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Abstract
The proliferation of distributed energy resources
has heightened the interactions between transmission
and distribution (T&D) systems, necessitating novel
analyses for the reliable operation and planning of
interconnected T&D networks. A critical gap is
an analysis approach that identifies and localizes
the weak spots in the combined T&D networks,
providing valuable information to system planners and
operators. The research goal is to efficiently model
and simulate infeasible (i.e. unsolvable in general
settings) combined positive sequence transmission and
three-phase distribution networks with a unified solution
algorithm. We model the combined T&D network
with the equivalent circuit formulation. To solve the
overall T&D network, we build a Gauss-Jacobi-Newton
(GJN) based distributed primal dual interior point
optimization algorithm capable of isolating weak
nodes. We validate the approach on large combined
T&D networks with 70k+ T and 15k+ D nodes
and demonstrate performance improvement over the
alternating direction method of multipliers (ADMM)
method.
Keywords: Combined T&D networks, distributed
optimization, grid planning, infeasibility analysis,
primal-dual interior point.

1. Introduction
Integration of distributed energy resources (DERs) like
photovoltaics, battery storage systems, heat pumps,
and electric vehicles is transforming the electric
grid architecture and making it more heterogenous,
distributed, and sustainable [1]. Although the changing
grid architecture offers many benefits, recognizing
its inherent complexities is critical, especially in the
context of co-dependency between the transmission and
distribution (T&D) grid operation and planning.

The fundamental basis for power systems planning
and operation lies in the power flow (PF) studies,
which establish a relationship between complex voltage
phasors and nodal power injections, encompassing both
active and reactive powers at various busses within
the network. Traditionally, for bulk power system
(BPS) operations and planning, grid planners aggregate
the distribution feeders as a single entity (e.g., PQ

or ZIP model) at the transmission-distribution (T&D)
interface. In this paradigm, the distribution system,
being inherently passive, assumes the role of an energy
requester from the transmission network. As a result,
the transmission BPS resources manage voltage support,
energy balance, and various essential adjustments for the
distribution network. A recent directive from the Federal
Energy Regulatory Commission (FERC), Order No. 841
[2], mandates the establishment of a participation model
for energy storage services with a capacity exceeding
0.1 MW in the wholesale market, regardless of their
location. This regulatory shift aligns with the growing
significance of DERs. It emphasizes the need to explore
the combined operation of T&D networks, especially in
areas like Vermont, U.S., where DERs can constitute
most of the state’s net generation during sunny days.
During these scenarios, the grid observes backfeed at
many T&D interfaces in the region. To operate and plan
for such grid scenarios, we need to analyze and optimize
combined T&D networks.

There are many classes of combined T&D problems,
including time-domain and steady-state analyses
[3]–[5]. We focus on steady-state combined T&D
models, specifically identifying and simulating the
infeasible networks (i.e., these networks have no
feasible AC solution without adjustments). In the
context of high renewable penetration, this approach
enables system planners to identify weak locations
within T&D networks precisely. The need is even more
apparent as the operational dynamics of distribution
networks evolve beyond passive roles. Today’s
distribution networks experience more active control
mechanisms, such as inverter control, photovoltaic
(PV) curtailment, and volt-var control etc. These
active elements introduce complexities that influence
the reliability of tightly coupled T&D systems [6].
An illustrative example of this significance is from
2013 when the transmission system operator in PJM
collaborated with the Sturgis, Michigan distribution
system to prevent a blackout, utilizing 6MW from
the distribution grid [7]. In a similar event in 2022,
roughly 2400 homeowners pushed about 16.5 MW of
power back to the grid to test Tesla’s virtual power plant
capabilities [8].
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The state-of-the-art combined T&D algorithms
typically fall into two categories: co-simulation
[9], [10] and co-modelling approaches [3], [11].
The co-simulation approach employs separate tools
to model transmission and distribution components
with distinct formulations. Recent developments
include tools like FNCS1 [12], IGMS2 [13], HELICS3

[14], designed to facilitate T&D co-simulation. A
co-simulation methodology is described in [9], where
PowerWorld/PSSE solved the transmission system, and
GridLAB-D/OpenDSS solved the distribution grid. In
most of these methods, information exchange occurs
over the communication layer. However, a significant
drawback is that users must devise appropriate
interfacing techniques for diverse simulation tools, and
the overall approach fails if any sub-problem cannot
yield a solution. Finally, in the context of challenging
T&D optimization problems, interfacing between T
and D solvers involves only primal variables, and
convergence guarantees are difficult to obtain.

