA

allocated on line 3 in this example, the context is the same but
the object addresses can be diferent1. Second, when the program
accesses an object (use point), e.g., lines 5 and 7, we can obtain the
efective address of the access and map the address to the object it
belongs to; furthermore, we can easily derive the relative ofset of
the access from the start address of the object; this relative ofset
guides us where to monitor another object allocated in the same
context. Third, when the program accesses an object, we can read
the contents of the location accessed.

Example 1: Example of Object Replica Detection.

1 i = 0;

2 while i < 4 do

3 allocate an object O;

4 initialize O;

5 use O; //use O for the orst time

6 update O;

7 use O; //use O for the second time

8 i++;

9 end

Given the nature of sampling, let’s assume that memory-access
samples occur on line 5 in iteration 1 of the loop (while accessing
object ÿ1) and line 7 in iteration 3 (while accessing object ÿ3),
as shown in Figure 2. Assume, the sample in iteration 1 for ÿ1

on line 5 happens at the relative ofset Of1 from the beginning
of the object and the value at Of1 is ý1; OJXPerf remembers the
triple — line 5, Of1, andý1 — for future use. For the next allocation,
ÿ2, we probabilistically skip and do nothing. When ÿ3 starts to
be accessed, we decide to monitor its contents at ofset Of1, and
hence arm a watchpoint to trap on access to ofset Of1 from the
beginning ofÿ3. This watchpoint traps when the program accesses
ÿ3 on line 5. Let the contents at ÿ3 + Of1 be ý

′
1 when the trap

happens. We compare ý1 and ý
′
1 and if they are the same, ÿ1 and

ÿ3 contribute towards the number of equivalent objects allocated in
context line 3; otherwise they contribute towards non-equivalent
objects allocated in context line 3.

The next sample happens on line 7, for the same object ÿ3 at
ofset Of2 in iteration 3 of the loop. Let the value at Of2 for ÿ3

be ý2. We remember the triple — line 7, Of2 , and ý2 — for future
use. When ÿ4 starts to be accessed in iteration 4 of the loop, we
arm a watchpoint at address Of2 from the beginning of ÿ4. This
watchpoint traps when the program accesses ÿ4 on line 7. Let
the value at the trapped location be ý ′

2 . As before, depending on
whether ý2 and ý

′
2 are the same or not, they contribute towards

equivalent or non-equivalent objects allocated in context line 3.
Figure 2 shows thatý1 equals toý

′
1 (the blue star), which means that

the values stored in an ofset Of1 of ÿ1 and ÿ3 are the same. Also,
the red star in Figure 2 shows that the values stored in an ofset Of2
of ÿ3 and ÿ4 are diferent (ý2 doesn’t equal to ý

′
2), which means

that ÿ3 and ÿ4 must be two objects that have diferent contents.
As the program continues, OJXPerf performs the same redun-

dancy checks for other samples taken from objects {ÿ1,ÿ2,ÿ3,ÿ4}.
1two objects of diferent size, e.g., arrays allocated in the same context are easily ruled
out of duplication due to size diference

Figure 2:Watchpoint scheme for object replica detection. Of1
(Of2) presents memory ofset with value ý1 (ý2) for Object

ÿ1 (Object ÿ3). When a watchpoint trap of memory access

happens at ofset Of1 (Of2), OJXPerf compares their corre-

sponding values ý1 and ý
′
1 (ý2 and ý

′
2).

Finally, if most of the comparisons (>60%, obtained from our ex-
periments) report identical values among all detection pairs, we
believe objects {ÿ1,ÿ2,ÿ3,ÿ4} sufer from object replicas with a
high probability, which is quantioed with our theoretical analysis
in Section 6.

5 Implementation

OJXPerf is a user-space tool with no need for any privileged sys-
tem permission. OJXPerf requires no modiocation to hardware,
OS, JVM, and monitoring applications, making it applicable to the
production environment. Conceptually, OJXPerf consists of two
components: data-centric analysis and duplication detection. These
two components are implemented within two agents: a Java agent
and a JVMTI agent. Figure 3 overviews the design of these two
agents. The Java agent instruments Java byte code execution to
obtain each object’s memory interval and allocation context. The
JVMTI agent subscribes to Java thread creation to enable PMU.
Upon each PMU sample, OJXPerf obtains the efective address
of the monitored memory access and associates it with the Java
object enclosing this address. Moreover, to identify object repli-
cas, the JVMTI agent programs the debug registers to subscribe to
watchpoints.

5.1 Java Agent

The Java agent monitors object allocation, which leverages
java.lang.instrument API and ASM framework. The Java agent
inserts pre- and post-allocation hooks to intercept each object allo-
cation. Then, a user-deoned callback is invoked on each allocation
to obtain the object information, such as the object pointer, type,
and size. For a given Java class we want to instrument, the Java
agent scans the byte code of this class, instruments new, newarray,
anewarray, and multianewarray, and obtains the memory range
of every object following an existing technique [1].

How to present an object allocation is a challenging question.
We adopt a simple and perhaps the most intuitive approach that

1562

ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA Bolun Li, Hao Xu, Qidong Zhao, Pengfei Su, Milind Chabbi, Shuyin Jiao, and Xu Liu

Figure 3: Overview of OJXPerf’s prooling.

developers can identify with — the allocation context leading to the
object allocation. A Java application can often create multiple object
instances via a single allocation site in a loop. All those objects will
be represented by a single call path, which naturally aggregates
numerous objects with similar behavior. OJXPerf leverages the
AsyncGetCallTrace() [40] API provided by Oracle Hotspot JVM
to determine the calling contexts at any point during the execution.
OJXPerf then inserts a 〈ýÿÿ, ÿÿýÿÿ〉 pair into a mapM, where ýÿÿ
is the memory range and ÿÿýÿÿ is the allocation context.

