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A B S T R A C T

Facial attribute classification algorithms frequently manifest demographic biases by obtaining differential
performance across gender and racial groups. Existing bias mitigation techniques are mostly in-processing
techniques, i.e., implemented during the classifier’s training stage, that often lack generalizability, require
demographically annotated training sets, and exhibit a trade-off between fairness and classification accuracy.
In this paper, we propose a technique to mitigate bias at the test time i.e., during the deployment stage, by
harnessing prediction uncertainty and human–machine partnership. To this front, we propose to utilize those
lowest percentages of test data samples identified as outliers with high prediction uncertainty. These identified
uncertain samples at test-time are labeled by human analysts for decision rendering and for subsequently re-
training the deep neural network in a continual learning framework. With minimal human involvement and
through iterative refinement of the network with human guidance at test-time, we seek to enhance the accuracy
as well as the fairness of the already deployed facial attribute classification algorithms. Extensive experiments
are conducted on gender and smile attribute classification tasks using four publicly available datasets and
with gender and race as the protected attributes. The obtained outcomes consistently demonstrate improved
accuracy by up to 2% and 5% for the gender and smile attribute classification tasks, respectively, using our
proposed approaches. Further, the demographic bias was significantly reduced, outperforming the State-of-the-
Art (SOTA) bias mitigation and baseline techniques by up to 55% for both classification tasks. The demo shall
be released on https://github.com/hashtaglensman/HumanintheLoop.
1. Introduction

Automated facial analysis (FA) encompasses diverse applications,
anging from face detection to attribute classification, such as gender

and age prediction, and actual face recognition. These applications
play a prominent role in contemporary smartphones, law enforcement,
border control, and surveillance (Almadan, Krishnan, & Rattani, 2020;
Kiruthika & Masilamani, 2021; Krishnan, Neas, & Rattani, 2022; Levi
& Hassner, 2015; Masood, Gupta, Wajid, Gupta, & Ahmed, 2018;
Nadimpalli & Rattani, 2022; Rattani, Derakhshani, & Ross, 2019; Salim,
Sankaranarayanan, & Jayaraman, 2021; Siddiqui, Rattani, Ricanek, &
Hill, 2022; Villa et al., 2020; Zhang, Gao et al., 2017). Commercial en-
tities, including Amazon Rekognition (Rekognition, 2022), DeepVision
AI (Vision, 2022), FaceX (FaceX, 2022), and Microsoft Azure Cognitive
Services (Services, 2022), have released SDKs featuring automated FA.

✩ This document is the result of the research project partially funded by the National Science Foundation, United States.
∗ Corresponding author.
E-mail addresses: axupendrannair@shockers.wichita.edu (A.K.U. Nair), ajita.rattani@unt.edu (A. Rattani).
URLs: https://scholar.google.com/citations?user=z7GEbVwAAAAJ&hl=enn (A.K.U. Nair),

ttps://scholar.google.com/citations?user=9esyU2EAAAAJ&hl=en (A. Rattani).

Despite these advancements, recent research indicates pervasive
demographic biases in facial analysis technology, particularly across
demographic groups such as gender, race, and age groups (Abdurrahim,
Samad, & Huddin, 2018; Albiero et al., 2020; Best-Rowden & Jain,
2018; Buolamwini & Gebru, 2018; Chouldechova, 2017; Grother, Quinn,
& Phillips, 2011; Klare, Burge, Klontz, Bruegge, & Jain, 2012; Krishnan,
Almadan, & Rattani, 2020a, 2020b, 2021; Muthukumar, 2019; Raji &
Buolamwini, 2019; Vera-Rodríguez et al., 2019). Specifically, differen-
tial performance is obtained for women, dark-skinned people, and the
elderly. Fairness is the absence of prejudice or favoritism towards an in-
dividual or a group based on their inherent or acquired characteristics.
Thus, an unfair (biased) algorithm is one whose decisions are skewed
towards a particular group of people. The presence of demographic bias
in these systems has significant ramifications encompassing erroneous
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Fig. 1. Visualization of the domain shift challenge, where the model’s decision boundary (represented by the dotted line) fails to accurately classify data points from the target
domain (represented by red shapes) due to the divergence from the source domain (represented by blue shapes). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
i

identification and other discriminatory outcomes such as rejection
of applications from certain demographic groups in automated hir-
ing (Huang, Zhang, Mao, & Yao, 2023). This bias can emanate from
multiple origins, including training data annotation error during crowd-
sourcing (Klie, Webber, & Gurevych, 2023), biased (skewed) training
data distribution (Krishnan et al., 2020b) and algorithmic bias (Palma,
Kiani, & Lloyd, 2019) (Lingenfelter, Davis, & Hand, 2022). Bias in facial
analysis technology can also perpetuate and reinforce existing societal
biases and inequalities.

For addressing the challenges associated with bias in facial analysis
technology such as facial attribute classification, a flurry of research
includes the examination of the bias (Prabhu, Yap, Wang, & Whaley,
2019) in the dataset and algorithms and the development of bias
mitigation strategies. Specifically, debiasing techniques based on the
regularization strategies (Kamishima, Akaho, Asoh, & Sakuma, 2012;
Krishnan & Rattani, 2023), attention mechanism (Majumdar, Singh, &
Vatsa, 2021), adversarial debiasing (Chuang & Mroueh, 2021; Zhang,
Lemoine, & Mitchell, 2018), over-sampling the minority class using
Generative Adversarial Networks (GANs) (Ramaswamy, Kim, & Rus-
sakovsky, 2021), multi-task classification (Das, Dantcheva, & Brémond,
2018) and consistency regularization based technique (Krishnan &
Rattani, 2023) have been proposed for the bias mitigation of facial
attribute classifiers. Most of these aforementioned techniques are in-
processing techniques i.e., fairness-related penalties are introduced dur-
ing the training stage to obtain a fairer model. Thus, these mitigation
strategies are often offline processes.

The limitations of most of these in-processing bias mitigation tech-
niques include the need for a demographically annotated training set,
poor generalizability, and high computational complexity (Ramaswamy
et al., 2021; Zhang et al., 2018). Furthermore, the use of these mit-
igation strategies often introduces a trade-off between fairness and
classification accuracy (Zhang et al., 2018). This is also called Pare-to
inefficiency which implies that fairness is often obtained at the cost of
reduced overall classification accuracy (Berk, Heidari, Jabbari, Kearns,
& Roth, 2021; Chen, Zhang, Sarro, & Harman, 2022; Wick, Panda, &
Tristan, 2019).

It is also crucial to emphasize the intricate challenges inherent
in static deep neural network architectures. These challenges include
inherent biases, overfitting, and progressive performance degradation
primarily stemming from domain shift phenomena. Domain shift arises
when the test data distribution diverges significantly from the training
data distribution (Attenberg, Ipeirotis, & Provost, 2015; Reiter, 1977),
as depicted in Fig. 1.

Additionally, Attenberg et al. (2015) argued that offline models
might exhibit systematic misclassification errors for data representa-
tions not encompassed by the training set, termed “unknowns”, as
the trained model fails to generalize effectively to unseen data rep-
resentations. Consequently, the model assigns high confidence scores
to these erroneous predictions. Such data representations are termed
“unknown unknowns” (UUs) since the classification model remains
2 
oblivious of such errors (Han, Dong, & Demartini, 2021). These “un-
known unknowns” reside in the critical region, defined as the region
of the data distribution where test instances are misclassified with
high confidence by the model, constituting the predominant source of
predictive errors and classification fallibilities. We conjecture that the
phenomenon of domain shift, coupled with the errors engendered by data
representations extraneous to the training set, termed UUs exert a profound
impact on the systematic bias exhibited by the model.

Thus, effectively managing the aforementioned contributing fac-
tors and mitigating resulting demographic bias demands meticulous
scrutiny and the development of robust strategies that accommodate
the dynamic nature of the environment at the test time. Moreover,
in practical scenarios, it may not be feasible to retrain or fine-tune
the deployed model (Lohia et al., 2019; Wang et al., 2022). However,
limited research has been dedicated to bias mitigation for already
deployed models at the test time or during the deployment stage (Kong,
Yuan, Hao, & Henao, 2023; Marcinkevics, Ozkan, & Vogt, 2022).

