
Proceedings of Machine Learning Research vol 196:1–39, 2024 37th Annual Conference on Learning Theory

Thresholds for Reconstruction of Random Hypergraphs

From Graph Projections

Guy Bresler GUY@MIT.EDU

EECS, MIT

Chenghao Guo CHENGHAO@MIT.EDU

EECS, MIT

Yury Polyanskiy YP@MIT.EDU

EECS, MIT

Editors: Shipra Agrawal and Aaron Roth

Abstract

The graph projection of a hypergraph is a simple graph with the same vertex set and with an edge

between each pair of vertices that appear in a hyperedge. We consider the problem of reconstructing

a random d-uniform hypergraph from its projection. Feasibility of this task depends on d and the

density of hyperedges in the random hypergraph. For d = 3 we precisely determine the threshold,

while for d � 4 we give bounds. All of our feasibility results are obtained by exhibiting an efficient

algorithm for reconstructing the original hypergraph, while infeasibility is information-theoretic.

Our results also apply to mildly inhomogeneous random hypergrahps, including hypergraph

stochastic block models (HSBM). A consequence of our results is an optimal HSBM recovery

algorithm, improving on Gaudio and Joshi (2023a).

Keywords: Hypergraph, Random Graph, Exact Recovery

1. Introduction

Graphs and hypergraphs are fundamental structures in diverse fields such as computer science,

mathematics, social science, and biology, supporting a wide range of theoretical and applied re-

search areas. Hypergraphs generalize graphs, with hyperedges consisting of subsets of the vertices.

Because interactions between entities often occur in groups, such as people dining together or items

added to an online shopping cart, many phenomena are best captured using hypergraphs. At the

same time, the vast majority of graph algorithms are designed for simple graphs, where edges con-

stitute a pairwise relationship.

Given a hypergraph H , one can construct a graph G by including an edge between each pair

of vertices that appear in some hyperedge in H . This corresponds to placing in G a clique on the

vertices appearing in each hyperedge of H . We say that G is the projection of H .

Projecting hypergraphs onto graphs and leveraging graph algorithms is a common strategy for

solving problems on hypergraphs. This approach has been pursued especially in the domain of com-

munity detection within the hypergraph stochastic block model, where algorithms aim to reconstruct

communities from similarity matrices, a form of pairwise hypergraph projection Kim et al. (2018);

Cole and Zhu (2020); Gaudio and Joshi (2023a). Similar methodologies also exist in hypergraph

matching, where the optimal soft matching can be obtained by considering pairwise interactions

Zass and Shashua (2008). More generally in graph data processing, projection of hypergraphs is

© 2024 G. Bresler, C. Guo & Y. Polyanskiy.

BRESLER GUO POLYANSKIY

used to improve storage efficiency and interpretability, or simply to allow use of existing data struc-

tures and algorithms.

There can be many different hypergraphs that project to a given graph G, and thus the projection

operation is often lossy. It is not at all clear when projecting a hypergraph and solving some problem

on the projected graph is optimal, and in general this depends both on the task and on the hypergraph.

One scenario in which projecting to a simple graph does not degrade performance, whatever the

task, is if it is possible to efficiently reconstruct the hypergraph from the projected graph. This

motivates the following basic question: under what conditions does projecting a hypergraph result

in information loss, and conversely, when can a hypergraph be recovered from its projection?

Beyond serving as a justifying principle for employing hypergraph-to-graph projections in al-

gorithm creation, the task of recovering hypergraphs from their graph projections arises naturally in

network analysis. The phenomenon of intrinsic hypergraphs appearing as projected graphs is com-

mon in real-world networks Zhou et al. (2006); Latapy et al. (2008); Williamson and Tec (2020);

Battiston et al. (2020). For instance, two scientists are listed as co-authors on Google Scholar be-

cause they collaborate on the same paper Newman (2004), two people send emails to each other

because they are working on the same project Klimt and Yang (2004). In such scenarios, direct

methods for detecting higher order interactions are often unavailable, which highlights the impor-

tance of hypergraph recovery.

Prior research on this problem has been focused on designing algorithms with good empirical

performance; none of the following works have theoretical guarantees. In Young et al. (2021); Li-

zotte et al. (2023), the authors assumed a prior distribution over hypergraphs, and try to sample from

the posterior to approximate the original hypergraph. The work Wang and Kleinberg (2022) aims

to recover a hypergraph from its graph projection, for a general distribution over initial hypergraph

given access to another hypergraph independently sampled from the same distribution. A scoring

method was then used to select hyperedges based on their similarity to the sampled hypergraph.

In this work we aim to provide a deeper understanding of the conditions under which hyper-

graphs can be recovered from graph projections. We study the problem of recovering a random

d-uniform hypergraph, where all hyperedges are of size d, from its graph projection. For d = 3
we determine a precise threshold in the hyperedge density at which recovery is feasible, and give

an efficient algorithm to do so when it is. For d � 4 we provide bounds on the hyperedge density.

Our analysis relies on analyzing the local structure of random hypergraphs, and in the process we

identify useful structural properties of random hypergraphs.