In the co-modeling approach, as highlighted in [11],
merely addressing the power flow is insufficient for
offering meaningful planning insights as simulation can
fail due to many reasons, e.g., misrepresentation of a
real physical system, lack of AC feasibility under given
operating conditions, poor choice of initial conditions,
etc. System planners must understand the root cause
of power flow simulation failure. E.g. consider a
scenario where a segment of the transmission network
becomes infeasible due to excessive PV exports from
the interconnected distribution network. In this instance,
curtailing the PV within the distribution network can
restore feasibility to the overall system. Therefore, we
need techniques to detect infeasible T&D networks and
offer valuable information on the cause and remedial
action for failure.

Table 1: Classification of Infeasibilities
Network Infeasibility type
IT Iinf Sinf Zinf

ID
Ω IinfΩ Sinf

Ω Zinf
Ω

To address current industry needs and technology
gaps, we propose a combined T&D infeasibility
analysis framework that identifies and locates weak
spots4 and offers tailored remedies for individual
infeasible scenarios. We consider key challenges:
stakeholders from different T&D utilities often resist
sharing their internal network data, and solving iteration
matrices with millions of nodes is computationally

1Framework for network co-simulation.
2Integrated grid modelling system
3Hierarchical engine for large scale infrastructure & co-simulation.
4areas or nodes in either transmission or distribution networks that

require active/reactive power support.

not tractable under a single machine, single memory
computing framework [15]. Therefore, we develop a
Gauss-Jacobi-Newton (GJN) based distributed primal
dual interior point (D-PDIP) optimization method,
which addresses both privacy and computing challenges.
We show that the D-PDIP algorithm can outperform
the alternating direction method of multipliers-based
distributed algorithms as it considers second-order
information for dual variable updates. The layout
of the combined T&D network is shown in Fig (1),
and we can have an infeasibility source at every node
on T and D networks or a subset of them. The
available types of infeasibility sources for the different
remedial actions are highlighted in Table 1. The
choice of network equations in our combined model
is based on Kirchoff’s Current Law (KCL), where
the infeasibility sources offset any mismatch in the
equations. The distributed optimization approach in
Section (3) minimizes the norm of the infeasibility
sources to optimally compensate for the mismatches
while considering the physical limit on node voltages
and line flow. Our approach has the following features:
1. Robustness: Model and simulate infeasible

combined T&D networks within the same solution
algorithm independent of the choice of initial or
network conditions.

2. Scalability and Data-privacy: Develop a
Gauss-Jacobi-Newton based distributed primal-dual
interior point algorithm that minimizes data
communication between entities and solves large
networks (>80k nodes).

3. Generality: Apply the proposed algorithm to
various practical case-studies requiring analyses of
tightly coupled combined T&D networks.

2. Preliminaries: IV -based Transmission
and Distribution Modeling

We employ the IV -based equivalent circuit formulation
(ECF) approach to model and study the infeasible
combined T&D networks. In ECF, [16], all
network elements (line, shunts, transformer, etc.)
except generator/load injections represent linear IV
relationships. Positive sequence IV relationships model
transmission networks, assuming balanced operation,
whereas explicit three-phase IV relationships model
unbalanced distribution networks. A coupling port, as
shown in Fig. (1), facilitates an interface between T and
D sub-models and allows information exchange between
the two networks at the point of interconnection (POI).

2.1. Positive-sequence Transmission Network
We represent the positive sequence transmission
network with an undirected graph GT (N T , ET ). The
IV relationships for node N T and edge ET elements
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Figure 1: Illustration of combined positive sequence transmission network and three-phase distribution networks with
infeasibility sources at each node.

model the network physics with KCL, which requires
that positive sequence currents at each node nT ∈ N T

sum to zero. Equations (1a) through (1g) formulate this
relationship with major simplifications for readability,
where Φ = 1 indicates positive sequence parameters
and states. Node complex voltage states are represented
in rectangular coordinates as real (V R) and imaginary
(V I) voltages. Gij and Bij correspond to the
admittance and susceptance of edge elements between
nodes i and j. The terms IRi and IIi represent the net
current injection at node i from loads and generators.