This paper aims to propose strategies for demographic bias miti-
gation of facial attribute classifiers at test-time using uncertainty esti-
mation and human–machine partnership, using labeling and continual
learning framework as illustrated in Fig. 2. Notably, among facial
image-based visual attributes such as gender, ethnicity, and age, gender
stands out as an important demographic attribute. The automated
gender classification (Albiero, Zhang, King, & Bowyer, 2022; Krishnan
et al., 2020a; Tapia, Perez, & Bowyer, 2016) holds significant relevance
n various applications, including image retrieval, surveillance, and

human–computer interaction. Furthermore, smile attribute classifica-
tion (Becker, Kenrick, Neuberg, Blackwell, & Smith, 2007; Steephen,
Mehta, & Surampudi, 2017) is another dimension gaining importance
in facial analysis applications, contributing to emotion recognition and
enhancing user interaction (Bostan & Klinger, 2018; Demszky et al.,
2020). In this context, our study addresses the bias of facial image-
based gender and smile attribute classification tasks, with gender and
race as the protected attributes, at the test time as a case study.

1.1. Our contribution

In summary, the main contributions of this work are as follows:

• We explored five label-agnostic methods for uncertainty estima-
tion (quantification) of the samples at test-time for two different
facial attribute classification tasks i.e., facial image-based gender-
and smile classification.

• We evaluated the efficacy of decision rendering and continual
learning by annotating the test samples classified with high un-
certainty via a human–machine partnership in mitigating bias of
the face attribute classifier at the test time.

• Extensive evaluation of the proposed approaches in bias mitiga-
tion at test-time has been explored in the intra- and cross-data
evaluation for gender classification & smile attribute classifica-
tion. We utilized the FairFace (Kärkkäinen & Joo, 2021) for
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Fig. 2. Illustration of our proposed approach that uses human–machine partnership to mitigate bias of facial attribute inference/analysis at the test time. At each time stamp, any
test data samples classified with uncertainty as estimated by an uncertainty quantification technique will be referred to a human analyst for the label assignment, and decision
endering, and for iteratively fine-tuning the classifier by incorporating periodic labeling of outliers by the human analyst.
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training the gender classifier and the gender-balanced version
of CelebA (Liu, Luo, Wang, & Tang, 2015) for smile attribute
classifier.
Later, the gender classifier was evaluated across different folds of
FairFace, UTKFace (Zhang, Zhifei, Song, Yang and Qi, 2017), and
DiveFace (Morales, Fiérrez, Vera-Rodríguez, & Tolosana, 2021)
datasets. Similarly, the smile attribute classifier was evaluated on
the LFW (Huang, Ramesh, Berg, & Learned-Miller, 2007) dataset.
Evaluations were conducted across different gender-racial demo-
graphic groups such as Asian Males, Asian Females, White Males,
White Females, Indian Males and Indian Females, African Males,
and African Females.

• Cross-comparison with the state-of-the-art (SOTA) bias mitigation
techniques on facial attribute classifier was performed.

• Lastly, we performed a cause-and-effect analysis by using Grad-
CAM and combining GradCAM with Guided Backpropagation
(Gildenblat & contributors, 2021; Selvaraju et al., 2017). This al-
lowed us to gain a comprehensive understanding of the enhanced
details learned by the adaptive model through the proposed
human–machine partnership in the continual learning framework.

This paper is organized as follows: relevant related work on ex-
amining, and mitigating bias on face-based gender and smile attribute
classifiers, and prior work on human–machine partnership is discussed
in Section 2. Section 3 discusses the methods for uncertain data esti-
mation. Section 4 discusses the datasets used, implementation details,
and the evaluation metrics. Furthermore, the results and key findings
are discussed in Sections 5 and 6, respectively. Finally, the concluding
remarks and future work are discussed in Section 7.

2. Related work

In this section, we will discuss the related work on investigat-
ing and mitigating bias in facial attribute (gender & smile attribute)
classification algorithms, and the related work on human–machine
partnership.

On Examining & Mitigating Bias in Gender Classification: The
following foundational work has identified the systematic failings of
gender classification algorithms across gender and race (Barlas, Kyri-
akou, Guest, Kleanthous, & Otterbacher, 2020; Buolamwini & Gebru,
2018; Joo & Kärkkäinen, 2020; Krishnan et al., 2020b; Li & Xu, 2021;
Muthukumar, 2019).

Specifically, Buolamwini and Gebru (2018) evaluated the fairness of
ive COTS gender classifiers and suggested unequal accuracy for dark-
kinned people and women on the Pilot Parliaments Benchmark (PPB)
ataset. Muthukumar (2019) suggested that age, hair length, and facial
air likely cause the performance differential for women and dark-
kinned people when evaluated on the PPB dataset. Krishnan et al.

(2020b) evaluated the efficacy of different CNN architectures (ResNet-
50, Inception-V4, VGG-16/19, and VGGFace) in gender classification
3 
across gender-racial groups when evaluated on the UTKFace and Fair-
Face datasets, respectively. The authors suggested that architectural
differences impact unequal accuracy rates. The authors in Joo and
Kärkkäinen (2020) proposed an encoder–decoder network to synthesize
facial images with varying gender and race attributes to measure
counterfactual fairness in commercial computer vision classifiers. They
also reported skewed gender representations in online search services,
which may explain the biases in the models. Barlas et al. (2020)
discussed the issue of differential performance of computer vision
algorithms across gender and race. They found that the training data
often has too many images of people and situations that exhibited
social stereotypes contributing to biased performance. Li and Xu (2021)
proposed a new framework for discovering unknown biased attributes
of an image classifier without human conjecture. They introduced a
novel total-variation loss and orthogonalization penalty within this
framework to optimize a hyperplane in a generative model’s latent
space, representing the biased attribute. This approach aimed to assist
in the automatic discovery of biases that may not be apparent to
humans, reducing the need for extensive human effort in annotating
test images for bias analysis.

Multiple approaches have been proposed to mitigate the bias of
gender classification algorithms (Chiu, Chung, Chen, Shi, & Ho, 2023;
Das et al., 2018; Georgopoulos, Oldfield, Nicolaou, Panagakis, & Pantic,
2021; Krishnan & Rattani, 2023; Majumdar et al., 2021; Park, Hwang,
Kim, & Byun, 2021; Ramachandran & Rattani, 2023; Zhang et al.,
018). Ramachandran and Rattani (2023) introduced an approach
everaging generative views, structured learning, and evidential learn-
ng to improve fairness as well as classification accuracy of gender
lassifiers. Das et al. (2018) proposed a Multi-Task Convolution Neural

Network (MTCNN) to jointly classify gender, age, and ethnicity, as
well as to minimize the impact of protected attributes. The proposed
model was evaluated on UTKFace and BEFA datasets. Georgopoulos
et al. (2021) presented a style-based neural data augmentation frame-
work that enhances demographic diversity using a novel style transfer
method. To obtain the joint demographic attribute style, the authors
introduced a tensor-based mixing structure that captures multiplicative
interactions between attributes in a multilinear fashion to mitigate
demographic bias and improve fairness metrics. Park et al. (2021)
introduced a Fairness-aware Disentangling Variational Auto-Encoder
(FD-VAE) to combat bias by disentangling the influence of protected
ttributes while preserving features pertinent to the main classification
ask. Majumdar et al. (2021) proposed an Attention Aware Debiasing

(AAD) method utilizing an attention mechanism to learn unbiased
feature representations pertinent to the main classification task. Finally,
Krishnan and Rattani (2023) proposed a bias mitigation technique
based on consistency-based regularization utilizing image-level and
feature-level augmentation to alleviate bias of the gender classifier.
Zhang et al. (2018) proposed a method to reduce biases in machine
learning models by using adversarial learning techniques. They in-
troduced an adversarial debiasing framework that involves training a
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predictor model and an adversary model together. The goal is to ensure
airness in the predictor model’s predictions. They demonstrated the
ffectiveness of this approach on the UCI dataset.

n Examining & Mitigating Bias in Smile Attribute Classification:
he literature review in this domain has extensively explored the

nherent biases present in smile attribute classification algorithms. A
oteworthy observation, as reported by studies (Becker et al., 2007;
teephen et al., 2017), indicates that existing algorithms exhibit sys-
ematic failings, particularly in classifying smiles across genders. Stud-
es show that automated systems tend to judge women as happier than
en. Such systems are also better at detecting angry expressions on
en’s faces and happy expressions on women’s faces (Becker et al.,
007; Steephen et al., 2017).

