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Abstract

In this paper we study the random geometric graph RGG(n,Td,Unif, σq
p, p) with Lq distance where

each vertex is sampled uniformly from the d-dimensional torus and where the connection radius is

chosen so that the marginal edge probability is p. In addition to results addressing other questions,

we make progress on determining when it is possible to distinguish RGG(n,Td,Unif, σq
p, p) from

the Erdős-RÂenyi graph G(n, p).
Our strongest result is in the setting q = ∞, in which case RGG(n,Td,Unif, σ∞

p , p) is the AND

of d 1-dimensional random geometric graphs. We derive a formula similar to the cluster-expansion

from statistical physics, capturing the compatibility of subgraphs from each of the d 1-dimensional

copies, and use it to bound the signed expectations of small subgraphs. We show that counting

signed 4-cycles is optimal among all low-degree tests, succeeding with high probability if and

only if d = õ(np). In contrast, the signed triangle test is suboptimal and only succeeds when

d = õ((np)3/4). Our result stands in sharp contrast to the existing literature on random geometric

graphs (mostly focused on L2 geometry) where the signed triangle statistic is optimal.

Keywords: High-Dimensional Random Geometric Graphs; Cluster Expansion.

1. Introduction

Networks arising in the sciences are often modeled as latent space graphs. Each node in a network

has a latent feature vector and the probability of connection between two nodes is a function of the

two feature vectors. One instance is the case of (random) geometric graphs in which each feature

vector is a (random) element of a metric space and the connection probability is determined by

the distance between the two vectors. Applications include protein-protein interactions and viral

spread in the biological sciences Higham et al. (2008); Preciado and Jadbabaie (2009), wireless

networks and motion planning in engineering Haenggi et al. (2009); Solovey et al. (2018), consensus

dynamics and citation networks in the social sciences Xie et al. (2016); Estrada and Sheerin (2016).

Formally, a random geometric graph is defined as follows.

Definition 1 (Random Geometric Graph) Given are a metric space (Ω, µ), a distribution D over

Ω, and connection function σ : Ω × Ω −→ [0, 1] such that σ(x,y) only depends on µ(x,y). Let

E[σ(x,y)] = p. Then, RGG(n,Ω,D, σ, p) is the following distribution over n-vertex graphs:

P[G = A] = E
x1,x2,...,xni.i.d.∼ D

[ ∏

1≤i<j≤n

σ(xi,xj)Ai,j (1− σ(xi,xj))1−Ai,j

]
.

When σ is monotone in µ, we say that RGG(n,Ω,D, σ, p) is a monotone random geometric graph.
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In words, each node i has an associated independent latent vector xi in Ω distributed according

to D. Conditioned on x1,x2, . . . ,xn, each pair of nodes (i, j) independently forms an edge with

probability σ(xi,xj).We focus on the monotone increasing case which has the natural interpretation

that closer nodes are more likely to be adjacent. In practice, the feature vectors are oftentimes not

fully available. In this work, we assume that the vectors are fully hidden.

Associated to random geometric graphs with latent vectors are a wide range of statistical and

computational tasks such as: 1) Clustering and Embedding of the nodes in a way that captures the

distances between latent vectors Li and Schramm (2023); O’Connor et al. (2020); Ma et al. (2020);

2) Estimating the dimension of the underlying space Ω in the case when dimension is naturally

defined such as Ω ∈ {Sd−1,Td, {±1}d} Bubeck et al. (2014); Friedrich et al. (2023b); 3) Testing

whether the network has a geometric structure against a ªpure noiseº (i.e., Erdős-RÂenyi )1 null

hypothesis Devroye et al. (2011); Bubeck et al. (2014); Brennan et al. (2020); Liu and RÂacz (2023a);

Liu et al. (2022); Brennan et al. (2026); Bangachev and Bresler (2023, 2024) and others.

The current work is mostly focused on the hypothesis-testing question which can be formalised

as follows (e.g. Bangachev and Bresler (2023)): Given G, decide between

H0 : G ∼ G(n, p) versus H1 : G ∼ RGG(n,Ω,D, σ, p). (P1)

Associated to these hypotheses are (at least) two different questions:

1. Statistical: When is there a consistent test? We aim to characterize the parameter regimes in

which the total variation between the two distributions tends to zero or instead to one.

2. Computational: When is there a computationally efficient test? In particular, when does there

exist a polynomial-time test solving (P1) with high probability?

Question (P1) has received significant attention in recent years in the case when (Ω, µ) captures an

L2 geometry. Concretely, µ is the induced L2 distance from Rd and (Ω,D) is either the unit sphere

Sd−1 with its uniform (Haar) measure Devroye et al. (2011); Bubeck et al. (2014); Brennan et al.

(2020); Liu et al. (2022); Bangachev and Bresler (2024) or Euclidean space Rd with a Gaussian

measure Liu and RÂacz (2023a,b); Brennan et al. (2026). In all of the above monotone models, the

conjectured information-theoretically optimal statistic is the signed triangle statistic, computable

in polynomial time. For a summary of results on L2 models, we refer the reader to Duchemin

and de Castro (2022); Bangachev and Bresler (2023). Most relevant to our work is the case when

Ω = Sd−1,D = Unif, and σ(x,y) = 1[⟨x,y⟩ ≥ ρdp], where ρdp is chosen so that the expected

density is p. The state of the art results are as follows. When d = Õ(n3p3), by counting signed

triangles one can distinguish between the RGG model and G(n, p) with high probability Bubeck

et al. (2014); Liu et al. (2022) and this regime is optimal with respect to low-degree tests Bangachev

and Bresler (2024). There is a matching information-theoretic lower bound when p = Θ(n−1) Liu

et al. (2022) and when p = Θ̃(1) Bubeck et al. (2014). The case n−1 ≪ p ≪ Θ̃(1) remains open

and the best known lower bound is d = Ω̃(n3p2) Liu et al. (2022).

In Bubeck et al. (2014), the authors also show that the signed triangle statistic is optimal for exact

recovery of the dimension in the model Ω = Sd−1,D = Unif and σ(xi,xj) = 1[⟨xi,xj⟩ ≥ 0].
The (signed) triangle statistic in monotone models is intuitive as it captures the axiomatic triangle

inequality: If x and y are close and y and z are close, then so are x and z Bubeck et al. (2014).

1. In the Erdős-RÂenyi distribution G(n, p), each of the
(

n
2

)

edges appears independently with probability p. As there is

no underlying dependence structure, this is a natural null model.
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These results and intuition have led to the conventional wisdom that (signed) triangles are most

informative, at least in monotone random geometric graphs.2 Subsequent works in very different

geometries have also used triangle-based statistics, for example to estimate the hidden dimension

Almagro and M. & Serrano (2022); Friedrich et al. (2023b).

In this paper, we go against this conventional wisdom and demonstrate that the (signed) triangle

statistic can be suboptimal. More concretely, we study the hypothesis testing problem under Lq

geometry for q ∈ [1,∞) ∪ {∞} and show that different values of q yield both quantitatively and

qualitatively different behaviours (see Figures 1 and 2). In particular, when q = ∞, triangle-based

tests are always suboptimal. The suboptimality of triangle-based estimators extends to the task of

dimension estimation as well. We use the (unweighted version of the) model of Friedrich et al.

(2023a,b) with Lq geometry over Td. The model can be viewed as a high-dimensional analogue of

the planted dense cycle model, which has also been of recent interest to the combinatorial statistics

community Mao et al. (2023, 2024).

Definition 2 (Lq-Hard Thresholds Model on Td) Consider the torus Td ∼= (2S1)×d, which is a

product of d circles of circumference 2.3 Let Unif be the uniform (Haar) measure over Td. For

x1, y1 ∈ 2S1, denote by |x1 − y1|C ∈ [0, 1] the circular distance, i.e. the length of the shorter arc

connecting x1 and y1. For 1 ≤ q < +∞, introduce the Lq distance on Td given by

∥x− y∥q :=
( d∑

i=1

|xi − yi|qC
)1/q

.

Also, ∥x − y∥∞ := limq−→+∞ ∥x − y∥q = maxi |xi − yi|C . Let 1 ≥ p ≥ 0, τ qp ≥ 0 be

such that E
x,y

i.i.d.∼ Unif(Td)

[
1[∥x − y∥q ≤ τ qp ]

]
= p and σqp(x,y) := 1[∥x − y∥q ≤ τ qp ]. Then,

RGG(n,Td,Unif, σqp, p) is the random geometric graph over Td with expected density p in which

two vertices are adjacent whenever the Lq distance between their latent vectors is at most τ qp .

To the best of our knowledge, the work of Friedrich et al. (2023a) is the first to explore (P1) for

random geometric graphs in non-L2 geometries. They showed that in the Lq model of Definition 2

(as well as for an inhomogeneous generalization of it) for fixed p, n,

lim
d→∞

TV
(
RGG(n,Td,Unif, σqp, p),G(n, p)

)
= 0.

Their approach, based on a multidimensional Berry-Esseen theorem and mimicking Devroye et al.

(2011), however, only yields TV distance of order o(1) when d = exp(Ω(n2)). Improving this

bound is posed as an open problem, which is also one of the main motivations of the current work.

Friedrich et al. (2023a) also estimate the probability with which a given set of edges appears

in RGG(n,Td,Unif, σ∞p , p) (and its inhomogeneous generalizations). They show that for edge

subsets A of constant size and d = ω(log2 n), the probability that all edges of A appear in

RGG(n,Td,Unif, σ∞p , p) is p|A|(1+ o(1)). This also allows the authors to bound the clique number

of RGG(n,Td,Unif, σ∞p , p). In a subsequent paper, the authors use these quantities for estimating

the dimension of a random geometric graph Friedrich et al. (2023b).

2. Bangachev and Bresler (2023) do give several geometric examples in which signed triangles are not the optimal

statistical test for (P1). However, in all of them, either the connection probabilities are not monotone or they do not

correspond to true ªdistancesº (but, for example, to a non-PSD inner product as in their Theorem 6.17).

3. We choose the circumference to be equal to 2 simply for convenience. One can equivalently define Td = Rd/ ∼,
where x ∼ y if and only if x− y ∈ 2Zd.
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Figure 1: Visualizing Theorems 4, 5 and 6. In

region I, the signed triangle test solves (P1) for

RGG(n,Td,Unif, σ∞
p , p) with high probability. In region

I + II, the signed 4-cycle test succeeds with high proba-

bility. In region III + IV, no low-degree polynomial test

succeeds. In IV, it is information theoretically impossible

to solve (P1) with high probability. The last region is po-

tentially suboptimal.

Figure 2: Visualizing Theorems 9 and 10. In region I,
the entropy of RGG(n,Td,Unif, σq

1/2, 1/2) is much lower

than that of G(n, 1/2). Yet, we do not know any efficient

test that distinguishes the two graph models in this region

(even though, we believe the signed 4-cycle count does in

a strictly larger region). In region II, it is information the-

oretically impossible to solve (P1) with high probability.

Both regions are potentially suboptimal.

2. Main Results

Throughout, we frequently refer to signed subgraph counts and low-degree polynomial tests. As

these are by now standard in the literature on latent space graphs, we defer the full definitions to

Appendix A. Now, we only informally recount the signed triangle count test. For expected density

p, it is defined by SC△(G) :=
∑

1≤i<j<k(Gij − p)(Gjk − p)(Gki − p) over all triangles i, j, k on

input graph G. If G ∼ G(n, p), this sum has expectation zero and, by Chebyshev’s inequality, with

high probability SC△(G) ∈ [−v, v], where v is any value asymptotically larger than the standard

deviation. SC△(H) for H ∼ RGG similarly concentrates (via Chebyshev’s inequality) in some

interval [−w + θ, w + θ]. If the two intervals are disjoint, the value SC△ distinguishes between

G(n, p) and RGG. On the other hand, when the standard-deviation-width intervals overlap, we say

that the signed triangle test fails. One can similarly reason with polynomials other than SC△(G),
in particular the signed four-cycle count SC□(G).

Throughout the rest of the paper, we make the following assumption:

There exist some absolute constants δ, ϵ > 0 such that n−1+ϵ ≤ p ≤ 1/2, nδ ≤ d. (A)

2.1. Main Results for L∞ Geometry

The L∞ case is special because of the following factorization property over coordinates:

∥x− y∥∞ ≤ τ holds if and only if |xi − yi| ≤ τ holds for each i ∈ [d]. This means that each edge

(u, v) is the AND of d independent edges in the 1-dimensional random geometric graphs over the

different coordinates. In comparison, previously studied L2 models have a (weighted) MAJORITY

combinatorics. For instance, in the spherical case ⟨x,y⟩ ≥ ρ if and only if
∑d

i=1 |xi| × |yi| ×
sign(xiyi) ≥ ρ. Each sign(xiyi) is an independent 1-dimensional edge and the values |xi|× |yi| are

the corresponding weights. Similarly, over {±1}d, weights equal 1 and MAJORITY is unweighted.

Factorization over the induced independent 1-dimensional random geometric graphs makes the

computation of expected signed subgraph counts tractable as computations in one dimension are

naturally simpler. Signed subgraph counts are fundamental in studying random graph distributions
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as they are the Fourier coefficients of the probability mass function. The factorization property, also

utilized in Friedrich et al. (2023a), is the first main ingredient in our results in the L∞ case.

The second ingredient is combining the induced 1-dimensional structures via the AND function.

While in certain special cases this step is nearly trivial (e.g., in Theorem 4 we only need to do it for

K2,t subgraphs and in Theorem 5 for triangles and 4-cycles), in full generality it requires a careful

analysis of the compatibility of induced 1-dimensional structures. We carry out such an analysis

in Section 3 by viewing each 1-dimensional structure as a polymer and expanding the product over

the d coordinates. A rearrangement of terms yields a tremendous amount of cancellations that

leaves us with an expression for the expected signed subgraph counts similar to the celebrated

cluster expansion formula (e.g., Mayer and Mayer (1940); KoteckÂy and Preiss (1986); Friedli and

Velenik (2017)) from statistical physics (which has found many other applications in combinatorics

and theoretical computer science, e.g. Scott and Sokal (2005); Helmuth et al. (2019); Jenssen and

Perkins (2020)). In our case, the compatibility criterion is given by the size of the overlap of different

1-dimensional structures. What makes a cluster-expansion-like formula appealing is a rapid decay

of terms which means that terms corresponding to small clusters determine its asymptotics (as in

the Koteckỳ-Preiss theorem KoteckÂy and Preiss (1986)). The derivation and analysis of this formula

is our technical and conceptual highlight in the L∞ case.

This gives the following bound on signed subgraph weights of RGG(n,Td,Unif, σ∞p , p). For a

set of edges H = {(i1, j1), (i2, j2), . . . , (ik, jk)}, denote

SWH(G) :=
∏

(ij)∈E(H)

(Gij − p) (the signed weight of H),

WH(G) :=
∏

(ij)∈E(H)

Gij (the unsigned weight of H).
(1)

Theorem 3 Suppose that H ⊆ Kn is a graph on |E(H)| ≤ (log d)5/4/(log log d) edges. Under

Assumption (A), there exists a universal constant C such that

∣∣∣EG∼RGG(n,Td,Unif,σ∞
p ,p)

[
SWH(G)

]∣∣∣ = O

(
p|E(H)|

(
(log d)C

d

)|V (H)|/2)
.

The quantity p|E(H)| appears naturally as each of the |E(H)| edges has marginal expectation p.

An exponentially small quantity in the number of vertices, i.e.
(
(log d)C/d

)|V (H)|/2
, appears fre-

quently in the computation of Fourier coefficients of latent space graphs as it corresponds to events

determined by the |V (H)| latent vectors (e.g., Hopkins (2018) for planted clique and Kothari et al.

(2023); Rush et al. (2023) for instances of the stochastic block model). While we do not have

an intuitive explanation of why |V (H)|/2 is the correct dependence, it is crucial to the proof of

Theorem 6. An exponent of the form |V (H)|/(2 + ξ) for any constant ξ > 0 would not suffice.

In a subsequent work by the same authors Bangachev and Bresler (2024), a similar statement to

Theorem 3 is derived for spherical random geometric graphs. In that setting, the signed subgraph

count of H is bounded by (8p)|E(H)| ×
( (log d)C

d

)OEI(H)/2
, where OEI(H) is a function of H for

which OEI(H) ∈ [⌈(|V (H)| − 1)/2⌉, |V (H)| − 1]. In particular, in the spherical case the bound

might be as large as (8p)|E(H)|×
( (log d)C

d

)|V (H)|/4
.Hence, the Fourier coefficients of d-dimensional

spherical random geometric graphs might be polynomially larger than the Fourier coefficients of d-

dimensional random geometric graphs over the torus with L∞ metric. This explains why detection
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is (information-theoretically and with respect to low-degree polynomials) possible in a larger range

of dimensions d in the spherical case.

Our proof of Theorem 3 also yields improved estimates for the unsigned subgraph weights

studied in Friedrich et al. (2023a). We discuss this in Appendix B. Now, we present the algorithmic

implications of Theorem 3.

2.1.1. DETECTING L∞ GEOMETRY

The first approach to (P1) is information-theoretic. An argument of Liu and RÂacz (2023a) (stated in

Appendix A) reduces this question to bounding signed weights of K2,t subgraphs. We obtain:

Theorem 4 (Information-Theoretic Lower Bound for L∞ Model) If (A) holds and

d ≥ (log n)C max(n3/2p, n) for some universal constant C, then

TV
(
RGG(n,Td,Unif, σ∞p , p),G(n, p)

)
= o(1).

Theorem 4 already highlights a quantitative difference between L∞ random geometric graphs

over Td and L2 models over Sd−1(recall the results of Liu et al. (2022)): The former converge to

Erdős-RÂenyi at a polynomially smaller dimension. Much more interesting, however, is the following

qualitative difference in the relative performances of signed triangle and 4-cycle counts.

Theorem 5 Under Assumption (A), consider problem (P1) with H1 : RGG(n,Td,Unif, σ∞p , p).
There exists some universal constant C > 0 such that:

1. The signed 4-cycle test distinguishes the two graph models successfully with high probability

if d ≤ (log n)−Cnp and fails with high probability if d > (log n)Cnp.
2. The signed triangle test distinguishes the two graph models sucessfully with high probability

if d ≤ (log n)−C(np)3/4 and fails with high probability if d ≥ (log n)C(np)3/4.

We provide intuition behind the suboptimality of signed triangles and its consequences in Sec-

tion 2.1.2. Now, we address the gap between the upper and lower bounds in Theorems 5 and 4.

Theorem 6 (Computational Lower Bound for L∞ Model) If (A) holds and d ≥ (np)1+η for

any absolute constant η > 0, then no polynomial test of degree at most (log n)5/4/(log log n) can

distinguish G(n, p) and RGG(n,Td,Unif, σ∞p , p) with high probability.

A popular conjecture is that ªsufficiently noisyº statistical problems in high-dimension can be solved

in polynomial time only if there is an O(log n)-degree polynomial test that solves them Hopkins

(2018). In this light, our result suggests that: 1) Either, there is a statistical-computational gap for

detecting L∞ geometry; 2) Or, Theorem 4 is suboptimal. Resolving the presence of a statistical-

computational gap is an exciting question for future research. Closely related models provide ex-

amples of both positive and negative answers to this question. Spherical random geometric graphs

do not exhibit a statistical-computational gap in the dense case p = 1/2 Bubeck et al. (2014). A

certain quiet planted coloring model (Kothari et al., 2023, Definition 2.18) (which, in particular, can

be realized as a random algebraic graph (see Definition 11) over a discrete torus) is shown to exhibit

an information-computation gap within the low-degree polynomial tests framework.
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2.1.2. TRIANGLES AND 4-CYCLES IN L∞ GEOMETRY

We end our discussion of the L∞ model with a further comparison between signed triangle counts

and signed four-cycle counts. First, we illustrate with an example.

Example 1 Consider the case p = 1
2 in which τ∞1/2 = 1−λ, where λ = Θ(1/d) (see Definition 2).

First, we interpret E[(2G12 − 1)(2G23 − 1)(2G31 − 1)], the signed expectation of triangle

{1, 2, 3}. It measures the correlation between the events ª2 is a neighbour of 1º (captured by the

term (2G12 − 1)) and ª2 is a two-step neighbour of 1 via 3º (the term (2G13 − 1)(2G32 − 1)).
Over the unit sphere, these two notions have perfect rank correlation as both are monotone in

the distance between vectors x1,x2. The closer x1,x2 are, the larger the probability that x3 is

a common neighbor or a neighbor of neither. This is not the case in the L∞ model. Consider

x1 = (0, 0, . . . , 0),x2a = (1, 0, 0, . . . , 0), and x2b = (12 ,
1
2 , . . . ,

1
2). Clearly, ∥x1 − x2a∥∞ = 1, so

vertices 1 and 2a are not adjacent. Still, the set of latent vectors adjacent to x1,x2a has measure

(1 − 2λ) × (1 − λ)d−1 = 1
2(1 + o(1)) since a point x3 is adjacent to x1 and x2a if and only if

(x3)1 ̸∈ (−λ, λ)∪ (1− λ, 1 + λ), and (x3)i ̸∈ (1− λ, 1 + λ) for i ∈ {2, 3, . . . , d}. In contrast, x1

and x2b are adjacent and only at distance 1/2, but the set of latent vectors adjacent to x1,x2b has

the much smaller measure (1− 2λ)d = 1
4(1 + o(1)) ((x3)i ̸∈ (32 − λ, 32 + λ) ∪ (1− λ, 1 + λ) ∀i).

The 4-cycle statistic on cycle {1, 3, 2, 4} measures the correlation between two-step paths 1±3±

2 and 1±4±2 from 1 to 2. This statistic does not suffer from the same issue as signed triangle counts

because the two two-step paths are the same function of x1 − x2.

The advantage of counting signed four cycles over counting signed triangles in the L∞ model ex-

tends to other tasks beyond testing against Erdős-RÂenyi, for example estimating the dimension

in RGG(n,Td,Unif, σ∞p , p). The existing literature on dimension estimation is fully focused on

triangle-based estimators Bubeck et al. (2014); Almagro and M. & Serrano (2022); Friedrich et al.

(2023b). Not much is known about the optimality of these estimators beyond the case of L2 geom-

etry. We consider the following problem.

On input n, p and G, where G ∼ RGG(n,Td,Unif, σ∞p , p), find the unknown dimension d. (P2)

One can also study variants of this problem, such as when the expected density p is unknown or

when one allows for a small error in estimating d. We focus on this simplest version as our goal is

to demonstrate the advantage of counting signed four-cycles over counting signed three-cycles.

Theorem 7 (Simple Estimators for Dimension Recovery) Consider (P2) under assumption (A)

with known value of δ such that d ≥ nδ. There exists an absolute constant C > 0 such that:

1. The signed 4-cycle statistic recovers d exactly with high probability when

d ≤ (log n)−C(np)2/3 and fails with high probability when d ≥ (log n)C(np)2/3.
2. The signed triangle statistic recovers d exactly with high probability when

d ≤ (log n)−C(np)1/2 and fails with high probability when d ≥ (log n)C(np)1/2.

It is important to note that Theorem 7 holds under the assumption (A) requiring np and d to be

polynomial in n. The setting of Friedrich et al. (2023b) in which the authors use a (weighted)

signed triangle count is in a disjoint regime np = Θ(1), d = o(log n).
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2.2. Additional Results

2.2.1. Lq GEOMETRY FOR q <∞
So far, we have shown that random geometric graphs with L∞ geometry behave qualitatively and

quantitatively differently from L2 models with respect to (P1). This motivates the question of

studying (P1) in other geometries as well, in particular Lq. The analysis of Lq models, however,

turns out to be much more challenging when q <∞. The factorization over 1-dimensional random

geometric graphs does not hold any longer. This makes the computation of signed subgraph counts

much more difficult. We have not succeeded to perform such a computation even for triangles.