2.2. Three-phase Distribution Network

Similar to transmission networks, the AC network
physics of the distribution grid model (denoted as
GD(ND, ED)) is presented with major simplifications
in equations (1a) through (1g). Here, Φ represents the
set of connected phases on each node (nD ∈ ND), with
a maximum of three phases (Φ = {a, b, c}). The symbol
Γ encapsulates the self and mutual coupling between all
the combinations of phases. The models include various
three-phase transformers, shunts, switches, and fuses,
but these are omitted for simplicity and readability.

∀i ∈ N , ∀Ω ∈ Φ :∑
j∈N

∑
Γ∈Φ

(
Gij,ΩΓV

R
ij,Γ −Bij,ΩΓV

I
ij,Γ

)
+ IRi,Ω = 0

(1a)∑
j∈N

∑
Γ∈Φ

(
Gij,ΩΓV

I
ij,Γ +Bij,ΩΓV

R
ij,Γ

)
+ IIi,Ω = 0

(1b)

IRi,Ω −
Pi,ΩV

R
i,Ω +Qi,ΩV

I
i,Ω

(V R
i,Ω)

2 + (V I
i,Ω)

2
= 0 (1c)

IIi,Ω −
Pi,ΩV

I
i,Ω −Qi,ΩV

R
i,Ω

(V R
i,Ω)

2 + (V I
i,Ω)

2
= 0 (1d)

Pi,Ω −
∑
l∈Li

P l
i,Ω +

∑
g∈Gi

P g
i,Ω = 0 (1e)

Qi,Ω −
∑
l∈Li

Ql
i,Ω +

∑
g∈Gi

Qg
i,Ω = 0 (1f)

(V R
i,Ω)

2 + (V I
i,Ω)

2 − V̂ 2
i,Ω = 0 ∀i ∈ N\PQ (1g)

2.3. Infeasibility Analysis

Prior works have focused on identifying and solving
the infeasible positive sequence transmission networks.
[17] introduced a method to identify unsolvable power
flow networks by introducing missing power in power
mismatch equations. [18], [19] introduced a similar
concept by adding infeasibility current sources within
the ECF formulation. For a three-phase distribution
network, [20] discusses the infeasibility problem with
L-1 regularization to introduce the sparsity in the
solution vector. [21] applies a similar concept as [17]
but in three-phase distribution grids.

P1 : min
X,Iinf

i

∑
i∈N

∑
Ω∈Φ

∥I infi,Ω∥pp (2a)

subject to:

Fi,Ω(X)− I infi,Ω = 0 ∀i ∈ N , ∀Ω ∈ Φ (2b)

X ≤ X ≤ X (2c)

The IV -based infeasibility formulation for T and D,
independently, with ECF, is shown in P1 (2a)-(2c).
F(X) represents the power flow equations as shown
in (1a)-(1g), where current infeasibility source, I infΩ ,
as described in [18], [19], and [20] is added to
each bus i except the slack bus. X is the
vector of unknown variables, i.e X ∈ {XT , XD}.
These methods address infeasibility for transmission
or distribution separately and are developed for a
centralized computing framework. In the combined
T&D context, incorporating additional current sources
does not effectively isolate the exact cause of
infeasibility, nor does it suffice to accurately devise
preventive strategies in combined T&D operations.
Real-time combined T&D networks can involve tens
of millions of positive-sequence and three-phase
nodes, surpassing the current capabilities of existing
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methods in the literature. They also have implicit
privacy requirements, further necessitating the need for
distributed approaches. Therefore, current approaches
do not scale nor apply to combined T&D analyses
without loss of generality. We will target the gap in this
paper.
2.4. Coupling Port
We apply a circuit-theoretic approach to design a
coupling port (with subscript k) that interconnects
the positive sequence transmission network with the
three-phase distribution network [11]. The coupling
port allows for the natural decomposition of T&D
subcircuits by replacing the controlled sources with
externally updated independent sources. The effect
of the distribution network on the transmission
side is represented by the positive-sequence
current-controlled current sources IRk,1 and IIk,1.
Conversely, voltage-controlled voltage sources
(V R

k,a, V
R
k,b, V

R
k,c, V

I
k,a, V

I
k,b, V

I
k,c) couple the distribution

side voltages with the transmission POI voltages as
shown in Fig. (2).

Figure 2: Real and imaginary circuit of coupling port.

The variable κ is a normalizing constant given
by the base current on the distribution side (κ =
Sbase/Vbase), where Vbase is the nominal voltage of
the distribution coupling node. Assuming positive
sequence components only on the transmission side,
we use symmetrical components theory to derive the
relationship (3).