5.2 JVMTI Agent

Implementing Sampling with PMU. The JVMTI agent lever-
ages PMU to sample memory accesses. It subscribes to MEM_UOPS_

RETIRED:ALL_LOAD, a PMU precise event to sample memory loads.
We empirically choose a sampling period to ensure OJXPerf can
collect 20-200 samples per second per thread, which yields a fair
tradeof between runtime overhead and statistical accuracy [52].
Moreover, the JVMTI agent captures the calling contexts for both
PMU samples and object allocations described in Section 5.1. To
minimize synchronization, each thread collects PMU samples in-
dependently and maintains a thread-local compact calling context
tree (CCT) [7], which stores the calling contexts of PMU samples
and merges all the common preoxes of given calling contexts.

Examining Object Contents with Watchpoints. OJXPerf
leverages debug registers to set up watchpoints, which traps the
program execution when the designated memory addresses are
accessed. Assume ÿ1 and ÿ2 are two distinct objects that have the
same allocation context and ÿ1 is created prior to ÿ2. Moreover,
ÿ1 andÿ2 have the same accessing context, thenÿ1 andÿ2 form a
ýÿÿÿ (ÿ1,ÿ2) as object replicas. OJXPerf uses queues ý1 and ý2 to
store samples taken from objects ÿ1 and ÿ2, respectively. Upon a
sample taken from ÿ1, OJXPerf uses a tuple 〈Of ,ý 〉 to represent
it and adds this tuple to queueý1, as shown in Figure 4a. Of is the
ofset between the sampled address (i.e., the address of the PMU
sample) and the starting address of ÿ1, and ý is the value stored
at the sampled memory address. Upon a sample taken from ÿ2,
OJXPerf not only adds a tuple 〈Ofm,ýÿ〉 to queue ý2, but also
retrieves a sample (〈Ofn,ýÿ〉) from queue ý1 and uses a debug

(a) The worknow of object replica detection: collecting PMU samples

taken from objectÿ1.

(b) The worknow of object replica detection: setting up watchpoint at

objectÿ2.

Figure 4: Worknow of object-level redundancy detection.

register to set up a watchpoint at the ofset Ofn of ÿ2, as shown in
Figure 4b. OJXPerf compares values at the the same ofset Ofn of
ÿ1 and ÿ2 when the watchpoint is triggered. Watchpoint can be
removed when it is triggered, and watchpoints are used for a single
access.

Limited Number of Debug Registers. Hardware ofers only
a small number of debug registers, which becomes a limitation if
the PMU delivers a new sample, but all watchpoints are armed
with addresses obtained from prior samples. OJXPerf employs a
reservoir sampling strategy [46], which uniformly chooses between
old and new samples with no bias. The basic idea of reservoir sam-
pling is to assign a probability to each debug register and perform
a replacement policy based on the probability. Prior work [53, 55]
has shown that reservoir sampling guarantees the fairness of the
measurement with a limited number of debug registers.

5.3 Ofline Data Analyzer and GUI

To generate a compact proole, which is essential for analyzing a
large-scale execution, the onine data analyzer merges prooles from
diferent threads. Object allocation call paths coalesce across threads
in a top-down way if they are identical. All memory accesses with
their call paths to the same objects are merged as well. Metrics are
also summed up when call paths coalesce. The onine procedure

1563

OJXPerf: Featherlight Object Replica Detection for Java Programs ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA

typically takes less than one minute in our experiments. Further-
more, OJXPerf integrates its analysis visualization in Microsoft
Visual Studio Code, which is shown in Figure 6.

5.4 Discussions

As a sampling-based approach, OJXPerf may introduce false posi-
tives and false negatives, which are elaborated in Section 7.1. Our
theoretical analysis to be described in the next section bounds the
analysis accuracy.

6 Theoretical Analysis

Since OJXPerf does not exhaustively check every oeld of an object
for replication due to the sampling, we compute the lower and
upper bounds of the analysis to quantify the replication factor.

Deonition 6.1. Replication Factor (RF) ÿ : For a set of objects that

sufer from object replication, the replication factor ÿ is the probability

of last accessed object to be bit-wise same as the current accessed object.

We deone ÿ as the ratio of the number of times that an object accessed

is equivalent to another object accessed previously, to the total accesses

of this set of objects.

ÿ =
num equivalent access times〈ÿÿ ÿÿýýO〉

num equivalent + num diferent access times〈ÿÿ ÿÿýýO〉 (1)

Assume ÿ1 and ÿ2 are a pair of object under object replica
detection. If all memory locations sampled from ÿ2 have the same

values as the corresponding locations in ÿ1 (ÿ
ý ÿ ÿ ýÿý
2 = ÿ

ý ÿ ÿ ýÿý
1),

it is possible that ÿ2 and ÿ1 are two objects that have the same
contents (ÿ2 ≡ ÿ1) or the diferent contents (ÿ2 � ÿ1). Here, we
have three scenarios and each with a specioc probability:

• ÿ
ý ÿ ÿ ýÿý
2 = ÿ

ý ÿ ÿ ýÿý
1 and ÿ2 ≡ ÿ1, the probability is ý;

• ÿ
ý ÿ ÿ ýÿý
2 = ÿ

ý ÿ ÿ ýÿý
1 and ÿ2 � ÿ1, the probability is ý;

• ÿ
ý ÿ ÿ ýÿý
2 ≠ ÿ

ý ÿ ÿ ýÿý
1 , so ÿ2 � ÿ1, the probability is ÿ .

Obviously, we have ý + ý +ÿ = 1.
Then, the ÿ can be rewritten using ý, ý,ÿ as:

ÿ =
ý + ý

ý + ý +ÿ = ý + ý (2)

Furthermore, we deone ÿ as the probability of ÿ
ý ÿ ÿ ýÿý
2 =

ÿ
ý ÿ ÿ ýÿý
1 when ÿ2 � ÿ1. Then ÿ can be denoted as:

ÿ =
ý

ý +ÿ ≥ ý

ý + ý +ÿ = ý (3)

Combine Equation (2) and Inequality (3), we have:

ý = ÿ − ý ≥ ÿ − ÿ (4)