One special case in which we manage to bound the signed subgraph count is the case of bipartite

graphs K2,t, which is enough to prove an analogue of Theorem 4. What makes this calculation

simpler is that the signed expectation of K2,t is given by the t-th centered moment of the self-

convolution of σq1/2. Using the Bernstein-McDiarmid inequality (in Appendix A), we bound the

centered moments of σ by revealing the d coordinates one at a time. The technical highlight of

this argument is proving that each coordinate (say xd) is marginally nearly uniform on T1 even

conditioned on the value of σq1/2(x,y) when q ≪ d. The reason for this phenomenon is that the

contribution of the remaining d−1 coordinates, i.e.
∑d−1

i=1 |xi−yi|qC , is sufficiently anticoncentrated

and, thus, there are no spikes in its distribution that would bias xd strongly when conditioning

on σq1/2(x,y). We derive the following general anticoncentration result by extending the work of

Bobkov and Chistyakov (2014) to random variables with potentially unbounded density.

Corollary 8 Suppose that X is a non-negative real-valued random variable that is absolutely

continuous with respect to the Lebesgue density with pdf f. Let d ∈ N and ρ ∈ (0, 1] be such that

d > ρ−1. Let m be such that
∫
{f(x)>m} f(y)dy = 1 − ρ. Then, for any interval [a, b] ⊆ R, if

X1, X2, . . . , Xd are independent copies of X,

P
[
X1 +X2 + · · ·+Xd ∈ [a, b]

]
≤ exp(−dρ/8) +

√
2e

m√
ρ3d

(b− a).

We fix p = 1/2 and vary q so that we obtain a meaningful comparison of different geometries.

Theorem 9 Suppose that q ≥ 1. There exists an absolute constant C > 0 such that:

1. If q = o(d/ log d) and dq ≥ n3(log n)C , TV
(
RGG(n,Td, σq1/2, 1/2),G(n, 1/2)

)
= o(1).

2. If q = Ω(d/ log d) and d2 ≥ n3(log n)C , TV
(
RGG(n,Td, σq1/2, 1/2),G(n, 1/2)

)
= o(1).

This statement interpolates between known results for L2 models where convergence to G(n, 1/2)
occurs when d = ω̃(n3) (for example, in the spherical case Bubeck et al. (2014)) and L∞ models

when convergence occurs for d2 = ω̃(n3) (see Theorem 4). Our corresponding lower bound is:

Theorem 10 Take any q ∈ [1,+∞] and any p such that 1/2 ≥ p ≥ 1/n. If d = o(np/ log n), then

TV
(
RGG(n,Td,Unif, σqp, p),G(n, p)

)
= 1− o(1).

Interestingly, this gives the same bound as the signed 4-cycle test when q = ∞ (Theorem 5).

The proof proceeds by discretizing Td and applying an entropy argument similar to (Bangachev

8
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and Bresler, 2023, Theorem 7.5) which shows that the support of RGG(n,Td,Unif, σqp, p) is con-

centrated on a set of size exp(O(dn log d)). Developing algorithmic upper bounds for general Lq

remains open. We present some ideas and conjectures in Appendix G, based on a Fourier-analytic

interpretation of signed subgraph counts similar to (Bangachev and Bresler, 2023, Observation 2.1).

2.2.2. RANDOM ALGEBRAIC GRAPHS

What makes the Bernstein-McDiarmid analysis feasible in the case of Theorem 9 is that the coordi-

nates of Td are independent. This method can be extended to other cases of a product structure.

Definition 11 (Random Algebraic Graph over Tori Bangachev and Bresler (2023)) Suppose

that G is a finite Abelian group or a finite-dimensional torus Td. Let Unif be the uniform (Haar)

measure over G and let σ : G −→ [0, 1] be a measurable function such that σ(g) = σ(−g) holds

a.s. and Eg∼Unif(G)[σ(g)] = p. RAG(n,G, σ, p) is the following distribution over n-vertex graphs:

P[G = A] = E
x1,x2,...,xni.i.d.∼ D

[ ∏

1≤i<j≤n

σ(xi − xj)Ai,j (1− σ(xi − xj))1−Ai,j

]
.

For any n, d, q, p, the random geometric graph RGG(n,Td,Unif, σqp, p) is also a random alge-

braic graph under the choice G = Td and σ(g) = 1[∥g∥q ≤ τ qp ]. Overloading notation, we will also

use σqp as one function-argument, that is σqp(x,y) = σqp(x− y).

In Bangachev and Bresler (2023), the authors study in detail the case G = {±1}d and de-

rive a general criterion based on the sizes of Fourier coefficients on each level of σ that guarantee

TV
(
RAG(n, {±1}d, σ, p),G(n, p)

)
= o(1). Using a technically much simpler argument, based on

the combination of (Liu and RÂacz, 2023a, (4)) and Bernstein’s inequality, we also recover such a

criterion. It relates statistical convergence to Erdős-RÂenyi with influences of Boolean functions.

Theorem 12 Suppose that σ : {±1}d −→ [0, 1] is a connection with expectation p. Then,

TV
(
RAG(n, {±1}d, σ, p),G(n, p)

)2
= O

(
n3
∑d

i=1 Inf i[σ]
2

p2(1− p)2

)
.

We thoroughly compare Theorem 12 and (Bangachev and Bresler, 2023, Theorem 3.1) in Ap-

pendix H. For now, we reprove two results from Bangachev and Bresler (2023) using Theorem 12.

Corollary 13 TV
(
RAG(n, {±1}d, σ, p),G(n, p)

)
= o(1) in the following cases:

1. If σ is 1
r
√
d

-Lipschitz and d = ω
(

n3

p2r4

)
.

2. If σ(g) = 1

[∑d
i=1 gi ≥ τ

{±1}d
p

]
, where τ

{±1}d
p is such that E[σ] = p, d ≥ (log n)Cn3p2.

Proof For part 1, observe that whenever σ is (r
√
d)−1-Lipschitz, by the definition of influence,

Inf i[σ] = Ex∼Unif({±1}d)

[(
σ(x)−σ(x⊕i)

2

)2
]

≤ 1
r2d
, where x⊕i denotes the vector x with the i-

th coordinate flipped. We used |σ(x) − σ(x⊕i)| ≤ 2
r
√
d

which follows from the Lipschitzness

assumption. The conclusion follows from Theorem 12.

9
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For part 2, again consider Inf i[σ]. The expression σ(x) − σ(x⊕i) is non-zero only if x has
d+τp
2 or

d+τp
2 − 1 ones. A simple calculation (carried out, for example, in (Bangachev and Bresler,

2023, Proof of Proposition 4.7)) shows that the probability of this happening is O(p
√

log 1
p/

√
d).

Each influence is of order Õ(p2/d) and the conclusion follows.

3. Cluster Expansion in L∞ Random Geometric Graphs

Here, we describe our conceptual and technical highlight: a ªcluster-expansionº formula for

RGG(n,Td,Unif, σ∞p , p) which yields Theorem 3.

Preliminaries: Recall Assumption (A). Note that τ∞p satisfies (τ∞p )d = p. Indeed, this is the case

since p = P[∥x∥∞ ≤ τ∞p ] = P[|x1|C ≤ τ∞p ]d. This immediately implies that τ∞p = 1 − λ∞p ,

where λ∞p = log(1/p)
d (1 + o(1)). We will write σ, λ, τ instead of σ∞p , λ

∞
p , τ

∞
p for brevity.

Fix some subgraph H ⊆ Kn defined by edges e1, e2, . . . , ek. We want to bound

EG∼RGG(n,Td,Unif,σ∞
p ,p)[SWH(G)] and EG∼RGG(n,Td,Unif,σ∞

p ,p)[WH(G)]. We utilize the AND

structure of L∞ random geometric graphs, described in the introduction, towards this goal. This

is done in several steps, which can be similarly applied in other instances of AND structure (another

random graph family exhibiting AND structure is random intersection graphs, see Brennan et al.

(2020)).

Step 1: Factorizing Expected Weights over Independent Coordinates. A simple but crucial

observation about the L∞ model is that the different coordinates factorize. Namely, eℓ = (iℓ, jℓ) is

an edge if and only if |xiℓu − xjℓu |C ≤ 1− λ for each coordinate u ∈ [d]. Using the independence of

coordinates under the distribution Unif(Td),

EG∼RGG(n,Td,Unif,σ∞
p ,p)[WH(G)] = EG∼RGG(n,T1,Unif,σ∞

1−λ,1−λ)[WH(G)]d. (2)

Step 2: Computations Over a Single Coordinate via Inclusion-Exclusion. Computing the one-

dimensional quantities over the graph complement G is simpler than computing them over G.
The intuitive reason is that in the complement each edge appears only with very low probability

λ = Θ̃(1/d). In other words, the appearance of an edge is a very restrictive event that largely

determines the configuration of latent vectors. Concretely, for a set of edges A, denote by χ(A) the

probability that no edge of A appears in G ∼ RGG(n,T1,Unif, σ∞1−λ, 1− λ), i.e.,

χ(A) := PG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[Gij = 0 for all ij ∈ A] . (3)

Equivalently, χ(A) is the probability that each edge in set A appears in the random geometric graph

over T1 with connection σ(x, y)1,>λ = 1[|x− y|C ≥ 1− λ] and expected density λ.

The event
{
σ(x, y)1,>λ = 1

}
significantly constrains the relative locations of x, y on T1: They

are at distance 1 − Õ(d−1), so they are nearly diametrically opposite. The principle of inclusion-

exclusion converts the computations in the complement to computations over the original graph:

EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WH(G)] =

∑

A⊆E(H)

(−1)|E(A)|χ(A).
(4)

10
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Step 3: Measuring Perturbations From Erdős-RÂenyi . We take an approach inspired by statis-

tical - physics of measuring perturbations from the ªground stateº Erdős-RÂenyi graph.4 Measuring

perturbations from Erdős-RÂenyi is natural as that is the null model against which we are testing. We

first do this at the level of single subgraphs appearing in the 1-dimensional complements, as in (4):

ψ(A) := χ(A)− λ|E(A)|. (5)

This is the deviation from the probability of all edges in A appearing in G(n, λ). Recalling (4), we

immediately get a perturbative expression for EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WH(G)]:

EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WH(G)] =

∑

A⊆H

(−1)|E(A)|χ(A) =
∑

A⊆H

(−1)|E(A)|(ψ(A) + λ|E(A)|)

= (1− λ)|E(H)| + Err(H,λ), where Err(H,λ) :=
∑

A⊆H

(−1)|E(A)|ψ(A). (6)

We interpret each subgraph A of H as a polymer and the quantity (−1)|E(A)|ψ(A) as the weight of

the polymer. In that view, the expression Err(H,λ) is the sum of the weights of polymers which

captures ªthe first orderº deviation from the ground state (1− λ)|E(H)|. The quantity (1− λ)|E(H)|

is a natural ground state for the expected weight of H in one dimension as it corresponds to the

expected weight when edges are independent. Expanding
(
1− λ)|E(H)| + Err(H,λ)

)d
in (2),

EG∼RGG(n,Td,Unif,σ∞
p ,p)[WH(G)] =

d∑

i=0

(
d

i

)
(1− λ)(d−i)|E(H)|Err(H,λ)i. (7)

Again, the term (1 − λ)d|E(H)| = p|E(H)| corresponding to i = 0 is the ªground stateº weight of

H in G(n, p). Each term of the form Err(H,λ)i is composed of products of i-tuples of polymer

weights, and, thus, can be interpreted as ªthe i-th orderº perturbation from the ground state.

Step 4: Bounds on Polymer Weights. To derive a bound from (7), one needs to bound the poly-

mer weights and, subsequently, the Err(H,λ) term. In Appendix A and B, we show that perturba-

tions ψ(A) are indeed small. Relatively straightforward computations (as they are all over a single

dimension, recall (3)) yield:

Lemma 14 For every set of edges A such that |V (A)| ≤ 1/(8λ), the following hold:

1. IfA can be decomposed asA1∪A2, where |V (A1)∩V (A2)| ≤ 1, then χ(A) = χ(A1)χ(A2).
2. If A is a forest, then χ(A) = λ|E(A)| and ψ(A) = 0.
3. χ(A) ≤ λ|V (A)|−1 whenever A is connected.

4. If A is not bipartite, χ(A) = 0. In particular, ψ(C2m+1) = −λ2m+1.
5. |ψ(A)| ≤ 2 · λmax{|V (A)|/2+1,|V (A)|−numc(A)}, where numc(A) denotes the number of con-

nected components of A.
6. If m ≤ 1/8λ, then χ(Cm) = λm−1ϕ(m − 1), where ϕ(m) := P[U1 + U2 + · · · + Um−1 ∈

[−1, 1]] for U1, U2, . . . , Um−1
i.i.d.∼ [−1, 1].5

4. While no familiarity with statistical physics is needed to follow the argument, we will borrow some terminology with

the purpose of explaining our approach in familiar language.

5. One can easily check that ϕ(1) = 1, ϕ(2) = 3/4, ϕ(3) = 2/3, ϕ(m− 1) = Θ(m−1/2).
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Step 5: From Unsigned Weights to Signed Weights - Again Inclusion-Exclusion. Signed sub-

graph weights do not immediately factorize over the independent coordinates. That is, while in the

unsigned case we have 1[∥xi − xj∥∞ ≤ 1− λ] =
∏d

u=1 1[∥xiu − xju∥∞ ≤ 1− λ], no such expres-

sion holds for (1[∥xi − xj∥∞ ≤ 1− λ]− p).6 Instead, we reduce to what we know about unsigned

weights:

EG∼RGG(n,Td,Unif,σ∞
p ,p)[SWH(G)] = E

[ k∏

i=1

(Gei − p)
]

=
∑

A⊆E(H)

(−p)|E(H)|−|E(A)|EG∼RGG(n,Td,Unif,σ∞
p ,p)[WA(G)]

=
∑

A⊆E(H)

(−1)|E(H)|−|E(A)|(1− λ)d(|E(H)|−|E(A)|))EG∼RGG(n,Td,Unif,σ∞
p ,p)[WA(G)].

(8)

Using (7) for any A ⊆ H, we obtain

EG∼RGG(n,Td,Unif,σ∞
p ,p)[SWH(G)] =

=
∑

A⊆H

(−1)|E(H)|−|E(A)|(1− λ)d(|E(H)|−|E(A)|)
d∑

i=0

(
d

i

)
(1− λ)(d−i)|E(A)|Err(A, λ)i

=
d∑

i=0

(
d

i

)
(1− λ)(d−i)|E(H)| ∑

A⊆H

(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)Err(A, λ)i.

(9)

Step 6: The Cluster Expansion Perspective on Signed Subgraph Counts. Err(A, λ)i is the

sum of products of i-tuples of weights of polymers, equivalently ªthe i-th orderº deviation from the

ground state. When we sum overA ⊆ H, each i-tuple appears with some coefficient which captures

the compatibility of this i-tuple. Expanding (9) (full detail in Appendix B.3.2) in the style of the

formal derivation of the cluster expansion formula (e.g. (Friedli and Velenik, 2017, Chapter 5)):

∑

A⊆E(H)

(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)Err(A, λ)i

=
∑

K1,K2,...,Ki⊆E(H)

(1− (1− λ)i)|E(H)|−|E(K1∪···∪Ki)|
i∏

j=1

(−1)|E(Kj)|ψ(Kj). (10)

Expression (10) is the i-th order of the ªcluster expansionº for signed subgraph weights. Since∑
A⊆H(−1)|E(H)|−|E(A)| =

∑|E(H)|
j=0

(|E(H)|
j

)
(−1)|E(H)|−j = 0, the ground state captured by the

terms appearing when i = 0 vanishes. This is intuitive because in the ground state case of inde-

pendent edges each expected signed subgraph weight is 0. It remains to interpret the ªsoft com-

patibility criterionº captured by the coefficient (1 − (1 − λ)i)|E(H)|−|E(K1∪K2···∪Ki)|. Whenever

|E(K1 ∪ K2 · · · ∪ Ki)| is small, this coefficient is very small as 1 − (1 − λ)i = Õ(d−1). Thus,

6. One cannot expect (1[∥xi − xj∥∞ ≤ 1− λ]− p) to always be a d-th power, for example because 1[∥xi − xj∥∞ ≤
1− λ]− p might be negative while a d’th power is always positive when d is even.

12
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polymersK1,K2, . . . ,Ki are more compatible when |E(K1∪K2 · · ·∪Ki)| is smaller. Such a com-

patibility criterion should not be surprisingÐsubgraphs Kj corresponding to different coordinates

are more compatible when they are more similar (so that their union does not blow up).

The final step towards Theorem 3 is to bound the i-th order deviations from the ground state:

Lemma 15 Recall the definition of Err(A, λ) in (7). For 1 ≤ i ≤ d, the following holds:

∣∣∣∣∣
∑

A⊆H

(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)Err(A, λ)i
∣∣∣∣∣ ≤

1

(4d)i
×
((log d)C

d

)|V (H)|/2
.

In proving Lemma 15, there are two conceptually distinct regimes for i, as is common in the

asymptotic analysis of sums (in particular, in the cluster-expansion formula).

1. Small values of i. We use (10). By Lemma 14, |ψ(Kj)| ≤ (2λ)|V (Kj)|/2+1. Thus, whenever∑i
j=1 |V (Kj)| is large, the total weight |ψ(K1)ψ(K2) · · ·ψ(Ki)| of the i-tuple is low. An

energy-entropy trade-off phenomenon occursÐand there are very few i-tuples for which∑i
j=1 |V (Kj)| is small:

Lemma 16 Let i ≥ 2, 0 ≤ b ≤ i be integers and a > 0 be a real number. Then, the number

of i-tuples K1,K2, . . .Ki of H such that
∑i

j=1 |V (Kj)| ≤ ab is at most exp
(
b(log i) +

a2i log |E(H)|+ |E(H)|b
)
.

To handle the few potentially ªhigh-energyº terms ± for which
∑i

j=1 |V (Kj)| is small ± we

use a comparison inequality. Namely, |ψ(Kj)| ≤ (2λ)|V (Kj)|−numc(Kj) from Lemma 14 for

all j and the fact that the quantity |V (K)| − numc(K) is subadditive under edge unions

(proved in Appendix B) allows us to bound |ψ(K1)ψ(K2) · · ·ψ(Ki)| by |ψ(K1 ∪ K2 · · · ∪
Ki)|. This makes all quantities in (10) functions of K1 ∪K2 · · · ∪Ki (up to signs).

2. Large values of i. ªHigh degreeº terms are asymptotically irrelevant due to a rapid enough

decay of Err(A, λ)i. Specifically, one can prove that for all A ⊂ E(H), |Err(A, λ)| ≤
d−3+od(1) by applying triangle inequality over all subgraphs K of A (recall the definition

of Err(A, λ) in (7)) and using that |ψ(K)| ≤ (2λ)max(3,|V (K)|/2+1) from Lemma 14.

4. Discussion and Future Directions

Testing for Different Geometries. For different values of q, not only the limits of computational

and statistical detection of Lq geometry vary, but also the optimal algorithms are different. In

particular, contrary to previous work, the signed triangle count is not always optimal as the signed

4-cycle test succeeds in a polynomially larger range. This naturally leads to several other questions.

What other tests besides counting signed 3- and 4- cycles can be optimal for detecting high-

dimensional latent geometry? We note that the recent work Yu et al. (2024) addresses a similar

question for models of a planted dense subgraph in a dense Erdős-RÂenyi graph (instead of models

with latent geometry). They show that for this family of models, the optimal constant-degree test is

always a star or an edge count.

Are there instances in which a statistical-computational gap for detecting

high-dimensional geometry is present? A positive answer to this question might even be hidden

in the RGG(n,Td,Unif, σqp, p) models considered in the current paper as there are gaps between the

statistical lower-bounds and computationally efficient algorithmic upper bounds.

13
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Other Statistical Tasks on Random Geometric Graphs Over The Torus. Especially intriguing

seems the task of efficiently embedding a sample from RGG(n,Td,Unif, σqp, p) into (Td, ∥ · ∥q) so

that marginal distances are non-trivially approximated.

Problem 17 On input a sample G ∼ RGG(n,Td,Unif, σqp, p) corresponding to latent vectors

g1,g2, . . . ,gn ∈ Td, find some vectors ĝ1, ĝ2, . . . , ĝn ∈ Td such that∑
1≤i<j≤n

∣∣∣∥gi − gj∥q − ∥ĝi − ĝj∥q
∣∣∣ = o

(∑
1≤i<j≤n ∥gi − gj∥q

)
.

This question has been addressed in prior work for different random geometric graph models,

but we believe that the setting of RGG(n,Td,Unif, σqp, p) will require substantially different ideas.

The spectral approach of Li and Schramm (2023) heavily relies on an inner product structure, which

is only present in RGG(n,Td,Unif, σqp, p) when q = 2. The optimization framework of Ma et al.

(2020) works in settings of Lq geometry for general q, but only gives strong poly-time guarantees

for connection functions bounded away from 0 and 1, i.e. c ≤ σ(x,y) ≤ 1 − c for some c > 0.
This however, is not the case in RGG(n,Td,Unif, σqp, p) as σqp only takes values 0 and 1. We should

mention that Mao et al. (2024) consider the embedding problem for the planted dense cycle model,

which resembles RGG(n,Td,Unif, σqp, p) albeit the latent geometry has dimension 1. Nevertheless,

their algorithm gives an information-theoretic upper bound and is not obviously efficient.

The Cluster Expansion Approach. The first step (2) in our ªcluster-expansionº approach for

bounding the Fourier coefficients of small subgraphs is to exploit the AND structure over induced

1-dimensional random geometric graphs in RGG(n,Td,Unif, σ∞p , p). The same approach can be

applied to other random graphs generated by an AND (respectively OR in the complement) structure

such as random intersection graphs (e.g. Brennan et al. (2020)).

Nevertheless, other models exhibit different combinatorial structure. As discussed, L2 geometry

gives rise to a (weighted) MAJORITY structure (as would any LC when C = O(1)). It could be

interesting to consider an extension of these constructions for general f : {0, 1}d −→ {0, 1} beyond

AND and MAJORITY. One way to formalize is the following.

Definition 18 (Coordinate-Factorizabe Graph Distributions) Given are a ª1-dimensionalº dis-

tribution G over n-vertex graphs, an integer d ≥ 1, and a function f : {0, 1}d −→ {0, 1}.
To generate a sample G from the coordinate-factorizable graph CFG(G, d, f), one first samples

G1,G2, . . . ,Gd i.i.d.∼ G and then forms the d dimensional graph G in which Gij = f({Gu
ij}du=1).

For G = RGG(n,T1,Unif, σ∞1−λ, 1− λ) and f = AND, this gives RGG(n,Td,Unif, σ∞p , p).
When do coordinate-factorizabe graph distributions converge to Erdős-RÂenyi information- the-

oretically? When are they distinguishable from Erdős-RÂenyi via low-degree polynomial tests? One

approach towards the low-degree question is to imitate our ªcluster-expansionº using the Fourier

expansion of f in an analogue of (2). Yet, for choices of f more complicated than AND (AND

being simply a product of the coordinates), this approach will likely require new technical insights.
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Appendix A. Preliminaries and Notation

Graph Notation. Denote by Kn the clique on n vertices, by Ka,b the complete bipartite graph

with parts of sizes a and b, and by Cm the cycle on m vertices. For a set of edges

H = {(i1, j1), . . . , (ik, jk)} ∈ [n] × [n], denote by H the subgraph of Kn with vertex set

{i1, j1, i2, j2, . . . , ik, jk} and edge set {(i1, j1), . . . , (ik, jk)}.
A graph is 2-connected if it is connected and for any v ∈ V (H), the induced subgraph of H on

vertex set V (H)\{v} is connected.