Our results hold also for mildly inhomogeneous random hypergrahps, where edge probabilities

may be non-uniform but are all within constant factors of one another. This includes the hyper-

graph stochastic block model (HSBM). The question of determining the information-theoretically

for HSBM, given the similarity matrix, was previously posed as an open problem in Gaudio and

Joshi (2023a). As a by-product of our results, we solve the open problem showing that the informa-

tion theoretic threshold of HSBM, given the similarity matrix, coincides with that of HSBM given

the original hypergraph.1 This is proven by a reduction that recovers the original hypergraph given

the similarity matrix.

1. One of the original motivations of the present paper was to disprove the claim that the two thresholds are different,

made in Gaudio and Joshi (2023b). Later versions Gaudio and Joshi (2023a) replace this with the statement that the

threshold for HSBM recovery from the similarity matrix is open.

2

RECONSTRUCTION OF RANDOM HYPERGRAPHS

1.1. Hypergraph Reconstruction Problem Formulation

Before describing our problem formulation we require a couple of definitions.

1.1.1. RANDOM HYPERGRAPHS

We define the following model of random hypergraphs, generalizing the Erdős-Rényi random graph.2

A random d-hypergraph H(n, d, p) = ([n], EH) is a d-uniform hypergraph where every size-d

hyperedge in
�[n]
d

�

is included in EH with probability p independently. We will use the parameteri-

zation

p = n�d+1+δ ,

so that the expected degree of each node is on the order nδ.3

1.1.2. GRAPH PROJECTION

Given a hypergraph H = ([n], E), we consider the projection Proj(H) which takes d-uniform hy-

peredges to ordinary (pairwise, undirected) edges by simply including an edge if both its endpoints

are in a hyperedge:

Proj(E) ,
�

(i, j) 2
�

[n]
2

�

: i, j 2 h for some h 2 E

.

Here we overload notation, using Proj both for projection of a set of hyperedges and for the pro-

jected graph. A random hypergraph H results in a random projected graph Gp = Proj(H) =
([n], Ep = Proj(EH)). For one hyperedge h, we use Proj(h) to denote Proj({h}). For a simple

graph G, we say a hypergraph in Proj�1(G) is a preimage or a clique cover of G. We will frequently

use the fact that projection commutes with union: Proj(C1 [C2) = Proj(C1) [Proj(C2).

Our goal is to recover the original hypergraph H from the projected graph Gp.

1.1.3. EXACT RECOVERY

We say that an algorithm A : {0, 1}(
[n]
2) ! {0, 1}(

[n]
d) mapping a projected graph Gp to a d-uniform

hypergraph can achieve (asymptotically) exact recovery if

IP
�

A(Proj(H)) = H
�

= 1� on(1) . (1)

Remark 1 We parameterize p = p(δ, d, n) = n�d+1+δ so that the expected degree of a node is

Θ(nδ). The problem of exact recovery is only interesting when 0 ÿ δ ÿ 1. When δ < 0, with high

probability Gp only consists of isolated d-cliques, so exact recovery is trivial. When δ > 1, with

high probability Gp is complete, so exact recovery is impossible.

2. This definition of random hypergraph is equivalent to the definition of random d-complex Toth et al. (2017) except

here we use the language of hypergraphs instead of simplicial complexes. The model considered in Young et al.

(2021) is an inhomogeneous generalization of our model where each hyperedge has a distinct probability of appear-

ing. Projection of random hypergraphs was also proposed as a way to simulate network data Williamson and Tec

(2020).

3. Constant factors do not affect any result of the paper. All of our results also holds with possibly different probabilities

of inclusion at different edges, as long as the probability is Θ(n�d+1+δ).

3

BRESLER GUO POLYANSKIY

Information-theoretic Versus Algorithmic Feasibility. The existence of an algorithm A satisfy-

ing (1) answers the question of whether the projection operator loses information. Exact recovery

is information theoretically possible for a certain δ if there exists an algorithm A that can do exact

recovery regardless of time complexity. When exact recovery is information theoretically possible,

we wish to find an efficient algorithm. Exact recovery is said to be efficiently achievable for a certain

δ if there exists a polynomial-time algorithm A that can achieve exact recovery.

1.2. Results

Before describing our results, it will be helpful to gain a qualitative understanding of how the den-

sity p = n�d+1+δ impacts the difficulty of exact recovery. The main intuition is that as we make

the hypergraph denser, recovery from the projected graph gets more difficult as projections of dif-

ferent hyperedges begin to overlap. The extreme case where the projected graph is complete was

mentioned in Remark 1. This intuition is formalized by the following lemma, which is proved in

Appendix F.1.

Lemma 2 (Monotonicity in δ) For any d � 4 and any 0 ÿ δ1 < δ2 ÿ 1, if exact recovery is

information theoretically possible (or efficiently achievable) when δ = δ2, then exact recovery is

also information theoretically possible (or efficiently achievable) for δ = δ1.

The lemma is proved via a simple reduction: given G = Proj(H) where H has density p(δ1, n, d),
we independently sample a random hypergraph H0 so that H [H0 has density p(δ2, n, d) and give

algorithm A (presumed to achieve exact recovery at δ1) the graph Proj(H)[Proj(H0) = Proj(H[
H0). We then remove the hyperedges in H0 from the output of A, and this succeeds as long as H
and H0 have no hyperedges in common. This latter property holds for d � 4, but not for d = 3.