Assume there are ÿ objects {ÿ1,ÿ2, ...,ÿý } belonging to the
same calling context. These ÿ objects are divided into ý groups.
Inside each group, the objects are identical with each other. Ev-

ery group contains ÿÿ objects (1 ≤ ÿ ≤ ý,
∑ý
ÿ=1 ÿÿ = ÿ), and

ÿ1, ÿ2, ..., ÿý are sorted in an ascending order by group size. Based

on these ÿ objects, there are
(ÿ
2

)

object pairs. Among these
(ÿ
2

)

object pairs, there will be
∑ý
ÿ=1

(ÿÿ

2

)

identical object pairs. Consid-

ering we can estimate identical object pairs ratio by ý
ý+ý+ÿ = ý

and Inequality (4), we can state:

∑

ý

ÿ=1

(

ÿÿ

2

)

(

ÿ

2

)
= ý ≥ ÿ − ÿ (5)

Then,
∑

ý

ÿ=1 (ÿÿ

2)
(ÿ2)

can be derived as:

∑

ý

ÿ=1

(

ÿÿ

2

)

(

ÿ

2

)
=

∑

ý

ÿ=1ÿÿ (ÿÿ − 1)
ÿ (ÿ − 1) <

∑

ý

ÿ=1ÿ
2
ÿ

ÿ 2
(6)

Focusing on
∑ý
ÿ=1 (

ÿÿ

ÿ)2, we can reconstruct it as:

ý
∑

ÿ=1

(ÿÿ

ÿ
)2 =

ý−1
∑

ÿ=1

(ÿÿ

ÿ
)2 + ÿý

ÿ
∗ ÿý

ÿ

=

ý−1
∑

ÿ=1

(ÿÿ

ÿ
)2 + (1 −

ý−1
∑

ÿ=1

ÿÿ

ÿ
) ∗ ÿý

ÿ

=
ÿý

ÿ
−

ý−1
∑

ÿ=1

ÿÿ

ÿ
(ÿý −ÿÿ

ÿ
)

(7)

Since ÿý > ÿý−1 > ÿý−2 > ... > ÿ1, we have

ý−1
∑

ÿ=1

ÿÿ

ÿ
(ÿý −ÿÿ

ÿ
) > 0 (8)

Furthermore, combining (5), (6), (7), (8), we then obtain

ÿý

ÿ
≥ ÿ − ÿ +

ý−1
∑

ÿ=1

ÿÿ

ÿ
(ÿý − ÿÿ

ÿ
) > ÿ − ÿ,

Because ÿý

ÿ represents the largest identical objects group size ratio,
we know that this ratio is lower bounded by ÿ − ÿ . Next we show

the upper bound of ÿý

ÿ .
Based on equation 5, we have:

∑ý
ÿ=1

(ÿÿ

2

)

(ÿ
2

)

= ý >

(ÿý

2

)

(ÿ
2

)

(9)

Focusing on
(ÿý

2)
(ÿ2)

, we have:

(ÿý

2

)

(ÿ
2

)

=
ÿý (ÿý − 1)
ÿ (ÿ − 1) =

ÿý

ÿ
(ÿý

ÿ
+ ÿý − 1

ÿ − 1
− ÿý

ÿ
)

=
ÿý

ÿ
(ÿý

ÿ
− ÿ − ÿý

ÿ (ÿ − 1))
(10)

We also have:

ÿ − ÿý

ÿ (ÿ − 1) =
1

ÿ − 1
− 1

ÿ − 1
∗ ÿý

ÿ
(11)

We then denote ÿý

ÿ = ý and 1
ÿ−1 = ý , equation 10 can be rewrit-

ten as:
(ÿý

2

)

(ÿ
2

)

= ý (ý − ý + ýý) (12)

Combining with equation 9, we have this in-equation:

ý > ý (ý − ý + ýý) = (ý + 1)ý2 − ýý > ý2 − ýý (13)

Solving this in-equation, we then have:

ý <
ý +

√
ý2 + 4ý

2
(14)

1564

ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA Bolun Li, Hao Xu, Qidong Zhao, Pengfei Su, Milind Chabbi, Shuyin Jiao, and Xu Liu

Focusing on ý in equation 2 and 3, we have:

ý = ÿ − ý = ÿ − ÿ ∗ (ý +ÿ) = ÿ − ÿ ∗ (1 −ý) (15)

Solving it, we then have:

ý =
ÿ − ÿ

1 − ÿ
(16)

Based on the in-equation 14, we have:

ý <
ý +

√

ý2 + 4ÿ−ÿ1−ÿ
2

= ý/2 +
√

ý2/4 + ÿ − ÿ

1 − ÿ

=
1

2(ÿ − 1) +
√

1

4(ÿ − 1)2
+ ÿ − ÿ

1 − ÿ

(17)

Here, we have both lower bound and upper bound of ÿý

ÿ : ÿ−ÿ <

ÿý

ÿ <
1

2(ÿ−1) +
√

1
4(ÿ−1)2 +

ÿ−ÿ
1−ÿ

For real applications, usually we haveÿ >> 1, so 1
ÿ−1 → 0. And

also we have ÿ−ÿ
1−ÿ <

ÿ
1 = ÿ .

Deonition 6.2. Lower Bound Factor (LBF) ÿ: ÿ is deoned as

the lower bound of the largest identical objects group size ratio ÿý

ÿ ,

so we have ÿ = ÿ − ÿ .

Deonition 6.3. Upper Bound Factor (UBF) ÿ : ÿ is deoned as

the upper bound of the largest identical objects group size ratio ÿý

ÿ ,

so we have ÿ =
1

2(ÿ−1) +
√

1
4(ÿ−1)2 +

ÿ−ÿ
1−ÿ .

We show how the interval of the largest identical objects group

size ratio ÿý

ÿ guides our optimizations in Section 7.
In the applications we evaluated, we have not seen an applica-

tion with a very high ÿ (we compute ÿ for each application via
exhaustively checking every oeld of objects), which we further
discuss here. For an application with inequivalent objects ÿ1, ÿ2,
..., ÿý that belong to the same calling context, high ÿ indicates
that most of the contents of these objects are the same and only a
few contents are diferent, which means these objects are partially
replicated. It is worth noting that partially replicated objects can
warrant some optimization to move redundant computations, such
as approximate computing or data compression; however, it is out
of the scope of this paper.

The theoretical analysis innuences the design decisions in two
aspects: on the one hand, the theoretical bounds guarantee the
analysis accuracy of OJXPerf’s sampling technique; on the other
hand, the bounds, as metrics, help users determine whether the
object replicas are signiocant for optimization.