[
IRk,1
IIk,1

]
=

1

3κ

[
1 0 α 0 α2 0
0 1 0 α 0 α2

]


IRk,a
IIk,a
IRk,b
IIk,b
IRk,c
IIk,c

 (3)

Similarly, (4) represents the distribution sub-circuit
voltages as a function of transmission voltages at POI.

V R
k,a

V I
k,a

V R
k,b

V I
k,b

V R
k,c

V I
k,c

 = Vbase


1 0
0 1
α2 0
0 α2

α 0
0 α


[
V R
k,1

V I
k,1

]
(4)

Table 2: Symbols and definitions
Symbol Interpretation

XT , XD
Ω Transmission and distribution state

variables, ∀ Ω ∈ {a, b, c}
k ∈ K Point of interconnections in the set of all

interconnections between T and D

p Choice of norm

XT
s , XD

s,Ω Transmission and distribution state
variables in sub-problem s ∈ ST , SD and
Ω ∈ {a, b, c}

IT
s , ID

s,Ω Vector of infeasibility source at T&D in
sub-problem s ∈ ST , SD , ∀Ω = {a, b, c}

XT,int
s , XD,int

s,Ω Internal variables in T&D ∀s ∈
ST , SD, Ω ∈ {a, b, c}

XT,ext
s , XD,ext

s,Ω External variables in T&D ∀s ∈
ST , SD, Ω ∈ {a, b, c}

λT,int
s , λD,int

s,Ω Dual internal variables in T&D ∀s ∈
ST , SD, Ω ∈ {a, b, c}

λT,ext
s , λD,ext

s,Ω Dual external variables in T&D ∀s ∈
ST , SD, Ω ∈ {a, b, c}

In the (3) and (4), the value of α is 2π
3 radians. These

equations describe the relationship between a primal set
of variables for the coupling port; in the optimization
context, the relationship for the dual variables is derived
in Section 3.

3. Combined T&D Infeasibility Analysis
To solve infeasible combined T&D networks, we first
introduce a centralized approach P2. Next, we develop
a decentralized method to enforce privacy needs and
ensure scalability. In particular, we focus on enforcing
performance and robustness in the distributed algorithm.
3.1. Centralized approach
In the centralized regime (P2), (5b) are the transmission
AC power flow constraints from (1a) to (1g) with
infeasibility sources, and Ω is the positive sequence
component. (5c) are the three-phase distribution power
flow constraints (also in (1a) to (1g)) with Ω ∈ {a, b, c}.
The infeasible sources are added to all or a subset of
T&D buses except the slack bus to provide the necessary
mismatch in the AC network constraints. Depending
on the choice of infeasibility source type (see Table
1), the contribution of these sources to the network
KCL equations in (1a) to (1g) can be linear (in case
of currents and impedance) or nonlinear (in case of
power). The constraint set highlighted by (5d) and (5e)
are the physical and stability bounds on node voltages
and branch flow in the T&D sub-circuits. The coupling
constraints in (5f) (derived from (3) and (4)) connect
the transmission and distribution system at the POI.
The objective minimizes the norm of the infeasibility
terms IT and ID. The choice of norm (see p in (5a))
results in different behavior by each infeasibility source
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to satisfy AC network constraints. While the norm-1
minimization results in sparse non-zero infeasibility
terms, norm-2 spreads the non-zero values across the
majority of infeasibility sources [22].

P2 : min
X,I

∑
s∈ST

∥(IT
s )∥pp +

∑
s∈SD

∑
Ω∈a,b,c

∥(ID
s,Ω)∥pp (5a)

subject to:

FT
st(X

T
st)− IT

st = 0 ∀st ∈ ST (5b)

FD
sd,Ω

(XD
sd,Ω

)− ID
sd,Ω

= 0 ∀Ω ∈ {a, b, c} ∀sd ∈ SD

(5c)

GT
st(X

T
st) ≤ 0 ∀st ∈ ST (5d)

GD
sd,Ω

(XD
sd,Ω

) ≤ 0 ∀Ω ∈ {a, b, c} ∀sd ∈ SD (5e)

Ck(XT , XD) = 0 ∀k ∈ K (5f)