It follows that for d � 4 there must exist a threshold δåd above which exact recovery is possible

and below which exact recovery is impossible. Formally, let

δåd , inf{δ : exact recovery is impossible at δ} .

We have the following corollary from the lemma above.

Corollary 3 (Threshold for Exact Recovery) For d � 4, exact recovery is information theoreti-

cally possible for any δ < δåd and impossible for any δ > δåd.

The statement of the corollary is also true for d = 3, but this requires a different argument. We

determine the location of the threshold when d = 3 and we also prove that exact recovery precisely

at the threshold is impossible.

Theorem 4 For d = 3, there is an efficient algorithm for exact recovery when δ < 2/5 and exact

recovery is information theoretically impossible when δ � 2/5.

For d � 4, as stated in the following two theorems, we demonstrate that the threshold δåd must

lie in a certain interval. Furthermore, we find an efficient algorithm (in fact, attaining the optimal

probability of reconstruction error) in the regime where we show that exact recovery is possible. It

is worth noting that our algorithm does not need to know p as an input parameter. The results are

summarized in Table 1.

4

RECONSTRUCTION OF RANDOM HYPERGRAPHS

Value of d Lower Bound for δåd Upper Bound for δåd
3 2/5 2/5
4 1/2 4/7
5 1/2 2/3

d � 6 d�3
d

d2�d�2
d2�d+2

Table 1: Bounds for hyperedge density threshold δåd.

Theorem 5 For d = 4, 5, there is an efficient algorithm for exact recovery when δ < 1/2 and exact

recovery is information theoretically impossible when δ � 2d�4
2d�1 .

Theorem 6 For d � 6, there is an efficient algorithm for exact recovery when δ < d�3
d and exact

recovery is information theoretically impossible when δ � d2�d�2
d2�d+2

.

For d = 4 and 5, we conjecture that the correct threshold is at 2d�4
2d�1 (note this is the case for d =

3). Our methodology enables proving the conjecture by verifying certain combinatorial properties

for finitely many graphs, a check that can be carried out with computer assistance. However, the

computation required is significant and we were unable to complete the computer verification. We

elaborate on this in Section 2.

1.2.1. APPLICATION TO HYPERGRAPH STOCHASTIC BLOCK MODEL

We now discuss the application of our results to the Hypergraph Stochastic Block Model (HSBM).

As we explain momentarily, a byproduct of our result is that community detection from the graph

projection of the HSBM is equivalent to community detection given the original HSBM hypergraph,

and this is also equivalent to doing so given the similarity matrix (defined below).

The model HSBM(d, n, q1, q2) describes a random d-uniform hypergraph on n vertices, param-

eterized by q1 and q2. A sample H is generated as follows. First an assignment of labels σ 2 {±1}n

for the vertices is sampled uniformly at random from all assignments with equal number of +1 and

�1 (n is assumed to be even). Conditional on σ, for each h 2
�[n]
d

�

, the hyperedge h = {i1, · · · , id}
is included in H independently with probability

IP(h 2 H) =

(

q1 if σi1 = σi2 = · · · = σid

q2 otherwise .

The probabilities q1 and q2 are parameterized as q1 = α log n/
�

n�1
d�1

�

and q2 = β log n/
�

n�1
d�1

�

.

In the community recovery problem, we are given a sample hypergraph H á HSBM(d, n, q1, q2)
and we want to recover the assignment for all vertices (up to global sign flip).

The similarity matrix W of a hypergraph H = ([n], E) is defined to be

Wij = |{h 2 E : i, j 2 h}| .

In Kim et al. (2018); Cole and Zhu (2020); Gaudio and Joshi (2023a), the similarity matrix of the

hypergraph is used as the algorithm input. A basic question is: does using the similarity matrix lose

performance as compared to using the original hypergraph? Our result shows that this is not the

case. Specifically, if there is an algorithm that recovers the assignment for some d,α and β with

5

BRESLER GUO POLYANSKIY

the hypergraph as input, then there exists an algorithm that recovers the assignment for the same

d,α and β with the similarity matrix as input. This yields an algorithm for exact recovery given the

similarity matrix that outperforms those in prior work.

Theorem 7 For any d,β and α, given the similarity matrix W of HSBM(d, n, q1, q2) where q1 =
α log n/

�

n�1
d�1

�

and q2 = β log n/
�

n�1
d�1

�

, we can exactly recover the hypergraph with high probabil-

ity.

Proof In the HSBM parameter regime, the edge density is Θ(n�d+1 log n), which is far below the

critical threshold n�d+1+δå
d and indeed also far below our lower bound on the critical threshold (i.e.,

our algorithms succeed in this range). Note that the HSBM may not appear to be within the setting

of this paper because:

1. The probability of having a hyperedge depends on the assignment of the nodes.

2. There is a constant that differs across hyperedges, as well as a log n factor, in front of the

probability.

However, all of our achievability results below the critical threshold p = n�d+1+δå
d only require an

upper bound on the hyperedge probabilities, regardless of whether the probability depends on spe-

cific edges. For instance, in the proof of Lemma 34, we only used the fact that p = On(n
�d+1+δ).

In the regime of HSBM both q1 and q2 are On(n
�d+1+δ), so the argument still holds. In this paper

we nevertheless use the parameterization p = n�d+1+δ for clarity of exposition.