7 Evaluation

We evaluate OJXPerf on a 36-core Intel Xeon E5-2699 v3 (Haswell)
CPU clocked at 2.3GHz running Linux 4.8.0. The memory hierar-
chy consists of a private 32KB L1 cache, a private 256KB L2 cache,
a shared 46MB L3 cache, and 128GB main memory. OJXPerf is
compatible with JDK 1.5 and any of its successors. We run all appli-
cations with JDK 1.8.0_161.

Applications and Benchmarks. The lightweight nature of
OJXPerf allows us to collect prooles from a variety of Java and Scala
applications obtained from the Awesome Java repository [32], such

as the Renaissance benchmark suite [44], Soot [41], parquetMR [29],
Findbugs [45], Eclipse Deeplearning4J [28], JGFSerialBench [9],
RoaringBitmap [8], Apache SAMOA [22], to name a few. We run
these applications with diferent real inputs released with them or
the real inputs that we can ond to our best knowledge; the inputs
control the parallelism conoguration.

Replication. Figure 1 shows the replication ratios for more than
50 Java programs obtained from OJXPerf. We can see that several
Java programs sufer from signiocant object replications (replication
ratio > 15%).We optimize some of them, as shown in Section 8 under
the guidance of OJXPerf. For some Java applications (e.g., gauss-
mix, log-regression, page-rank, scala-kmeans) with high replication
ratios, we only obtain trivial speedups because these applications
do not have any hotspot object replicas. For example, the top ove
object replicas’ accessing times in Renaissance benchmark gauss-
mix are less than three. In this case, it is reasonable that there is no
beneot to optimize these replicated objects that are used very few.
We focus on the hotspot object replicas, which at least are accessed
dozens of times.

OJXPerf is able to pinpoint many object replicas that are not
reported by existing proolers and guide optimization choices. Ta-
ble 2 summarizes the new ondings identioed by OJXPerf, which
we further elaborate in Section 8. In Table 2, we report replication
factor ÿ , ÿ , and lower bound factor ÿ , which are deoned in Sec-
tion 6. Table 2 shows that ÿ ranges from 0% to 53% and ÿ ranges
from 65% to 100%, respectively. As a result, the lower bound factor
ÿ is usually > 15%, which means that these Java applications at
least have 15% objects sufering from object replication.

Optimization. It is worth doing the optimization to decrease
the creations of objects with the same contents. To guarantee opti-
mization correctness, we ensure the optimized codes do not change
semantics for any inputs and pass the validation tests. To avoid
system noises, we run each application 30 times and use a 95%
conodence interval for the geometric mean speedup to report the
performance improvement, according to a prior approach [51].

From Table 2, we can see that we are able to obtain nontriv-
ial speedups by removing object replicas. The performance im-
provement comes from the reduction of heap memory usage,
cache misses, and executed instructions, which are measured with
jmap [12] and perf [34]. We detected the object replicas as shown
in Table 2 without much efort. Object replicas often concentrate
around only a few calling contexts making investigation relatively
simpler; for example, in all of our case studies, we found the top ove
objects (sorted by replication factor) account for ∼37% of whole-
program object replicas on average.

7.1 False Positives and Negatives

As a sampling-based tool, OJXPerf can introduce false negatives —
missing some object replicas. However, the statistics theory guar-
antees the high probability of capturing object replicas that occur
frequently. The false negatives do not hurt the insights obtained
from OJXPerf because optimizing infrequently occurred object
replicas typically receives trivial speedups.

OJXPerf can also introduce false positives — reporting object
replicas that are not replicated because OJXPerf uses sampling

1565

OJXPerf: Featherlight Object Replica Detection for Java Programs ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA

Table 2: Overview of performance optimization guided by OJXPerf.

ff

(a) Runtime overheads.

ff

(b) Memory overheads.

Figure 5: OJXPerf’s runtime and memory overheads in the unit of times (×) on various benchmarks.

Replica Detection

Replicated Not Replicated

Actual
Replicated 8 0

Not Replicated 3 48

Correctness (48 + 8) / (0 + 8 + 3 + 48) = 94.9%

False positive rate 3 / (3 + 48) = 5.9%

Table 3: Accuracy for OJXPerf’s replica detection.

instead of exhaustive checking. The false positives occur when
most elements of the two objects are the same, with only a few
diferent elements not monitored. However, OJXPerf randomly
checks diferent oelds with enough samples to minimize the false
positives. We exhaustively check every oeld of the top ove objects
(i.e., objects associated with most samples) of all our investigated
programs in Table 3. From the table, we can see that OJXPerf incurs
5.9% false positives.

7.2 Overhead Measurement

The runtime overhead (memory overhead) is the ratio of the run-
time (peak memory usage) of the execution monitored by OJXPerf
to the runtime (peak memory usage) of the native execution. To
quantify the overhead, we apply OJXPerf to three well-known
Java benchmark suites: Renaissance [44], Dacapo 9.12 [2], and
SPECjvm2008 [14]. We run all benchmarks with four threads. We
run every benchmark 30 times and compute the average and er-
ror bar. Figure 5 shows the overhead when OJXPerf is enabled at
a sampling period of 5M. Some Renaissance and Dacapo bench-
marks have higher time overhead (larger than 30%) because they
allocate too many objects (e.g., more than 400 million allocations

for mnemonics, par-mnemonics, scrabble, akka-uct, db-shootout,
dec-tree, neo4j-analytics).

8 Case Studies

This section shows how OJXPerf pinpoints object replicas in real
applications and guides the optimization. Our optimization guar-
antees the program’s correctness via human inspection, and we
have evaluated our transformed code with tests to ensure their cor-
rectness. It is worth noting that existing proolers may identify the
same object allocation as a hotspot in memory usage; however, they
do not know whether this allocation point creates multiple object
replicas for potential optimization. OJXPerf, in contrast, quantioes
the replication factors for the objects to provide intuitive optimiza-
tion. We have submitted our optimization patches in several cases
and gotten them conormed or upstreamed, e.g., Soot and Findbugs.