A.1. Statistical Detection of Latent Space Structure

Information Theory. We use the standard notions for Total Variation and KL-distance (for ex-

ample, Polyanskiy and Wu (Forthcoming)). Specifically, for two distributions P,Q over the same

measurable spaces (Ω,F), such that P is absolutely continuous with respect to Q,

TV(P,Q) = sup
A∈F

|P(A)−Q(A)| = 1

2

∫

Ω

∣∣∣dP(ω)

dQ(ω)
− 1
∣∣∣dQ(ω),

KL(P∥Q) =

∫

Ω

dP(ω)

dQ(ω)
log

dP(ω)

dQ(ω)
dQ(ω).

(11)

Total variation appears naturally in hypothesis testing settings as 1−TV(P,Q) is the minimal sum

of Type I and Type II errors when testing between P and Q with a single sample (e.g. Polyanskiy

and Wu (Forthcoming)). In practice, it is usually more convenient to work and compute with KL.
Importantly, this is enough for proving convergence in total variation due to the celebrated inequality

of Pinsker stating that TV(P,Q)2 ≤ 1
2KL(P,Q).

A Bound on the KL divergence due to Liu and Racz. In Liu and RÂacz (2023a), the authors give

the following convenient bound on the KL divergence between G(n, p) and a probabilistic latent

space graph. Specialized to random algebraic graphs (which encompass RGG(n,Td,Unif, σqp, p)),
their bound7 reads as follows:

KL
(
RAG(n,G, σ, p)∥G(n, p)

)
≤

n−1∑

k=0

log
(
Ex∼Unif(G)

[(
1 +

γ(x)

p(1− p)

)k])
,

where γ(x) := Ez∼UnifG

[
(σ(x− z)− p)(σ(z)− p)

]
= Ez∼UnifG

[
σ(x− z)σ(z)

]
− p2.

(12)

Over random algebraic graphs, γ(x) = σ ∗ σ(x) − p2, where σ ∗ σ is the self-convolution

σ ∗ σ(x) := Ez∼UnifG

[
σ(x − z)σ(z)

]
. Thus, one can expand the left hand-side of (12) either in

terms of the moments of σ ∗ σ or in terms of the moments of σ ∗ σ − p2. It turns out that in the

case of RGG(n,Td,Unif, σ∞p , p), one can easily compute (up to lower-order terms) the moments of

σ ∗ σ and this is enough to prove Theorem 4.

7. In (Liu and RÂacz, 2023a, p.2427-2428) the authors prove this bound for a specific Gaussian random geometric graph,

but the proof reads verbatim for random algebraic graphs (and in fact any probabilistic latent space graph as defined

in Bangachev and Bresler (2023)).
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Remark 19 We briefly discuss two combinatorial interpretations of (12) which connect the bound

of Liu and Racz to different notions of pseudorandomness appearing in the literature. 3-Term

Arithmetic Progressions: Expanding the left-hand side of (12), we conclude that small (centered)

moments of the self-convolution imply a certain randomness of σ, respectively of A ⊆ G when

σ(g) := 1[g ∈ A]. We note that the same notion of pseudorandomness was recently used by

Kelley and Meka in their breakthrough paper Kelley and Meka (2023) on 3-term arithmetic pro-

gressions, in the case G = Fn
q (see also the exposition Bloom and Sisask (2023)). One sim-

plification in our setup is that σ(g) = σ(−g) in the context of random algebraic graphs, so

σ ∗σ(g) := Ehσ(g−h)σ(h) = Ehσ(g+h)σ(h) =: σ ⋆σ(g). Quasi-Randomness: The left-hand

side of (12) can be expanded either in terms of the moments of σ ∗ σ or in terms of the moments

of (σ − p) ∗ (σ − p). However, one can easily observe that E[(σ ∗ σ)k] is exactly the probability

that each edge of a fixed copy of K2,t appears in RAG(n,G, σ, p). In other words, one interpretation

of (12) is that if all subgraphs of the form K2,t appear with probability sufficiently close to p2t in

RAG(n,G, σ, p), then RAG(n,G, σ, p) is (up to o(1) total variation) the same as G(n, p). This can

be viewed as a certain analogue of the celebrated theorem due to Chung-Graham-Wilson Chung

et al. (1988). It (among other things) states that if a graph simultaneously has a number of edges

and 4-cycles close to that of G(n, p), it is quasirandom and in particular every other subgraph count

is close to that of G(n, p). Similarly, the t-th moment of (σ− p) ∗ (σ− p)/(p(1− p)) is the Fourier

coefficient corresponding to K2,t and one can equivalently interpret for signed copies of K2,t.

The Bernstein-McDiarmid Approach. In the case of Lq geometry for q < ∞, calculating the

moments of σ ∗ σ is technically challenging. Our proof of Theorem 9 instead exploits the product

structure of Td to bound the moments of γ via the Bernstein-McDiarmid inequality.

Lemma 20 ((McDiarmid, 1998, Theorem 3.8)) Let g1,g2, . . . ,gd be independent random vari-

ables and γ a function of (g1, . . . ,gd). Denote g−i := (g1,g2, . . . ,gi−1,gi+1, . . . ,gd) and

Diγ(g−i) := sup
g+
i

γ((g1, . . . ,gi−1,g
+
i ,gi+1, . . . ,gd))− inf

g−
i

γ((g1, . . . ,gi−1,g
−
i ,gi+1, . . . ,gd)),

Vari[γ(g−i)] := Vargi [γ((g1,g2, . . . ,gi−1,gi,gi+1, . . . ,gd))|g−i].

Then, for any positive t,

P

[
γ(g) ≥ t+E[γ(g)]

]
≤ exp

(
−min

(
t2

4
∑d

j=1 ∥Vari[γ]∥∞
,

t

2maxi ∥Diγ∥∞

))
.

An immediate corollary is the following.

Lemma 21 ((Boucheron et al., 2013, Theorem 2.3)) In the setup of Lemma 20, there exists some

absolute constant C such that

∥γ −E[γ]∥k ≤ C

(
√
k

√√√√
d∑

i=1

∥Vari[γ]∥∞ + kmax
i

∥Diγ∥∞
)
.

We bound Vari[σ], Di[γ] for γ defined as in (12) via a careful combination of Fourier-theoretic and

anticoncentration arguments to obtain Theorem 9. We also derive Theorem 12 as a combination of

(12) and Lemma 21.
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A.2. Computational Detection of Latent Space Structure

To solve (P1), one observes a certain n-vertex graph G and needs to compute a function f(G)
based on which to decide between H0 and H1. The graph G is simply a sequence of

(
n
2

)
bits.

It is well-known that any function of 0/1 vectors is simply a polynomial O’Donnell (2014). For

computationally efficient tests, one needs to be able to compute f in time polynomial in n.

Signed Subgraph Counts. Most important to the current paper are polynomials correspond-

ing to signed-subgraph counts. Namely, suppose that we want to test between two graph dis-

tributions over n vertices in which each edge appears with a marginal probability p. Let H =
{(i1, j1), (i2, j2), . . . , (ik, jk)} be any subgraph of Kn. Then, we define the signed weight of H as

the polynomial

SWH(G) :=
∑

(ij)∈E(H)

(Gij − p). (13)

For brevity and uniformity with the SW notation, for a set of edges H = {(i1, j1), . . . , (ik, jk)},
denote the unsigned weight WH(G) =

∏
(ij)∈H Gij = 1[Gij = 1 ∀(ij) ∈ H]. The signed count of

H in G is

SCH(G) =
∑

H1⊆E(Kn) :H1∼H

SWH1(G), (14)

where the sum is over all subgraphs of Kn isomorphic to H. Note that whenever H has a constant

number of edges, the polynomial SCH(G) is certainly efficiently computable.

Clearly EG∼G(n,p)SCH(G) = 0, which leads to the following approach to (P1) appearing in

Bubeck et al. (2014). Upon observing G, compute SCH(G) and, if sufficiently close to 0, report

H0. Else report H1. Using Chebyshev’s inequality, this can be formalized as follows.

Definition 22 (Success of the Signed Subgraph Count ) We say that signed H-count statistical

test SCH(G) succeeds in distinguishing between G(n, p) and RGG if

∣∣EG∼RGG

[
SCH(G)

]∣∣ = ω
(√

VarK∼G(n,p)

[
SCH(K)

]
+VarG∼RGG

[
SCH(G)

])
. (15)

Indeed, if this is the case, one can solve (P1) with Type I and Type II errors both of order o(1) by

comparing SCH(G) to 1
2EG∼RGG

[
SCH(G)

]
.

If, on the other hand,

∣∣EG∼RGG

[
SCH(G)

]∣∣ = o
(√

VarK∼G(n,p)

[
SCH(K)

]
+VarG∼RGG

[
SCH(G)

])
, (16)

we say that the signed H-count statistical test fails with high probability.

In this work, we are mostly interested in the case of triangles, H = C3, and 4-cycles, H = C4.

Low-Degree Tests. In Definition 22, one can replace SWH(·) with any polynomial f(·) and com-

pare

∣∣EG∼RGG

[
f(G)

]
−EG∼G(n,p)

[
f(G)

]∣∣ and

√
VarK∼G(n,p)

[
f(K)

]
+VarG∼RGG

[
f(G)

]
.

High-probability success and failure are similarly defined.
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A popular conjecture Hopkins (2018) states that all polynomial time algorithms for solving

(sufficiently noisy) hypothesis testing questions in high-dimension are captured by polynomials of

degree O(log n). Indeed, there is growing evidence in support of this conjecture. Clearly, low de-

gree polynomial tests capture (signed) counts of small subgraphs (note that one can even capture

the first O((log n)/k) moments of the (signed) counts of a graph H with k edges and hence a lot

more about the distribution of signed counts), which have proven powerful in detecting random ge-

ometric graphs Bubeck et al. (2014), planted cliques and colorings Kothari et al. (2023), the number

of communities in a stochastic block model Rush et al. (2023) and others. Low-degree polynomials

further capture spectral methods Kunisky et al. (2022), constant round approximate message pass-

ing algorithms Montanari and Wein (2022), and statistical query algorithms Brennan et al. (2021).

Thus, a lot of recent work on the complexity of problems in high-dimensional statistics has focused

on ruling out low-degree polynomial algorithms for statistical problems. This constitutes strong

evidence that the respective statistical problems cannot be solved in polynomial time.

Formally, in the case of (P1) one needs to show that there exists some functionD(n) = ω(log n)
such that for all degree D = D(n) polynomials f, it is the case that

∣∣EG∼RGG

[
f(G)

]
−EG∼G(n,p)

[
f(G)

]∣∣ = o
(√

VarK∼G(n,p)

[
f(K)

]
+VarG∼RGG

[
f(G)

])
.

One way to prove such an inequality is by bounding the following quantity Hopkins (2018):

ADV≤D := max
f : deg(f)≤D

EG∼RGG

[
f(G)

]
√
EK∼G(n,p)

[
f(K)2

] . (17)

In particular, if ADV≤D = 1 + o(1), then statistical test f(·) fails with large probability (e.g. Rush

et al. (2023)).

The product structure of G(n, p) yields a convenient formula for ADV≤D. The set of polynomi-

als {SWH × (p(1 − p))−|E(H)|/2}H⊆E(Kn) : 0≤|E(H)|≤D forms an orthonormal basis of the poly-

nomials of degree up to D with respect to G(n, p). A standard application of the Cauchy-Schwartz

inequality (e.g. Hopkins (2018)) shows that

ADV2
≤D − 1 =

∑

H⊆E(Kn) : 1≤|E(H)|≤D

EG∼RGG

[
SWH × (p(1− p))−|E(H)|/2]2.

We summarize in the following proposition.

Lemma 23 If there exists some D = ω(log n) such that

∑

H⊆E(Kn) : 1≤|E(H)|≤D

EG∼RGG

[
SWH × (p(1− p))−|E(H)|/2]2 = o(1),

then the Type I plus Type II error of any degree D polynomial in solving (P1) is of order 1− o(1).

We use the bounds from Theorem 3 and this proposition to prove Theorem 6. We note that low-

degree polynomials are similarly used in the literature for estimation and refutation tasks (e.g.

Schramm and Wein (2022); Rush et al. (2023)). We discuss this in more detail in Section C.2

in the context of estimating the dimension of a graph sampled from RGG(n,Td,Unif, σ∞p , p).
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Generic Bounds of Subgraph Weights in Random Algebraic Graphs. We end this section by

proving several simple generic facts about signed weights in random algebraic graphs which will be

useful throughout. In particular, they immediately yield parts 1, 2, and 3 of Lemma 14 as χ is the

unsigned weight of the random algebraic graph RGG(n,T1,Unif, σ1,>λ , λ)

Lemma 24 Consider any random algebraic graph RAG(n,G, σ, p). Let A be any subgraph. Then,

1. If A can be decomposed as A1 ∪ A2 such that E(A1) ∪ E(A2) = E(A) and

|V (A1) ∩ V (A2)| ≤ 1, the edge sets {Ge}e∈E(A1) and {Ge}e∈E(A2) are independent over

G ∼ RAG(n,G, σ, p). In particular, for any two functions f, g on those edge sets,

E[f({Ge}e∈E(A1))g({Ge}e∈E(A2))] = E[f({Ge}e∈E(A1))]×E[g({Ge}e∈E(A2))].

2. If A is a forest, EG∼RAG(n,G,σ,p)[WA(G)] = p|E(A)| and EG∼RAG(n,G,σ,p)[SWA(G)] = 0.

3. If A is connected, then

∣∣∣EG∼RAG(n,G,σ,p)[WA(G)]
∣∣∣ ≤ p|V (A)|−1.

Proof

Item 1. If A1 and A2 do not share a vertex, {Ge}e∈E(A1) and {Ge}e∈E(A2) are independent as

they are fully determined by disjoint sets of latent vectors. If |V (A1) ∩ V (A2)| = 1, we use the

measure-preserving transitive group of translations in G as follows. Let V (A1) = {u0, u1, . . . , uk},
V (A2) = {v0, v1, . . . , vr}, where u0 = v0. Note that A1, A2 have no common edges. Then

P[{Ge}e∈E(A1) = {ge}e∈E(A1), {Ge}e∈E(A2) = {ge}e∈E(A2)]

= E
xu0 ,xu1 ,...,xuk ,xv1 ,...,xvr

i.i.d.∼ Unif(G)

[ ∏

(us,ut)∈E(A1)

σ(xus − xut)g(us,ut)×

× (1− σ(xus − xut))1−g(us,ut)
∏

(vk,vℓ)∈E(A2)

σ(xvk − xvℓ)g(vk,vℓ)(1− σ(xvk − xvℓ))1−g(vk,vℓ)

]

= E
z,xu0 ,xu1 ,...,xuk ,xv1 ,...,xvr

i.i.d.∼ Unif(G)

[ ∏

(us,ut)∈E(A1)

σ(xus − xut)g(us,ut)×

× (1− σ(xus − xut))1−g(us,ut)
∏

(vk,vℓ)∈E(A2)

σ((xvk + z)− (xvℓ + z))g(vk,vℓ)×

× (1− σ((xvk + z)− (xvℓ + z)))1−g(vk,vℓ)

]

= E
xu0 ,xu1 ,...,xuk

i.i.d.∼ Unif(G)

[ ∏

(us,ut)∈E(A1)

σ(xus − xut)g(us,ut)(1− σ(xus − xut))1−g(us,ut)
]
×

×E
z,xv1 ,...,xvr

i.i.d.∼ Unif(G)

[ ∏

(vk,vℓ)∈E(A2)

σ((xvk + z)− (xvℓ + z))g(vk,vℓ)×

× (1− σ((xvk + z)− (xvℓ + z)))1−g(vk,vℓ)

]

= P[{Ge}e∈E(A1) = {ge}e∈E(A1)]×P[{Ge}e∈E(A2) = {ge}e∈E(A2)].

(18)

We used the fact that the vectors xu0 ,xu1 , . . . ,xuk ,xu0 + z,xv1 + z, . . . ,xvr + z are independent.
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Item 2. Follows from an inductive application of item 1 and the fact that each edge appears

marginally with probability p in G for the functions SWA,WA.

Item 3. Let T be a spanning tree of A with V (A)− 1 edges. The simple fact WT (G) ≥ WA(G)
(as edge-indicators are in [0, 1]) and item 2 give the desired inequality.

Appendix B. Signed and Unsigned Weights in L∞: Theorem 3 and Extensions

The main part of this appendix is Section B.3 where we complete the argument in Section 3. Before

that, we set things up by finishing the proof of Lemma 14 in Section B.1 and bounding the unsigned

weights of subgraphs in Section B.2. These arguments are relatively straightforward and an impa-

tient reader is welcome to read the statement of Corollary 27 and continue to the more involved

Section B.3. Throughout, we use the notation and bounds introduced in Section 3.

B.1. Preliminaries: The Proof of Lemma 14

We now prove the remaining parts 4 - 6 of Lemma 14. Let H ∼ RGG(n,T1,Unif, σ(x, y)1,>λ , λ).

Item 4. Suppose that A is not bipartite. Then it has an odd cycle formed by vertices

i1, i2, · · · i2k+1, i2k+2 = i1 of length 2k + 1 ≤ 1
8λ . We will show that for any latent vectors

xi1 ,xi2 , . . . ,xi2k+1 ∈ T1 it is the case that there exists some t ∈ [2k + 1] for which

σ(xit ,xit+1)1,>λ = 0. Indeed, otherwise |xit −xit+1 |C ≥ 1−λ and |xit+1 −xit+2 |C ≥ 1−λ imply

that |xit −xit+2 |C ≤ 2λ holds for each t. However, this means that |x1 −x2k+1| ≤ k · 2λ < 1−λ,
which means that σ(xi1 ,xi2k+1)1,>λ = 0.

Item 5. Observe that A has a spanning forest T on V (A)− numc(A) edges. This gives the bound

|ψ(A)| ≤ |χ(A)|+ λ|E(A)| ≤ |χ(T )|+ λ|E(T )| = 2λ|E(T )| = 2λ|V (A)|−numc(A).

The only remaining case is when |V (A)|− numc(A) < |V (A)|/2+1 or, equivalently, numc(A) >
|V (A)|/2−1. Note, however, that since A is defined by a set of edges, there are no isolated vertices

and, so, numc(A) ≤ |V (A)|/2. Thus, we have two cases. First, numc(A) = |V (A)|/2, in which

caseAmust be the union of |V (A)|/2 disjoint edges, but then ψ(A) = 0 by item 2. Or, numc(A) =
|V (A)|/2 − 1/2, so A must be the union of a triangle and (|V (A)| − 3)/2 disjoint edges. In that

case, using items 1, 2, and 4, χ(A) = 0, so ψ(A) = −λ|E(A)| = −λ|V (A)|/2+3/2.

Item 6. Let Cm be the cycle on m vertices 1, 2, . . . ,m. Note that whenever (ij) is an edge in H,
xi = xj + 1 + λij , where λij ∈ [−λ, λ]. Using that the path 1, 2, . . . ,m is a tree and item 2,

χ(Cm) = E[WCm(H)] = P[H1,m = 1, H1,2 = 1, . . . , Hm−1,m]

= P
[
H1,m = 1

∣∣H1,2 = 1, . . . , Hm−1,m

]
P
[
H1,2 = 1, . . . , Hm−1,m

]

= P
[
|x1 − xm|C ≥ 1− λ

∣∣xi+1 = xi + 1 + λi,i+1, |λi,i+1| ≤ λ∀i
]
· λm−1

= P
[
|x1 − xm|C ≥ 1− λ

∣∣xm = 1 + x1 +

m−1∑

i=1

λi,i+1, |λi,i+1| ≤ λ∀i
]
· λm−1

= P
[m−1∑

i=1

λi,i+1 ∈ [−λ, λ]
∣∣|λi,i+1| ≤ λ∀i

]
· λm−1 = λm−1ϕ(m− 1).

This completes the proof.
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B.2. Warm-Up: Unsigned Weights of Small Subgraphs

First, we compute the unsigned weight of a cycle as this is the simplest and most important case to

our work, in particular used in the proof of Theorem 3.

Lemma 25 Suppose that 1 ≤ m ≤ 1/(8λ). Let G ∼ RGG(n,Td,Unif, σ∞p , p). Then,

E
[
WCm(G)

]
=





pm
(
1 + dλm

(1−λ)m +O
(
d2λ2m

))
when m is odd,

pm
(
1 + d(λm−1ϕ(m−1)−λm)

(1−λ)m +O
(
d2λ2(m−1)

))
when m is even.

(19)

Proof We use (6). Note that any A ⊊ Cm is acyclic, so χ(A) = λm, ψ(A) = 0 and

EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WCm(G)] = (1− λ)m + (−1)mψ(Cm).

In the odd case Cm is not bipartite and item 4 of Lemma 14 applies, so ψ(Cm) = −λm:

EG∼RGG(n,Td,Unif,σ∞
p ,p)

[
WCm(G)

]
=
(
(1− λ)m + λm

)d
= (1− λ)md(1 + λm/(1− λ)m)d

= pm
(
1 + d

λm

(1− λ)m
+

d∑

k=2

(
d

k

)
λmk

(1− λ)mk

)
.

The statement follows as the sum can be bounded by
∑∞

j=2(dλ
m)k/(1− λ)mk. Now, clearly, there

is exponential decay in the sum as dλm/(1 − λ)m ≤ dλ3/(1 − λ)3 = o(1). Finally, note that

(1−λ)m ≥ (1−λ)8/λ = Ω(1). The even case is the same, except that we use item 6 of Lemma 14,

which gives EG∼RGG(n,Td,Unif,σ∞
p ,p)

[
WCm(G)

]
=
(
(1− λ)m + λm−1ϕ(m− 1)− λm

)d
.

Remark 26 We get arbitrarily better precision in Lemma 25 by keeping k ≥ 2 terms in the expan-

sion of (1 + λm/(1− λ)m)d.

Corollary 27 Suppose that 1 ≤ m ≤ 1/8λ. Let G ∼ RGG(n,Td,Unif, σ∞p , p). Then,

E
[
SWCm(G)

]
=





pm
(

dλm

(1−λ)m +O
(
d2λ2m

))
when m is odd,

pm
(
d(λm−1ϕ(m−1)−λm)

(1−λ)m +O
(
d2λ2(m−1)

))
when m is even.

(20)

Proof Using the definition of SWCm in (13) and Lemma 24,

EG∼RGG

[
SWCm(G)

]
= EG∼RGG

[
WCm(G)

]
+

∑

F⊊E(Cm)

(−p)m−|E(F )|EG∼RGG

[
WF (G)

]

= EG∼RGG

[
WCm(G)

]
+

m∑

j=1

(
m

j

)
(−p)m−jpj = EG∼RGG

[
WCm(G)

]
− pm,

which is enough by Lemma 25.
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Finally, to derive the bounds on the weights of arbitrary subgraphs, we use the truncated inclu-

sion exclusion inequality in place of (4). Namely, for any odd number t,

∑

A⊆E(H) : |A|≤t

(−1)|E(A)|χ(A) ≤ EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WH(G)]

≤
∑

A⊆E(H) : |A|≤t+1

(−1)|E(A)|χ(A).
(21)

This yields the following statement.

Lemma 28 Let H = {(i1, j1), (i2, j2), . . . (ik, jk)} be a set of edges and let m be the girth of H
(i.e. the length of the shortest cycle). Let N(u) be the number of cycles of length u in H. Suppose

further that Assumption (A) holds and km+2 = o(1/λ) = o(d/ log(1/p)) and let ϕ(u) = Θ(u−1/2)
be defined as in Lemma 14. Then, for G ∼ RGG(n,Td,Unif, σ∞p , p),

∣∣∣E
[
WH(G)

]∣∣∣ =





pk
(
1 + d

(
N(m) + ϕ(m+ 1)N(m+ 1)

)
λm(1 + o(1))

)
when m is odd,

pk
(
1 + dϕ(m)N(m)λm−1(1 + o(1))

)
when m is even.