1.3. Notation

We always use H for hypergraphs, h for hyperedges and E for a set of hyperedges. G stands for

a simple graph, e is used to denote an edge, and E denotes a set of edges. The size of a graph

(hypergraph) means the number of edges (hyperedges) in the graph (hypergraph). We often identify

a graph or hypergraph simply by its edge set, which causes no ambiguity in the case that every

vertex is in some edge (i.e., there are no isolated vertices).

All the probabilities IP are in the probability space defined by the random d-hypergraph H(n, d, p).
We denote by XH the random variable equal to the number of appearances of H as a sub-hypergraph

of H.

2. Main Ideas

As a warm up and to introduce some notation and ideas, we first describe a simple algorithm that

produces a hypergraph from a graph by including every possible hyperedge. This can result in a

hypergraph that has many more hyperedges than the maximum a posteriori (MAP) hypergraph,

and therefore has far lower posterior probability. Correspondingly, this simple algorithm succeeds

in a smaller range of edge densities than the MAP rule, however, this algorithm does turn out to

succeed in a nontrivial parameter range. We then describe our algorithm for constructing the MAP

hypergraph and the associated guarantees.

6

RECONSTRUCTION OF RANDOM HYPERGRAPHS

2.1. Maximum Clique Cover Algorithm

When the graph is so sparse that each hyperedge appears as an isolated clique, exact recovery is

easily achieved by creating a hypergraph with a hyperedge for every clique of the projected graph

Gp. This algorithm turns out to succeed far beyond the regime where hyperedges do not overlap.

Let the d-clique hypergraph Hc of the projected graph Gp = ([n], Ep) be the hypergraph Hc =
([n], Ec = Cli(Ep)) where

Cli(E) =
�

h 2
�[n]
d

�

: (i, j) 2 E for every {i, j} ã h

.

Denote by Ac the algorithm converting every size-d clique in Gp to a hyperedge in the output graph,

i.e., Ac(Gp) = Cli(Ep). We call this the maximum clique cover algorithm.

Algorithm 1 Maximum Clique Cover Algorithm Ac

1: Input: Gp = ([n], Ep)
2: Cli(Ep) ;
3: for all size d subsets of [n] do

4: If Ep has a clique on the subset, add the hyperedge on the subset to Cli(Ep)
5: end for

6: Output Cli(Ep)

Remark 8 Since we are enumerating all size-d subsets, the algorithm has time complexity nd. It

may be possible to improve this runtime by taking advantage of sparsity of the graph, using ideas in

Boix-Adsera et al. (2021).

For which parameters does this algorithm work? From the definition, Ac fails if and only if

there exists a clique in Gp that is not a hyperedge of H. If a d-clique h in Gp is not a hyperedge of

H, every edge in the clique is included in some other hyperedge h0 2 H. By carefully examining

the possible ways of inclusion for all edges, we can obtain a tight bound on the probability of the

event, yielding the following threshold.

Theorem 9 Ac exactly recovers H when δ < d�3
d and has Ωn(1) probability of failure when

δ � d�3
d .

This implies the positive recovery result in Theorem 6 for d � 6, which we believe to be suboptimal.

The proof of Theorem 9 is in Appendix E.

2.2. Greedy Algorithm

Another natural algorithm starts with the maximum clique cover algorithm and then greedily deletes

redundant hyperedges from the clique graph.

Heuristically this algorithm ought to work better than the maximum clique cover algorithm,

because it yields a graph with higher posterior probability. We leave it as an open question to

determine under which parameter regime this algorithm succeeds.

7

BRESLER GUO POLYANSKIY

Algorithm 2 Greedy Algorithm

1: Input: Gp = ([n], Ep)
2: Find the d-clique hypergraph H0 Cli(Ep)
3: while 9h 2 H0 that H0\h 2 Proj�1(EH) do

4: H0 H0\h
5: end while

6: Output H0

2.3. Information-Theoretically Optimal Algorithm: MAP

Although fully determining the landscape of exact recovery is non-trivial, the optimal algorithm

for the task is in fact not hard to describe. Given the projected graph Gp = Proj(H), the error

probability upon outputting A(Gp) is simply the complement of the probability that our guess was

the true hypergraph,

1� pH|Gp
(A(Gp)|Gp) .

Here pH|Gp
is the conditional probability mass function of the random hypergraph given the pro-

jected graph. Therefore, if we do not worry about time complexity, the information theoretically

optimal algorithm should simply output a hypergraph with maximum posterior likelihood, i.e., fol-

lowing the maximum a posteriori (MAP) rule. As discussed next, the MAP rule can be easily

characterized.

MAP Outputs a Minimum Preimage. Since the posterior distribution is

pH|Gp
(H|Gp) =

1{Proj(EH) = Ep}pH(EH)

pGp
(Ep)

/ 1{Proj(EH) = Ep}
� p

1� p

�|EH |
,

the optimal algorithm Aå should output one of the hypergraphs that project to Gp with the smallest

number of hyperedges, i.e.,

Aå(Gp) 2 argmin
H:EH2Proj�1(Ep)

|EH | .

We say a hypergraph H is a minimum preimage if H 2 argminEH2Proj�1(E) |EH |.

Since ties can be broken arbitrarily, we always assume that Aå chooses a specific minimum

preimage (for instance based on lexicographical order on the hyperedges) instead of choosing a

random one.