8.1 Soot

Soot is a Java optimization framework, which uses containers ex-
tensively [41]. We run Soot-3.3.0 using the bytecode of the Da-
Capo benchmark avrora as input. Figure 6 shows the snapshot of
OJXPerf’s Flame Graphs GUI in VSCode for intuitive analysis. The
top pane of the GUI shows the Java source code; the bottom shows
the name graphs of object accesses in their full call stacks. In the
name graphs, the x-axis shows the accesses with their call stacks to
object replicas, and the y-axis shows call stack depth, counting from
zero at the top. Each rectangle represents a stack frame. The wider
a stack frame is, the higher of replication factor of this stack frame.
The GUI in Figure 6 shows one problematic object st (highlighted
in blue), which is accessed on line 84 in method getPhaseOptions

1566

ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA Bolun Li, Hao Xu, Qidong Zhao, Pengfei Su, Milind Chabbi, Shuyin Jiao, and Xu Liu

Figure 6: The Flame Graphs GUI of Soot shows a problematic

object st with its accesses in full call stacks.

of class PhaseOptions with many replicas (its replication factor ÿ
is 83.9%, as shown in the top pane of the GUI).

Soot’s execution is divided into a number of phases, such as
Jimple Body Creation (jb) phase, Java To Jimple Body Creation (jj)
phase, Grimp Body Creation (gb) phase, etc. In the jb phase, the
JimpleBodys are built by a phase called jb, which is itself comprised
of subphases, such as the aggregation of local variables (jb.a), type
assigner (jb.tr), dead assignment eliminator (jb.dae), etc. Each of
these subphases that belong to jb phase has its own default op-
tion. By investigating the source code, we found that when the
soot executes these subphases sequentially, the default option for
diferent subphases is stored in the reported StringTokenizer st
object, which keeps unchanged.

To eliminate these replicas, we only read the default option when
its contents are changed; otherwise, we reuse the default option
from the prior subphase. This optimization yields a (1.17 ± 0.02)×
speedup to the entire program.

8.2 Eclipse Deeplearning4J – SameDif

Eclipse Deeplearning4J integrates with Hadoop and runs on several
backends [28]. We run Deeplearning4J using SameDif, a TensorFlo-
w/PyTorch-like framework for executing complex graphs. This
framework is also the lower lever base API for running onnx and
TensorFlow graphs. OJXPerf investigates the training phase and
reports that the replication factor ÿ of the input array shapeInfo is
64.7%, indicating high redundancies in the computation on this ar-
ray in method hasBitSet, which determines array types, as shown
in Listing 2.

Deeplearning4J SameDif builds a directed acyclic graph, whose
nodes are diferential functions used to compute gradients. In the
SameDifLayer (a base layer used for implementing Deeplearning4J
layers with SameDif), Deeplearning4J provides a set of operations
named "Custom operations" designed for the SameDif graph. To
execute the "Custom operations" within graph, these operations are
stored in a two-dimensional array. Then Deeplearning4J splits this

58 public static ArrayType arrayType(long[] shapeInfo) {

59 �val opt = Shape.options(shapeInfo);

60 if (hasBitSet(opt , ATYPE_SPARSE_BIT))

61 return ArrayType.SPARSE;

62 else if (hasBitSet(opt , ATYPE_COMPRESSED_BIT))

63 return ArrayType.COMPRESSED;

64 else if (hasBitSet(opt , ATYPE_EMPTY_BIT))

65 return ArrayType.EMPTY;

66 else

67 return ArrayType.DENSE;

68 }

Listing 2: OJXPerf identioed the shapeInfo array with repli-

cas in Deeplearning4J SameDif.

two-dimensional array into diferent small partitions. Each partition
has its own shape identioer array shapeInfo, which is used to
determine four shape properties: SPARSE, COMPRESSED, EMPTY, and
DENSE. We found that the adjacent partitions in the SameDif graph
often have the same shape property due to the good locality among
adjacent partitions.

To eliminate redundancies, we orst check whether the
shapeInfo in the current iteration has the same value as in the
last iteration. If the shapeInfo is unchanged, we reuse the shape
property memoized from the previous iteration, which saves the
call to hasBitSet. This yields a (1.09±0.02)× speedup to the entire
program.

8.3 Eclipse Deeplearning4J – AlphaGo Zero

We also run Deeplearning4J using AlphaGo Zero model [4], which
combines a neural network and Monte Carlo Tree Search in an
elegant policy iteration framework to achieve stable reinforcement
learning. OJXPerf studies the training stage and reports an object,
Map<String, NDArrayCompressor> codecs, which is allocated
on line 53 and accessed on line 57 in method loadCompressors of
class BasicNDArrayCompressorwith many replicas (its replication
factor ÿ is 81.3%), as shown in Listing 3.

The reason for generated replicas is due to constructing the
computational graph in the AlphaGo Zero model. To initialize the
computational graph, the AlphaGo Zero model uses an existing
array parameters for each layer. Given the topological order, the Al-
phaGo Zero model constructs the computational graph by iterating
each subset of array parameters. Since the array parameters is in
compressed status, to obtain the elements of array parameters, the
program needs to decompress it orst. Deeplearning4J framework
provides several diferent compression algorithms (compressor)
based on the data type (e.g., FLOAT16, FLOAT8, INT16, etc). Since
every subset of array parameters has the same data type, which
means we don’t need to load the new compressor and store it again
inmap codecs in a loop (line 69 of Listing 3). To avoid the redundant
loading and storing compressor, we check whether the program is
processing diferent subsets in the same array parameters. If so,
we use the current compressor directly. This optimization yields a
(1.15 ± 0.01)× speedup to the entire program.

8.4 FindBugs-3.0.1

FindBugs looks for code instances that are likely to be errors [45].
We run Find-Bugs on a real input Java chart library 1.0.19 (a widely
used client-side chart library for Java). OJXPerf reports an ob-
ject that has many replicas, BasicBlock block (an object with a
user-deoned type), which is accessed on the line 183 in method

1567

OJXPerf: Featherlight Object Replica Detection for Java Programs ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA

58 public void init(INDArray parameters) {

59 ...