We use the perturbed primal-dual interior point method
with Newton’s steps to solve the centralized problem
[23]. If we minimize the norm-1 objective, we
use the epigraph reformulation form [22] to result
in a differentiable formulation directly incorporable
in nonlinear programming solvers. Note that if the
combined T&D power flow problem is feasible, the
optimization-based approach should converge to an
equivalent power flow solution with all zero infeasibility
terms, independent of the choice of the norm. The
choice of infeasibility source type results in the
following infeasibility current contribution:

I =


IR,inf+jII,inf if I = I inf

(P inf−jQinf)/(V R−jV I) if I = Sinf

(Ginf+jBinf)(V R+jV I) if I = Z inf

(6)

3.2. Distributed Approach
The centralized problem in (5a)-(5f) may not scale
indefinitely due to a single machine’s limited compute
capacity and memory buffer. Moreover, privacy
limitations also prevent using a centralized approach
because separate T&D entities are hesitant to share full
internal network data with each other. Given natural
weak-coupling between T&D networks, a distributed
optimization approach is well-suited. In power
system studies, numerous problems are addressed using
distributed optimization; see [24], [25]. However, most
of this research does not directly apply to IV -based
combined T&D infeasibility analysis. Alternate
direction method of multiplier (ADMM) and variants
that behave closer to first-order methods are common
choices for distributed computations in loosely coupled

Figure 3: Combined T&D in BBD structure. Here, A,
B, and C represent three distinct distribution networks.

problems, as noted in [26]. These methods benefit
from simplicity in local computations and convergence
guarantees in convex setups, but they are limited in
performance and convergence robustness in non-convex
setups [27]. Furthermore, in ADMM-like methods
that use first-order updates for all duals, iterations may
increase significantly when accuracy demands are high,
resulting in approximate solutions that may negatively
affect the algorithm’s convergence. We observe this
behavior in the Section 4. We implement a distributed
primal dual interior point method to overcome these
challenges to solve the combined T&D problem[27].
It differs from ADMM as we use the dual function’s
second-order information with Newton’s step to update
the majority of dual variables within the boundary of
each subproblem. We apply a Gauss-like step only
for a small subset of dual variables, specifically those
that couple the different subproblems (corresponding
to the dual variables of coupling constraint in (5f)).
To partition the network, we apply domain-based
decomposition, which partitions the original problem
into multiple sub-problems s ∈ S by branch tearing
technique across the T&D interface. For efficient
performance of this decomposition, we state the Remark
1. The result is that the underlying solution matrix
of perturbed primal-dual KKT conditions for the
decomposed problem has a bordered block diagonal
(BBD) form as shown in Fig. (3) [15].
Remark 1. The BBD structure depicted in Fig. (3)
satisfies a key requirement: the dimension of the external
variables (Xext

s ) is much smaller than the dimension of
the internal variables (Xint

s ).
In the decomposed regime, the node tearing results
in two sets of variables for each sub-problem:
internal (int) and external (ext). Internal variables
represent relationships between states of each T or
D subnetwork, internally. External states appear in
the coupling constraints and capture the relationship
between two sub-problems. Visually, in Fig.
(3), the diagonal terms (T, DA, DB, DC) are
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the function of internal primal and dual variables
for each sub-problem. The off-diagonal entries
(tt′, tdA, tdB , tdC) are the function of external primal
and dual variables with the entries at the bottom
of the BBD structure (TT ′, TDA, TDB , TDc) map
constraints of the coupling circuit. The advantage
of representing the problem in BBD form lies
in its ability to leverage parallel computation by
solving each diagonal block independently and using
a sequential step to satisfy the relationship in the
off-diagonal terms. The decomposed problem is given
in P3 (7) with the external variables capturing the
relationships of off-diagonal entries. In the decomposed
perturbed KKT constraints, equations (7a) and (7b)
represent the primal and dual problems, respectively,
for all subsystems. Equation (7c) denotes the
perturbed complementary slackness condition, where
µs is the vector of Lagrangian multiplier for the
inequality constraints in sub-system s, and ϵ represents
an epsilon small tolerance value. The equations
(7d)-(7e) correspond to the dual and primal feasibility,
respectively. We solve the decomposed PDIP problem
with the Gauss-Jacobi-Newton algorithm.