2.4. MAP is Efficient for Sparse Graphs

In general, the MAP algorithm involves solving for the minimum way to cover a graph with a

hypergraph, which can be intractable. In this section, we will provide an efficient algorithm for

computing the MAP rule if the hypergraph is sparse enough, of course also making use of the fact

that the hypergraph is random.

Theorem 10 When δ < d�1
d+1 , the optimal algorithm Aå is with high probability efficiently com-

putable (i.e., has runtime polynomial in n).

8

RECONSTRUCTION OF RANDOM HYPERGRAPHS

The underlying intuition is that when the hypergraph is sparse enough, we can partition the pro-

jected graph into constant-size components, where the minimum preimage of each component can

be solved for independently of the other components. However, a naive definition of connected com-

ponent is useless, as p is far above the connectivity threshold. We require a definition of component

better suited to our goal of finding the minimum preimage.

2-Neighborhood and 2-Connectivity. Define the 2-neighbor of a hyperedge h in a hypergraph

H to be all hyperedges h0 with |h \ h0| � 2, denoted by

NH(h) = {h0 : |h \ h0| � 2} .

Let GH be a graph whose node set is the set of hyperedges in H and the neighborhood structure is

defined by 2-neighbors. We say that a set of hyperedges in H is 2-connected if they are connected

in GH . A 2-connected component of the hypergraph H is a set of hyperedges that form a connected

component in GH .4 We will never need to refer to the graph GH and instead work directly with

2-connected sets of hyperedges in H .

2.4.1. DECOMPOSITION OF MAP ACROSS 2-CONNECTED COMPONENTS

The following lemma implies that the task of finding the minimum preimage decomposes and can

be carried out individually in each of the 2-connected components of hyperedges.

Recall that the clique hypergraph Hc (defined at the start of Section 2.1) of a graph G = (V,E)

has hyperedge set Cli(E) =
�

h 2
�[n]
d

�

: (i, j) 2 E for every {i, j} ã h

.

Lemma 11 Let C1, · · · , Cm be all 2-connected components (i.e., 2-connected subsets of hyper-

edges) of the clique hypergraph Hc of the projected graph Gp = ([n], Ep). We have

Proj�1(Gp) = {[mi=1Hi : Hi 2 Proj�1(Proj(Ci))}.

In words, any preimage of Gp is given by a union of hypergraphs, each from a preimage of the

projection of a 2-connected component of Hc.

The proof of the lemma is given in Appendix F.2.

What makes this decomposition so useful is that with high probability each of the components

is of constant size. This will allow us to carry out a brute-force search on each component.

Lemma 12 For any fixed δ < d�1
d+1 , with high probability, all 2-connected components of Hc have

size at most 1 + 2d+1/(d�1
d+1 � δ) = On(1).

We will refer to this threshold, d�1
d+1 , as the 2-connectivity threshold.

2.4.2. MAP ALGORITHM

We have the following efficient algorithm that (with high probability) implements the MAP rule Aå:

Proof [Proof of Theorem 10] From the previous section, we know that MAP returns an arbitrary

minimum preimage of the projected graph Gp. By Lemma 11, a minimum preimage of Gp is given

4. Here the definition is for hypergraphs and is different from the usual definition of 2-connectivity in a simple graph.

9

BRESLER GUO POLYANSKIY

Algorithm 3 Maximum a Posteriori (MAP) Aå

1: Input: Gp = ([n], Ep).
2: Calculate the clique graph Hc from Gp by finding all size-d cliques in Gp.

3: Enumerate over all pairs of vertices to determine 2-neighborhoods of all hyperedges in Hc.

4: Find all 2-connected components of Hc using depth first search on all hyperedges in Hc.

5: Search over all preimages in each 2-connected components of Hc and find one with minimum

size.

6: Output the union of minimum preimages of all 2-connected components in Hc.

by the union of minimum preimages of all 2-connected components in Hc. So Algorithnm 3 indeed

implements the MAP rule.

We now analyze the running time of the algorithm. Steps 2 and 4 take time at most On(n
d).

Step 3 takes time at most On(n
2). Step 5 takes time at most nd2k, where k is the size of the largest

2-connected component in Hc. By Lemma 12, k = On(1) with high probability, so overall the

algorithm finishes in time On(n
d) with high probability.

2.4.3. 2-CONNECTED COMPONENTS HAVE CONSTANT SIZE FOR SPARSE HYPERGRAPHS

In this section we give a proof sketch of Lemma 12 which states that Hc can be partitioned into

small 2-connected components for δ below d�1
d+1 . We give the full proof in Section B.

The lemma is proved by carefully examining how a set of 2-connected edges in Hc can grow

bigger. This is analogous to (but more delicate than) the analysis of components in subcritical Erdős-

Rényi graphs. We will show that any 2-connected component can be decomposed into a series of

“growth” steps starting from a single hyperedge. Each growth operation has a “probabilistic cost”

because it is a moderately low probability event, which reduces the number of such components.

Accounting for the possible growth patterns within 2-connected components in Hc shows that with

high probability no large components appear.

Now let us consider the possible ways to grow a sub-hypergraph K ã H via local exploration,

and try to understand why the probability of having the graph in Hc decreases with the growth.