60 for (int vertexIdx : topologicalOrder) {

61 paramsViewForVertex[vertexIdx] = parameters.get(NDArrayIndex

.interval (0,0,true));

62 //get method calls loadCompressors to decompress data

63 }

64 }

65 �protected Map <String , NDArrayCompressor > codecs = new

ConcurrentHashMap <>();

66 protected void loadCompressors () {

67 ...

68 for (NDArrayCompressor compressor : compressors) {

69 �codecs.put(compressor.getDescriptor (), compressor);

70 }

71 }

Listing 3: OJXPerf identioed the codecsmap with replicas

in Deeplearning4J AlphaGo Zero.

176 public /* final */Fact getStartFact(BasicBlock block) {

177 return lookupOrCreateFact(startFactMap , block);

178 }

179 public /* final */Fact getResultFact(BasicBlock block) {

180 return lookupOrCreateFact(resultFactMap , block);

181 }

182 private Fact lookupOrCreateFact(Map <BasicBlock , Fact > map ,

BasicBlock block) {

183 �Fact fact = map.get(block);

184 if (fact == null) {

185 fact = createFact ();

186 map.put(block , fact);

187 }

188 return fact;

189 }

Listing 4: The source code highlighed by OJXPerf shows the

object block with replicas in Findbugs.

lookupOrCreateFact of class BasicAbstractDataflowAnalysis,
as shown in Listing 4.

The replicas come from the algorithm of data-now analysis used
in FindBugs. Findbugs divides a data-now graph into tiny-sized
blocks and creates an object for each block instead of creating a sin-
gle object for the whole graph. Consequently, most created objects
have the same content due to good value locality among adjacent
blocks. OJXPerf onds that the method lookupOrCreateFact (line
182 of Listing 4) method is usually invoked with the same input
BaiscBlock block. OJXPerf reports that the replication factor ÿ
of the input block is 70.3%, indicating many replicas of this object.
To avoid the redundant lookup and creation, we check whether a
diferent block is produced in the current iteration. If the block
is unchanged, we return fact obtained from the last invocation
directly. This optimization yields a (1.25 ± 0.03)× speedup to the
entire program.

8.5 n-kmeans

fj-kmeans is a benchmark from Renaissance Suite, used to run
the k-means algorithm [44]. We run fj-kmeans using the fork/join
framework as input. OJXPerf reports an object that has many
replicas, array result, which is allocated on line 5 in method
findNearestCentroid and accessed on line 2 in method compute

Directly of class JavaKMeans, as shown in Listing 5.
The generated replicas are due to the onding nearest centroid

algorithm for many diferent sets of elements. This onding nearest
centroid algorithm maintains a collection of centroids, and the
distance between each centroid is signiocant. Then, during some
computation periods, because diferent sets of elements have small

1 protected Map <Double[], List <Double[]>> computeDirectly () {

2 �return collectClusters(findNearestCentroid ());

3 }

4 private int[] findNearestCentroid () {

5 �final int[] result = new int[taskSize];

6 ...

7 for (...) {

8 final Double [] element = data.get(dataIndex);

9 for (...) {

10 final double distance = distance(element , centroids.get(

centroidIndex));

11 ...

12 result[dataIndex - fromInclusive] = centroidIndex;

13 }

14 }

15 return result;

16 }

17 private Map <Double[], List <Double[]>> collectClusters(final int[]

centroidIndices) {

18 // computation with input parameter centroidIndices

19 }

Listing 5: OJXPerf pinpoints the result object with many

replicas in n-kmeans.

distance, the program keeps generating the same centroids and put
the centroids’ indices into an array result (line 12 of Listing 5),
which is the object with many replicas (the replication factor ÿ is
76.1%) reported by OJXPerf.

To eliminate eociencies, we check the values in array result

produced by findNearestCentroid. If result is unchanged, we
reuse the return value ofmethod collectClustersmemoized from
the last iteration, which avoids the redundant computation. This
optimization yields a (1.08 ± 0.04)× speedup to the entire program.

9 Threats to Validity

The threats reside in validating OJXPerf’s optimization guidance.
The limited scope of replica detection and the sampling strategy
does not reveal the ground truth of object replication. Any reported
replication is input and execution specioc. Diferent inputs can re-
sult in diferent prooles, and the efects of optimization on unseen
inputs will remain unknown. In our studies, we use real inputs for
the applications to ensure the optimization is valid. Finally, our opti-
mization may sometimes break the program readability by inserting
conditional checks. Developers need to decide whether to adopt
our optimization given their priority on software performance.

10 Conclusions

In this paper, we design and develop OJXPerf, the orst lightweight
prooler to identify object replicas in Java applications. As a unique
feature, OJXPerf combines the use of performance monitoring
units, debug registers and lightweight byte code instrumentation
for statistical object replica detection. With the evaluation of more
than 50 Java applications, we show OJXPerf minimizes false posi-
tives and incurs 9% and 6% runtime and memory overheads, respec-
tively. We further optimize several real-world applications guided
by OJXPerf that result in a noticeable reduction in heap-memory
demands and signiocant runtime speedups. Many optimization
patches are conormed or upstreamed by the software developers.
OJXPerf is open source at https://github.com/Xuhpclab/jxperf.

Acknowledgements

We thank the anonymous reviewers for their valuable comments.
This research was supported by NSF 2050007 and a Google gift.

1568

ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA Bolun Li, Hao Xu, Qidong Zhao, Pengfei Su, Milind Chabbi, Shuyin Jiao, and Xu Liu

References
[1] 2013. Obtain object address. https://jrebel.com/rebellabs/dangerous-code-how-

to-be-unsafe-with-java-classes-o\bjects-in-memory/4/.
[2] 2018. DaCapo Benchmark Suite 9.12. https://sourceforge.net/projects/

dacapobench/oles/9.12-bach-MR1/.
[3] 2018. OProole. http://oproole.sourceforge.net.
[4] 2020. AlphaGo Zero. https://deepmind.com/blog/article/alphago-zero-starting-

scratch.
[5] Ali-Reza Adl-Tabatabai, Richard L. Hudson, Mauricio J. Serrano, and Sreenivas

Subramoney. 2004. Prefetch injection based on hardware monitoring and object
metadata. SIGPLAN Not. 39, 6, 267–276.