P3 : Decomposed KKT conditions ∀s ∈ {ST , SD}

∇λ,sL = Fs(X
int
s , Xext

k,s )− Iint
s = 0 (7a)

∇x,sL = ∇x,s(||Is||pp)−∇x,sGs
Tµint

s +

∇x,s(Fs(X
int
s , Xext

k,s , λ
ext
k,s )− Iint

s )Tλint
s = 0 (7b)

− µint
s Gs(X

int) + ϵ = 0 (7c)

µint
s ≥ 0 (7d)

Gs(X
int) ≤ 0 (7e)

We describe it in Algorithm 1. Within each epoch,
independent sub-problems are optimized by solving
their perturbed KKT conditions in parallel with
Newton’s method. The independent optimizations are
terminated upon convergence or after a predetermined
number of iterations. The external variables in each
sub-problem s are assumed fixed for the Newton
problem. This step is equivalent to solving the block
diagonal part of perturbed KKT conditions for each
sub-problem s with Newton’s method while keeping
the off-diagonal external terms fixed. We update the
primal external variables (Xext

k,s ) for both transmission
and distribution (T&D) networks via coupling port
relationships in (3)-(4) with a Gauss-step. To update
the external dual variables at the coupling ports, we
analyze the KKT conditions of P2. After some
algebraic manipulation of its KKT conditions, we
derive the relationship between the dual variables

of the T&D coupling buses in (8). We use this
relationship to apply the Gauss step for dual variables.
In (8), λD

k,Ω and λT
k represent the dual variables

for the distribution and transmission coupling buses,
respectively. The algorithm is terminated when
the exchange of information between two subsequent
epochs is less than the defined tolerance ||Xext

k,n −

Xext
k,n−1|| ≤ ϵ. With this approach, entities only

need to communicate minimal boundary primal and
dual states between each other, which preserves privacy.
The convergence of GJN depends on the conditions
necessary for both Newton and Gauss steps. We discuss
the general properties in Appendix A.



λR,D
k,a

λI,D
k,a

λR,D
k,b

λI,D
k,b

λR,D
k,c

λI,D
k,c


=

1

κ


1 0
0 1
α2 0
0 α2

α 0
0 α


[
λR,T
k

λI,T
k

]
(8)

Algorithm 1: Distributed primal dual
interior point (D-PDIP)

Input : T&D network models, coupling nodes,
infeasibility type and locations

Output: T&D grid infeasible locations
1 Read T&D input files
2 Set epoch n = 0

3 Initialize Xint
s , λint

s ∀s ∈ {ST , SD}
4 for n = 1 to N do
5 for each sub-system s in parallel do
6 if n=1 then
7 Initialize coupling port variables

Xext
k,s , λext

k,s ∀s ∈ {ST , SD}
8 end
9 Solve the KKT conditions in (7a)-(7c) to

convergence or predetermined steps
with PDIP

10 Store the Xint
s , λint

s of coupling nodes
for Gauss-step and others for
warm-starting the next epoch

11 end
12 Calculate/Update Xext

k,s and
λext
k,s∀s ∈ {ST , SD} using (3),(4) and (8)

13 Check convergence and break if tolerance
met, ||yn − yn−1|| ≤ ϵ, y ∈ {Xext

k , λext
k }

14 end
15 Report results to grid planners
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4. Experiments

To test the performance of the proposed approach,
we run multiple experiments with different choices
of infeasibility sources (see Table 1) and varying
network sizes. The ability to choose from different
infeasibility source types allows the user to explore
different remedial actions. The choice of current I inf as
infeasibility type can resolve mismatch in the combined
T&D network that lacks a power flow solution, as it
identifies discrepancies within the power flow equations.
However, this information may not suffice for system
planners, as actionable preventive measures may be
necessary to counteract the infeasibility in the combined
T&D networks. Hence, we should identify and localize
with physical sources of mismatch, such as by using
P inf or Qinf sources to provide practical guidance
to grid planners. These parameters will translate to
meaningful corrective actions, such as determining the
load curtailment required to render the system feasible
and identifying locations for installing the reactive
power compensating devices.

4.1. Case Description
We study six combined T&D networks in the
experiments with the case summary described
in Table 3. The case data are available at
https://github.com/HamZaAlipak/
Combined-T_D_test_cases.git. For cases
1 through 4, we use Qinf infeasibility source type to
identify locations within the combined T&D network
where system planners can strategically deploy reactive
power-compensating devices to alleviate challenges
caused by voltage violations. In Cases 5 and 6, we
analyze a larger infeasible combined T&D network.
Specifically, Case 6 utilizes real distribution data
and selects the I inf infeasibility source type for
analysis. All simulations were conducted on an AMD
Ryzen 9 computer with 32-GB RAM. The Ipopt solver
(v13.14.10) was used for inner optimization tasks, while
Python scripts handled Gauss and other calculations.