(22)

The only truly restrictive condition in this theorem is km+2 = o(1/λ). However, it still covers

a wide range of cases. Indeed, suppose that d = poly(n). As k ≤ m, it can be applied whenever

k = |E(H)| = o(log d/ log log d). If, furthermore, m is a constant (say m ∈ {3, 4}), it can be

applied to very large graphs with polynomial number of edges, i.e. |E(H)| = d1/(m+2)−o(1).
Proof

Case 1) The smallest cycle of H is of even size. From (21), we have

∑

A⊆E(H) : |A|≤m+1

(−1)|E(A)|χ(A) ≤ EG∼RGG[WH(G)] ≤
∑

A⊆E(H) : |A|≤m

(−1)|E(A)|χ(A).
(23)

First, consider the upper bound. Since each subgraph of H on at most m − 1 edges is acyclic and

there are exactly N(m) cycles on m edges, from Theorem 14,

∑

A⊆H : |A|≤m

(−1)|E(A)|χ(A) =
m∑

j=0

(−1)j
(|E(H)|

j

)
λj +N(m)×

(
λm−1ϕ(m− 1)− λm

)
.

Similarly, we can carry out the calculation for the lower bound in (23). Note that all (m+ 1)-edge

subgraphs of H have one of three structures: 1) Acyclic, in which case χ(A) = λm+1, 2) An m
cycle with an extra edge not creating a cycle, in which case χ(A) = λmϕ(m − 1), 3) An m + 1
cycle in which case χ(A) = 0. In all three cases, importantly, |χ(A)| ≤ λm. Altogether,

EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WH(G)]

=

m∑

j=0

(−1)j
(|E(H)|

j

)
λj +N(m)×

(
λm−1ϕ(m− 1)− λm

)
+O

((|E(H)|
m+ 1

)
λm

)
.

(24)
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Again, using the truncated principle of inclusion-exclusion,

m∑

j=0

(−1)j
(|E(H)|

j

)
λj ≥ (1− λ)|E(H)| ≥

m+1∑

j=0

(−1)j
(|E(H)|

j

)
λj ,

so
∑m

j=0(−1)j
(|E(H)|

j

)
λj = (1− λ)|E(H)| +O

((|E(H)|
m+1

)
λm
)
. Using (24),

EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WH(G)]

= (1− λ)|E(H)| +N(m)×
(
λm−1ϕ(m− 1)− λm

)
+O

((|E(H)|
m+ 1

)
λm

)

= (1− λ)|E(H)| +N(m)× λm−1ϕ(m− 1) +O

((|E(H)|
m+ 1

)
λm +

(|E(H)|
m

)
λm

)
,

where we used the trivial observation that N(m) ≤
(|E(H)|

m+1

)
. Now, using the simple fact that that

ϕ(m − 1) = Θ(m−1/2) (see Lemma 14) and the assumption that |E(H)|m+1 = o(λ−1), one can

easily see that the last expression is of order

(1− λ)|E(H)| +N(m)× λm−1ϕ(m− 1)(1 + o(1)).

Finally,

EG∼RGG(n,Td,Unif,σ∞
p ,p)[WH(G)]

=

(
(1− λ)|E(H)| +N(m)× λm−1ϕ(m− 1)(1 + o(1))

)d

= (1− λ)d×|E(H)| ×
(
1 +

N(m)× λm−1ϕ(m− 1)(1 + o(1))

(1− λ)|E(H)|

)d

.

Since |E(H)| ≤ λ1/(m+1), clearly (1 − λ)|E(H)| = 1 + o(1). Furthermore, |N(m)λm−1| =
O(
(|E(H)|

m

)
λm−1) = O(λm−2) = O(1/d) as λ = O(log n/d) = o(d−1/2). Using also the fact

that (1− λ)d = p, we conclude that

EG∼RGG(n,Td,Unif,σ∞
p ,p)[WH(G)] = p|E(H)| ×

(
1 + dN(m)ϕ(m− 1)λm−1

(
1 + o(1)

)
)
.

Case 2) The smallest cycle of H is of even size. We repeat the same steps as in the even case.

The only difference is that when considering cycles of length m+1, one needs to take extra care of

cycles of length m+ 1 as χ(Cm+1) = λmϕ(m), which is of the same order as ψ(Cm) = −λm.

EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WH(G)] ≤

∑

A⊆E(H) : |A|≤m+1

(−1)|E(A)|χ(A)

=

m+1∑

j=0

(−λ)j
(|E(H)|
m+ 1

)
+N(m)λm +N(m+ 1)(ϕ(m)λm − λm+1) +O

(
λm+1

(|E(H)|
m+ 1

))
.

(25)
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Again, we used that all subgraphs ofH on at mostm edges are acyclic, except forN(m) isomorphic

to Cm. The subgraphs on m + 1 vertices have one of three structures: 1) Acyclic, in which case

χ(A) = λm+1, 2) An m cycle with an extra edge not creating a cycle, in which case χ(A) = 0, 3)

An m+ 1 cycle in which case χ(A) = ϕ(m)λm.

Similarly, the subgraphs onm+2 vertices have one of four structures: 1) Acyclic, in which case

χ(A) = λm+2, 2) An m cycle with two extra edges, in which case χ(A) = 0, 3) An m + 2 cycle,

in which case χ(A) = 0, 4) An m+1 cycle with an extra edge, in which case χ(A) = ϕ(m)λm+1.

In all cases, |χ(A)| is at most λm+1. Thus,

EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)[WH(G)]

=
m+1∑

j=0

(−λ)j
(|E(H)|
m+ 1

)
+N(m)λm +N(m+ 1)ϕ(m)λm+

+O

((|E(H)|
m+ 1

)
λm+1 +

(|E(H)|
m+ 2

)
λm+1

)

= (1− λ)|E(H)| +

(
N(m)λm +N(m+ 1)ϕ(m)λm

)
(
1 + o(1)

)
.

As in the even case, we used
∑m+1

j=0 (−1)j
(|E(H)|

j

)
λj = (1 − λ)|E(H)| + O

((|E(H)|
m+2

)
λm+1

)
. The

desired conclusion follows as in the even case.

B.3. Signed Weights of Small Subgraphs: Theorem 3

We now fill in the details in Section 3 and prove Theorem 3.

Fix H with at most (log d)5/4/(log log d) edges. We also assume H is 2-connected. Otherwise

H can be decomposed into two graphs H1, H2 which share at most one vertex and no edges. By

Lemma 24,

EG∼RGG(n,Td,Unif,σ∞
p ,p)

[
SWH(G)

]
= EG∼RGG

[
SWH1(G)

]
×EG∼RGG

[
SWH2(G)

]

and we can induct as |V (H1)|+ |V (H2)| ≥ |V (H)|, |E(H1)|+ |E(H2)| ≥ |E(H)|. In particular,

the 2-connectivity assumption implies that |V (H)| ≤ |E(H)|.
We also assume that H has at least 4 edges as the other cases are covered in Lemma 14 (for

acyclic graphs, the signed expectation is 0) and Corollary 27 (for triangles, we get

EG∼RGG

[
SWC3(G)

]
= p3(log(1/p)/d)2).

B.3.1. PROOF OF THEOREM 3 ASSUMING LEMMA 15

We first show how Lemma 15 implies Theorem 3.

Proof Using (9) and the fact that the 0-order deviation vanishes, we compute:
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∣∣∣∣∣EG∼RGG[SWH(G)]

∣∣∣∣∣

≤
∣∣∣∣∣

d∑

i=0

(
d

i

)
(1− λ)(d−i)|E(H)| ∑

A⊆H

(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)Err(A, λ)i
∣∣∣∣∣

≤
d∑

i=1

(
d

i

)
(1− λ)(d−i)|E(H)|

∣∣∣∣∣
∑

A⊆H

(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)Err(A, λ)i
∣∣∣∣∣

≤
d∑

i=1

di(1− λ)d|E(H)|(1− λ)−i|E(H)| 1

(4d)i
×
((log d)C

d

)|V (H)|/2

= (1− λ)d|E(H)|
((log d)C

d

)|V (H)|/2 d∑

i=1

( 1

4(1− λ)|E(H)|

)i

= p|E(H)|
((log d)C

d

)|V (H)|/2 d∑

i=1

( 1

4(1− λ)|E(H)|

)i
.

(26)

Now, observe that (1−λ)|E(H)| ≥ 1−λ|E(H)| ≥ 1−O((log d)9/4/d) ≥ 1/2 for all large enough

d. Thus, 4(1− λ)|E(H)| > 2 and so
∑d

i=1

(
1

4(1−λ)|E(H)|

)i
≤ 1, which completes the proof.

What remains is to prove Lemma 15. As described in Step 6 of Section 3, there are two concep-

tually different regimes.

B.3.2. PROOF OF THEOREM 15 FOR SMALL VALUES OF i.

Suppose that i < 11|V (H)|/41.8 The first step towards proving Lemma 15 is expanding (9).

Detailed Derivation of the Cluster Expansion

∑

A⊆H

(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)Err(A, λ)i

=
∑

A⊆H

(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)
( ∑

K⊆A

(−1)|E(K)|ψ(K)
)i

=

( ∑

K1,K2,...,Ki⊆H

(−1)|E(K1)|+|E(K2)|+···+|E(Ki)|ψ(K1)ψ(K2) · · ·ψ(Ki)×

×
∑

A⊆H : Kj⊆A ∀j
(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)

)
.

(27)

Let K = K1 ∪ K2 · · ·Ki. Then, in the last sum, we perform a summation over all A such that

K ⊆ A ⊆ H. In particular, we obtain

8. In principle, any constant in the interval (1/4, 1/2) would work for the proof, but constants less than 3/10 reduce

the amount of case work, hence the peculiar choice of 11/41.
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∑

A⊆H : Kj⊆A ∀j
(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)

=
∑

Kc⊆H\K
(−1)|E(Kc)|(1− λ)i|E(Kc)|

=

|E(H)|−|E(K)|∑

t=0

(|E(H)| − |E(K)|
t

)
(−1)t(1− λ)it

=
(
1− (1− λ)i

)|E(H)|−|E(K)| ≤ (λi)|E(H)|−|E(K)|,

(28)

where in the last line we used Bernoulli’s inequality (1 − λ)i ≥ 1 − λi. Now, using (28), we can

rewrite the right-hand side of (27) as

∑

K1,K2,...,Ki⊆H

(1− (1− λ)i)|E(H)|−|E(K)|(−1)|E(K1)|+|E(K2)|+···+|E(Ki)|ψ(K1)ψ(K2) · · ·ψ(Ki).

Using the triangle-inequality, we bound this quantity by

∑

K1,K2,...,Ki⊆H

(1− (1− λ)i)|E(H)|−|E(K)|
∣∣∣ψ(K1)ψ(K2) · · ·ψ(Ki)

∣∣∣. (29)

Bounds Based on Combinatorial Inequalities. Now, we will bound the quantity

|ψ(K1)ψ(K2) . . . ψ(Ki)| in two different ways.

Lemma 29 The value of
∣∣ψ(K1)ψ(K2) · · ·ψ(Ki)

∣∣ is less than each of

1.

i∏

j=1

(2λ)|V (Kj)|/2+1, and

2. (2λ)|V (K)|−numc(K).

To prove Lemma 29, we will need the following subadditivity property.

Claim 30 Suppose that G is a graph and G1 and G2 are two (not necessarily induced) subgraphs

such thatE(G1)∪E(G2) = E(G). Then, |V (G)|−numc(G) ≤ |V (G1)|−numc(G1)+|V (G2)|−
numc(G2).

Proof Let G1 have a connected components with vertex sets D1, D2, . . . , Da and let G2 have

b connected components with vertex sets F1, F2, . . . , Fb. Consider the bipartite graph G on parts

D,F with vertex sets respectively D1, D2, . . . , Da and F1, F2, . . . , Fb. Draw an edge between Di

and Fj if and only if they have a common vertex and, if so, label this edge with one of their common

vertices. Clearly, each edge is labeled by a different vertex.

Note that numc(G) = numc(G). On the other hand, as each edge is labelled by a different

repeated vertex, |V (G)| ≤ |V (G1)|+ |V (G2)| − |E(G)|. Trivially,

numc(G) ≥ |V (G)| − |E(G)| = numc(G1) + numc(G2)− |E(G)|.
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Combining these, |V (G1)|+ |V (G2)| − |V (G)| ≥ |E(G)| ≥ numc(G1) + numc(G2)− numc(G).

Proof [Proof of Lemma 29] Using part 5 of Lemma 14 on each ψ(Ki) yields the first bound. For

the second bound, we again apply part 5 of Lemma 14 on each ψ(Ki) and then we repeatedly apply

subadditivity:

∣∣∣ψ(K1)ψ(K2) · · ·ψ(Ki)
∣∣∣ ≤

∏i
j=1(2λ)

|V (Kj)|−numc(Kj) ≤ (2λ)|V (K)|−numc(K).

We now proceed to bound (29) for a fixed fixed i-tuple K1,K2, . . . ,Ki.

Lemma 31 The value of (1− (1− λ)i)|E(H)|−|E(K)|
∣∣∣ψ(K1)ψ(K2) · · ·ψ(Ki)

∣∣∣ is less than each of

1. (2λ)i+
∑i

j=1 |V (Ki)|/2, and

2. (2iλ)|V (H)|−1.

We will need yet another combinatorial inequality.

Claim 32 For any 2-connected graph H and any (not necessarily induced) subgraph K of H,

|E(H)| − |E(K)| ≥ numc(K) + |V (H)| − |V (K)| − 1.

Proof First, suppose that K is connected and V (H) = V (K). Then, the right-hand side of the

desired inequality equals 0 and the left-hand side is non-negative.

Otherwise, let the connected components of K be F1, F2, . . . , Fa, where a = numc(K). Con-

sider the multigraph (with multiedges, but no self-loops)H ′ on numc(K)+|V (H)|−V (K) vertices

[a] ∪
(
V (H)\V (K)

)
. In H ′, two vertices in V (H)\V (K) are adjacent with multiplicity 1 if and

only if they are adjacent in H. The multiplicity of an edge between a connected component Fj and

a vertex u ∈
(
V (H)\V (K)

)
equals the number of neighbours of u in Fj with respect to H. Finally,

the multiplicity between Fj and Fj′ equals the number of edges between them in H.
Clearly, the number of edges (with multiplicities) inH is at most |E(H)|−|E(K)|.On the other

hand, it must be at least a + |V (H)\V (K)| = numc(K) + |V (H)| − |V (K)|. Indeed, otherwise

there is a vertex of degree (counted with multiplicities) 1 or 0 in H ′. If it is of degree 0, clearly H
cannot be connected. If it is of degree 1, suppose that the corresponding edge in H is (u, v) and

the vertex of degree 1 is either the vertex u or a connected component Fj containing u. Since H is

2-connected, v has at least one more neighbour u1 other than u in H. In H|V (H)\{v}, there is no

path between u and u1. This is a contradiction with the 2-connectivity of H. Thus, it must be the

case that |E(H)| − |E(K)| ≥ numc(K) + |V (H)| − |V (K)|.

Proof [Proof of Lemma 31] The first bound follows directly from part 1 in Lemma 29 and the fact

that |1− (1− λ)i| ≤ 1. For the second bound, we use the above combinatorial inequality to obtain

(1− (1− λ)i)|E(H)|−|E(K)|
∣∣∣ψ(K1)ψ(K2) · · ·ψ(Ki)

∣∣∣
≤ (2λ)|V (K)|−numc(K)(iλ)|V (H)|−|V (K)|+numc(K)−1

≤ (2iλ)|V (H)|−1.
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Bounding the expression in (29) First, note that H has 2|E(H)| subgraphs. Thus,

∑

K1,K2,...,Ki⊆H

(1− (1− λ)i)|E(H)|−|E(K)|
∣∣∣ψ(K1)ψ(K2) · · ·ψ(Ki)

∣∣∣

= 2|E(H)|iE
[
(1− (1− λ)i)|E(H)|−|E(K)||ψ(K1)ψ(K2) · · ·ψ(Ki)|

]
,

(30)

where each Kj is sampled independently of the others by independently including each edge of H
with probability 1/2 and K = K1 ∪K2 . . . ∪Ki.

Case 1.1) First, suppose that i = 1. We will use the first bound in Lemma 31. We have to show

that

2|E(H)|(2λ)|V (H)|−1 ≤ 1

4d

((log d)C
d

)|V (H)|/2

for some absolute constant C. Taking a logarithm on both sides, it is enough to show that

|E(H)|+ (log d− C log log d)(|V (H)|/2 + 1)

≤ (log d− C ′′′ log log d)(|V (H)| − 1)

holds, where C ′′′ is the hidden constant in log(1/λ) = log d − O(log log d). If

|E(H)| = o(log log d), choosing a large enough C, we need to show that

(log d− (C + 2) log log d)(|V (H)|/2 + 1) ≤ (log d− C ′′′ log log d)(|V (H)| − 1).

This clearly holds for large enough C as |V (H)| ≥ 4, so |V (H)| − 1 ≥ |V (H)|/2 + 1.

On the other hand, if |E(H)| = Ω(log log d), this means that |V (H)| = Ω((log log d)1/2).
Thus, for large enough d, the inequality becomes equivalent to

|E(H)| ≤ 1

2
(log d)|V (H)|(1− od(1)).

This clearly holds since
√
|E(H)| ≤ 2|V (H)| for any graph H and

√
|E(H)| < (log d)5/8.

Case 1.2) Now, suppose that 2 < i ≤ 3(log d)|V (H)|
10(|E(H)|+ log d)

. In particular, this case is non-trivial

if and only if 2 ≤ 3(log d)|V (H)|
10(|E(H)|+ log d)

, which implies that |V (H)| ≥ 6 for large enough values

of d. Thus, we assume that |V (H)| ≥ 6. This, combined with i ≤ 3(log d)|V (H)|
10(|E(H)|+ log d)

implies

(2iλ)|V (H)|−12i|E(H)| ≤ d−i−|V (H)|/2 for large enough values of d. One concludes from the second

bound in Lemma 31 that

2|E(H)|iE
[
(1− (1− λ)i)|E(H)|−|E(K)||ψ(K1)ψ(K2) · · ·ψ(Ki)|

]

≤ 2|E(H)|i(2iλ)|V (H)|−1

≤ d−i−|V (H)|/2.

(31)
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Case 1.3)
3(log d)|V (H)|

10(|E(H)|+log d) ≤ i ≤ 11|V (H)|
41 . In particular, such i exist if and only if |E(H)| ≥

13 log d/110 = Ω(log d). We assume that |E(H)| = Ω(log d) in the rest of this case. We will use

Lemma 16 which we restate in a slightly different form for convenience.

Lemma 33 Let i ≥ 2, 0 ≤ b ≤ i be integers and a > 0 be a real number. Then,

P
[ i∑

j=1

|V (Kj)| ≤ ab
]
≤ 1

2i×|E(H)| exp
(
b(log i) + a2i log |E(H)|+ |E(H)|b

)
.

Proof Note that

P[|V (K1)| ≤ a] ≤ P
[
|E(K1)| ≤ a2

]
≤ 1

2|E(H)|

a2∑

j=0

(|E(H)|
j

)
≤ |E(H)|a2

2|E(H)| . (32)

It follows that

P
[ i∑

j=1

|V (Kj)| ≤ ab
]

≤ P[∃j1 < j2 < . . . < ji−b s.t. |V (Kju)| ≤ a ∀ u ∈ [i− b]]

≤
∑

1≤j1,j2,...,ji−b≤i

i−b∏

u=1

P[|V (Kju)| ≤ a]

≤
(

i

i− b

)( |E(H)|a2

2|E(H)|

)i−b

=
1

2i|E(H)|

(
i

b

)
|E(H)|a2(i−b)2|E(H)|b

≤ 1

2i|E(H)| i
b|E(H)|ia2e|E(H)|b

≤ 1

2i|E(H)| exp
(
b(log i) + ia2 log |E(H)|+ b|E(H)|

)
,

(33)

which finishes the proof.

We will apply the claim with the choices

a =
|V (H)|1/2(log d)1/2

i1/2
(log log d)−1 and b =

⌊ |V (H)| log d
|E(H)| (log log d)−1

⌋
.

The condition b ≤ i holds for large enough d since |E(H)| = Ω(log d) and
3(log d)|V (H)|

10(|E(H)|+log d) ≤ i.
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Now, we can write

2|E(H)|iE
[
(1− (1− λ)i)|E(H)|−|E(K)||ψ(K1)ψ(K2) · · ·ψ(Ki)|

]

≤ 2|E(H)|iE
[
(1− (1− λ)i)|E(H)|−|E(K)||ψ(K1)ψ(K2) · · ·ψ(Ki)|

∣∣∣
i∑

j=1

|V (Kj)| ≤ ab
]
×

×P
[ i∑

j=1

|V (Kj)| ≤ ab
]
+

+ 2|E(H)|iE
[
(1− (1− λ)i)|E(H)|−|E(K)||ψ(K1)ψ(K2) · · ·ψ(Ki)|

∣∣∣
i∑

j=1

|V (Kj)| > ab
]
×

×P
[ i∑

j=1

|V (Kj)| > ab
]

≤ 2|E(H)|i 1

2i|E(H)| exp
(
b(log i) + ia2 log |E(H)|+ b|E(H)|

)
(2iλ)|V (H)|−1

+ 2|E(H)|i(2λ)i+ab/2,

(34)

where we used the second bound from Lemma 31 in the case
∑i

j=1 |V (Kj)| ≤ ab and the first

bound in the case
∑i

j=1 |V (Kj)| > ab. We now analyze the two terms separately.

Case 1.3.1) We show that

exp
(
b(log i) + ia2 log |E(H)|+ b|E(H)|

)
(2iλ)|V (H)|−1 ≤ d−i−|V (H)|/2.

This is equivalent to

b(log i)+ ia2 log |E(H)|+b|E(H)|+(i+ |V (H)|/2) log d ≤ (|V (H)|−1)(log d−O(log log d)).

We compare as follows:

1. b(log i) + b|E(H)| ≤ 2b|E(H)| = 2|V (H)| log d/(log log d) ≤ (|V (H)| − 1)(log d −
O(log log d))/41 for all large enough d. We used the fact that i ≤ |V (H)| ≤ |E(H)| and

|V (H)| ≥ |E(H)|1/2 = ωd(1).

2. ia2 log |E(H)| = |V (H)|(log d)(log |E(H)|)
(log log d)2

≤ (|V (H)|−1)(log d−O(log log d))
41 for all large enough

d, where we used the fact that |E(H)| ≤ (log d)5/4, so log |E(H)| = O(log log d).

3. (i + |V (H)|/2) log d ≤ 33(|V (H)| − 1)(log d − O(log log d))/41 for all large enough d as

i ≤ 11V (H)/41 and |V (H)| ≥
√
|E(H)| = Ω(

√
log d) = ωd(1).

Altogether, this implies that

b(log i)+ia2 log |E(H)|+b|E(H)|+(i+|V (H)|/2) log d ≤ 35

41
(|V (H)|−1)(log d−O(log log d)),

which is enough.
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Case 1.3.2) We show that

2|E(H)|i(2λ)i+ab/2 ≤ d−i−|V (H)|/2.

Bounding 2|E(H)|i ≤ e|E(H)|i and using ab = |V (H)|3/2(log d)3/2
i1/2|E(H)| (log log d)−2, the inequality be-

comes

log d(i+ |V (H)|/2) + |E(H)|i

≤ (log d−O(log log d))
|V (H)|3/2(log d)3/2

i1/2|E(H)| (log log d)−2

+ i(log d−O(log log d)) ⇐⇒
O(i log log d) + (log d)|V (H)|/2 + |E(H)|i

≤ (log d−O(log log d))
|V (H)|3/2(log d)3/2|

2i1/2|E(H)| (log log d)−2

We now handle the terms separately.

1. O(i log log d) ≤ 1
3(log d − O(log log d)) |V (H)|3/2(log d)3/2

2i1/2|E(H)| (log log d)−2. For large enough d,

it is enough to show that

8i3/2|E(H)|(log log d)3 ≤ (log d)5/2|V (H)|3/2.