In a related study, Denton, Hutchinson, Mitchell, and Gebru (2019)
nvestigated the impact of altering facial features for smile classifica-
ion. Their findings reveal that a smiling classifier trained on CelebA
ends to predict ‘‘smiling’’ faces more frequently when certain alter-
tions, such as beard removal or application of makeup and lipstick, are
ntroduced while keeping other aspects unchanged. This underscores
he presence of psychological biases, leading us to hypothesize the
xistence of systematic annotation bias in large, in-the-wild expression
atasets. We posit that this, coupled with data representation bias,
ignificantly contributes to the observed gender bias in trained models.

Furthermore, Wang et al. (2020) conducted an extensive study on
emographic bias mitigation for the smile attribute classifier. Their
tudy encompassed data balancing, fairness through blindness, and
airness through awareness. Their results demonstrated that fairness
hrough awareness obtained superior outcomes in mitigating bias, es-
ecially in the context of smile attribute classification using the CelebA
ataset.

uman–Machine Partnership and its Benefit: This review delves
nto the realm of human–machine collaboration across various do-
ains (Correia & Lécué, 2019; Han et al., 2021; Russakovsky, Li, &

Fei-Fei, 2015; Yao, Gall, Leistner, & Gool, 2012). Correia and Lécué
(2019) introduced a reinforcement learning-based human-in-the-loop
framework, enhancing machine-learning classification tasks by select-
ing pertinent features based on expert feedback. Russakovsky et al.
(2015) proposed a collaborative framework for object annotation, in-
corporating human–machine collaboration. This system aims to effi-
ciently and accurately localize objects in images by considering an-
notation constraints such as precision, utility, and human cost. Yao
et al. (2012) presented an incremental learning approach for refining
models for object detection. Additionally, Han et al. (2021) proposed
an iterative strategy leveraging human intelligence to identify and
retrain models on unknown unknowns, augmenting prediction accuracy
and facilitating effective classification confidence evaluation. These
advancements underscore the significance of human–machine part-
nerships in optimizing model performance and addressing evolving
challenges.

The ongoing discourse on the human–machine partnership paradigm
underscores the benefits inherent in integrating this approach within a
deep learning framework. Noteworthy advantages encompass enhanced
model accuracy, bolstered robustness, elevated user trust, and the fa-
cilitation of iterative learning. The infusion of human presence into the
loop contributes to the transparency of the system, rendering it compre-
hensible and interpretable for human operators. This symbiotic collabo-
ration between human agents and artificial intelligence (AI) establishes
a shared responsibility, thereby elucidating the decision-making pro-
cess. Additionally, the human–machine partnership paradigm adeptly
assimilates human judgment, aligning AI systems with human pref-
erences and expertise. This method reduces the burden of perfecting
algorithms, prioritizing collaboration and continuous improvement.
The iterative process, guided by human intelligence, enables adaptive
responses to dynamic environments and outlier samples, ultimately
leading to enhanced system performance (Amershi, Cakmak, Knox, &

Kulesza, 2014; Wang, 2019).

4 
3. Methods for uncertainty quantification

Uncertainty quantification pertains to the ability of a pre-trained
machine learning model to furnish probabilistic estimates regarding
its predictive confidence or uncertainty (Sensoy, Kaplan, & Kandemir,
2018). In contrast to exclusively generating deterministic predictions,
the model additionally provides a metric indicating the level of cer-
tainty associated with each prediction. The incorporation of uncertainty
quantification holds critical significance in the development of AI sys-
tems with robust assurance, ensuring a comprehensive understanding
of the model’s predictive reliability in various scenarios. This nuanced
approach to prediction enhances the model’s applicability in engineer-
ing contexts, where informed decision-making relies on a nuanced
comprehension of the model’s confidence in its predictions (Amini,
Schwarting, Soleimany, & Rus, 2020; Malmström, Skog, Axehill, &
Gustafsson, 2022).

Next, we will discuss some of the uncertainty estimation techniques
employed in this study for the detection of test samples classified with
high prediction uncertainty.

• Boundary Proximity Confidence-based Outlier Detection (BP-
COD): Boundary Proximity Confidence-based Outlier Detection
(BPCOD) (Monarch & Manning, 2021) is based on the underlying
assumption that the samples located in proximity to the decision
boundary are more likely to be misclassified. To quantify this
proximity, we measure the standard deviation (dev) of the dis-
tance unit between the feature embeddings of the test samples
and the averaged feature embeddings of the training data of each
class given as follows:

𝑑 𝑒𝑣 = 𝜎
(

𝑑
(

𝑓 (𝑥) , 𝛴 𝑓 (

𝑐1
))

, 𝑑 (

𝑓 (𝑥) , 𝛴 𝑓 (

𝑐2
))

,…
)

(1)

where 𝑓 (𝑥) is the feature embedding of the input test sample,
𝛴 𝑓 (

𝑐𝑛
)

is the averaged feature embedding of the training data
belonging to the class 𝑐𝑛, and 𝑑 is the distance between the two
feature embeddings, and 𝜎 is the standard deviation of all the
distances.
Additionally, we compute the ratio of confidence, i.e. the ratio
between the two most confident predictions as shown in Eq. (2),
which reflects the level of certainty in the predictions. Mathe-
matically, for an input 𝑥 with 𝑐 possible classes, the confidence
ratio (CR) is obtained as

𝐶 𝑅 =
𝑝 ̃𝑐
𝑝 ̃𝑐2 (2)

where, 𝑝𝑐 is the model prediction probability for class 𝑐, 𝑐 is the
class with maximum prediction probability (𝑐 = argmaxc pc), 𝑐2
is the class with second-highest prediction probability.
By combining these proximity and confidence measures as shown
in Eq. (3), the BPCOD method effectively identifies outliers that
are likely to be misclassified, thereby enhancing the robustness
of the classification process. Thus, the test data sample with a
standard deviation close to zero and a confidence ratio above a
threshold will be identified as an outlier. Therefore, we define
sample 𝑥 as uncertain if:
𝑢𝑛𝑐 𝑒𝑟𝑡𝑎𝑖𝑛 (𝑥) =

{

𝑇 𝑟𝑢𝑒, 𝑖𝑓 𝐶 𝑅 ≥ 𝜏1 & 𝑑 𝑒𝑣 ≤ 𝜏2
𝐹 𝑎𝑙 𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

(3)

where 𝜏1 and 𝜏2 are two predetermined thresholds.
• Ensemble-based Outlier Detection (EBOD):

EBOD (Ouyang, Song, Li, Sant, & Bauchy, 2021) strategically har-
nesses the knowledge and perspectives of multiple expert models
generated using pruning and quantization techniques (Kuzmin,
Nagel, van Baalen, Behboodi, & Blankevoort, 2023), which also
enhance their execution efficiency on resource-constrained de-
vices. The fundamental principle behind incorporating both the
pruned & quantized and the original model into an ensemble
lies in capitalizing on the diverse knowledge and perspectives
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offered by multiple models while concurrently mitigating com-
putational complexity and memory requirements. EBOD employs
a comparative approach, pitting the predictions of the primary
expert classifier against the fused output vector. This comparison,
as depicted in Eq. (4), enables the identification of uncertain data
points or outliers.
For an input 𝑥 belonging to a set of 𝑐 possible classes, let 𝑓 repre-
sent the primary expert classifier, 𝑓𝑖 denote the 𝑖th expert model,
and (𝑓𝑖)′′ be its pruned and quantized counterpart, respectively.
We define the uncertain input condition for 𝑥 as follows:

𝑢𝑛𝑐 𝑒𝑟𝑡𝑎𝑖𝑛 (𝑥)

=
{

𝑇 𝑟𝑢𝑒, 𝑖𝑓 𝑎𝑟𝑔 𝑚𝑎𝑥𝑐(𝑓 (𝑥)
)

≠ 𝑎𝑟𝑔 𝑚𝑎𝑥𝑐 (∑𝑛
𝑖=1(𝑓𝑖)

′′ (𝑥)
)

𝐹 𝑎𝑙 𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

(4)

where 𝑎𝑟𝑔 𝑚𝑎𝑥𝑐 𝑓 (𝑥) represents the class with the maximum
predicted probability according to the primary expert classifier
𝑓 evaluated on input 𝑥. The uncertain input condition is satisfied
if the class yielding the maximum prediction probability from the
primary expert classifier 𝑓 differs from the class corresponding to
the maximum of the summed prediction probabilities across the
pruned and quantized versions (𝑓𝑖)′′ of the ensemble of expert
models 𝑓𝑖, evaluated on the input 𝑥.
Thus, this synergistic collaboration culminates in an enhanced
outlier detection performance in a resource-constraint environ-
ment, demonstrating the effectiveness of EBOD in addressing the
challenges caused by limited computing resources.

• Dirichlet Uncertainty Estimation (DUE): This Dirichlet Uncer-
tainty Estimation (DUE) technique, as presented in Sensoy et al.
(2018), employs the Dirichlet distribution to quantify prediction
uncertainty within deep neural networks. This method treats
model predictions as subjective opinions by learning a function
that combines evidence from data through a deterministic neu-
ral network. The resulting predictor for multi-class classification
takes the form of another Dirichlet distribution, where the con-
tinuous output of the neural network determines the parameters.
The Dirichlet distribution is a multivariate generalization of the
beta distribution and is commonly used as a prior distribution in
Bayesian statistics for categorical data. It is a continuous probabil-
ity distribution defined on the simplex of K-dimensional vectors
whose components sum to 1. The Dirichlet distribution is param-
eterized by a vector of positive real numbers 𝛼 = 𝛼1, 𝛼2,… , 𝛼𝐾 ,
where each 𝛼𝑖 > 0 is called a concentration parameter. The
probability density function (PDF) of the Dirichlet distribution
with parameters 𝛼 is given by:

𝑓 (𝑥1, 𝑥2,… , 𝑥𝐾 | 𝛼1, 𝛼2,… , 𝛼𝐾 ) = 𝛤 (
∑

𝛼𝑖)∕(𝛱 𝛤 (𝛼𝑖)) ×𝛱 𝑥𝛼𝑖−1𝑖 }

(5)

where: 𝑥𝑖 ≥ 0 and ∑

𝑥𝑖 = 1, 𝛤 (𝑥) is the gamma function, The mean
and variance of the 𝑖𝑡ℎ component of the Dirichlet distribution are:

𝐸[𝑋𝑖] = 𝛼𝑖∕
∑

𝛼𝑗 (6)

𝑉 𝑎𝑟[𝑋𝑖] = (𝛼𝑖(
∑

𝛼𝑗 − 𝛼𝑖))∕((
∑

𝛼𝑗 )2 × (1 +
∑

𝛼𝑗 )) (7)

In contrast to standard softmax neural networks, Dirichlet-based
uncertainty model predict the parameters of a Dirichlet distribu-
tion, the natural prior for categorical distributions, based on input
𝑥(𝑖) (i.e., 𝑞(𝑖) = 𝐷 𝑖𝑟(𝛼𝑖), where 𝑓 (𝑥𝑖|𝜃) = 𝛼𝑖 ∈ 𝑅+

𝐶 ). Consequently,
the epistemic distribution 𝑞(𝑖) encapsulates uncertainty on 𝑥(𝑖),
signifying uncertainty on the categorical distribution prediction
𝑝(𝑖). During training, the model learns the Dirichlet distribution
parameters (𝛼), enabling the modeling of prediction distributions
for each class. In the evaluation phase, when confronted with
5 
new data samples, the model calculates predicted probabilities for
each class.
Mathematically, for input sample 𝑖 with 𝑐 possible classes, let
𝑓
(

𝑥𝑖|𝜃
)

is the output of the network of sample 𝑖, where 𝜃 is the
network parameters, and

𝛼𝑖 = 𝑓 (𝑥𝑖|𝜃) (8)

for 𝑖 = 1, . . . , K, where 𝐾 is the number of classes, and the
Dirichlet strength 𝑆 is given as,

𝑆 =
𝐾
∑

𝑖=1
𝛼𝑖 (9)

and, the uncertainty 𝑢 is given as,

𝑢 = 𝐾
𝑆

(10)

Therefore, we define 𝑥 as uncertain if:
𝑢𝑛𝑐 𝑒𝑟𝑡𝑎𝑖𝑛 (𝑥) =

{

𝑇 𝑟𝑢𝑒, 𝑖𝑓 𝑢 ≥ 𝜏
𝐹 𝑎𝑙 𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

(11)

where 𝜏 is the predetermined threshold.
• Entropy-based Uncertainty Estimation (EUE): The Entropy-

based Uncertainty Estimation (EUE) (Shannon, 1948) has utilized
Shannon’s entropy to measure the uncertainty of data samples
within a deep neural-network framework. By examining the out-
put probability distribution of the model for each sample, the
entropy of the distribution can be calculated. This involves em-
ploying the probabilities assigned to each class by the model as
an input to Shannon’s entropy formula. The entropy is determined
by taking the negative sum of the probability of each class mul-
tiplied by the logarithm of that probability. By computing the
entropy for each sample, a threshold can be established to identify
uncertain samples. Those samples whose entropy surpasses the
threshold are considered uncertain. Thus, the EUE method lever-
ages Shannon’s entropy as a measure of uncertainty to identify
and handle uncertain data samples in the deep neural network
framework. Mathematically, for an input 𝑥 with 𝑐 possible classes
and prediction probability 𝑝𝑐 for each class, the entropy is:
𝐻 (𝑥) = −

∑

𝑐 × 𝑝𝑐 × log 𝑝𝑐 (12)

where 𝑝𝑐 is the predicted probability for class 𝑐 and log is the
logarithm (typically base 2 or e). Higher entropy indicates higher
uncertainty in the predictions. Thus, we define 𝑥 as uncertain if:
𝑢𝑛𝑐 𝑒𝑟𝑡𝑎𝑖𝑛 (𝑥) =

{

𝑇 𝑟𝑢𝑒, 𝑖𝑓 𝐻 (𝑥) ≥ 𝜏
𝐹 𝑎𝑙 𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

(13)

where 𝜏 is a predetermined entropy threshold.
• Multiview Disagreement (MD): Multiview Disagreement (MD)

(Monarch & Manning, 2021) constitutes an alternative technique
employed to estimate uncertainty in deep neural networks (DNN).
This approach for outlier identification entails an examination of
the prediction of multiple views of the same test sample. These
views are generated by applying diverse transformations, such as
rotations or translations, to the input data.
Consequently, each view obtains a distinct prediction for a given
input sample. If there exists a disagreement between the predic-
tions across different views, then the prediction is deemed uncer-
tain. Thus, the MD method leverages the concept of multi-view
disagreement to provide a measure of uncertainty within DNN
models, thereby facilitating a more comprehensive understanding
of the model’s confidence in its prediction.
Mathematically, for an input 𝑥 with 𝑐 possible classes, with 𝑥1 and
𝑥2 as the two views of the same input sample, then we define the
prediction on 𝑥 as uncertain if:
𝑢𝑛𝑐 𝑒𝑟𝑡𝑎𝑖𝑛 (𝑥) =

{

𝑇 𝑟𝑢𝑒, 𝑖𝑓 𝑓 (

𝑥1
)

≠ 𝑓
(

𝑥2
)

𝐹 𝑎𝑙 𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

(14)

where 𝑓
(

𝑥1
)

and 𝑓
(

𝑥2
)

are the predictions on 𝑥1 and 𝑥2, respec-
tively, obtained by the model 𝑓 .
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verview of the classification tasks studied and the datasets used.
Task Training dataset Test dataset

Gender
classification

FairFace (Kärkkäinen &
Joo, 2021)

FairFace, UTKFace (Zhang,
Zhifei et al., 2017)
DiveFace (Morales et al.,
2021)

Smile attribute
classification

CelebA (Liu et al., 2015) LFW (Huang et al., 2007)

Fig. 3. Sample face images from FairFace training set.