Table 3: Summary of the test cases
Name T&D test case
Case 1 14-bus (T) + 4-bus (D)
Case 2 118-bus (T) + GC-12.47.1 (D)
Case 3 PEGAS2869 (T) + GC-12.47.1 (D)1

Case 4 ACTIVsg25k (T) + D-net2

Case 5 ACTIVsg70k (T) + D-net2

Case 6 ACTIVsg25k (T) + VEC-net3
1 Taxonomy feeder, GC 12.47.1 with 36 three-phase nodes

(108 single-phase nodes).
2 Synthetic urban meshed network with 1420 three-phase

nodes (4260 single-phase nodes).
3 Vermont distribution network (8.8k three phase nodes)

4.2. Reactive Power Compensation of
Infeasible Combined T&D Networks

We study reactive power compensation in Cases 1
through 4. To render the original combined T&D
networks infeasible, we increased the load magnitudes
on the distribution networks by a factor of 1.5 and
enforced voltage bounds at system nodes, including the
POI. We run infeasibility analyses with Qinf sources at
a subset of defined network locations to identify optimal
locations for reactive power compensation. From the
analysis, we identify the need for additional reactive
power with the total amount of 0.218 (pu), 0.84 (pu),
1.485 (pu), and 0.46642 (pu) for all Cases 1 through 4,
respectively. These results provide useful information
to system planners for optimally deploying corrective
devices. For instance, in Case-4, we identify that bus
number 17293 needs additional reactive power to make
the system feasible. We find that adding a reactive
power compensating device, such as a synchronous var
compensator, at the identified location can restore the
combined T&D network’s feasibility.

Table 4: Comparison of Infeasible Combined T&D
networks with ADMM, D-PDIP, and C-PDIP

Algorithm Network OF (p.u) Iter. Time(s)
ADMM Case-1 0.023 38 0.47
D-PDIP Case-1 0.023 21 0.44
C-PDIP Case-1 0.023 4 0.13
ADMM Case-2 0.352 71 1.27
D-PDIP Case-2 0.352 28 0.98
C-PDIP Case-2 0.352 15 0.44
ADMM Case-3 – – –
D-PDIP Case-3 1.102 32 8.63
C-PDIP Case-3 1.103 16 1.37
ADMM Case-4 – – –
D-PDIP Case-4 0.108 88 102.04
C-PDIP Case-4 0.108 83 65.71

Note: The OF is calculated by
∑

s∈ST
1
2
∥(QT,inf)∥22

Note: the number of iterations represents the number of times
the algorithm performs the backslash operator.

Comparison: To evaluate the performance of the
proposed D-PDIP algorithm, we compare its results
for Cases 1 through 4 against the Alternating
Direction Method of Multipliers (ADMM) method and
Centralized PDIP (C-PDIP) as discussed in section
3.We highlight the results in Table 4. For smaller
cases, all three methods converge to the same solution.
D-PDIP outperforms ADMM in terms of the number
of iterations due to its utilization of second-order
information for duals. Furthermore, for the larger
cases, the ADMM fails to converge in a timely manner
(≤ 1800 sec.), whereas D-PDIP demonstrates robust
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convergence. C-PDIP achieves faster convergence than
D-PDIP across all scenarios because the number of
sub-networks is not sufficiently large. Therefore, the
computing power of a single machine is sufficient.
Nonetheless, the distributed approach will be necessary
to enforce privacy needs and solve larger networks.

4.3. Analyzing Large Infeasible Combined
T&D Networks

The Case-6 network consists of a 25k node transmission
network connected to a real distribution grid (substation
in Vermont, which contains 8805 three phase nodes).
We render the original network infeasible by adding load
to the system, expected due to electrification. We model
the additional load with constant PQ load model and we
add it to a subset of triplex nodes in the system. Next,
we select I inf as an infeasibility source to solve this
infeasible network with D-PDIP algorithm. The D-PDIP
algorithm converges in three epochs, identifying various
weak locations in the transmission and distribution
network. As illustrated in Figure 4, the infeasibility
currents are distributed across almost 95% of nodes.
This poses challenges for the system operator as no
clear, actionable information exists. To mitigate this
issue, we reformulate the optimization problem with L-1
norm, which can return a sparse vector of infeasibility
currents. With infeasibilities in sparse locations, the
system planner can apply the corrective actions to the
few identified nodes to make the network feasible.
Scalability: Next, we demonstrate the scalability of the
D-PDIP algorithm for Cases 1 through 6 in Figure 5,
the case-6 is divided into parts Case-6(a) and Case-6(b)
representing the L-1 and L-2 formulation respectively.
We present the total runtime and iterations required
for the D-PDIP algorithm to converge, aggregating
transmission and distribution iterations across epochs
and subsystems. We show that the largest network
with 70k+ transmission nodes and 1420 three-phase
distribution nodes solves in less than 7 minutes.