[6] Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann.

[7] Matthew Arnold and Peter F. Sweeney. 1999. Approximating the Calling Context
Tree via Sampling. Technical Report 21789. IBM.

[8] RoaringBitmap authors. 2019. RoaringBitmap. https://github.com/
RoaringBitmap/RoaringBitmap.

[9] Mark Bull, Lorna Smith, Martin Westhead, David Henty, and Robert Davey. 2001.
Java Grande benchmark suite. https://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/java-grande-benchmark-
suite.

[10] Wen-ke Chen, Sanjay Bhansali, Trishul Chilimbi, Xiaofeng Gao, and Weihaw
Chuang. 2006. Proole-guided Proactive Garbage Collection for Locality Opti-
mization. SIGPLAN Not. 41, 6, 332–340.

[11] Oracle Corp. 2017. Oracle Developer Studio Performance Ana-
lyzer. https://www.oracle.com/technetwork/server-storage/solarisstudio/
documentation/o11-151-perf-analyzer-brief-1405338.pdf.

[12] Oracle Corporation. 2011. jmap Memory Map. https://docs.oracle.com/javase/7/
docs/technotes/tools/share/jmap.html.

[13] Oracle Corporation. 2018. All-in-One Java Troubleshooting Tool. https:
//visualvm.github.io.

[14] Standard Performance Evaluation Corporation. 2008. SPECjvm2008 benchmark
suite. https://www.spec.org/jvm2008.

[15] Luca Della Tofola, Michael Pradel, and Thomas R. Gross. 2015. Performance
Problems You Can Fix: A Dynamic Analysis of Memoization Opportunities.
Proceedings of the 2015 ACM SIGPLAN Interna- tional Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2015),
607–622.

[16] NASA Advanced Supercomputing Division. 2018. NAS Parallel Benchmarks.
https://www.nas.nasa.gov/publications/npb.html.

[17] R. E. McLear, D. M. Scheibelhut, and E. Tammaru. 1982. Guidelines for creating a
debuggable processor. Proceedings of the orst international symposium on Archi-
tectural support for programming languages and operating systems (ASPLOS),
100–106.

[18] Ariel Eizenberg, Shiliang Hu, Gilles Pokam, and Joseph Devietti. 2016. Remix:
Online Detection and Repair of Cache Contention for the JVM. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Santa Barbara, CA, USA) (PLDI ’16). ACM, New York, NY, USA,
251–265. https://doi.org/10.1145/2908080.2908090

[19] ej-technologies GmbH. 2018. THE AWARD-WINNING ALL-IN-ONE JAVA PRO-
FILER. https://www.ej-technologies.com/products/jprooler/overview.html.

[20] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry Cheng, Amer
Diwan, David Grove, and Michael Hind. 2004. Using hardware performance
monitors to understand the behavior of Java applications. In Proceedings of the
3rd Virtual Machine Research and Technology Symposium (VM’04).

[21] Lu Fang, Liang Dou, and Guoqing Xu. 2015. PerfBlower: Quickly Detecting
Memory-Related Performance Problems via Ampliocation. In 29th European
Conference on Object-Oriented Programming (ECOOP 2015) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 37), John Tang Boyland (Ed.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 296–320. https:
//doi.org/10.4230/LIPIcs.ECOOP.2015.296

[22] Apache Software Foundation. 2017. Apache SAMOA: Scalable Advanced Massive
Online Analysis. https://samoa.incubator.apache.org.

[23] Andy Georges, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere. 2004.
Method-Level Phase Behavior in Java Workloads. Proc. of the ACM SIGPLAN
Conf. on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 270–287.

[24] YourKit GmbH. 2018. The Industry Leader in .NET and Java Prooling. https:
//www.yourkit.com.

[25] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, andMichael Hind. 2004. Ver-
tical Prooling: Understanding the Behavior of Object-Oriented Applications. Proc.
of Conf. on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 251–269.

[26] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S. McKinley,
and Darko Stefanović. 2006. Generating object lifetime traces with Merlin. ACM
Transactions on Programming Languages and Systems.

[27] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B. Moss,
Zhenlin Wang, and Perry Cheng. 2004. The Garbage Collection Advantage:
Improving Program Locality. SIGPLAN Not. 39, 10, 69–80.

[28] Skymind Inc. 2019. Deep Learning for Java. https://deeplearning4j.org.
[29] Twitter Inc. 2019. Parquet MR. https://github.com/apache/parquet-mr.
[30] Intel Corporation. 2010. Intel 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B: System Programming Guide, Part 2, Number 253669-032.
[31] Nguyen Khanh and Guoqing Xu. 2013. Cachetor: Detecting Cacheable Data to

Remove Bloat. ESEC/FSE 2013 Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, 268–278.

[32] Andreas Kull. 2020. Awesome Java. https://github.com/akullpp/awesome-java.
[33] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. 2006. Online

performance auditing: Using hot optimizations without getting burned. In Proc.
Conf. on Programming Language Design and Implementation (PLDI 2006), New
York, USA, 239–251.

[34] Linux. 2015. Linux Perf Tool. http://www.brendangregg.com/perf.html.
[35] Stephen M. Blackburn, Robin Garner, Chris Hofmann, Asjad M. Khang, Kathryn

S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot
B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel
von Dincklage, and Ben Wiedermann. 2006. The DaCapo benchmarks: java
benchmarking development and analysis. OOPSLA ’06 Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, Portland, Oregon, USA, 169–190.

[36] Trishul M. Chilimbi and James R. Larus. 1998. Using Generational Garbage
Collection to Implement Cache-conscious Data Placement. SIGPLAN Not. 34, 3,
37–48.

[37] Darko Marinov and Robery O’Callahan. 2003. Object Equality Prooling. ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 313–325.

[38] Khanh Nguyen and Guoqing Xu. 2013. Cachetor: Detecting Cacheable Data
to Remove Bloat. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). Association for
Computing Machinery, New York, NY, USA, 268–278. https://doi.org/10.1145/
2491411.2491416

[39] Adrian Nistor, Linhai Song, DarkoMarinov, and Shan Lu. 2013. Toddler: Detecting
Performance Problems via Similar Memory-access Patterns. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)
(ICSE ’13). IEEE Press, Piscataway, NJ, USA, 562–571.