Suppose K is a set of hyperedges, and Cli(Proj(K)) is 2-connected. For K to get larger, it must

include one of its 2-neighbors h 2 Hc. How did h appear in Hc? The somewhat delicate aspect

of this is that h may not be in H: h might exist in Hc because all edges in the clique Proj(h)
are covered by some other hyperedges E ã H. So to grow K, one option is to include all of E .

Because each hyperedge is included with fairly small probability, this reduces the expected number

of components of the given form, while the number of options in selecting E increases with the size

of E . The following lemma gives the expected number of appearances of a given sub-hypergraph K
in terms of the number of nodes and the number of hyperedges in the sub-hypergraph.

Lemma 13 Let XK be the number of appearances of a sub-hypergraph K in H. Denote by vK
and eK the number of nodes and hyperedges in K. For any hypergraph K,

IEXK = Θn(n
vKpeK) .

When we grow K, we increase both the number of nodes and the number of edges of the hypergraph.

With more nodes, the expectation increases (more possible choices) and with more hyperedges, the

10

RECONSTRUCTION OF RANDOM HYPERGRAPHS

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

Figure 1: A graph with non-unique minimum preimage in the case d = 3. The green hyperedges

are the two possible minimum preimages.

expectation decreases. The trade-off is controlled by how we choose E and the parameter δ. When

δ < d�1
d+1 , we will be able to show that no matter how E is chosen, the expectation always decreases

by a polynomial factor. Therefore, after a constant number of growth steps, the expectation becomes

negligible.

2.5. Ambiguous Graphs and Success Probability of MAP

In this section, we will see that when δ is below the 2-connectivity threshold d�1
d+1 , the success

probability of MAP is fully determined by graphs with non-unique minimum preimages, which we

call ambiguous graphs.

Definition 14 An ambiguous graph is a graph with at least two minimum hypergraph preimages.

As we will see, appearance or non-appearance of ambiguous graphs determines success of the

MAP rule.

2.5.1. IMPOSSIBILITY RESULT VIA EXISTENCE OF AMBIGUOUS GRAPHS

In the previous section, we showed that MAP is w.h.p. efficient whenever δ < d�1
d+1 . However,

even the optimal algorithm does not always succeed in this regime. Consider the graph depicted in

Figure 1. If Gp has a copy of this graph as a component, then there are two minimum preimages with

equal size, both with the same posterior probability. So no matter which one the MAP algorithm

outputs, it must incur at least 1/2 probability of error. This is formalized in the following lemma.

Lemma 15 For any ambiguous graph Ga and any recovery algorithm A, given input Gp =
Proj(H),

IP(A(Gp) 6= H) �
1

2
IP
�

Cli(Ga) is a 2-connected component of Hc

�

.

Proof By Lemma 11, a minimum preimage of Gp is given by the union of the minimum preimages

of every 2-connected component of Hc. Therefore, when Cli(Ga) is a 2-connected component of

Hc, the minimum preimage of Hc is not unique. So no matter which hypergraph Aå chooses, it has

at least 1/2 probability of making a mistake. In other words,

IP(A(Gp) 6= H|Cli(Ga) is a 2-connected component of Hc) � 1/2 .

11

BRESLER GUO POLYANSKIY

The lemma follows from Bayes rule.

It follows that to prove impossibility of (exact) recovery, we only need to find an ambiguous

graph that is a 2-connected component with probability Ωn(1). Let the ambiguity threshold, δad , be

the infimum of δ such that there exists an ambiguous graph appearing as a 2-connected component

with probability Ωn(1).

δad , inf{δ : 9Ga, IP(Cli(Ga) is a 2-connected component of Hc) = Ωn(1)} .

It then follows from Lemma 15 that exact recovery is impossible for any δ that is at least δad . In

other words, we have the following corollary.

Corollary 16 For any d, we have δåd ÿ δad .

This will allow us to prove the impossibility results in Theorem 4 and Theorem 5 showing that

δad , and hence also δåd, is at most 2d�4
2d�1 when d ÿ 5. The construction of the ambiguous graph will

be described in Section A. It will be a generalization of Figure 1 to general d.

This approach stops working for d � 6. In Section A, we will show that the regime of δ in

which such an ambiguous graph appears as a 2-connected component in H is between 2d�4
2d�1 and

the 2-connectivity threshold d�1
d+1 . When d � 6, 2d�4

2d�1 is above the 2-connectivity threshold and the

ambiguous graph typically overlaps with other hyperedges, i.e., it does not appear as a component.

In this case it is no longer clear that there are at least two equally likely preimages.

We next work towards understanding when a given sub-hypergraph will appear in H.

2.5.2. APPEARANCE OF SUB-HYPERGRAPHS IN RANDOM HYPERGRAPHS

We will need a lemma that determines the threshold density for a given graph to appear in the

random d-hypergraph, H(n, d, p). The graph version of the lemma was first proven in Bollobás

(1981) and simplified in Ruciński and Vince (1986). For random hypergraphs, the proof is similar

and we include it in Appendix F.3 for completeness.

Lemma 17 For a hypergraph K = (V, EK), define

m(K) = max
K0ãK

eK0

vK0

,

where eK0 and vK0 are the number of edges and the number of nodes of sub-hypergraph K. We

have

IP(K ã H) =

8

>

<

>

:

on(1) if p = on(n
�1/m(K))

1� on(1) if p = ωn(n
�1/m(K))

Ωn(1) if p = Θn(n
�1/m(K)).