. Experimental setup

In this section, we will discuss the datasets used and the details of
odel training.

.1. Dataset

As illustrated in Table 1, we employed the gender- and race-
alanced FairFace facial attribute dataset for training the gender clas-
ifier, and a gender-balanced subset of the large-scale face attribute
ataset, CelebFaces Attributes Dataset (CelebA), for training the smiling
ttribute classifier. The trained gender classifier was subsequently eval-
ated on the holdout subsets of the FairFace, UTKFace, and DiveFace
atasets. The trained smiling attribute classifier was evaluated on the
oldout subset of the Labeled Faces in the Wild (LFW) dataset. We did
ot evaluate the smiling attribute classifier on the CelebA test set across
ender and race attributes, as these annotations are not available for
elebA. The images in all the used datasets exhibit variations in age,
ender, pose, illumination conditions, and facial expressions. A detailed
iscussion of these datasets is provided as follows:
FairFace: The Fairface dataset (Kärkkäinen & Joo, 2021) consists

f 108,501 images, with an emphasis on balanced race composition in
he dataset. The dataset is labeled with the seven-race groups, namely

hite, Black, Indian, East Asian, Southeast Asian, Middle Eastern, and
atino Hispanic across male and female and age groups ranging from
–9, 10–19, 20–29, 30–39, 40–49 and 50+. The training portion of
he FairFace dataset consists of 47% females and 53% males. Table 2
howed the training distribution and Fig. 3 showed few training sam-
les used in the work. For the gender classification task in this study,
e used the training partition of the dataset for training the models,
nd the test partition for evaluating their performance.
UTKFace: The UTKFace dataset (Zhang, Zhifei et al., 2017) is a

acial image dataset with a long age span (ranging from 0 to 116 years
ld). It contains over 20,000 face images annotated with age, gender,
nd ethnicity, namely White, Black, Asian, Indian, and Others (which
nclude Hispanic, Latino, and Middle Eastern) with significant varia-
ions across pose, expression, illumination, occlusion, and resolution.
ue to the vagueness of the “Other” category, we excluded it from

his study. We used 25% of the entire dataset with an equal number
f female and male images across different races as our test set.
DiveFace: The DiveFace dataset (Morales et al., 2021) is a facial

image dataset and contains a total of 139,677 images. It contains
gender and race annotations equally distributed to three ethnic groups
(namely East Asian, Sub-Saharan and South Indian, and Caucasian). We
used 25% of the entire dataset with an equal number of female and
male images across races as our test set.
6 
Fig. 4. Sample face images from CelebA training set.

CelebA: The CelebFaces Attributes Dataset (CelebA) (Liu et al.,
2015) is a large-scale face attributes dataset with more than 200K
celebrity images, each with 40 attribute annotations. The images in this
dataset cover large pose variations and background clutter. CelebA has
a large demographic diversity, large sample size, and rich annotation.
We used a gender-balanced subset of the CelebA dataset to train the
smile attribute classifier. Table 3 showed the training set distribution
and Fig. 4 showed a few training samples used in the work for smile
classification.

LFW: The Labeled Faces in the Wild (LFW) (Huang et al., 2007)
dataset is a widely used benchmark dataset for face analysis tasks
in computer vision research. The original LFW dataset contains over
13,000 labeled images of faces collected from the internet, representing
a diverse range of individuals, poses, and lighting conditions. The
images are mostly unconstrained, captured in real-world settings, and
include variations in facial expressions, illumination, and pose. We
used the deep funneled version of the LFW dataset (Huang, Mattar,
Lee, & Learned-Miller, 2012) which is a preprocessed version of the
original LFW dataset as the test set. The deep funneled version applied a
series of geometric and photometric corrections to the original images,
including aligning the faces based on facial landmarks and normalizing
the illumination conditions. This preprocessing step aims to reduce
ariations in pose, expression, and lighting. We used a holdout subset
ith an equal proportion of smiling and non-smiling faces with almost
qual proportions across genders and races.

.2. Implementation details

We implemented deep-learning models for two facial-attribute clas-
ification tasks i.e., gender classification, and smile attribute classifica-
ion discussed as follows.

.2.1. Model training
ResNet18 (He, Zhang, Ren, & Sun, 2016) architecture and the Vision

ransformer, i.e.,ViT-B/32 (Dosovitskiy et al., 2021) architecture, using
n input size of 224 × 224, a patch size of 32 × 32, and pre-trained
n ImageNet, were employed for experimentation and validation of
he proposed mitigation techniques on two classification tasks. To
his Baseline architectures based on the ResNet18/ViT backbone, a

penultimate layer with 1000 nodes is added for capturing image sample
feature embeddings, followed by the output binary classification layer
as shown in Fig. 5.

This model was trained on FairFace for gender classification and
CelebA for smile attribute classification, utilizing binary cross-entropy
loss as defined in Eq. (15). The presented findings primarily focused
on utilizing the ResNet18 architecture for gender and smile attribute
classification tasks. Similar trends and behaviors were observed for
the ViT-B/32 architecture, and for the sake of brevity, these results
have been included in the supplementary materials (refer Tables 27–
44). These models were also trained to optimize the classification loss
which is a cross-entropy loss. To mitigate the challenge of catastrophic
forgetting (French, 1999; McCloskey & Cohen, 1989; Ratcliff, 1990)
during continuous model retraining, we have incorporated a prior
preservation loss into the process. The prior preservation loss consti-
tutes the classification loss derived from a random subset of the original
training data, as illustrated in Fig. 6 as 𝑙𝑝𝑟𝑖𝑜𝑟.
𝑙𝐵 𝐶 𝐸 = −( 𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝) ) (15)
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ender attribute classifier: FairFace training dataset distribution used in our study.

White Black East Asian Indian Middle Eastern Latino Hispanic Southeast Asian Total

Female 7826 (9%) 6137 (7%) 6141 (7%) 5909 (7%) 2847 (3%) 6715 (8%) 5183 (6%) 40 758 (47%)
Male 8701 (10%) 6096 (7%) 6146 (7%) 6410 (7%) 6369 (8%) 6652 (8%) 5612 (7%) 45 986 (53%)
Total 16 527 (19%) 12 233 (14%) 12 287 (14%) 12 319 (14%) 9216 (11%) 13 367 (16%) 10 795 (13%) 86 744 (100%)
Fig. 5. Baseline architecture used in this work.
Fig. 6. Continual learning paradigm with human–machine partnership.
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Table 3
Smile attribute classifier: CelebA training dataset distribution used in our study.

Female Male Total

No smile 27 259 (25%) 27 259 (25%) 54 518 (50%)
Smile 27 259 (25%) 27 259 (25%) 54 518 (50%)
Total 54 518 (50%) 54 518 (50%) 109 036 (100%)

This classification loss from the few original data samples aids in
reserving the initial patterns learned by the model. Integrating a prior
reservation loss during continual learning has multiple advantages for
eep neural networks, including safeguarding pre-acquired knowledge

from pre-training or reference datasets, ensuring the retention of crucial
eatures and patterns, and mitigating catastrophic forgetting. Addi-

tional benefits noted in previous research (Pan & Yang, 2010; Yosinski,
Clune, Bengio, & Lipson, 2014) include the facilitation of knowledge
ransfer, regularization effects, improved robustness to variations and
oise, and efficient fine-tuning convergence by leveraging the pre-

served knowledge as a strong initialization point, thereby reducing the
reliance on an extensive dataset for fine-tuning.