This clearly holds as |E(H)| ≤ (log d)5/4, i ≤ 11|V (H)|/41.

2. (log d)|V (H)|/2 ≤ 1
3(log d − O(log log d)) |V (H)|3/2(log d)3/2

2i1/2|E(H)| (log log d)−2. Again, for large

enough d, it is enough to show that

4(log d)|V (H)|i1/2|E(H)|(log log d)2 ≤ |V (H)|3/2(log d)5/2.

Again, this holds as i1/2 ≤ |V (H)|1/2 and |E(H)| ≤ (log d)5/4.

3. |E(H)|i ≤ 1
3(log d − O(log log d)) |V (H)|3/2(log d)3/2|

2i1/2|E(H)| (log log d)−2. For large enough d, it is

sufficient to show that

8|E(H)|2i3/2(log log d)2 ≤ (log d)5/2|V (H)|3/2.

Again, this holds as |V (H)| ≥ 3i, |E(H)| ≤ (log d)5/4/(log log d).9

B.3.3. PROOF OF LEMMA 15 FOR LARGE VALUES OF i.

Suppose that d ≥ i ≥ 11|V (H)|/41. The main idea behind proving Lemma 15 in that case is to

bound each term Err(A, λ) and then sum over the 2|E(H)| subgraphs of H.

Claim 34 If |E(A)| ≤ (log d)5/4/(log log d), then |Err(A, λ)| ≤ d−3+od(1).

9. This is the only place in the proof where we need |E(H)| ≪ (log d)5/4 rather than |E(H)| ≪ (log d)2. Improving

Lemma 33 would, potentially, improve the result for polynomials of degree up to (log d)2−ϵ for any constant ϵ > 0.
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Proof We first prove the statement in the case when |V (A)| ≤ |E(A)|. Note that |ψ(K)| ≤ λ3

when |V (K)| ≤ 3 and |ψ(K)| ≤ 2× λ|V (K)|/2+1 otherwise by Lemma 14.

|Err(A, λ)| =
∑

E(K)⊆E(A)

(−1)|E(K)|ψ(K) ≤
∑

E(K)⊆E(A)

|ψ(K)|

=
∑

K: |V (K)|≤3

λ3 + 2λ
∑

(log d)5/7≥|V (K)|>3

λ|V (K)|/2 + 2λ
∑

|V (A)|≥|V (K)|>(log d)5/7

λ|V (K)|/2 (35)

We analyse the three sums separately. The constant 5/7 is chosen arbitrarily in (5/8, 1).

Case 1) |V (K)| ≤ 3. There are O(|V (A)|3) = O((log d)15/4) subgraphs of A on at most three

vertices. Thus,

∑

K: |V (K)|≤3

λ3 = O
(
(log d)15/4(log d/d)3

)
= d−3+od(1).

Case 2) (log d)5/7 ≥ |V (K)| > 3. When |V (K)| = t, one can choose V (K) in
(|V (A)|

t

)
ways

and, once V (K) is chosen, choose E(A) in 2(
t
2) ways at most. This leads to

2λ
∑

(log d)5/7≥|V (K)|>3

λ|V (A)|/2

≤ 2λ
∑

(log d)5/7≥t>3

(|V (A)|
t

)
2(

t
2)λt/2

≤ 2λ
∑

(log d)5/7≥t>3

(e2|V (A)|2etλ
t2

)t/2

(36)

Each value e2|V (A)|22tλ/t2 is bounded by

e2((log d)5/4)2e(log d)
5/7
λ = O

(
(log d)5/2 × do(1) × (log d)× d−1) = d−1+od(1),

where we used the fact that 5/7 < 1. As each exponent t/2 is at least 2, the sum is bounded by

2λ(log d)5/7 × (d−1+od(1))2 = λd−2+od(1) = d−3+od(1).

Case 3) |V (A)| ≥ |V (K)| ≥ (log d)5/7. Note that when |V (K)| = t, one can choose V (K)

in
(|V (A)|

t

)
≤
(
(log d)5/4

t

)
ways and, once V (K) is chosen, choose E(A) in

∑(log d)5/4

j=0

((t2)
j

)
≤
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(log d)5/4
( (t2)
(log d)5/4

)
ways at most (as A and, thus, K has at most (log d)5/4 edges). This leads to

∑

(log d)5/4≥|V (K)|>(log d)5/7

λ|V (K)|/2

≤ (log d)5/4
∑

(log d)5/4≥t>(log d)5/7

(
(log d)5/4

t

)( (
t
2

)

(log d)5/4

)
λt/2

≤ (log d)5/4
∑

(log d)5/4≥t>(log d)5/7

(e(log d)5/4
t

)t( et2

(log d)5/4

)(log d)5/4
λt/2

= (log d)5/4e(log d)
5/4

∑

(log d)5/4≥t>(log d)5/7

( t2

(log d)5/4

)(log d)5/4−t
(λe2t2)t/2

≤ (log d)5/4e(log d)
5/4

∑

(log d)5/4≥t>(log d)5/7

((log d)5/4)(log d)
5/4

(λe2t2)t/2.

(37)

Now, consider the expression (log d)5/4e(log d)
5/4

((log d)5/4)(log d)
5/4

(λe2t2)t/2. It can be rewritten

as

exp
(
O(log log d) + ((log d)5/4 + 1) log((log d)5/4) + t(log t+ 1) + (t/2) log λ

)

= exp
(
O((log d)5/4 log log d)− Ω((log d log d5/7)

)

= exp
(
− Ω(log d1+5/7)

)
,

since 5/4 < 1 + 5/7. Since each of the O((log d)5/4) summands is of order exp(−Ω(log d12/7)),
the sum is clearly of order exp(−Ω(log d12/7)) = O(d−3).

Combining the two cases, we obtain that for graphs A satisfying |V (A)| ≤ |E(A)|,
|Err(A, λ)| ≤ d−3+od(1) as desired.

Now, suppose that |V (A)| > |E(A)|. If A is acyclic, by Lemma 14 |Err(A, λ)| = 0 as ψ(K) =
0 for all K ⊆ H as subgraphs are also acyclic. If A is not acyclic, then, it can be partitioned into

two vertex-disjoint graphs A = A1 ∪A2, where A1 satisfies |V (A1)| ≤ |E(A1)| and A2 is acyclic.

As in the proof of Lemma 24, this implies that

|Err(A, λ)| = EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)

[
WA(G)

]
− (1− λ)|E(A)|

= EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)

[
WA1(G)

]
EG∼RGG(n,T1,Unif,σ∞

1−λ,1−λ)

[
WA2(G)

]

− (1− λ)|E(A1)|(1− λ)|E(A2)| (38)

=
(
EG∼RGG(n,T1,Unif,σ∞

1−λ,1−λ)

[
WA2(G)

]
− (1− λ)|E(A2)|

)
)×

× EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)

[
WA1(G)

]
(39)

+
(
EG∼RGG(n,T1,Unif,σ∞

1−λ,1−λ)

[
WA1(G)

]
− (1− λ)|E(A1)|

)
(1− λ)|E(A2)|

= Err(A2, λ)EG∼RGG(n,T1,Unif,σ∞
1−λ,1−λ)

[
WA2(G)

]
+ Err(A1, λ)(1− λ)|E(A2)|.

37



BANGACHEV BRESLER

Since A2 is acyclic, Err(A2, λ) = 0, so thee first term vanishes. Thus,

|Err(A, λ)| = |Err(A1, λ)(1− λ)|E(A2)|| ≤ |Err(A1, λ)| = d−3+od(1).

Since the graph H has at most 2|E(H)| subgraphs, the left-hand side in Lemma 15 can be

bounded as

∣∣∣
∑

A⊆H

(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)Err(A, λ)i
∣∣∣

≤
∑

A⊆H

∣∣∣(−1)|E(H)|−|E(A)|(1− λ)i(|E(H)|−|E(A)|)Err(A, λ)i
∣∣∣

≤ 2|E(H)|d−i(3+od(1)).

(40)

To prove Lemma 15, it is enough to show that e|E(H)|d−i(3+od(1)) ≤ 1

(4d)i
×
((log d)C

d

)|V (H)|/2
.

This would follow from

|E(H)| − 3(1− od(1))i log d ≤ −i(log d+ 2)− (log d)|V (H)|/2

or, equivalently,

|E(H)|+ 2i+ (log d)|V (H)|/2 ≤ 2i log d.

We analyse each of the terms separately:

1. |E(H)| ≤ 2i(log d)/(log d)3/8 for large enough i. Indeed, this follows since

|E(H)| ≤
√

|V (H)|2 ×
√

(log d)5/4/(log log d)

= |V (H)|(log d)5/8 × (log log d)−1/2 ≤ 2i(log d)/(log d)3/8.

The last inequality holds for all large enough d since i ≥ 11|V (H)|/41.

2. i ≤ 2i(log d)/(2 log d).

3. (log d)|V (H)|/2 ≤ 2i(log d)× 41
44 since i ≥ 11|V (H)|/41.

Altogether, this gives

|E(H)|+ 2i+ (log d)|V (H)|/2 ≤ 2i log d
( 1

(log d)3/8
+

1

2 log d
+

41

44

)
≤ 2i log d

for large enough d.With this, the case for large i is also completed and so is the proof of Theorem 3.

38



L∞ RANDOM GEOMETRIC GRAPHS

B.4. Comparison of Signed and Unsigned Weights

We end with a brief comparison of our bounds on signed and unsigned weights. In particular, it

demonstrates why the signed weight bounds are much more subtle and require a more sophisticated

argument.

Example 2 Consider any connected graphH with girthmmuch smaller than its number of vertices

(note that an overwhelming fraction of the connected graphs have girth of constant size). Then, by

Theorem 3 and Lemma 28 for G ∼ RGG(n,Td,Unif, σ∞p , p),

∣∣∣E[WH(G)]− p|E(H)|
∣∣∣ = Ω

(
p|E(H)|

(polylog(d)
d

)m−1
)

≫ Θ

(
p|E(H)|

(polylog(d)
d

)|V (H)|/2)
≥
∣∣∣E[SWH(G)]

∣∣∣.

In particular, this shows that the much more elementary bound obtained by plugging Lemma 28 into

∣∣∣E[SWH(G)]
∣∣∣ =

∣∣∣
∑

A⊆E(H)

(−p)|E(H)|−|E(A)|(E[WA(G)]− p|E(A)|)
∣∣∣

≤
∑

A⊆E(H)

∣∣∣(−p)|E(H)|−|E(A)|(E[WA(G)]− p|E(A)|)
∣∣∣

is wildly suboptimal. Thus, a more refined perturbative analysis as in Section 3 is needed.

Appendix C. Inference and Estimation with Low-Degree Polynomials in L∞

We now present the proofs of Theorems 5, 6 and 7. The arguments are standard applications of

Theorem 3 and Corollary 27.

C.1. Detection Upper Bounds: Theorem 5

Observe that Kn has Θ(n3) subgraphs isomorphic to C3 and Θ(n4) subgraphs isomorphic to C4.
From Corollary 27, we conclude that

EG∼RGG(n,Td,Unif,σ∞
p ,p)

[
SCC3(G)

]
= Θ̃(n3p3/d2),

EG∼RGG(n,Td,Unif,σ∞
p ,p)

[
SCC4(G)

]
= Θ̃(n4p4/d2).

(41)

Clearly, EK∼G(n,p)

[
SCC3(K)

]
= EK∼G(n,p)

[
SCC4(K)

]
= 0. We now need to compute the

respective variances as in Definition 22.

Triangles. With respect to both the G(n, p) and RGG(n,Td,Unif, σ∞p , p) distributions, one can

expand the variance as follows (e.g. Liu and RÂacz (2023a)). Denote by △(i, j, k) the labelled

triangle on vertices i, j, k. Then, taking into account the different possible overlap patterns of two
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triangles,10

Var[SCC3(H)]

= Θ(n3)×Var[SW△(1,2,3)(H)]

+ Θ(n4)×Cov[SW△(1,2,3)(H), SW△(1,2,4)(H)]

+ Θ(n5)×Cov[SW△(1,2,3)(H), SW△(1,4,5)(H)]

+ Θ(n6)×Cov[SW△(1,2,3)(H), SW△(4,5,6)(H)]].

(42)

The product of any two signed weights of subgraphs can be naturally decomposed as a (weighted)

sum of signed weights of subgraphs. Thus, we can bound the above expression via Theorem 3 and

Corollary 27. We take this approach in Section C.4.1 to show the following.

VarK∼G(n,p)[SCC3(K)] = Θ(n3p3), and

VarG∼RGG(n,Td,Unif,σ∞
p ,p)[SCC3(G)] = Θ(n3p3) + Õ(n4p5/d2).

(43)

This is enough to complete part 2 of Theorem 5. According to Definition 22, one can distinguish

between G(n, p) and RGG(n,Td,Unif, σ∞p , p) with high probability using the signed triangle test if

and only if
∣∣∣EG∼RGGSCC3(G)

∣∣∣ = ω
(√

VarK∼G(n,p)[SCC3(K)] +VarG∼RGG[SCC3(G)]
)
.

Using (41) and (43), this holds if and only if d = õ((np)3/4).

4-Cycles. Similarly, in the case of 4-cycles, one obtains

Var[SCC4(H)] = Θ(n4)×Var[SW□(1,2,3,4)(H)]

+ Θ(n5)×
(
Cov[SW□(1,2,3,4)(H), SW□(1,2,3,5)(H)])+

+ +Cov[SW□(1,2,3,4)(H), SW□(1,2,4,5)(H)]
)

+Θ(n6)×
(
Cov[SW□(1,2,3,4)(H), SW□(1,2,5,6)(H)] +Cov[SW□(1,2,3,4)(H), SW□(1,5,2,6)(H)]

+Cov[SW□(1,2,3,4)(H), SW□(1,5,3,6)(H)]
)

+Θ(n7)×Cov[SW□(1,2,3,4)(H), SW□(1,5,6,7)(H)]

+ Θ(n8)×Cov[SW□(1,2,3,4)(H), SW□(6,6,7,8)(H)].

(44)

Similarly, we show in Section C.4.2, that

VarK∼G(n,p)[SCC4(K)] = Θ(n4p4) and,

VarG∼RGG(n,Td,Unif,σ∞
p ,p)[SCC4(G)] = Θ(n4p4) + Õ(n5p6/d2 + n6p7/d3).

(45)

Again,
∣∣∣EG∼RGGSCC4(G)

∣∣∣ = ω
(√

VarK∼G(n,p)[SCC4(K)] +VarG∼RGG[SCC4(G)]
)

holds if and only if d = õ(np).

10. Abusing notation, we write SW△(1,2,3)(H) for the signed weight of the triangle on labelled vertices 1, 2, 3. Similarly,

SW□(1,2,3,4)(H) stands for the signed weight of a 4-cycle on labelled vertices 1, 2, 3, 4.

40



L∞ RANDOM GEOMETRIC GRAPHS

C.2. Dimesnion Estimation Upper Bounds: Theorem 7

Low degree polynomial statistics are used in the literature not only for testing, but also for estimation

(see, for example, Schramm and Wein (2022)). We illustrate with the concrete example of using

signed cycles for estimating the dimension of RGG(n,Td,Unif, σ∞p , p) as in (P2).

Suppose that m is a small odd number. The expected signed count of m-cycles is11 is

(m− 1)!

2

(
n

m

)
×
(
pm(dλm/(1− λ)m) +O(pmd2λ2m)

)

by Corollary 27. Therefore, one can estimate λ from the number of signed m-cycles. Under a

sufficiently strong concentration of the number of signed m-cycles, this could allow one to estimate

d as λ ≈ (log 1/p)/d. Similarly, one can perform this for small even numbers. We define the

success of a low-degree polynomial test for estimating a parameter (in our case, the dimension) in

analogy to Definition 22.

Definition 35 (Success of Polynomial Statistics for Exact Estimation) Given is a family of ran-

dom graph distributions (Dθ)θ∈A over n vertices indexed by a parameter θ taking values in A. Let

f(·) be a polynomial in the edges of an n-vertex graph. For each θ ∈ A, let Mθ := EG∼Dθ
[f(G)].

We say that polynomial f(·) succeeds with high probability on exactly recovering θ if the fol-

lowing property holds. There exists some collection of values
{
Vθ

}
θ∈A such that the intervals{[

Mθ − Vθ,Mθ + Vθ

]
, θ ∈ A

}
are disjoint and Vθ = ω(VarG∼Dθ

[f(G)]1/2) for each θ. If,

on the other hand, no such intervals exist, we say that the polynomial f fails in the task of exact

estimation.

The interpretation of this definition is simple. Suppose that the true parameter is θ′. Then, by Cheby-

shev’s, inequality with high probability over G ∼ Dθ′ , it is the case that f(G) ∈
[
Mθ′−Vθ′ ,Mθ′+

Vθ′
]
. If the intervals are disjoint, this is the unique interval of the form

[
Mθ − Vθ,Mθ + Vθ

]
with

this property and, thus, one can find θ′. It must be noted that this is the implicit definition used in

Bubeck et al. (2014); Friedrich et al. (2023b) for estimating the dimension of random geometric

graph models.

To apply this definition to (P2), we use the variance bounds (43) and (45) and the following

simple estimate of λ, deferred to Section C.4.3

Lemma 36 Suppose that d = ω(log 1/p). Then,

λ∞p = 1− p1/d =
log 1/p

d
− 1

2

(
log 1/p

d

)2

+O

((
log 1/p

d

)3
)
,

λ∞p /(1− λ∞p ) = p−1/d − 1 =
log 1/p

d
+

1

2

(
log 1/p

d

)2

+O

((
log 1/p

d

)3
)
.

We are now ready to evaluate the intervals in which the signed triangle and 4-cycle statistics

succeed with high probability in the exact dimension recovery tasks.

11. The factor
(m−1)!

2

(

n
m

)

is the number of undirected m-cycle subgraphs of Kn.
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Triangles. Using Corollary 27 and Lemma 36, the expected signed count of three cycles in di-

mension d is

MC3
d := EG∼RGG(n,Td,Unif,σ∞

p ,p)

[
SCC3(G)

]
=

(
n

3

)
p3 ×

(
d

(
λ

1− λ

)3

+O(d2λ6)

)

=

(
n

3

)
p3 ×

(
(log 1/p)3

d2
+

3

2
× (log 1/p)4

d3
+O

(
log(1/p)5

d4

))
.

In particular, this means that

MC3
d −MC3

d+1 = EG∼RGG(n,Td,Unif,σ∞
p ,p)

[
SCC3(G)

]
−EG∼RGG(n,Td+1,Unif,σ∞

p ,p)

[
SCC3(G)

]

=

(
n3

p3

)(
Θ

(
(log(1/p)3)

d3

)
+O

(
(log(1/p)4)

d4

))

= Θ(n3p3(log 1/p)3/d3).

(46)

In particular, MC3
d+1 ≤ MC3

d when d = ω(log 1/p). Therefore, numbers Vd with the desired prop-

erty from Definition 35 exist if and only if for all d ∈ [ω(log 1/p),M ],

MC3
d −MC3

d+1

= ω

(√
VarG∼RGG(n,Td,Unif,σ∞

p ,p)

[
SCC3(G)

]
+VarG∼RGG(n,Td+1,Unif,σ∞

p ,p)

[
SCC3(G)

])
.

Using (43) and (46), this is equivalent to

n3p3(log 1/p)3/d3 = ω̃
(√

n3p3 + n4p5/d2
)
.

One can easily check that this is satisfied if and only if d = õ((np)1/2).

4-Cycles. In the exact same way we conclude from Corollary 27 and Lemma 3612

MC4
d = EG∼RGG(n,Td,Unif,σ∞

p ,p)

[
SCC4(G)

]

= 3

(
n

4

)
p4

(
ϕ(3)

(log 1/p)3

d2
+

3

2
ϕ(3)

(log 1/p)4

d3
− (log 1/p)4

d3
+O

(
(log 1/p)5

d4

))

= 3

(
n

4

)
p4

(
2

3

(log 1/p)3

d2
+O

(
(log 1/p)5

d4

))
.

Thus, 0 ≤ MC4
d −MC4

d+1 = Θ(n4p4(log 1/p)3/d3). Finally, by (45), the condition

MC4
d −MC4

d+1

= ω

(√
VarG∼RGG(n,Td,Unif,σ∞

p ,p)

[
SCC4(G)

]
+VarG∼RGG(n,Td+1,Unif,σ∞

p ,p)

[
SCC4(G)

])

12. Also, from Lemma 14 we recall ϕ(3) = 2/3, even though the exact value of ϕ(3) is irrelevant as long as it is

non-zero.
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is equivalent to

n4p4(log 1/p)3/d3 = ω̃
(√

n4p4 + n5p6/d2 + n6p7/d3
)
.

One can easily check that this is satisfied if and only if d = õ((np)2/3).

C.3. Detection Lower Bounds: Theorem 6

The proof follows a standard procedure for bounding ADV2
≤D, e.g in Hopkins (2018).

Suppose that n−1+ϵ ≤ p ≤ 1/2 and d ≥ np for some absolute constant ϵ. In particular, this

means that d ≥ nϵ and d ≥ p−δ for some absolute constant δ > 0.

Let D = (log d)5/4/(log log d) = Θ(log n/ log log n). Consider the orthonormal basis of

G(n, p) given by the polynomials pH(·) := SWH(·)/(p(1 − p))|E(H)|/2 for all subgraphs H of

Kn. From Section A.2, we know that to show statistical indistinguishability with respect to degree

D polynomials, we simply need to prove the inequality

ADV2
≤D − 1 :=

∑

H : 1≤|E(H)|≤D

EG∼RGG(n,Td,Unif,σ∞
p ,p)[pH(G)]2 = o(1).

We prove this as follows. First, note that if H has a vertex of degree 1, then EG∼RGG[pH(G)] = 0
as in Lemma 24. Thus, we can assume that there is no such vertex and, so, 3 ≤ |V (H)| ≤ |E(H)|.
Using Theorem 3, we obtain the following inequality. In it, we use the standard trick of considering

two cases depending on the number of vertices in Fourier coefficients (e.g. Hopkins (2018)).

∑

H : 3≤|E(H)|≤D

EG∼RGG[pH(G)]2

=
∑

H : 3≤|E(H)|≤D

1

(p(1− p))|E(H)|E[SWH(G)]2

≤
∑

H : 3≤|E(H)|≤D

1

(p(1− p))|E(H)| p
2|E(H)|((log d)C/d)|V (H)|

≤
∑

H : 3≤|E(H)|≤D

(2p)|E(H)|((log d)C/d)|V (H)|

=
∑

H : 3≤|E(H)|, |V (H)|≤D2/3

(2p)|V (H)|((log d)C/d)|V (H)|

+
∑

H : 3≤|E(H)|<D, |V (H)|>D2/3

(2p)|V (H)|((log d)C/d)|V (H)|.

(47)

We used the fact that 1−p ≥ 1/2 and |V (H)| ≤ |E(H)|.Now, we consider the two sums separately.
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Case 1) |V (H)| ≤ D2/3. When |V (H)| = t, there are
(
n
t

)
ways to choose V (H) and then, once

V (H) is chosen, at most 2(
t
2) ways to choose E(H). This gives

∑

H : 0<|E(H)|, |V (H)|≤D2/3

(2p)|V (H)|((log d)C/d)|V (H)|

≤
D2/3∑

t=3

(
n

t

)
(2p)t2(

t
2)((log d)C/d)t

≤
D2/3∑

t=3

(
np2t(log d)C

d

)t

≤
D2/3∑

t=3

(
np2(log d)

5/6
(log d)C

d

)t

.

Clearly, if d = max
(
(np)1+on(1)), ωn(1)

)
, one has

(
np2(log d)

5/6
(log d)C

d

)
= o(1).

Thus, there is exponential decay in the sum and it is of order o(1).