2.5.3. RECONSTRUCTION RESULT BY NONEXISTENCE OF AMBIGUOUS GRAPHS

In this section we prove the following theorem.

Theorem 18 When d = 3 and δ < 2/5 or when d = 4, 5 and δ < 1/2, the MAP rule achieves

exact recovery and moreover it can be implemented efficiently.

12

RECONSTRUCTION OF RANDOM HYPERGRAPHS

δd�3
d

δåd = δad
d�1
d+1

0 1

Feasible Infeasible

MAP efficient

Figure 2: Relation between different thresholds. The maximum clique cover algorithm Ac succeeds

with high probability up to δ = d�3
d . The MAP algorithm is efficient up to d�1

d+1 and succeeds with

high probability up to threshold δåd. If δad < d�1
d+1 , then δåd is the same as the ambiguous threshold δad .

In the regime where δ < d�1
d+1 , which is the regime we care about when d ÿ 5, the converse

of Lemma 15 is also true. That is, if with high probability no ambiguous graph (i.e., with non-

unique minimum cover) appears in Gp as a 2-connected component, then MAP succeeds with high

probability.

Lemma 19 Assume δ < d�1
d+1 . If for all finite ambiguous graphs Ga,

IP
�

Cli(Ga) is a 2-connected component of Hc

�

= on(1) ,

then we have

IP(Aå(Gp) = H) � 1� on(1) .

The lemma is proved in Appendix F.4. Here we provide a sketch of the proof. If there is no

ambiguous graph in Gp, the projections of every 2-connected components have a unique minimum

preimage. As shown in Lemma 12, all 2-connected components are of constant size. Under this

condition, the minimum preimage of the 2-connected component is correct with probability 1 �
On(p), as any other preimage is On(p) times less likely in the posterior and there are only constant

number of possible preimages. The overall minimum preimage, as given by Aå, is then correct with

high probability by union bound over all 2-connected components.

Recall the definition of the ambiguous threshold, δad , Lemma 19 implies that the critical thresh-

old δåd is above δad if δad is below d�1
d+1 .

Corollary 20 For any d, if δad ÿ
d�1
d+1 , we have δåd � δad .

Combining this corollary with Corollary 16, we get that the ambiguous threshold δad fully deter-

mines the critical threshold δåd if δad is below d�1
d+1 .

Corollary 21 For any d = 3, 4, 5, we have δad ÿ
d�1
d+1 , and hence δåd = δad .

As long as we can check the condition in Lemma 19 for a specific δ, MAP is optimal. If δ < d�1
d+1 ,

then with high probability all 2-connected components have size bounded by (2d+1)/(d�1
d+1�δ), so

there are only finitely many graphs we need to check. This gives us the following computer assisted

method of proving that MAP works when δ is below a hypothesized threshold δ0:

1. Enumerate over all hypergraphs K with at most 1 + 2d+1/(d�1
d+1 � δ0) hyperedges.

2. Compute the probability that K ã H by Lemma 17 with p = n�d+1+δ0 .

13

BRESLER GUO POLYANSKIY

3. Enumerate all possible preimages of Proj(K) and see if Proj(K) is ambiguous.

4. If all graphs are either not ambiguous or have vanishing probability of occurring, the condition

in Lemma 19 is satisfied and MAP succeeds with high probability at δ = δ0.

Since IP(K ã H) monotonically increases with δ, we know the same condition holds for any

δ < δ0.

Although this approach can be carried out in principle, the number of hypergraphs with at most

1+2d+1/(d�1
d+1�δ0) hyperedges is a huge number and cannot be verified in reasonable time. Instead

of doing a brute force search, we will utilize the structure of how 2-connected components grow, as

discussed in Section 2.4.3, to reduce the runtime. The runtime of the search can be further reduced

by identifying properties of ambiguous graph and focusing on graphs with such properties.

With the computer search, we are able to prove the following lemma. The search algorithm will

be discussed in more detail in Section D.

Lemma 22 When d = 3 and δ < 2/5 or when d = 4, 5 and δ < 1/2, any ambiguous graph Ga

satisfies IP(Ga ã Gp) = on(1).

Combining this lemma and Lemma 19 completes the proof of Theorem 18.

2.6. Upper Bound on δåd for Large d and Proof of Theorem 6

We identify a sufficient condition for the (optimal) MAP rule to fail: Suppose there is a hyperedge h
in H where every pair of nodes in h is also included in other hyperedges in H. In this case the graph

H \ {h} has higher probability and has the same graph projection. Because the optimal algorithm

outputs a minimum preimage, it does not output the original hypergraph H: deleting h forms a

smaller preimage.

We formalize this sufficient condition and consider a hypergraph Kb with the following hyper-

edges:

• {v1, · · · , vd},

• {vi, vj , u
(1)
ij , u

(2)
ij , · · · , u

(d�2)
ij } for all {i, j} ã [d], where for each i and j the nodes u

(1)
ij , u

(2)
ij , · · · , u

(d�2)
ij

are arbitrary.

From the discussion above, we know that Aå will fail if Kb ã H, because the hyperedge

v1, · · · , vd can be removed from the output and increase the posterior probability. Therefore, we

have

IP(Aå(Gp) 6= H) � IP(Kb ã H) .