Consequently, the continual learning paradigm optimizes the objec-
tive function delineated in Eq. (16), wherein the total loss is quantified
s a composite of the classification loss on uncertain data instances and
he loss associated with preserving the prior knowledge:
 𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝑙𝑝𝑟𝑖𝑜𝑟 + 𝑙𝑐 𝑙 𝑓 𝑙 𝑜𝑠𝑠 (16)

7 
ere, 𝑙𝑝𝑟𝑖𝑜𝑟 denotes the loss related to preserving prior information,
nd 𝑙𝑐 𝑙 𝑓 𝑙 𝑜𝑠𝑠 represents the classification loss incurred from the outliers
abeled by the human annotators. Fig. 6 outlines the schema, wherein
he test data at timestamp 𝑖 undergoes evaluation using a pre-trained
odel. For instance, at 𝑖 equals 1, the pre-trained model depicted in

ig. 6 serves as the baseline. Subsequently, human analysts label the
utliers, which are then assimilated into the fine-tuning process along
ith the subset of original training data for 10 epochs. This integration

esults in an updated parameter configuration for the model. The
esultant updated model would be the new predictive model for the
ubsequent iteration as shown in Tables 8–13, 16, 17.

All the models were trained with an empirically chosen batch size
f 128 across 2 NVIDIA RTX 8000 GPUs, and label smoothing of 0.1.
he training was performed using an RMSprop optimizer with cosine
nnealing and a warm restart with an initial learning rate of 3 × 10−4 and

weight decay of 1 × 10−5. We also utilized stochastic weight averaging
long with mixed precision and an early stopping mechanism. All the
xperiments were done using the PyTorch-lightning framework.

4.2.2. Outlier detection
We comprehensively evaluated outlier detection methods on data

folds available at different time stamps, focusing on gender and smile
attribute classification tasks using FairFace, UTKFace, DiveFace, and
LFW test datasets. For gender classification, Jenson Shannon’s Diver-
gence distance metric was empirically identified as effective for BPCOD,
while cosine distance proved effective for the smile attribute classifier.
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We determined specific threshold values, setting 𝜏1 to 0.11 and 𝜏2 to
2.33 in Eq. (3) based on empirical evidence.

For the implementation of EBOD, gender, and smile attribute clas-
sifiers were trained utilizing DenseNet121, Vision Transformer, and
EfficientNet-v2 architectures. Global structured filter pruning (Frankle
& Carbin, 2019) was employed to optimize model efficiency, involving
the removal of the lowest-ranked weights or neurons based on the
lowest L1 norm of the filter weights, followed by fine-tuning the re-
maining connections. Furthermore, local pruning was applied to further
optimize the model, where the L1 norm of the weights was calculated
to rank individual weights and identify those with the least norm,
as their removal would have the least impact on model performance.
Subsequently, weights of the pruned model were quantized from their
original 32-bit precision to 8 bits, reducing memory requirements
and computational cost. To mitigate the potential loss of precision
from quantization, quantized models were calibrated by fine-tuning
the model parameters with a subset of training data to ensure optimal
performance.

For MD, we considered two input sample views: one without aug-
mentation and the second with color jitter augmentation. Empirically
determined thresholds for DUE and EUE in Eqs. (11) and (13) were
set to 0.9 and 0.1, respectively. This systematic evaluation and param-
eter selection was done to enhance the robustness and effectiveness
of outlier detection across different datasets and classification tasks,
contributing to the broader understanding and applicability of these
methods.

4.2.3. Evaluation procedure
In our evaluation, the test datasets were randomly partitioned into

four equitably sized folds, wherein each fold corresponded to a specific
timestamp. We conducted a comprehensive analysis of performance
spanning across these folds stratified across demographic attributes.
The outliers were diligently identified within each data fold available
at a specific timestamp using the methods outlined in Sections 5.1.1
and 5.2.1. Subsequently, we executed two sets of evaluations:

• Expert Labeling: The initial set involved evaluating the perfor-
mance within a collaborative human–machine partnership. In this
experiment, the system first identifies the outliers, and then the
human analyst assigns labels to those outliers. The outlier detec-
tion methods are selected in such a way that it has a minimum
trade-off between human involvement and the performance of
the system. Finally, the decision is made through collaboration
between the machine and the human. To obtain the classification
machine, the model was trained only with classification loss. The
results of this experiment are tabulated in Tables 5, 6, 7, and 15.

• Continual Learning: The second set of experiments involved
leveraging these identified outliers to fine-tune the model itera-
tively. Considering 𝑗 as a timestamp, as presented in Tables 8–
13, and 19–26, the outliers from data Fold 𝑗 were employed
along with a subset of the original training data for fine-tuning
the model. The fine-tuned model at timestamp 𝑗 is denoted as
Finetuned Model 𝑗 in the respective tables.
The fine-tuning procedure followed the single-cycle approach
illustrated in Fig. 6. The unfrozen model was fine-tuned for 10
epochs, utilizing the set of hyperparameters and optimizers as
discussed in Section 4.2.1. The fine-tuned model at timestamp
𝑗 was subsequently evaluated on the subsequent fold 𝑗 + 1. Al-
though our evaluation concluded after the third timestamp, the
underlying framework implies the perpetuation of this iterative
process, facilitating adaptability and progressive enhancement of
the model over time.

Essentially, our evaluation involves assessing and comparing the per-
formance of classification and bias mitigation across a static expert
labeling framework (via expert labeling) and a dynamic continual
learning framework.
 i

8 
4.3. Metrics

To conduct a comprehensive assessment of all models’ performance
and quantify bias following prior research (Lin, Kim, & Joo, 2022;
Singh, Majumdar, Mittal, & Vatsa, 2022), the following standard eval-
uation criteria were employed (Krishnan & Rattani, 2023): overall
classification accuracy, Degree of Bias (DoB) represented by the stan-
dard deviation of accuracy across specified demographics, and the ratio of
maximum and minimum accuracy values explained as follows:

1. DoB (standard deviation of accuracy across demographics) as-
sesses variability of model performance among sub-groups. Low
DoB indicates consistent classification accuracy across demo-
graphics, hence, indicating reduced bias.

2. Ratio of maximum and minimum accuracy values indicates dis-
parities across demographic subgroups. The ratio of unity sig-
nifies consistent performance across diverse demographic sub-
groups, indicating fairness and unbiased treatment.

In this study, particular emphasis was placed on DoB and the max–min
accuracy ratio, as they are crucial measures for assessing fairness and
demographic parity.

Evaluating overall classification accuracy in the expert learning
paradigm is computed as follows:

𝑂 𝑣𝑒𝑟𝑎𝑙 𝑙 = (𝑥 × 𝐴𝑐 𝑐ℎ𝑢𝑚𝑎𝑛) + (𝑦 × 𝐴𝑐 𝑐𝑚𝑎𝑐 ℎ𝑖𝑛𝑒)
𝑥 + 𝑦

(17)

Here, 𝑥 denotes the number of test samples evaluated by a human anno-
tator, and 𝑦 denotes the number of test samples assessed by the machine
classifier. Furthermore, 𝐴𝑐 𝑐ℎ𝑢𝑚𝑎𝑛 represents the true classification accu-
acy obtained by the human annotator for the demographic subgroup,
nd 𝐴𝑐 𝑐𝑚𝑎𝑐 ℎ𝑖𝑛𝑒 denotes the true classification accuracy obtained by the
utomated classifier.

. Results

In this section, we will discuss the results of the experiments con-
ucted on gender and smile attribute classification tasks in terms of
he best method(s) for outlier detection, the impact of labeling by the
uman analyst, and the deployment of a continual learning frame-
ork that updates the classifier on the test samples classified with

uncertainty. Throughout these evaluations, we consider the influence
of gender and race as protected attributes for performance assessment.

his comprehensive evaluation enables us to analyze the classifiers’ effi-
acy and robustness across these socio-demographic factors, facilitating
 more nuanced understanding of their performance characteristics.