Case 2) |V (H)| ≥ D2/3. When |V (H)| = t, there are
(
n
t

)
ways to choose V (H) and then, once

V (H) is chosen, at most

D∑

j=0

((t
2

)

j

)
≤ 2

((t
2

)

|D|

)
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ways to choose E(H). This gives

∑

H : |E(H)|≤D, |V (H)|>D2/3

(2p)|V (H)|((log d)C/d)|V (H)|

≤
D∑

t=D2/3

(2p)t
(
n

t

)
2

((t
2

)

D

)
((log d)C/d)t

≤ 2

D∑

t=D2/3

(2p)t
(ne
t

)t(et2
D

)D((log d)C
d

)t

≤ 2
D∑

t=D2/3

(2p)tnt((t2)D/t)t
((log d)C

d

)t

≤ 2
D∑

t=D2/3

(2pnt2D/t(log d)C

d

)t

≤ 2

D∑

t=D2/3

(2pnD2D1/3
(log d)C

d

)t

≤ 2

D∑

t=D2/3

(2pneO
(
(log log d)(log d)5/12

)
(log d)C

d

)t
.

Again, under the same conditions d = max
{
(np)1+on(1)), ωn(1)

}
, the expression is of order o(1).

C.4. Omitted Technical Details

C.4.1. PROOF OF (43)

Recall (42). We begin by calculating the variance for Erdős-RÂenyi . Note that whenever (i, j, k) ̸=
(i′, j′, k′), there exists some edge in only one of the two triangles △(i, j, k),△(i′, j′, k′). Without

loss of generality this is (ij). Then, EK∼G(n,p)[SW△(i,j,k)(K)SW△(i′,j′,k′)(K)] = 0 as the product

SW△(i,j,k)(K)SW△(i′,j′,k′)(K) contains the factor K(ij) − p which is independent of everything

else. Similarly, EK∼G(n,p)[SW△(i,j,k)(K)]EK∼G(n,p)[SW△(i′,j′,k′)(K)] = 0. Thus,

VarK∼G(n,p)[SWC3(K)] = Θ(n3)×VarK∼G(n,p)[SCC3(K)].

We now use the following fact:

For any indicator I, the equality (I − p)2 = (I − p)(1− 2p) + (p− p2) holds. (48)

We deduce VarK∼G(n,p)[SCC3(K)] = EK∼G(n,p)[SCC3(K)2] = Θ(n3)× (p− p2)3 = Θ(n3p3).

Now, we proceed to bounding VarG∼RGG(n,Td,Unif,σ∞
p ,p)[SWC3(G)]. The idea is to split each

term EG∼RGG[SW△(i,j,k)(G)SW△(i′,j′,k′)(G)] into a (weighted) sum of signed counts with respect

to RGG(n,Td,Unif, σ∞p , p) via (48) and then apply Theorem 3.
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1) VarG∼RGG[SW△(1,2,3)(G)] = EG∼RGG[SW△(1,2,3)(G)2] − EG∼RGG[SW△(1,2,3)(G)]2. By

Corollary 27, EG∼RGG[SW△(1,2,3)(G)]2 = Θ̃(p6/d4) = o(p3). On the other hand,

EG∼RGG[SW△(1,2,3)(G)2] = EG∼RGG[(G(12)−p)
2(G(23)−p)

2(G(13)−p)
2].

Using (48), this is equal to (p − p2)3 + (1 − 2p)3EG∼RGG[SW△(1,2,3)(G)] and some terms with

only one or two factors of the form Gij −p. By Lemma 24, those terms vanish as they form a graph

with a leaf. Thus, the result is of order Θ(p3) + Θ̃((1− 2p)2p3/d2) = Θ(p3).

2) Cov[SW△(1,2,3)(G), SW△(1,2,4)(G)] = E[SW△(1,2,3)(G)SW△(1,2,4)(G)] − Θ̃(p6/d4) by

Corollary 27. However, using (48),

EG∼RGG[SW△(1,2,3)(G)SW△(1,2,4)(G)]

= (p− p2)EG∼RGG[(G(13) − p)(G(23) − p)(G(14) − p)(G(24) − p)]

+ (1− 2p)EG∼RGG[(G(12) − p)(G(13) − p)(G(23) − p)(G(14) − p)(G(24) − p)].

Both summands correspond to the signed weights of graphs on at most 4 vertices. By Theorem 3,

the last expression is of order Õ(p× p4/d2) = Õ(p5/d2).

3) In the cases of Cov[SW△(1,2,3)(H), SW△(1,4,5)(H)],Cov[SW△(1,2,3)(H), SW△(4,5,6)(H)]],
the two graphs △(i, j, k) and △(i′, j′, k′) share at most one vertex, so their (signed) weights are

independent by Lemma 24 and the covariance is zero.

Combining those estimates via (42), the variance is of order Θ(n3p3) + Õ(n4p5/d2).

C.4.2. PROOF OF (45)

The estimate for Erdős-RÂenyi holds in the same way as in the proof of (43). We now estimate each

of the terms in (44) for G ∼ RGG(n,Td,Unif, σ∞p , p).

1) As in the case fro triangles, we estimate

VarG∼RGG[SW□(1,2,3,4)(G)]

= EG∼RGG[(G(12) − p)2(G(23) − p)2(G(34) − p)2(G(24) − p)2]− Θ̃(p8/d4)

= (p− p2)4 + (1− 2p)4EG∼RGG[(G(12) − p)(G(23) − p)(G(34) − p)(G(24) − p)] + Θ̃(p8/d4)

= (p− p2)4 + (1− 2p)4Θ̃(p4/d2) + Θ̃(p8/d4) = Θ(p4).

2) Similarly, using (48)

CovG∼RGG[SW□(1,2,3,4)(G), SW□(1,2,3,5)(G)]

= EG∼RGG[(G(12) − p)2(G(23) − p)2(G(34) − p)×
× (G(14) − p)(G(35) − p)(G(15) − p)]− Θ̃(p8/d4)

= (p− p2)2EG∼RGG[(G(34) − p)(G(14) − p)(G(35) − p)(G(15) − p)]

+ 2(p− p2)(1− 2p)EG∼RGG[(G(23) − p)(G(34) − p)(G(14) − p)(G(35) − p)(G(15) − p)]

+ (1− 2p)2EG∼RGG[(G(12) − p)(G(23) − p)(G(34) − p)(G(14) − p)(G(35) − p)×
× (G(15) − p)]− Θ̃(p8/d4)

= Õ(p6/d2) + Õ(p6/d5/2) + Õ(p6/d3)− Θ̃(p8/d4) = Õ(p6/d2).

In the second to last line, we used Theorem 3 for each for the corresponding graphs.
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3)

CovG∼RGG[SW□(1,2,3,4)(G), SW□(1,2,4,5)(G)]

= EG∼RGG[(G(12) − p)2(G(23) − p)(G(34) − p))×
× (G(14) − p)(G(35) − p)(G(15) − p)(G(25) − p)]− Θ̃(p8/d4)

= (p− p2)EG∼RGG[(G(23) − p)(G(34) − p)(G(14) − p)(G(35) − p)(G(15) − p)(G(25) − p)]

+ (1− 2p)EG∼RGG[(G(12) − p)(G(23) − p)(G(34) − p)(G(14) − p))×
× (G(35) − p)(G(15) − p)(G(25) − p)]

− Θ̃(p8/d4)

= Õ(p7/d5/2) + Õ(p7/d5/2)− Θ̃(p8/d4) = Õ(p7/d5/2) = Õ(p6/d2).

4)

CovG∼RGG[SW□(1,2,3,4)(G), SW□(1,2,5,6)(G)]

= EG∼RGG[(G(12) − p)2(G(23) − p)(G(34) − p)(G(14) − p))×
× (G(25) − p)(G(56) − p)(G(61) − p)]− Θ̃(p8/d4)

= (p− p2)EG∼RGG[(G(23) − p)(G(34) − p)(G(14) − p)(G(25) − p)(G(56) − p)(G(61) − p)]

+ (1− 2p)EG∼RGG[(G(12) − p)(G(23) − p)(G(34) − p)(G(14) − p)(G(25) − p))×
× (G(56) − p)(G(61) − p)]− Θ̃(p8/d4)

= Õ(p7/d3) + Õ(p7/d3)− Θ̃(p8/d4) = Õ(p7/d3) = Õ(p7/d3)

5)

CovG∼RGG[SW□(1,2,3,4)(G), SW□(1,5,2,6)(G)]

= EG∼RGG[(G(12) − p)(G(23) − p)(G(34) − p)(G(14) − p))×
× (G(15) − p)(G(52) − p)(G(26) − p)(G(61) − p)]

− Θ̃(p8/d4)

= Õ(p8/d3) + Θ̃(p8/d4) = Õ(p8/d3) = Õ(p7/d3)

6)

CovG∼RGG[SW□(1,2,3,4)(G), SW□(1,5,3,6)(G)]

= EG∼RGG[(G(12) − p)(G(23) − p)(G(34) − p)(G(14) − p))×
× (G(15) − p)(G(53) − p)(G(36) − p)(G(61) − p)]

− Θ̃(p8/d4)

= Õ(p8/d3) + Θ̃(p8/d4) = Õ(p8/d3) = Õ(p7/d3)

7) For Cov[SW□(1,2,3,4)(H), SW□(1,5,6,7)(H)],Cov[SW□(1,2,3,4)(H), SW□(5,6,7,8)(H)]],
the two graphs □(i, j, k, ℓ) and □(i′, j′, k′, ℓ′) share at most one vertex, so their (signed) weights

are independent by Lemma 24 and the covariance is zero.

Combining those estimates via (44), the variance is of order Θ(n4p4)+Õ(n5p6/d2+n6p7/d3).
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C.4.3. PROOF OF LEMMA 36

We know that λ∞p satisfies (1− λ∞p )d = p. Thus,

λ∞p = 1− p1/d = 1− exp(log p/d) = 1− exp(−(log 1/p)/d).

By the usual Taylor series expansion, exp(−x) = 1−x+x2/2+O(x3) when x = o(1). Similarly,

λ∞p /(1− λ∞p ) = p−1/d − 1 and we argue in the same way.

Appendix D. Statistical Indistinguishability in the L∞ Model: Theorem 4

In this section, we prove Theorem 4. Recall condition (A). Suppose further that d = ω(n(log n)2).

As in Section 3, τ∞p = 1 − λ∞p , where λ∞p = log(1/p)
d (1 + o(1)). We will write σ, λ, τ instead of

σ∞p , λ
∞
p , τ

∞
p for brevity. We can view σ(x,y) as a single argument function of x− y.

Expanding one of the terms in (12), we obtain

E
[(

1 +
γ(g)

p(1− p)

)k]
= E

[(1− 2p

1− p
+
σ ∗ σ(g)
p(1− p)

)k]
=

k∑

t=0

(
k

t

)(
1− 2p

1− p

)k−t
E[(σ ∗ σ)t]
pt(1− p)t

.

We will prove the following bound on the moments of σ ∗ σ.
Lemma 37 For all t ≥ 1, t = o(1/λ) = o(d/(log d)2), it holds that

E[(σ ∗ σ)t] = p2t(1 + Θ(dλ3t2)). Also, E[σ ∗ σ] = p2.

D.1. Proof of Theorem 4 given Lemma 37

E
[(1− 2p

1− p
+
σ ∗ σ(g)
p(1− p)

)k]

=

k∑

t=0

(
k

t

)(1− 2p

1− p

)k−t p2t(1 + Θ(dλ3t2))

pt(1− p)t

=
k∑

t=0

(
k

t

)(1− 2p

1− p

)k−t( p

1− p

)t
+ dλ3Θ

(
k∑

t=0

(
k

t

)(1− 2p

1− p

)k−t( p

1− p

)t
t2

)

= 1 + dλ3Θ

(
k(1− 2p)k−1p

(1− p)k
+ k(k − 1)

p2

(1− p)2

k∑

t=2

(
k − 2

t− 2

)(1− 2p

1− p

)k−t( p

1− p

)t−2
)

= 1 + dλ3Θ(kp+ k2p2) = 1 + Θ̃(d−2kp+ d−2k2p2).

Going back to (12),

n−1∑

k=0

logE

[(
1 +

γ(x)

p(1− p)

)k]
=

n−1∑

k=0

logE

[
1 + Θ̃(d−2kp+ d−2k2p2)

]

≤ Θ̃
(
d−2p

n−1∑

k=0

k + d−2p2
n−1∑

k=0

k
)
= Θ̃

(
d−2pn2 + d−2p2n3

)
,

where we used the fact that t ≤ k ≤ n = o(d/ log d). The last expression is of order o(1) whenever

p ≥ 1/n, d ≥ n3/2p with which the poof follows.
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D.2. Proof of Lemma 37

First, note that

σ ∗ σ(x) = Eg[σ(g)σ(x− g)] = E

[
d∏

i=1

1[|gi|C ≤ 1− λ]1[|xi − gi|C ≤ 1− λ]

]

=
d∏

i=1

E
[
1[|gi|C ≤ 1− λ]1[|xi − gi|C ≤ 1− λ]

]
.

Now, as is easy to see from Figures 3 and 4,

f(x) := Pg∼Unif(T1)[|g|C ≤ 1− λ, |x− g|C ≤ 1− λ] =

{
1− 2λ when|x|C ≥ 2λ,

1− λ− |x|C/2 when|x|C ≤ 2λ.
(49)

Figure 3: In the case when x is far from the origin (i.e.,

not within distance 2λ), the antipodal arcs of length 2λ of

0 and x (colored in red) do not intersect. Thus, g should

be anywhere outside of the two segments of total length

4λ to satisfy |g|C ≤ 1− λ, |x− g|C ≤ 1− λ.

Figure 4: In the case when x is close to the origin (i.e.,

within distance 2λ), the antipodal arcs of length 2λ of

0 and x (colored in red) intersect. Thus, g should be

anywhere outside of the intersection of the two segments

of total length 2λ + |x|C to satisfy |g|C ≤ 1 − λ, |x −
g|C ≤ 1− λ.

Thus, σ ∗ σ(x) =
d∏

i=1

f(xi). It follows that

E[(σ ∗ σ(x))t] = E
[
(

d∏

i=1

f(xi))
t
]
= E[f(xi)

t]d

=

(∫ 1

0
f(x)t

)d

=
(
(1− 2λ)× (1− 2λ)t +

∫ 2λ

0
(1− λ− s/2)tds

)d

=
(
(1− 2λ)t+1 + 2

(1− λ)t+1 − (1− 2λ)t+1

(t+ 1)

)d

=
( 2

t+ 1
(1− λ)t+1 +

t− 1

t+ 1
(1− 2λ)t+1

)d
.
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A simple calculation shows that the last expression is p2t(1 + Θ(dλ3t2)). We expand the brackets

on the left-hand side as follows.

2

t+ 1
(1− λ)t+1 +

t− 1

t+ 1
(1− 2λ)t+1 =

t+1∑

i=0

(
t+ 1

i

)
1

t+ 1
(2(−λ)i + (t− 1)(−2λ)i) =

1− 2tλ+

(
2t

2

)
λ2 −

(
2t

3

)
λ3 +

2t(t− 1)

6
λ3 +

t∑

i=4

(
t+ 1

i

)(2(−λ)i + (t− 1)(−2λ)i

t+ 1

)
.

We claim that the last expression equals (1− λ)2t + 2t(t−1)
6 λ3(1 + o(1)). This is equivalent to

proving that

k∑

i=4

((
t+ 1

i

)(2(−λ)i + (t− 1)(−2λ)i

t+ 1

)
−
(
2t

i

)
(−λ)i

)
= o(t2λ3). (50)

We split the sum into two parts, i ≥ 4 log 1
λ and i < 4 log 1

λ .

Case 1) Large values of i. We have

∣∣∣∣∣
t∑

i≥4 log 1
λ

((
t+ 1

i

)(2(−λ)i + (t− 1)(−2λ)i

t+ 1

)
−
(
2t

i

)
(−λ)i

)∣∣∣∣∣

≤
t∑

i≥4 log 1
λ

∣∣∣∣∣

(
t+ 1

i

)(2(−λ)i + (t− 1)(−2λ)i

t+ 1

)∣∣∣∣∣+
∣∣∣∣∣

(
2t

i

)
(−λ)i

∣∣∣∣∣

≤ 2
∑

i≥4 log 1
λ

(3λt)i = O((3λt)4 log
1
λ ) = O(λ4) = o(λ3t2),

(51)

where we used the fact that λt = o(1).

Case 2) Small values of i. We bound the coefficient in front of (−λ)i as follows.

(
t+ 1

i

)
2 + 2i(t− 1)

t+ 1
−
(
2t

i

)

=
t(t− 1)(t− 2) · · · (t− i+ 2)(2i(t− 1) + 2)− 2t(2t− 1)(2t− 2) · · · (2t− i+ 1)

i!

=
2t(t− 1)(t− 2) · · · (t− i+ 2)

i!
+

2t(2t− 2)(2t− 4) · · · (2t− 2i+ 4)(2t− 2)− 2t(2t− 1)(2t− 2) · · · (2t− i+ 1)

i!

= O(ti−1)

− 2t(2t− 1)(2t− 2) · · · (2t− i+ 1)

i!

(
1− 2t(2t− 2)(2t− 4) · · · (2t− 2i+ 4)(2t− 2)

2t(2t− 1)(2t− 2) · · · (2t− i+ 1)

)
.

(52)
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Now, observe that

2t(2t− 2)(2t− 4) · · · (2t− 2i+ 4)(2t− 2)

2t(2t− 1)(2t− 2) · · · (2t− i+ 1)
≥
(2t− 2i

2t

)i
= (1− i/t)i ≥ 1− i2/t,

where we used that 4 ≤ i ≤ t and Bernoulli’s inequality. Furthermore,

2t(2t− 2)(2t− 4) · · · (2t− 2i+ 4)(2t− 2)

2t(2t− 1)(2t− 2) · · · (2t− i+ 1)
=

2t− 2

2t− 1

i−2∏

j=2

2t− 2j

2t− j − 1
< 1.

Hence, the desired sum is of order O(ti−1)−O
(
(2t)i

i!
i2

t

)
= O(ti−1). It follows that the sum in the

small i case is bounded by

4 log 1
λ∑

i=4

O(ti−1λi) = O(t3λ4) = o(t2λ3),

where again we used tλ = o(1).
Altogether, using that (1− 2λ)t ≥ 1− 2λt = Θ(1),

E[(σ ∗ σ(g))t] =
(
(1− λ)2t +Θ(t2λ3)

)d

=
(
(1− λ)2t(1 + Θ(t2λ3)

)d

= (1− λ)2dt(1 + Θ(t2λ3))d

= p2t(1 + Θ(dt2λ3)),

where again we used that t = o(λ−1), dt2λ3 = o(1) and (1− λ)d = p by definition.

Appendix E. Statistical Indistinguishability in the Lq Model: Theorem 9

Here, we prove Theorem 9. We first give the proof in the case q = o(d/ log d) and then explain the

necessary changes in the case q = Ω(d/ log d). The latter is technically much simpler and does not

use any ideas which do not appear in the case q = o(d/ log d).

E.1. The Proof for Small q

Further Notation. Throughout, we fix q ≥ 1, q = o(d log−1 d) and consider

RGG(n,Td,Unif, σq1/2, 1/2). For simplicity of notation, we denote τ q1/2 simply by τ and σq1/2 by

σ. Note that σ, when viewed as a single argument function, can be equivalently defined as the indi-

cator of BLq(Td),τ (0), where BLq(Td),τ (x) is the Lq ball of radius τ on Td centered at x. Under this

notation,

γ(g) = Ez

[(
σ(g − z)− 1

2

)(
σ(z)− 1

2

)]
= Ez[σ(g − z)σ(z)]− 1

4

=
∣∣BLq(Td),τ (g) ∩BLq(Td),τ (0)

∣∣− 1

4
.
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Proof Strategy. Our main goal will be to prove that

Eg∼Unif(Td)

[
|γ(g)|k

]1/k ≤ C
k√
dq
. (53)

for an absolute constant C. This is sufficient to conclude Theorem 9 for the following reason. Using

(12) and the fact Eg∼Unif(Td)[γ(g)] = 0,

KL
(
RGG(n,Td,Unif, σq1/2, 1/2)∥G(n, 1/2)

)
≤

n−1∑

k=0

log
(
Eg∼Unif(Td)[(1 + 4γ(g))k]

)

=
n−1∑

k=0

log
(
1 +

∑

t≥2

(
k

t

)
4tE[γ(g)t]

)

≤
n−1∑

k=0

k∑

t=2

(
k

t

)
4tE[γ(g)t]

≤
n−1∑

k=0

k∑

t=2

(
k

t

)
4tE[|γ(g)|t]

≤ n
n∑

k=0

(
n

k

)
4kE[|γ(g)|k]

≤ n
n∑

k=2

(ne
k

)k
4kCk kk

(dq)k/2

≤ n

n∑

k=2

(
4eCn√
dq

)k

= n×O

(
n2

dq

)
= O

(
n3

dq

)
= o(1).

(54)

We used the fact that dq = ω(n3) to conclude that there is exponential decay in

n∑

k=2

(
4eCn√
dq

)k

.

In light of Lemma 21, to prove (53), it is enough to show the following two statements:

1. Small Marginal Increments: ∥Diγ∥∞ = O( 1√
dq
) for all i.

2. Small Marginal Variances: ∥Vari[γ]∥∞ = O( 1
d2q

) for all i.
Due to symmetry, it is enough to prove the statements for d = i. In deriving those two quantities,

we will need the following anticoncentration result.

Anticoncentration of random Lq-distances. In Section I, we prove Corollary 8 and derive the

following bound by specializing to Xi = U q
i , where Ui ∼ Unif([0, 1]).

Lemma 38 For any interval [a, b], P

[ d−1∑

i=1

U q
i ∈ [a, b]

]
≤ exp(−Ω(d/q)) + (b− a)×

√
q/d.

A simple integration, in turn, gives the following statement.
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Lemma 39 Suppose that U1, U2, . . . , Ud−1
i.i.d.∼ Unif([0, 1]) and q = o(d/ log d). Let F be the

CDF of
∑d−1

i=1 U
q
i . Then, for ψ(ℓ) := F (τ q)− F (τ q − ℓq) = F ([τ q − ℓq, τ q]), we have

∫ 1

0
ψ(ℓ)dℓ = O

( 1√
dq

)
and

∫ 1

0
ψ(ℓ)2dℓ = O

(1
d

)
. (55)

E.1.1. MARGINAL INCREMENTS

For any fixed g−d,

Ddγ(g−d) = sup
gM
d

γ(g−d,g
M
d )− inf

gm
d

γ(g−d,g
m
d )

= sup
gM
d

∣∣BLq(Td),τ (g−d,g
M
d ) ∩BLq(Td),τ (0)

∣∣

− inf
gm
d

∣∣BLq(Td),τ (g−d,g
m
d ) ∩BLq(Td),τ (0)

∣∣

= |BLq(Td),τ (g−d, 0) ∩BLq(Td),τ (0)
∣∣−
∣∣BLq(Td),τ (g−d, 1) ∩BLq(Td),τ (0)

∣∣
≤ |BLq(Td),τ (g−d, 0)\BLq(Td),τ (g−d, 1)|
= |BLq(Td),τ (0)\BLq(Td),τ (0−d, 1)|.

(56)

Now, observe that a point (h1, h2, . . . , hd) is in BLq(Td),τ (0)\BLq(Td),τ (0−d, 1) if and only if

d−1∑

i=1

|hi|qC ≤ τ q − |hd|qC and

d−1∑

i=1

|hi|qC ≥ τ q − |1− hd|qC = τ q − (1− |hd|C)q.