By Lemma 17, this occurs with probability Ωn(1) when p = Ωn(n
�1/m(Kb)). Since

m(Kb) =
eKb

vKb

=

�

d
2

�

+ 1

d+
�

d
2

�

(d� 2)
,

this is equivalent to

p = Ωn(n
�d d2�3d+4

d2�d+2) ,

or δ � d2�d�2
d2�d+2

. We have shown the following impossibility result:

Theorem 23 Exact recovery is information theoretically impossible when δ � d2�d�2
d2�d+2

.

14

RECONSTRUCTION OF RANDOM HYPERGRAPHS

Acknowledgments

This paper is supported in part by NSF Career award CCF-1940205, CCF-2131115, NSF TRIPODS

grant DMS-2022448 and the MIT-IBM Watson AI Lab.

References

Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,

Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: Structure and

dynamics. Physics Reports, 874:1–92, 2020.

Enric Boix-Adsera, Matthew Brennan, and Guy Bresler. The average-case complexity of counting

cliques in Erdős–Rényi hypergraphs. SIAM Journal on Computing, 2021.

Béla Bollobás. Threshold functions for small subgraphs. In Mathematical Proceedings of the Cam-

bridge Philosophical Society, volume 90, pages 197–206. Cambridge University Press, 1981.

Sam Cole and Yizhe Zhu. Exact recovery in the hypergraph stochastic block model: A spectral

algorithm. Linear Algebra and its Applications, 593:45–73, 2020.

Julia Gaudio and Nirmit Joshi. Community detection in the hypergraph SBM: Exact recovery given

the similarity matrix. In The Thirty Sixth Annual Conference on Learning Theory, pages 469–510.

PMLR, 2023a.

Julia Gaudio and Nirmit Joshi. Community detection in the hypergraph SBM: Optimal recovery

given the similarity matrix. arXiv preprint arXiv:2208.12227v1, 2023b.

Theodore E Harris. A lower bound for the critical probability in a certain percolation process. In

Mathematical Proceedings of the Cambridge Philosophical Society, volume 56, pages 13–20.

Cambridge University Press, 1960.

Chiheon Kim, Afonso S Bandeira, and Michel X Goemans. Stochastic block model for hypergraphs:

Statistical limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884,

2018.

Bryan Klimt and Yiming Yang. Introducing the enron corpus. In CEAS, volume 45, pages 92–96,

2004.

Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. Basic notions for the analysis of

large two-mode networks. Social networks, 30(1):31–48, 2008.

Simon Lizotte, Jean-Gabriel Young, and Antoine Allard. Hypergraph reconstruction from uncertain

pairwise observations. Scientific Reports, 13(1):21364, 2023.

Mark EJ Newman. Coauthorship networks and patterns of scientific collaboration. Proceedings of

the national academy of sciences, 101(suppl 1):5200–5205, 2004.

Andrzej Ruciński and Andrew Vince. Strongly balanced graphs and random graphs. Journal of

graph theory, 10(2):251–264, 1986.

15

BRESLER GUO POLYANSKIY

Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computational

geometry. CRC press, 2017.

Yanbang Wang and Jon Kleinberg. Supervised hypergraph reconstruction. arXiv preprint

arXiv:2211.13343, 2022.

Sinead A Williamson and Mauricio Tec. Random clique covers for graphs with local density and

global sparsity. In Uncertainty in Artificial Intelligence, pages 228–238. PMLR, 2020.

Jean-Gabriel Young, Giovanni Petri, and Tiago P Peixoto. Hypergraph reconstruction from network

data. Communications Physics, 4(1):135, 2021.

Ron Zass and Amnon Shashua. Probabilistic graph and hypergraph matching. In 2008 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,

classification, and embedding. Advances in neural information processing systems, 19, 2006.

16

	Introduction
	Hypergraph Reconstruction Problem Formulation
	Random hypergraphs
	Graph projection
	Exact Recovery

	Results
	Application to Hypergraph Stochastic Block Model

	Notation

	Main Ideas
	Maximum Clique Cover Algorithm
	Greedy Algorithm
	Information-Theoretically Optimal Algorithm: MAP
	MAP is Efficient for Sparse Graphs
	Decomposition of MAP Across 2-Connected Components
	MAP Algorithm
	2-Connected Components have Constant Size for Sparse Hypergraphs

	Ambiguous Graphs and Success Probability of MAP
	Impossibility Result via Existence of Ambiguous Graphs
	Appearance of Sub-hypergraphs in Random Hypergraphs
	Reconstruction Result by Nonexistence of Ambiguous Graphs

	Upper Bound on *d for Large d and Proof of Theorem 6

	Impossibility when d5 and 2d-42d-1
	Ambiguous Graph and Its Properties
	Ga,d Satisfies Three Desired Properties
	Proof of Theorem 25

	Threshold of Growth for 2-Connected Components
	Open Problems
	Computer-Assisted Proof of Small Subgraph Preimage Uniqueness
	Analysis of the Maximum Clique Cover Algorithm
	Deferred Proofs of Lemmas
	Proof of Lemma 2
	Proof of Lemma 11
	Proof of Lemma 17
	Proof of Lemma 19
	Proof of Lemma 29
	Proof of Lemma 30