5. Conclusion

In this paper, we present a novel distributed optimization
framework to solve infeasible combined T&D networks
with actionable information. We model the joint
T&D networks in an equivalent circuit framework.
We use a circuit-based coupling port to couple the
various T&D sub-networks. We apply node-tearning
technique along the coupling ports to naturally
decompose the problem. We implement a distributed
primal dual interior point (D-PDIP) algorithm to
solve the decomposed infeasibility problem while i)
enforcing privacy requirements and ii) scaling to
combined networks greater than hundred thousand

nodes. Underneath, we solve the D-PDIP equations
with the Gauss-Jacobi-Newton approach. For solution
robustness and fast convergence, we use second-order
system information to solve the strongly coupled system
states and a Gauss step to obtain consensus between
weakly coupled primal and dual variables. We show
the approach’s practical significance by identifying
optimal reactive power compensation locations for large
combined T&D networks. Our approach achieves
significantly better performance than the alternating
direction method of multipliers (ADMM) approach. We

A

B
Figure 4: A graph representation of the Vermont feeder
with a heatmap showing the highest infeasibility current
magnitude at each node, based on the L2 (A) and
L1 (B) norm formulations. Note that with L2-norm,
infeasibility currents are spread throughout the network.
With L1 norm, non-zero infeasibility currents are only
found in 8 locations.
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Figure 5: Combined T&D D-PDIP algorithm scalability.

posit since this framework quantifies and localizes the
deficiencies in combined T&D networks, it can enable
more effective planning and decision-making processes
for grid operators and planners.
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Appendix-A
Consider a general optimization problem for subsystem
s in Algorithm 1 with external variables fixed:

min
X

f(Xs) (9a)

s.t.
H(Xs) = 0 (9b)
G(Xs) ≤ 0 (9c)

The Lagrangian for the problem (9) is:

L(Xs, λs, µs) = f(Xs)+λT
s H(Xs)+µT

s G(Xs) (10)

Deriving the perturbed KKT conditions and linearizing
the system of equations to solve iteratively with Newton
step, we obtain the following for ith iteration at nth

epoch:Ws,i AT
s,i 1

As,i 0 0
µs,i 0 Xs,i


︸ ︷︷ ︸
Y (Xs,i, λs,i, µs,i)

Xs,i+1

λs,i+1

µs,i+1


︸ ︷︷ ︸
Vs,i+1

=

−∇xLs,i +Ws,iXs,i +As,iλs,i + µs,i

−H(Xs,i) +As,iXs,i

µs,i ·Xs,i − ϵ


︸ ︷︷ ︸

J(Xs,i, λs,i, µs,i)

(11)

The term Ws,i = ∇2
XXLs,i and A = ∇XHs,i. The

Xs corresponds to the internal states of subsystem s.
Similarly, λs are the internal duals of subsystem s. The
equation (11) corresponds to a single Newton-Raphson
iteration of sub-problem S toward solving the nonlinear
perturbed KKT conditions.

For a Newton-Raphson (NR) to converge for each
sub-system s, the initial guess should be close to
nonlinear problem root V ∗

s , and all functions and their
derivatives should have Lipschitz continuity in the close
neighborhood of V ∗

s [28].
Similarly, for the Gauss step that updates the external

terms between subsystems s ∈ S, the condition is on
the overall system matrix Y ∗ that concatenates, after
each epoch, individual system matrices obtained from
the NR solution of various sub-problems (Y ∗

s , ∀s ∈ S)
along with off-diagonal external terms. To stipulate the
conditions for convergence of the Gauss-step, we split
the matrix Y ∗ into two components (Y ∗ = M − N )
[29]. The sufficient condition then for the Gauss-Jacobi
method to converge is that the spectral radius r of
decomposed matrix Y ∗ must be less than 1.

r = ρ(M−1N) < 1 (12)
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