Clearly, one needs to have |hd|C ∈ [0, 1/2] for this event to occur. Since each |hi|C is uniformly

distributed on [0, 1], we conclude that the probability of this event is

∫ 1/2

0
P

[
τ q − (1− ℓ)q ≤

d−1∑

i=1

|hi|qC ≤ τ q − ℓq

]
dℓ

≤
∫ 1

0
P

[
τ q − ℓq ≤

d−1∑

i=1

|hi|qC ≤ τ q

]
dℓ

=

∫ 1

0
F ([τ q − ℓq, τ q])dℓ =

∫ 1

0
ψ(ℓ)dℓ = O

(
1√
qd

)
.

(57)

E.1.2. MARGINAL VARIANCES

For the second moment, we will first rewrite γ. By definition,

γ(g) +
1

4
=

∫

B
Lq(Td),τ

(0)
1

[
z ∈ BLq(Td),τ (g)

]
dz

=

∫

B
Lq(Td),τ

(0)
1

[
d∑

i=1

|gi − zi|qC ≤ τ q

]
dz.

(58)
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Now, fix g−d and denote

κ(u) =

∫

B
Lq(Td),τ

(0)
1

[ d−1∑

i=1

|gi − zi|qC + |u− zd|qC ≤ τ q
]
dz.

VarU∼Unif(S1)[κ(U)] is exactly Vard[γ(g−d)]. By definition,

EU∼Unif(S1)[κ(U)] = EU

[∫

B
Lq(Td),τ

(0)
1[

d−1∑

i=1

|gi − zi|qC + |U − zi|qC ≤ τ q]dz

]

= EV

[∫

B
Lq(Td),τ

(0)
1[

d−1∑

i=1

|gi − zi|qC + |V |qC ≤ τ q]dz

]
:= E[ρ(V )],

where ρ is defined by the last equation, i.e.,

ρ(v) :=

∫

B
Lq(Td),τ

(0)
1

[ d−1∑

i=1

|gi − zi|qC + |v|qC ≤ τ q
]
dz.

On the other hand,

EU∼Unif(S1)[κ
2(U)]

= EU

[∫

B
Lq(Td),τ

(0)
1

[ d−1∑

i=1

|gi − z1i |qC + |U − z1i |qC ≤ τ q
]
dz1

×
∫

B
Lq(Td),τ

(0)
1

[ d−1∑

i=1

|gi − z2i |qC + |U − z2i |qC ≤ τ q
]
dz2

]

= EU

[∫

B
Lq(Td),τ

(0)
1

[ d−1∑

i=1

|gi − z1i |qC + |V |qC ≤ τ q
]
dz1

×
∫

B
Lq(Td),τ

(0)
1

[ d−1∑

i=1

|gi − z2i |qC + |V + z1i − z2i |qC ≤ τ q
]
dz2

]

= EV,R[ρ(V )ρ(V +R)],

where V = U − z1d ∼ Unif(S1) and R ∼ z1d − z2d and V,R are independent. It follows that

Var[κ] = EV,R[ρ(V )ρ(V +R)]−E[ρ(V )]2. (59)

Since ρ : S1 −→ [0, 1] is clearly L2-integrable, we can write its Fourier series. Furthermore, as

ρ(v) = ρ(−v) and ρ is real, we can write

ρ(v) = ρ̂(0) +
∑

k≥1

2ρ̂(k) cos(πkv).

In particular, we have EV∼Unif(S1)[ρ(V )] = ρ̂(0) and, using the convolution formula,
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EV,R[ρ(V )ρ(V +R)] = ρ̂(0)2 +
∑

k≥1

2ρ̂(k)2ER[cos(πkR)]. (60)

Putting all of this together, we have

Vard[γ(g−d)] =
∑

k≥1

2ρ̂(k)2ER[cos(πkR)] ≤
(∑

k≥1

2ρ̂(k)2
)
× sup

k≥1
ER[cos(πkR)]

= VarV∼Unif(S1)[ρ(V )]× sup
k≥1

ER[cos(πkR)].

(61)

We will now bound the variance of ρ and the cosine expectations separately. That is, we will show

VarV∼Unif(S1)[ρ(V )] = O

(
1

d

)
and sup

k≥1
ER[cos(πkR)] = O

(
1

qd

)
,

which is enough.

1) Variance of ρ.

Var[ρ] ≤ EV

[(
ρ(0)− ρ(V )

)2
]

= EV

[(∫

B
Lq(Td),τ

(0)
1

[ d−1∑

i=1

|gi − zi|qC ≤ τ q
]
dz−

− 1

[ d−1∑

i=1

|gi − zi|qC + |V |qC ≤ τ q
]
dz

)2]

= EV

[(∫

B
Lq(Td),τ

(0)
1

[ d−1∑

i=1

|gi − zi|qC ∈ [τ q, τ q − |V |qC ]
]
dz

)2]

≤ EV

[(∫

Td

1

[ d−1∑

i=1

|gi − zi|qC ∈ [τ q, τ q − |V |qC ]
]
dz

)2]
.

Since the integral is over the entire torus, the variables {|gi− zi|C}d−1
i=1 are iid uniformly distributed

over [0, 1], just like V. Therefore, the last expression equals

∫ 1

0
F ([τ q − ℓq, τ q])2dℓ = O

(
1

d

)
, (62)

where we used Lemma 39.

2) Cosine Expectation. We need to find

sup
k≥1

ER[cos(πkR)], R ∼ z1d − z2d, (63)
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where z1d, z
2
d are independent copies of the last coordinate of a uniformly random point in

BLq(Td),τ (0). First, we will make a few simple observations abound the density ofR. Let the density

of z1d be ν(x). Note that

ν(x) ∝ F (τ q − |x|qC)
since (z1, z2, . . . , zd−1, x) ∈ BLq(Td),τ (0) if and only if

d−1∑

i=1

|zi|qC ≤ τ q − xq,

but |z1|C , |z2|C , . . . , |zd−1|C are iid Unif([0, 1]) variables. In particular, this has the following im-

plications:

1. |x|C −→ ν(x) is positive and decreasing.

2. ν is even, i.e. ν(x) = ν(−x).
Now, R ∼ z1d − z2d ∼ z1d + z2d. Thus, if µ is the distribution of R, clearly µ = ν ∗ ν. In particular:

1. µ is even, i.e. µ(y) = µ(−y),
2. |y|C −→ µ(y) is decreasing.

(64)

The first fact is trivial. The second fact for y ∈ [0, 1] can be shown as follows. First, note that

ν ′(x) ≤ 0 for x ∈ [0, 1] as |x|C −→ ν(x) is decreasing and ν ′(x) = −ν ′(−x) since x is even.

Now,

µ′(y) = (ν ∗ ν)′(y) = (ν ′ ∗ ν)(y) =
∫ 1

−1
ν ′(x)ν(y − x)dx

=

∫ 1

0
ν ′(x)ν(y − x)dx+

∫ 0

−1
ν ′(x)ν(y − x)dx

=

∫ 1

0
ν ′(x)ν(y − x)dx+

∫ 1

0
ν ′(−x)ν(y + x)dx

=

∫ 1

0
ν ′(x)

(
ν(y − x)− ν(y + x)

)
dx.

We know that ν ′(x) ≤ 0 for x ∈ [0, 1]. On the other hand ν(y − x) ≥ ν(y + x) holds because

|z|C −→ ν(z) is decreasing and |y − x|C ≤ |y + x|C whenever x, y ∈ [0, 1]. To show the last part,

note that |y − x|C ∈ {y − x, x− y}, and |y + x|C ∈ {y + x, 2− y − x}. However,

1. y − x, x− y ≤ y + x whenever x, y ≥ 0.
2. y − x, x− y ≤ 2− y − x whenever x, y ≤ 1.

We split the rest of the proof into two claims.

Claim 40 supk≥1ER[cos(πkR)] ≤ 2TV
(
R,Unif([−1, 1])

)
.

Proof Let (R,U) be an optimal coupling of a Unif([−1, 1]) random variable U with R. Then,

E[cos(πkR)] =E[cos(πkR)− cos(πkU)] = E

[
1[U ̸= R]

(
cos(πkR)− cos(πkU)

)]

≤∥ cos(πkR)− cos(πkU)∥∞ ×E

[
1[U ̸= R]

]
≤ 2TV

(
R,Unif([−1, 1])

)
.

(65)
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Claim 41 TV
(
R,Unif([−1, 1])

)
= O(1/dq).

Proof We use properties of the aforementioned density µ. Let U ∼ Unif([−1, 1]).

TV(R,U) = sup
A

(
P[U ∈ A]−P[R ∈ A]

)

= sup
A

∫

A

(
1

2
− µ(u)

)
dy ≤ |A| ×

(
1

2
− inf

y
µ(y)

)
≤
(
1

2
− inf

y
µ(y)

)
.

(66)

Our last step will be to show that infy µ(y) =
1
2−O

(
1
dq

)
.As we know, ν(x) ∝ F (τ q−|x|qC) =

F (τ q)− ψ(|x|C) = C − ψ(|x|C), where

C = F (τ q) = P

[ d−1∑

i=1

U q
i ≤ τ q

]
≥ P

[ d∑

i=1

U q
i ≤ τ q

]
≥ 1

2
.

Thus,

µ(y) = (ν∗ν)(y) ∝
∫ 1

−1
F (τ q−|x|qC)F (τ q−|y−x|qC)dx =

∫ 1

−1
(C−ψ(|x|C))(C−ψ(|y−x|C))dx.

Now, we will find the normalizing constant in ∝ .

K = 2

∫ 1

−1

∫ 1

−1
(C − ψ(|x|C))(C − ψ(|y − x|C))dxdy = 2

(∫ 1

−1
(C − ψ(|x|C))dx

)2

= 2

(
2C −

∫ 1

−1
ψ(|x|C)dx

)2

= 2

(
4C2 − 4C

∫ 1

−1
ψ(|x|C)dx+

(∫ 1

−1
ψ(|x|C)dx

)2
)

= 8C2 − 8C

∫ 1

−1
ψ(|x|C)dx+O

(
1

dq

)
,

(67)
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where we used Theorem 39. Note thatK = Θ(1) since C ≥ 1/2 and
∫ 1
−1 ψ(|x|C)dx = O(

√
1
qd) =

o(1) by Theorem 39. However, we know that infy µ(y) = µ(1) by (64), so

µ(1) =
1

K

∫ 1

−1
(C − ψ(|x|C))(C − ψ(|1− x|C))dx

=
1

K

(
4C2 − 2C

(∫ 1

−1
ψ(|x|C)dx+

∫ 1

−1
ψ(|1− x|C)dx

)

+

∫ 1

−1
ψ(|x|C)dx×

∫ 1

−1
ψ(|1− x|C)dx

)

≥ 1

K

(
4C2 − 2C

(∫ 1

−1
ψ(|x|C)dx+

∫ 1

−1
ψ(|1− x|C)dx

))

=
1

K

(
4C2 − 4C

∫ 1

−1
ψ(|x|C)dx

)

=

K/2−O

(
1
dq

)

K
=

1

2
−O

(
1

dq

)
,

with which the desired bound on the cosine expectation follows.

E.2. The Proof for Large q

When q = Ω(d/ log d), we will follow a similar strategy as in the proof for the case of q =
o(d/ log d). Namely, our goal will be to prove that for any integer k,

Eg∼Unif(Td)[|γ(g)|k]1/k ≤ C(log d)C
k

d
. (68)

for some absolute constant C. Following the same steps as in (54), this will be enough to conclude

the second part of Theorem 9. Again, we will use the Bernstein-McDiarmid approach to bounding

the moments of of γ. Our goal, this time, is to show the following.

1. Small Marginal Increments: ∥Diγ∥∞ = Õ(1d) for all i.

2. Small Marginal Variances: ∥Vari[γ]∥∞ = Õ( 1
d3
) for all i.

We use the following anticoncentration results instead of Lemma 39. The rest of the proof is exactly

the same.

Lemma 42 Suppose that U1, U2, . . . , Ud−1
i.i.d.∼ Unif([0, 1]) and q = Ω(d/ log d). Let F be the

CDF of
∑d−1

i=1 U
q
i . Then, for ψ(ℓ) := F (τ q)− F (τ q − ℓq) = F ([τ q − ℓq, τ q]), we have

∫ 1

0
ψ(ℓ)dℓ = Õ

(
1

d

)
and

∫ 1

0
ψ(ℓ)2dℓ = Õ

(
1

d

)
. (69)

The proof of Lemma 42 is substantially different (and much simpler) than the proof of Lemma 39.

As we will need one of the ingredients in the next section as well, we present it in full detail here.

58



L∞ RANDOM GEOMETRIC GRAPHS

Lemma 43 Suppose that U1, U2, . . . , Ud−1 are iid Unif([0, 1]) random variables and q ≥ 1. Then,

for any interval [a, b],

P

[ d−1∑

i=1

U q
i ∈ [a, b]

]
≤ b(d−1)/q − a(d−1)/q.

Proof The main idea is to reduce the computation to a computation for q = ∞. Let W =

max(U1, . . . , Ud−1) and V1, V2, . . . , Vd−2
i.i.d.∼ Unif([0, 1]) be independent of W. Then,

∑d−1
i=1 U

q
i

has the same distribution as W q ×
(
1 +

∑d−2
j=1 V

q
j

)
. This follows simply by conditioning on the

maximal value w of U1, U2, . . . , Ud−1. Denote T = 1+
∑d−2

j=1 V
q
j and observe that T ≥ 1 a.s. This

implies that

P

[ d−1∑

i=1

U q
i ∈ [a, b]

]
= P

[
W q × T ∈ [a, b]

]
≤ sup

t≥1
P

[
W q × t ∈ [a, b]

]

= sup
t≥1

P

[(a
t

)1/q ≤W ≤
(b
t

)1/q
]
.

Now, since W is the maximum of d − 1 iid Unif([0, 1]) random variables, P[W ≤ x] = xd−1 for

any x ∈ [0, 1]. Thus, P

[(a
t

)1/q ≤ W ≤
(b
t

)1/q
]
=
(b
t

) d−1
q −

(a
t

) d−1
q ≤ b(d−1)/q − a(d−1)/q,

where we used t ≥ 1.

Now, we are ready to prove Lemma 42.

Proof [Proof of Lemma 42] Suppose that q ≥ d/(C ′ log d) for some absolute constantC ′.We begin

by proving the following two simple statements:

1. τ ≥ 1 − 1/d. Recall that τ is defined as the radius of a 1/2 volume ball in (Td, Lq). Let

U1, U2, . . . , Ud be iid Unif([0, 1]) random variables. So, 1/2 = P
[
τ ≥ ∥(U1, U2, . . . , Ud)∥q

]
.

However,

P
[
1− 1/d ≥ ∥(U1, U2, . . . , Ud)∥q

]

≤ P
[
1− 1/d ≥ ∥(U1, U2, . . . , Ud)∥∞

]
= (1− 1/d)d ≤ 1/e < 1/2,

which means that τ ≥ 1− 1/d.
2. τ q ≤ C ′′(log d) for some constant C ′′ depending solely on C ′. Observe that each variable U q

i

has expectation 1/(q + 1), variance lass than E[U2q
i ] = 1/(2q + 1) and is bounded between

0 and 1. Thus, by Lemma 20,

P

[ d∑

j=1

U q
j ≥ t+ d/(q + 1)

]
≤ exp

(
−min

{
Θ(t2/(d/q)),Θ(t)

})
.

In particular, this means that setting t = C ′′ ×max(1, d/q) ≤ C ′′ × C ′ × (log d) for large enough

C ′′, we obtain a tail bound less than 1/2. Thus, τ q ≤ C ′′ log d for some C ′′.
Now, we go back to proving Lemma 42. We begin with the first inequality.
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∫ 1

0
ψ(ℓ)dℓ =

∫ 1

0
P

[
τ q − ℓq ≤

d−1∑

i=1

Ud−1
i ≤ τ q

]
dℓ

=

∫ 1− (log d)3

d

0
P

[
τ q − ℓq ≤

d−1∑

i=1

Ud−1
i ≤ τ q

]
dℓ+

∫ 1

1− (log d)3

d

P

[
τ q − ℓq ≤

d−1∑

i=1

Ud−1
i ≤ τ q

]
dℓ

≤ P

[
τ q −

(
1− (log d)3

d

)q

≤
d−1∑

i=1

Ud−1
i ≤ τ q

]
+

(log d)3

d
.

All that is left to do is bound P

[
τ q −

(
1− (log d)3

d

)q

≤∑d−1
i=1 U

d−1
i ≤ τ q

]
. Using Lemma 43,

P

[
τ q −

(
1− (log d)3

d

)q

≤
d−1∑

i=1

Ud−1
i ≤ τ q

]

≤ (τ q)(d−1)/q −
(
τ q −

(
1− (log d)3

d

)q)(d−1)/q

= (τ q)(d−1)/q ×
[
1−

(
1−

(
1− (log d)3/d

τ

)q
)(d−1)/q]

.

(70)

Since τ ≥ 1− 1/d, it is the case that
1−(log d)3/d

τ ≤ 1− (log d)3/(2d). Thus,

(
1− (log d)3/d

τ

)q

≤
(
1−(log d)3/(2d)

)q

≤ exp

(
−(log d)3q/(2d)

)
≤ exp

(
−Θ((log d)2)

)
.

It follows that

(
1−

(
1− (log d)3/d

τ

)q
)(d−1)/q

≥
(
1− exp

(
−Θ((log d)2)

))(d−1)/q

≥
(
1− exp

(
−Θ((log d)2)

))C′(log d)

= 1− exp

(
−Θ((log d)2)

)
.

Therefore,

(τ q)(d−1)/q ×
[
1−

(
1−

(
1− (log d)3/d

τ

)q
)(d−1)/q]

≤ (C ′′(log d))C
′ log d × exp

(
−Θ((log d)2)

)
= exp

(
−Θ((log d)2)

)
= o(1/d).
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With this, the proof of the first inequality is completed. The second inequality follows directly as

∫ 1

0
ψ(ℓ)2dℓ =

∫ 1

0
P

[
τ q − ℓq ≤

d−1∑

i=1

Ud−1
i ≤ τ q

]2
dℓ

≤
∫ 1

0
P

[
τ q − ℓq ≤

d−1∑

i=1

Ud−1
i ≤ τ q

]
dℓ =

∫ 1

0
ψ(ℓ)dℓ.

Appendix F. Entropic Upper Bound in the Lq Model: Theorem 10

Theorem 44 (ε-Net Argument) There exists some constant C with the following property. Con-

sider a random geometric graph RGG(n,Ω,D, σ, p) over the metric space (Ω, µ), where 1/n ≤
p ≤ 1/2 and σ(x,y) = 1[µ(x,y) ≤ τ ] for some τ. Suppose, further, that (Ω, µ) has a finite ε-net

N (ε) which satisfies the following property. P
x,y

i.i.d.∼ D[µ(x,y) ∈ [τ − 2ε, τ + 2ε]] = o(n−2). If

|N (ε)| ≤ exp
(
Cnp log 1/p

)
, then

TV
(
RGG(n,Ω,D, σ, p),G(n, p)

)
= 1− o(1).

Proof First, we will show that there exists a graph distribution Q on support of size at most |N (ε)|n
such that

TV
(
RGG(n,Ω,D, σ, p),Q

)
= o(1).

Let π be the projection map form Ω to N (ε). Let D′ be the distribution over N (ε) defined by π ◦D.
Let p′ = P

x,y
i.i.d.∼ D′

[
µ(x,y) ≤ τ

]
. We will show that Q = RGG(n,N (ε),D′, σ, p′) satisfies the

desired property. Here, we think of N (ε) as a metric space with the induced metric µ.
First, Q has support of size at most |N (ε)|n as the n latent vectors in N (ε) uniquely determine

the corresponding geometric graph.

Second, we will form a coupling between RGG(n,Ω,D, σ, p) and RGG(n,N (ε),D′, σ, p′) as

follows. For latent vectors x1,x2, . . .xn ∈ Ω, let ggΩ(x
1,x2, . . . ,xn) be the corresponding graph

according to RGG(n,Ω,D, σ, p) and ggN (ε)(π(x
1), π(x2), . . . , π(xn)) be the corresponding graph

according RGG(n,N (ε),D′, σ, p′). By definition, when we take x1,x2, . . . ,xn i.i.d.∼ D, it is the

case that

ggΩ(π(x
1), π(x2), . . . , π(xn)) ∼ RGG(n,Ω,D, σ, p) and,

ggN (ε)(π(x
1), π(x2), . . . , π(xn)) ∼ RGG(n,N (ε),D′, σ, p′).

All that is left to show is that with probability 1−o(1) over x1,x2, . . . ,xn i.i.d.∼ D, it is the case that

ggΩ(π(x
1), π(x2), . . . , π(xn)) = ggN (ε)(π(x

1), π(x2), . . . , π(xn)).

Observe that whenever ggΩ(π(x
1), π(x2), . . . , π(xn)) ̸= ggN (ε)(π(x

1), π(x2), . . . , π(xn)),
there exist some i, j such that

1

[
µ(xi,xj) ≤ τ

]
̸= 1

[
µ(π(xi), π(xj)) ≤ τ

]
.
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However, by triangle inequality,

∣∣∣∣µ(xi,xj)− µ(π(xi), π(xj))

∣∣∣∣ ≤ µ(xi, π(xi)) + µ(xj , π(xj)) ≤ 2ε.

In particular, this means that µ(xi,xj) ∈ [τ − 2ε, τ + 2ε]. As this happens with probability o(n−2)
for a fixed pair i, j, the union bound implies that this happens with probability o(1) for some i, j,

which finishes the proof that TV
(
RGG(n,Ω,D, σ, p),Q

)
= o(1). Thus, it is enough to show that

TV
(
Q,G(n, p)

)
= 1− o(1) under the given conditions. This follows immediately from |N (ε)| ≤

exp
(
Cnp log 1/p

)
as shown in (Bangachev and Bresler, 2023, Theorem 7.5).

Theorem 10 now immediately follows from the following proposition.

Theorem 45 Consider any q ∈ [1,+∞) ∪ {∞}, d ≥ nδ, p ≥ n−1+ϵ. For ε = exp(−(log nd)4),
there exists an ε-net of (Td, Lq) of size exp(Θ̃(d)). Furthermore,

P
x,y

i.i.d.∼ Td
[∥x− y∥q ∈ [τ qp − 2ε, τ qp + 2ε] ≤ n−3.

Proof First, we will show the existence of a small ε net. Let k = ⌈d/ε⌉ be an integer and consider

the set N = {i/k ∈ T1 : 0 ≤ i ≤ 2k − 1}d ⊆ Td. This is a set of size (2k)d = exp(Θ̃(d)).
Furthermore, it is a ε-net for any Lq geometry for the following reason. Take x ∈ Td and let

u = (u1/k, u2/k, . . . , ud/k) be the projection of x to N . Then, for any q ∈ [1,+∞) ∪ {∞},

∥x− u∥q ≤ ∥x− u∥1 =
d∑

j=1

|xu − ui/k| ≤ d/k ≤ ε.

Now, we need to show that for each q, P
x,y

i.i.d.∼ Td
[∥x− y∥q ∈ [τ qp − 2ε, τ qp + 2ε] ≤ n−3 holds.

This is equivalent to showing that for U1, U2, . . . , Ud
i.i.d.∼ Unif([0, 1]), it is the case that

P

[
∥(U1, U2, . . . , Ud)∥q ∈ [τ qp − 2ε, τ qp + 2ε]

]
≤ n−3 or equivalently

P

[ d∑

j=1

Ud
j ∈ [(τ qp − 2ε)q, (τ qp + 2ε)q]

]
≤ n−3.

As in the proof of Lemma 42, clearly (τ qp ) ≥ 1 − (log 1/p)/d ≥ 1/2. Furthermore, note that

(τ qp )q ≤ d as ∥(U1, U2, . . . , Ud)∥qq ≤ d a.s. Now, we consider two cases:

Case 1) When q = o(d/(log d)). Note that

(τ qp + 2ε)q − (τ qp + 2ε)q = (τ qp )
q

(
(1 + 2ε/τpq )

q − (1− 2ε/τpq )
q

)
.