.1. Gender classification

.1.1. Outlier detection
Table 4 tabulates the percentage of outliers identified by various

utlier detection methods discussed in Section 3, including BPCOD,
BOD, MD, EUE, and DUE on gender classification tasks. The per-
entages in Table 4 reflect the proportions of test samples identified
s outliers across the entire test dataset (FairFace, UTKFace, & Di-

veFace). BPCOD obtains the lowest outlier percentage at 4%, closely
followed by EBOD at 5.7%. These two methods obtained the least
human intervention among other methods, as compared with the re-
maining methods, namely MD, EUE, and DUE, obtaining higher outlier
ercentages ranging from 6% to 15.32%.

BPCOD’s effectiveness also stems from its ability to identify outliers
by jointly considering two critical factors: the proximity of a test
ample to the decision boundary and the confidence level of the model’s
rediction. On the other hand, EBOD leverages an ensemble of multiple
xpert models, encompassing pruned and quantized versions resulting

n fewer outliers detection.
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Table 4
Overall outlier detection performance on gender classification test datasets (FairFace,
UTKFace, & DiveFace).

Method BPCOD EBOD MD EUE DUE

% outliers 4% 5.7% 6% 15.28% 15.32%

In line with our goal of establishing a human–machine partnership
with a minimal trade-off between human involvement and perfor-
mance, our further investigation focused on the two techniques BPCOD
and EBOD, as they obtained the least number of outlier cases across the
datasets.

5.1.2. Expert labeling
In this section, we presented the performance analysis of the base-

line gender classifier and the human–machine partnership via expert
labeling. The system involved human analysts annotating the labels of
outlier data, thus leveraging the collective performance of both humans
and machines. Our analysis assumed that human analysts are trained
experts and can correctly label the outlier instances.

Tables 5, 6, and 7 tabulates the performance analysis of the baseline
gender classifier and the collaborative human–machine partnership
where human analyst labels the outlier samples detected by BPCOD
and EBOD for decision rendering. The classifiers were trained on the
FairFace dataset and evaluated on the FairFace, UTKFace, and DiveFace
test sets. By combining the efforts of humans and machines, it was
bserved that the overall classification accuracy improved for all folds
r timestamps, and the ratio of maximum–minimum accuracy and the

Degree of Bias (DoB) across the sub-groups were reduced.

FairFace: Upon analyzing Table 5, the Baseline classifier was examined
n the FairFace test set across four folds, with notable results. For
old 1, the Degree of Bias (DoB) was measured at 3.108, while the
atio of maximum–minimum accuracy stood at 1.134. Fold 2 exhibited
 DoB of 3.018 and a ratio of 1.14, followed by Fold 3 with a DoB
f 3.86 and a ratio of 1.94. Lastly, Fold 4 obtained a DoB of 2.67
nd a ratio of 1.12. The overall classification accuracies for these data
olds were respectively determined as 91.54%, 93.446%, 92.58%, and
2.58%. Additionally, we observed there is a notable gap between the
aximum accuracy (97.92% for Middle Eastern Males on Fold 3) and

he minimum accuracy (80.2% for Black Females on Fold 3). This large
ap of around 17.7% indicates a high degree of bias in the baseline
odel’s performance across different demographic groups.

Upon employing the human–machine partnership context with ex-
ert labeling with BPCOD as the outlier detection technique, significant
erformance enhancement was observed. The overall classification ac-
uracy for each fold improved to 93.473%, 94.92%, 94.66%, and
4.53%, respectively, representing an increment of up to 2%. Fur-
hermore, the ratio of maximum to minimum accuracy decreased to
.126, 1.106, 1.1011, and 1.078 across the subsequent folds, while
he DoB metric reduced to 2.821, 2.481, 2.53, and 1.695, indicating
 reduction of up to 35%. Furthermore, the gap between the maximum
nd minimum has reduced to around 9% as the maximum accuracy is
8.936% for Indian females on Fold 3, and the minimum is 89.071%
or Black females on Fold 3.

Further improvements were realized when EBOD was employed as
he outlier detection method. The overall classification accuracies on
ach fold increased to 95.752%, 96.617%, 96.483%, and 97.058%,
urpassing the baseline accuracies by an increment of up to 5% as it
etects more samples as outliers. Concurrently, the ratio of maximum
o minimum accuracy decreased to 1.08, 1.071, 1.095, and 1.029 when
ompared to the baseline ratio. Similarly, the bias metric decreased to
.894, 1.644, 2.223, and 0.828, resulting in a reduction of up to 69%.
urthermore, the gap between the maximum and minimum has reduced
o around 9% as the maximum accuracy is 99.507% for Latino Hispanic
emales on Fold 2, and the minimum is 90.863% for Black females on
old 3.
9 
Hence, it is evident that the human–machine partnership context
ith expert labeling on the FairFace testset increased the overall clas-

sification accuracy by up to 5%, and reduced the bias metric by up to
69%.
UTKFace: From Table 6, we scrutinized the performance of the Baseline
classifier on the UTKFace test set across four distinct folds, revealing
noteworthy outcomes. For the baseline classifier, for Fold 1, the Degree
of Bias (DoB) was determined to be 2.607, while the ratio of maximum–
minimum accuracy stood at 1.092. Moving to Fold 2, we observed a
DoB of 3.181 and a ratio of 1.122, followed by Fold 3 with a DoB of
4.482 and a ratio of 1.205. Lastly, Fold 4 displayed a DoB of 3.58 and
a ratio of 1.137. The overall classification accuracies for these folds
were respectively measured at 93.078%, 93%, 92.14%, and 92.79%.
Additionally, we observed there is a notable gap between the maximum
accuracy (96.697% for Indian Males on Fold 2) and the minimum
accuracy (81.435% for Asian Females on Fold 3). This large gap of
around 15% indicates a high degree of bias in the baseline model’s
performance across different demographic groups.

In the context of the human–machine partnership with expert label-
ing, with BPCOD employed as the outlier detection method, remarkable
improvements were witnessed. The overall accuracy for each fold
increased to 94.51%, 94.73%, 94.43%, and 94.37% respectively, with
an overall increment up to 2%. Additionally, the ratio of maximum–
minimum accuracy decreased to 1.571, 2.072, 2.785, and 2.573 across
the subsequent folds, while the degree of bias decreased to 1.05, 1.071,
1.114, and 1.096, indicating a reduction in the degree of bias by up to
38%. Furthermore, the gap between the maximum and minimum has
reduced to around 10% as the maximum accuracy is 98.656% for Black
Males in Fold 4, and the minimum is 88.4% for Asian females in Fold
3.

Further, enhancements were achieved by utilizing EBOD as the out-
lier detection method. Concurrently, the ratio of maximum–minimum
accuracy decreased to 1.06, 1.068, 1.115, and 1.097 when compared to
the Baseline ratio. Similarly, the degree of bias decreased to 1.69, 1.89,
2.87, and 2.66, representing a reduction of up to 40%. Furthermore, the
gap between the maximum and minimum has reduced to around 10%
as the maximum accuracy is 98.795% for Black Males in Fold 4, and
the minimum is 88.608% for Asian females in Fold 3.

Hence, it is evident that the human–machine partnership context
with expert labeling on the UTKFace testset increased the overall
classification accuracy by up to 3%, and reduced the bias metric by
up to 40%.

DiveFace: Examining Table 7, we analyzed the performance of the
Baseline classifier on the DiveFace test set across four distinct folds,
revealing notable results. In Fold 1, the Degree of Bias (DoB) was
determined to be 0.79, while the ratio of maximum–minimum accuracy
stood at 1.027. Transitioning to Fold 2, we observed a DoB of 1.51 and
a ratio of 1.047, followed by Fold 3 with a DoB of 1.079 and a ratio
of 1.035. Lastly, Fold 4 displayed a DoB of 0.74 and a ratio of 1.018.
The overall classification accuracies for these folds were respectively
measured at 97.6%, 97.118%, 97.53%, and 97.6%. Additionally, we
observed there is a gap between the maximum accuracy (99.46%
for White Males on Fold 2) and the minimum accuracy (94.97% for
Sub-Saharan & South Indian Females on Fold 2). This large gap of
around 4% indicates a moderate degree of bias in the baseline model’s
performance across different demographic groups.