[40] Nitsan Wakart. 2016. The Pros and Cons of AsyncGetCallTrace Proolers. http:
//psy-lob-saw.blogspot.com/2016/06/the-pros-and-cons-of-agct.html.

[41] Sable Research Group of McGill University. 2019. Soot. https://sable.github.io/
soot/.

[42] Oracle Corp. 2016. NetBeans prooler. https://prooler.netbeans.org.
[43] Andrei Pangin. 2018. Async-prooler. https://github.com/jvm-prooling-tools/

async-prooler.
[44] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr

Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking Suite
for Parallel Applications on the JVM. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). ACM, New York, NY, USA, 31–47. https://doi.org/10.1145/
3314221.3314637

[45] Bill Pugh, Andrey Loskutov, and Keith Lea. 2015. FindBugs. http://ondbugs.
sourceforge.net.

[46] Jefrey S. Vitter. 1985. Random Sampling with a Reservoir. ACM Transactions on
Mathematical Software (TOMS), 37–57.

[47] Mark Scott Johnson. 1982. Some requirements for architectural support of
software debugging. Proceedings of the orst international symposium on Archi-
tectural support for programming languages and operating systems (ASPLOS),
140–148.

[48] Ajeet Shankar, Mattew Arnold, and Rastislav Bodik. 2008. JOLT: Lightweight
Dynamic Analysis and Removal of Object Churn. ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 127–142.

[49] Yeom Shuf, Manish Gupta, Hubertus Franke, Andrew Appel, and Jaswinder
Pal Singh. 2002. Creating and Preserving Locality of Java Applications at Alloca-
tion and Garbage Collection Times. SIGPLAN Not. 37, 11, 13–25.

[50] Linhai Song and Shan Lu. 2017. Performance Diagnosis for Ineocient Loops. In
Proceedings of the 39th International Conference on Software Engineering (Buenos
Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 370–380.

[51] Pengfei Su, Qingsen Wang, Chabbi Milind, and Xu Liu. 2019. Pinpointing Perfor-
mance Ineociencies in Java. The 27th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Tallinn,
Estonia.

[52] Nathan R. Tallent. 2010. Performance analysis for parallel programs from multicore
to petascale. Ph.D. thesis. Department of Computer Science, Rice University.

1569

OJXPerf: Featherlight Object Replica Detection for Java Programs ICSE ’22, May 21–29, 2022, Pitsburgh, PA, USA

[53] Qingsen Wang, Xu Liu, and Milind Chabbi. 2019. Featherlight Reuse-Distance
Measurement. Proceedings of The 25th IEEE International Symposium on High
Performance Computer Architecture, 440–453.

[54] Shasha Wen, Milind Chabbi, and Xu Liu. 2017. REDSPY: Exploring Value Locality
in Software. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems (Xi’an,
China) (ASPLOS ’17). Association for Computing Machinery, New York, NY, USA,
47–61. https://doi.org/10.1145/3037697.3037729

[55] Shasha Wen, Xu Liu, John Byrne, and Milind Chabbi. 2018. Watching for Soft-
ware Ineociencies with Witch. Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’18), 440–453.

[56] Guoqing Xu. 2012. Finding reusable data structures. ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1017–1034.

[57] Guoqing Xu. 2013. Resurrector: A Tunable Object Lifetime Prooling Technique
for Optimizing Real-World Programs. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
and Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for
Computing Machinery, New York, NY, USA, 111–130. https://doi.org/10.1145/
2509136.2509512

[58] Guoqing Xu, Matthew Arnold, and Nick Mitchell. 2009. Go with the Flow:
Prooling Copies To Find Runtime Bloat. Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’09),
419–430.

[59] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Sevitsky.
2009. Go with the Flow: Prooling Copies to Find Runtime Bloat. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (Dublin, Ireland) (PLDI ’09). Association for Computing Machinery,
New York, NY, USA, 419–430. https://doi.org/10.1145/1542476.1542523

[60] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. 2011. LeakChaser:
Helping Programmers Narrow down Causes of Memory Leaks. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (San Jose, California, USA) (PLDI ’11). Association for Computing Ma-
chinery, New York, NY, USA, 270–282. https://doi.org/10.1145/1993498.1993530

[61] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg,
and Gary Sevitsky. 2014. Scalable Runtime Bloat Detection Using Abstract
Dynamic Slicing. ACM Trans. Softw. Eng. Methodol. 23, 3, Article 23 (June 2014),
50 pages. https://doi.org/10.1145/2560047

[62] Guoqing Xu and Atanas Rountev. 2010. Detecting Ineociently-Used Containers
to Avoid Bloat. In Proceedings of the 31st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Toronto, Ontario, Canada)
(PLDI ’10). Association for Computing Machinery, New York, NY, USA, 160–173.
https://doi.org/10.1145/1806596.1806616

[63] Guoqing Xu andAtanas Rountev. 2010. Detecting Ineociently-Used Containers to
Avoid Bloat. Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’10)., 160–173.

[64] Guoqing Xu, Dacong Yan, and Atanas Rountev. 2012. Static Detection of
Loop-Invariant Data Structures. In Proceedings of the 26th European Conference
on Object-Oriented Programming (Beijing, China) (ECOOP’12). Springer-Verlag,
Berlin, Heidelberg, 738–763. https://doi.org/10.1007/978-3-642-31057-7_32

[65] Dacong Yan, Guoqing (Harry) Xu, Shengqian Yang, and Atanas Rountev. 2014.
LeakChecker: Practical Static Memory Leak Detection for Managed Languages.
In 12th Annual IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO 2014, Orlando, FL, USA, February 15-19, 2014, David R. Kaeli and
Tipp Moseley (Eds.). ACM, 87. https://dl.acm.org/citation.cfm?id=2544151

[66] Albert Mingkun Yang, Erik Österlund, and Tobias Wrigstad. 2020. Improving
program locality in the GC using hotness. PLDI 2020: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation,
New York, NY, 301–313.

1570