Using that q = o(d/ log d) = o(1/ε), (τ qp )q ≤ d, τ qp ≥ 1/2, the last expression is of orderO(dqε) =

o(n−3). By Lemma 38, P

[∑d
j=1 U

d
j ∈ [(τ qp − 2ε)q, (τ qp + 2ε)q]

]
= o(n−3), as desired.
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Case 2) When q = Ω(d/ log d). Using Lemma 43,

P

[ d∑

j=1

Ud
j ∈ [(τ qp − 2ε)q, (τ qp + 2ε)q]

]
≤
(
(τ qp + 2ε)q

)d/q

−
(
(τ qp − 2ε)q

)d/q

= ((τ qp )
q)d/q

((
1 + 2ε/τ qp

)d

−
(
1− 2ε/τ qp

)d
)

≤ dd/q ×O(dϵ) = exp(O((log d)2))× exp(−(log(nd))4) ≤ n−3.

Appendix G. Signed Counts in Lq Geometries

Our only rigorous progress towards signed subgraph tests in Lq geometries is the following.

Theorem 46 The signed 4-cycle test cannot distinguish between H0 : G(n, 1/2) and

H1 : RGG(n,T
d,Unif, σq1/2, 1/2) in the following regimes:

1. When q = o(d/ log d) and dq = ω(n2).
2. When q = Ω(d/ log d) and d = ω̃(n).

Proof The signed 4-cycle count corresponds to the second moment of γ :

EG∼RGG(n,Td,Unif,σq
1/2

,1/2)[SWC4(G)]

= EG∼RGG[(G12 − 1/2)(G23 − 1/2)(G34 − 1/2)(G41 − 1/2)]

= E
g1,g2,g3,g4

i.i.d.∼ Unif(Td)

[(
σ(g1 − g2)− 1/2

)(
σ(g2 − g3)− 1/2

)
×

×
(
σ(g3 − g4)− 1/2

)(
σ(g4 − g1)− 1/2

)]

= E
h,z1,z2

i.i.d.∼ Unif(Td)

[(
σ(z1)− 1/2

)(
σ(h− z1)− 1/2

)(
σ(z2)− 1/2

)(
σ(h− z2)− 1/2

)]

= E
[(
σ ∗ σ(h)− 1/4

)2]
,

as desired. We used the substitution z1 = g1 − g2, z2 = g1 − g4,h = g1 − g3. Recalling (53) and

(68), we conclude that the signed count is of order O(1/dq) in the regime q = o(d/ log d)) and of

order Õ(1/d2) in the regime q = Ω(d/ log d). However, Kn has Θ(n4) subgraphs isomorphic to

C4 and VarH∼G(n,1/2)[SCC4(H)] = Θ(n4) by (45). Therefore, a necessary condition for detection

via the signed 4-cycle test is n4EG∼RGG[SWC4(G)] = ω(
√
n4).

We believe that 1/dq and 1/d2 are the correct (up to log factors) orders of the signed 4-cycle

count in the two regimes. Note that when q = ∞, the signed 4-cycle count is indeed Θ(d−2) by

Corollary 27. Similarly, in L2 geometry (admittedly over a different latent space such as {±1}d,
but again with a hard threshold connection with density 1/2), the signed 4-cycle count is Θ̃(1/d)
(follows directly from (Bangachev and Bresler, 2023, Observation 2.12)). As this is the correct

behaviour at both ends, we believe that it is also correct for all q, which leads to the following

conjecture.
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Conjecture 47 The signed four-cycle test distinguishes w. h. p. between H0 : G(n, 1/2) and

H1 : RGG(n,T
d,Unif, σq1/2, 1/2) under (A) in the following regimes:

1. When q = o(d/ log d) and dq = õ(n2).
2. When q = Ω(d/ log d) and d = õ(n).

Similarly, we conjecture the performance of the signed-triangle statistic by extrapolating from

behaviour at q = 2 and q = ∞.

Conjecture 48 The signed triangle test distinguishes w. h. p. between H0 : G(n, 1/2) and

H1 : RGG(n,T
d,Unif, σq1/2, 1/2) under (A) in the following regimes:

1. When q = o(d/ log d) and dq3 = õ(n3).
2. When q = Ω(d/ log d) and d = õ(n3/4).

These conjectures can be summarized with the following diagram.

Figure 5: Visualizing Theorems 9 and 46 and Conjectures 47 and 48. I + III is the conjectured region in which the

signed triangle test solves (P1) for RGG(n,Td,Unif, σq
1/2, 1/2) with high probability. Region I + II is the conjectured

region in which the signed four-cycle test succeeds with high probability. In IV, it is information theoretically impossible

to solve (P1) with high probability. The last region is potentially suboptimal. Interestingly, if these conjectures are

correct, the signed 4-cycle statistic is always at least as good as the entropic upper bound Theorem 10 but this is not the

case for the signed 3-cycle statistic.

A Fourier-based Approach to Signed Cycle Counts. We end with a Fourier-based approach

to computing the signed cycle counts for RGG(n,Td,Unif, σqp, p) (which extends to any random

algebraic graph over Td or a discrete torus ).

We begin with some brief refresher on Fourier analysis over Td. Recall that we defined Td as

a product of d circles of circumference 2, or, equivalently, Td = Rd/ ∼, where x ∼ y if and

only if x − y ∈ 2Zd. Similarly to the Boolean case, we will use the fact that any L2-integrable

function f : Td −→ R can be uniquely written as f(x) =
∑

v∈Zd f̂(v) exp(iπ⟨v,x⟩). We make

the following simple well-known observation. If f satisfies f(x) = f(−x) for all x, then each

coefficient f̂(v) is real and, furthermore, f̂(v) = f̂(−v). Indeed, this follows by uniqueness as

∑

v

f̂(v) exp(−iπ⟨v,x⟩) = f(−x) = f(x) = f(x) =
∑

v

f̂(v) exp(iπ⟨v,x⟩)

=
∑

v

f̂(v) exp(−iπ⟨v,x⟩).
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Finally, recall that f̂(0) =
∫ d
T
f(x)dx. Now, σqp is clearly L2-integrable. Thus, for any signed

k-cycle weight,

EG∼RGG(n,Td,Unif,σq
p,p)

[
SWCk

(G)
]

= E
g1,g2,··· ,gk

i.i.d.∼ Unif(Td)

[
k∏

i=1

(σ(gi − gi+1)− p)

]

=

∫

(Td)k

k∏

i=1

∑

v∈Zd\0
σ̂(v) exp(iπ⟨v,gi − gi+1⟩)dg1dg2 · · ·gk,

=
∑

v1,v2,··· ,vk∈Zd\0

∫

(Td)k
σ̂(v1)σ̂(v1) · · · σ̂(vk) exp(−iπ

k∑

i=1

⟨vi,gi − gi+1⟩)

=
∑

v1,v2,··· ,vk∈Zd\0

∫

(Td)k
σ̂(v1)σ̂(v1) · · · σ̂(vk) exp(−iπ

k∑

i=1

⟨gi,vi − vi−1⟩)

=
∑

v∈Zd\0
σ̂(v)k,

(71)

where the last line follows from the simple observation that if vi ̸= vi−1 for some i, the integral

vanishes. It must be noted, however, that even if one manages to compute a signed cycle count,

there still remains the obstacle of computing its variance.

Appendix H. Random Algebraic Graphs Over the Hypercube: Theorem 12

H.1. Preliminaries

We begin with some preliminaries on Boolean Fourier analysis. Any function f : {±1}d −→ R

can be written uniquely as f(x) =
∑

S⊆[d] f̂(S)ωS(x), where ωS(x) :=
∏

i∈S xi is the Walsh

polynomial O’Donnell (2014). The influence Inf i[f ] of variable i is defined as

Inf i[f ] =
∑

i∈S
f̂(S)2 = Ex∼Unif({±1}d)

[
(f(x)− f(x⊕i))2/4

]
, (72)

where x⊕i is x with the i-th coordinate flipped. We denote
−→
Inf [f ] as the vector in Rd

≥0 with i′th

coordinate equal to Inf i[f ]. In particular, ∥−→Inf [f ]∥1 =
∑d

i=1 Inf i[f ] = Inf [f ], which is the

total influence, and ∥−→Inf [f ]∥∞ = MaxInf [f ], which is the max influence. Also, ∥−→Inf [f ]∥22 =∑
i Inf

2
i [f ], which is the quantity of interest in Theorem 12.

H.2. The Proof of Theorem 12

Throughout, we make the following assumption, without which the statement of Theorem 12 is

trivial (as it gives an upper bound of a total variation by a number larger than 1).

n∥−→Inf [σ]∥2
p(1− p)

= o(1) (73)
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Write σ in the standard Fourier basis as σ(g) = p +
∑

∅⊊S⊊[d] σ̂(S)ωS(g), where σ̂(∅) =

E[σ] = p. Then, γ(g) = σ ∗ σ(g)− p2 =
∑

∅⊊S⊆[d] σ̂(S)
2ωS(g). In particular, this means that for

any i ∈ [d], and h−i ∈ {±1}d−1, we have

γ(g)|g−i=h−i
=
∑

i ̸∈S
σ̂(S)2ωS(h−i) + gi

∑

i∈S
σ̂(S)2ωS\{i}(h−i).

It follows that

Diγ(h−i) = 2
∑

i∈S
σ̂(S)2ωS\{i}(h−i) ≤ 2

∑

i∈S
σ̂(S)2 = 2Inf i[σ]

and Vari[γ(h−i)] =

(
∑

i∈S σ̂(S)
2ωS\{i}(h−i)

)2

≤
(
∑

i∈S σ̂(S)
2

)2

= Inf2i [σ]. Therefore,

by Lemma 21,

∥γ∥k ≤ C

(
√
k

√√√√
d∑

i=1

Inf2i [σ] + k ×MaxInf [σ]

)
= C(

√
k × ∥−→Inf [σ]∥2 + k × ∥−→Inf [σ]∥∞.)

This implies

∥γ∥kk ≤ (2C)k
√
k
k∥−→Inf [σ]∥k2 + (2C)kkk∥−→Inf [σ]∥k∞.

Plugging this into (12) and using Eg[γ(g)] = 0, we obtain the following bound. The computa-

tion is analogous to (54).

KL
(
RAG(n, {±1}d, σ, p)∥G(n, p)

)
≤

n−1∑

k=0

log

(
Eg

[(
1 +

γ(g)

p(1− p)

)k])

≤
n−1∑

k=0

log

(
1 +

k∑

t=2

(
k

t

)
E[|γ|t]

pt(1− p)t

)

≤ n

n∑

k=2

(
n

k

)
E[|γ|k]

pk(1− p)k

≤ n
∑

k≥2

(
n

k

)
(2C)k

√
k
k ∥−→Inf [σ]∥k2
pk(1− p)k

+ n
∑

k≥2

(
n

k

)
(2C)kkk

∥−→Inf [σ]∥k∞
pk(1− p)k

.

We now handle the two sums separately. We will use the inequality
(
n
k

)
≤ (ne/k)k.

Sum depending on L2 norm.

n
∑

k≥2

(
n

k

)
(2C)k

√
k
k ∥−→Inf [σ]∥k2
pk(1− p)k

≤ n
∑

k≥2

(
2eCn∥−→Inf [σ]∥2√

kp(1− p)

)k

. (74)
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We will show exponential decay in the summands. That is, for all k ≥ 2,

(
2eCn∥−→Inf [σ]∥2√

kp(1− p)

)k

≥ 2

(
2eCn∥−→Inf [σ]∥2√
k + 1p(1− p)

)k+1

.

This is equivalent to
√
k + 1 ≥ C ′ n∥

−→
Inf [σ]∥2
p(1−p) for some absolute constant C ′. The latter inequality

clearly holds for all k ≥ 2 by (73). Since there is exponential decay, the term for k = 2 is dominant

and, thus, the entire expression is of order O

(
n3∥−→Inf [σ]∥22
p2(1−p)2

)
.

Sum depending on L∞ norm. Using the same reasoning, the expression can be bounded by

n
∑

k≥2

(
2eCn∥−→Inf [σ]∥∞

p(1− p)

)k

. (75)

Again, whenever
n∥−→Inf [σ]∥∞

p(1−p) = o(1), we have exponential decay. This, however, clearly is the case

by (73) as ∥−→Inf [σ]∥∞ ≤ ∥−→Inf [σ]∥2. Thus, the term for k = 2 is dominant, so the L∞ contribution

is bounded by O

(
n3∥−→Inf [σ]∥2∞
p2(1−p)2

)
. Combining with the L2 contribution, the statement follows as

∥−→Inf [σ]∥2∞ ≤ ∥−→Inf [σ]∥22.

H.3. Comparison of Theorem 12 with Bangachev and Bresler (2023)

In Bangachev and Bresler (2023), the authors prove the following theorem in the same setup.

Theorem 49 (Bangachev and Bresler (2023)) Consider a dimension d ∈ N, connection

σ : {±1}d −→ [0, 1] with expectation p, and absolute constant m ∈ N. There exists a constant Km

depending only on m, but not on σ, d, n, p, with the following property. Suppose that n ∈ N is such

that nKm < d. For 1 ≤ i ≤ d, let Bi = max
{
|σ̂(S)|

(
d
i

)1/2
: |S| = i

}
. Denote also

Cm =

d
2en∑

i=m+1

B2
i +

d−m−1∑

i=d− d
2en

B2
i and D =

∑

d
2en

≤j≤d− d
2en

B2
i .

If the following conditions additionally hold

• d ≥ Km × n×
(

Cm
p(1−p)

) 2
m+1

,

• d ≥ Km × n×
(

B2
u

p(1−p)

) 2
u

for all 2 ≤ u ≤ m,

• d ≥ Km × n×
(

B2
d−u

p(1−p)

) 2
u

for all 2 ≤ u ≤ m,
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then

TV
(
RAG(n, {±1}d, p, σ)∥G(n, p)

)2

≤ Km × n3

p2(1− p)2
×
(

m∑

i=1

B4
i

di
+

d∑

i=d−m

B4
i

di
+

C2
m

dm+1
+D2 × exp

(
− d

2en

))
.

We make several remarks on the comparison between those two theorems along several lines.

• Simplicity. Theorem 12 is much easier to apply than Theorem 49 and its proof is substantially

shorter and less involved. In addition, it gives a bound based on influences which are a much

more standard quantity in Boolean analysis than the values Bi, Cm, D in Theorem 49.

• Applicability. Furthermore, Theorem 12 can be applied in setting when d = o(n) as opposed

to Theorem 49. Thus, for example in Bangachev and Bresler (2023) prove the first part of

Corollary 13 only when d = Ω(n), that is r = O(
√
n).

• Sharpness. Still, in many cases Theorem 49 is much stronger. For example, consider the dou-

ble threshold connection σ(g) = 1
[
|∑d

i=1 gi| ≥ χd

]
,where χd is chosen so that E[σ] = 1/2.

Then, Theorem 49 implies that TV
(
RAG(n, {±1}d, σ, 1/2),G(n, 1/2)

)
= o(1) whenever

d = ω(n3/2) (Bangachev and Bresler, 2023, Corollary 4.10). However, Theorem 12 only

implies this for d = ω(n3). The reason Theorem 12 is much weaker in this setting is that the

expression
∑d

i=1 Inf
2
i [σ] puts a much larger weight on levels close to d. Indeed, note that

for S ⊂ [d], the Fourier coefficient σ̂(S) contributes to |S| of the terms Inf2i [σ], but it only

contributes once to the expression
∑d

i=d−m
B4

i

di
from Theorem 49.

Appendix I. Anticoncentration of Convolutions and the Proof of Lemma 39

Suppose that X is a real-valued random variable with density which is absolutely continuous with

respect to the Lebesgue density on R. Denote by M(X) ∈ R+ ∪ {+∞} the maximum value of the

density of X. We will use the following fact from Bobkov and Chistyakov (2014).13

Theorem 50 Suppose that Y1, Y2, . . . , Yd are independent real random variables with densities

absolutely continuous with respect to the Lebesgue measure. Then,

M−2(Y1 + Y2 + · · ·+ Yd) ≥
1

e

d∑

i=1

M−2(Yi).

In particular, when Y1, Y2, . . . , Yd are iid, this implies that M(Y1 + Y2 + · · · + Yd) ≤
√

e
dM(Y1).

As already mentioned in Section E, in the setup of Lemma 39, M(U q) = +∞ when q > 1 and,

thus, we need to generalize Theorem 50.

Lemma 51 Suppose that X is a real-valued random variable with the following property. There

exists another random variable Y such that

1. TV(X,Y ) = 1− p ∈ [0, 1), and

2. The density of Y is absolutely continuous with respect to the Lebesgue measure on R and

M(Y ) = m <∞.

13. The result in Bobkov and Chistyakov (2014) is more general and holds for random variables taking values in any Ra.
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Let d be an integer and letX1, X2, . . . , Xd be independent copies ofX. Then, there exists a random

variable Zd on R such that

1. TV(X1 +X2 + · · ·+Xd, Zd) ≤ exp(−dp/8), and

2. The density of Zd is absolutely continuous with respect to the Lebesgue measure on R and

M(Zd) ≤
√
2e m√

p3d
.

Proof We first introduce two notational conventions.

If (Di)
n
i=1 are probability distributions and p ∈ Rn

≥0 is a vector with weights with sum to 1, we

define the mixture
∑n

i=1 piDi as follows. First, one takes B ∈ [n] such that P[B = i] = pi. Then,

one draws Z ∼ DB independently from B.
If D,F are real-valued probability distributions, denote by D ∗ F the distribution of YD + YF ,

where YD, YF are independent and YD ∼ D, YF ∼ F .
We will use the following trivial identity.

(
n∑

i=1

piDi

)
∗
(

m∑

j=1

qjFj

)
=

∑

1≤i≤n,1≤j≤m

piqjDi ∗ Fj .

Now, we go back to Lemma 51. Consider such a random variableX and let Y be its correspond-

ing random variable from the statement of the lemma. Consider an optimal coupling (X ′, Y ′) of X
and Y such that X ′ = Y ′ with probability p. Denote by D ̸= the distribution of X ′|X ′ ̸= Y ′ and by

D= the distribution of X ′|X ′ = Y ′, which is the same as the distribution of Y ′|X ′ = Y ′. Since Y
is absolutely continuous with respect to the Lebesgue measure, so is Y ′|X ′ = Y ′. Furthermore, the

maximum value of the density of D= is at most mp−1 as m is the maximum value of the density of

Y and P[X ′ = Y ′] = p.
In particular, note that the distribution D of X is the mixture (1 − p)D ̸= + pD=, where D= is

absolutely continuous with respect to the Lebesgue measure and its density is bounded by mp−1.
Therefore, the distribution of X1 +X2 + · · ·+Xd is the mixture

d∑

k=0

(
d

k

)
pk(1− p)d−k(D=)

∗k ∗ (D ̸=)
∗(d−k)

=
∑

k<dp/2

(
d

k

)
pk(1− p)d−k(D=)

∗k ∗ (D ̸=)
∗(d−k)

+
∑

k≥dp/2

(
d

k

)
pk(1− p)d−k(D=)

∗k ∗ (D ̸=)
∗(d−k).

(76)

We now show the following two facts. First, the weight on summands k < dp/2 is at most

exp(−dp/8), which means that X1 + X2 + · · · + Xd is exp(−dp/8)-close to the mixture∑
k≥dp/2

(
d
k

)
pk(1− p)d−k(D=)

∗k ∗ (D ̸=)∗(d−k). On the other hand, the latter mixture is absolutely

continuous with respect to the Lebesgue measure and has density bounded by
√
2e m√

p3d
. We begin

with the first part.

Lemma 52
∑

k<dp/2

(
d

k

)
pk(1− p)d−k ≤ exp(−dp/8).
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Proof This is a trivial application of Chernoff bounds. Let V1, V2, . . . , Vd be iid Bern(p) random

variables. Then,

∑

k<dp/2

(
d

k

)
pk(1− p)d−k = P

[
d∑

i=1

Vi < dp(1− 1/2)

]
≤ exp(−dp/8).

Lemma 53 For each k ≥ dp, M

(
(D=)

∗k ∗ (D ̸=)∗(d−k)

)
≤

√
2e m√

dp3
.

Proof Note that the density of D= is at most mp−1 as discussed. Therefore, by Theorem 50, we

immediately obtain

M((D=)
∗k) ≤

√
e

k
mp−1 ≤

√
2e

dp
mp−1.

This is enough since M

(
(D=)

∗k ∗ (D ̸=)
∗(d−k)

)
≤M((D=)

∗k) ≤
√
2e

m√
dp3

.

Now let D< be an arbitrary random variable on R with maximal density at most
√
2e m

p
√
dp
. Consider

Z distributed according to

Z ∼


 ∑

k≥dp/2

(
d

k

)
pk(1− p)d−k


D< +

∑

k<dp/2

(
d

k

)
pk(1− p)d−k(D=)

∗k ∗ (D ̸=)
∗(d−k).

Lemma 52 implies TV(X1 +X2 + · · ·+Xd, Z) ≤ exp(−dp/8). Lemma 53 implies that M(Z) ≤√
2e m√

dp3
.

An immediate corollary of Lemma 51 is Lemma 8 which we use to prove Lemma 39.

Proof [Proof of Lemma 8] Let Ω = {x ≥ 0 : f(x) ≤ m}. Clearly,
∫
Ω f(x)dx = p. Let Y be the

real-valued random variable with density f(x) for x ∈ Ω and density equal tom on [−(1−p)/m, 0].
Then, the density of Y is bounded by m and TV(Y,X) = 1 − p (as the two densities agree on Ω
which has measure p). Now, we simply find the random variableZd given by Lemma 51 and observe

that for an optimal coupling of Zd, X1 +X2 + · · ·+Xd, we have

P
[
X1 +X2 + · · ·+Xd ∈ [a, b]

]

≤ P[X1 +X2 + · · ·+Xd ̸= Zd] +P[Zd ∈ [a, b]] ≤ exp(−dp/8) +M(Zd)(b− a),

from which the claim follows.

Proof [Proof of Lemma 38] We apply Corollary 8 as follows. Consider the random variable U q,
where U ∼ Unif([0, 1]). The CDF ϕ(x) of U q for x ∈ [0, 1] is

ϕ(x) = P[U q ≤ x] = P[U ≤ x1/q] = x1/q.
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Thus, the density h(x) of U q is h(x) = (x1/q)′ = 1
qx

1/q−1
1
[
x ∈ (0, 1]

]
. Now, observe that

h(x) ≤ 1
q (1/2)

1/q−1 ≤ 2
q for x ∈ [1/2, 1] and also

p := P
[
U q ∈ [1/2, 1]

]
= 1−P

[
U q ≤ 1/2

]
= 1− (1/2)1/q ≥ 1

2q
.

Thus, applying Corollary 8 with m = 1
q (1/2)

1/q−1 ≤ 2
q , p ≥ 1

2q gives the result.

Proof [Proof of Lemma 39] Using Lemma 38,

ψ(ℓ) = P
[
U q
1 + U q

2 + · · ·+ U q
d−1 ∈ [τ q, τ q − ℓq]

]
≤ exp(−Ω(d/q)) +O

(√
q

d
ℓq
)
.

Using that d/q = ω(log d) and integrating over [0, 1], we conclude

∫ 1

0
ψ(ℓ)dℓ = exp(−Ω(d/q)) +O

(√
q

d

∫ 1

0
ℓqdℓ

)

= exp(−Ω(d/q)) +O

(√
1

qd

)
= O

(√
1

qd

)
.

Similarly,

∫ 1

0
ψ2(ℓ)dℓ =

∫ 1

0

(
exp(−Ω(d/q)) +O

(√
q

d
ℓq
))2

dℓ

= O(exp(−Ω(d/q))) +O

(
q

d

∫ 1

0
ℓ2qdℓ

)
= O

(
1

d

)
.
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