In the human–machine partnership context with expert labeling,
employing BPCOD as the outlier detection method led to significant
improvements. The overall accuracy for each fold increased to 98.38%,
98.07%, 97.98%, and 98.23%, respectively with an overall increment
of up to 1%. Additionally, the ratio of maximum–minimum accuracy
decreased to 1.017, 1.029, 1.022, and 1.022 across the subsequent
folds, while the degree of bias decreased to 0.553, 0.863, 0.67, and
0.732 indicating a reduction in the degree of bias by up to 43%.
Furthermore, the gap between the maximum and minimum has reduced
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Table 5
Gender classification accuracy (%) on FairFace testset across different folds and gender-racial groups using expert labeling framework. M stands for Male, and F stands for Female.
Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard
eviation of the accuracy values across gender and race.
Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F M F M F M F

Baseline

Fold 1 85.643 85.96 91.453 91.1 94.54 93.846 89.44 92.54 97.087 94.624 91.379 91.011 93.662 89.431 1.134 91.54 3.108
Fold 2 89.64 84.7 93.01 93.264 94.5 94.38 94.86 96.55 96.208 94.9 93.407 94.631 93.214 94.98 1.14 93.45 3.018
Fold 3 90.164 80.2 92.353 94.413 95.19 94.15 93.9 94.089 95.098 95.495 90.206 95.745 93.725 91.428 1.194 92.58 3.86
Fold 4 93.229 87.437 94.118 93.33 93.989 88.442 95.161 92.453 97.92 90.426 90.27 91.52 94.719 93.133 1.12 92.58 2.67

Expert labeling-BPCOD

Fold 1 86.63 89.89 91.88 94.241 95.15 95.9 91.11 94.81 97.573 96.774 92.529 94.382 95.07 92.683 1.126 93.47 2.82
Fold 2 90.54 89.071 93.548 95.855 96 96.629 95.327 98.522 97.156 95.918 93.407 95.973 94.286 96.653 1.106 94.92 2.48
Fold 3 91.803 89.848 92.353 95.531 96.635 98.936 94.836 96.059 96.078 97.297 91.753 97.34 93.725 93.061 1.101 94.66 2.53
Fold 4 94.271 92.462 94.652 94.286 95.082 92.462 96.237 95.283 97.917 95.74 90.81 95.15 95.05 94 1.078 94.53 1.695

Expert labeling-EBOD

Fold 1 91.584 94.944 94.017 95.811 96.97 97.95 93.33 96.226 97.573 98.925 94.828 96.067 97.183 95.122 1.08 95.75 1.894
Fold 2 93.243 92.9 97.311 97.41 97 96.067 97.196 99.507 97.63 96.94 96.154 96.644 97.143 97.49 1.071 96.62 1.644
Fold 3 95.082 90.863 95.882 97.765 98.558 99.468 95.305 97.044 97.059 99.1 93.814 98.404 95.686 96.735 1.0947 96.48 2.223
Fold 4 96.875 98.492 96.79 95.714 96.72 98 96.774 97.64 98.437 96.81 95.676 96.97 97.36 96.57 1.029 97.06 0.828
T
b

to around 2% as the maximum accuracy is 99.637% for White Males in
old 2, and the minimum is 97.283% for East Asian Males in Fold 4.

Further enhancements were achieved by utilizing EBOD as the out-
ier detection method. Concurrently, the ratio of maximum–minimum
ccuracy decreased to 1.01, 1.01, 1.02, and 1.02 when compared to the

Baseline ratio. Similarly, the degree of bias decreased to 0.404, 0.41,
.557, and 0.625, obtaining a reduction of up to 73%. Furthermore, the
ap between the maximum and minimum has reduced to around 2%
s the maximum accuracy is 100% for East Asian Females in multiple
olds, and the minimum is 98% for Sub-Saharan & South Indian Males

in Fold 4.
Hence, it is evident that the human–machine partnership context

with expert labeling on the DiveFace test set slightly increased the
overall classification accuracy by up to 1% as the test set was already
performing well on the baseline, and reduced the bias metric by up to
0%.
In summary, these findings highlight the substantial impact of the

human–machine partnership via expert labeling of the outliers as well as the
effectiveness of different outlier detection methods with a minimum trade-
off between human involvement and performance, in augmenting overall
accuracy up to 5%, diminishing the ratio of maximum–minimum accuracy,
and mitigating the degree of bias up to 8% and 70% respectively, for gender
classification task across different folds of the FairFace, UTKFace, and
DiveFace test sets.

5.1.3. Continual learning
In our continual learning evaluation of the gender classifier, we

first used outlier detection methods to identify outliers, which were
then labeled by a human analyst for classifier retraining (details in
Section 4.2). We selected BPCOD and EBOD as our outlier detection
methods for their optimal balance of human involvement and perfor-
mance. The importance of prior preservation loss was also highlighted,
ensuring initial features are maintained during learning.

Experimentally, we assumed each data fold as test samples available
at different timestamps (see Section 4.2). We identified outliers from
the latest timestamp and fine-tuned the model using these outliers and
a portion of the original training set to maintain feature consistency
(refer to Section 4.2). The fine-tuned model was then used to evaluate
the next data fold.

BPCOD. FairFace: Table 8 shows the performance of the baseline and
fine-tuned gender classifier when trained on FairFace and evaluated on
the FairFace test set with BPCOD used as a means to detect the out-
liers. On fine-tuning with subsequent outliers for each fold at different

timestamps, it was observed that Overall classification accuracy was
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improved and the ratio of max–min accuracy and Degree of Bias (DoB)
were reduced mostly across all the folds and across the sub-groups.

he Black Female and Male subgroups performed the least for all the
aseline models.

The Baseline classifier was assessed on four-folds, where Fold 1
obtained a DoB of 3.108 and a max–min accuracy ratio of 1.134.
Similarly, Fold 2 exhibited a DoB of 3.018 and a ratio of 1.14, Fold
3 had a DoB of 3.86 and a ratio of 1.94, and Fold 4 obtained a DoB of
2.67 and a ratio of max–min accuracy of 1.12. The overall classification
accuracy for the folds was 91.54%, 93.446%, 92.58%, and 92.58%,
respectively.

Subsequently, fine-tuning using outliers from Fold 1 (Finetuned
Model 1), showed a slightly reduced overall accuracy of 92.91%, and
an increment in bias as denoted by the increased DoB of 4.11 from
3.018, and the ratio of max–min accuracy of 1.184 from 1.14 on Fold 2.
Further, Finetuned Model 2 and Finetuned Model 3 showed improved
overall accuracy from 92.58% to 92.9% in Fold 3, and from 92.58%
to 93.167% in Fold 4 respectively. Moreover, the intensity of bias
is reduced, as the DoB reduced from 3.86 to 3.122 on Fold 3, and
from 2.67 to 2.31 on Fold 4 on Finetuned Model 2 and 3 respectively.
Similarly, the ratio of max–min accuracy reduced to 1.126 from 1.194
on Fold 3, and from 1.12 to 1.083 on Fold 4 using Finetuned Model
2 and 3 models, respectively. The gap between the maximum and
minimum has reduced to around 9% (initially, it was 17.7% (maximum
of 97.92% for Middle Eastern Males on Fold 3 and a minimum of 80.2%
for Black Females on Fold 3)), with a maximum accuracy of 96.875%
for Middle Eastern Males and a minimum of 89.447% on Black Females.

In summary, the human–machine partnership with the continual learning
process with BPCOD as outlier detection led to a slight improvement in over-
all accuracy by up to 0.5%. This slight improvement could be because fewer
iterations of continual learning have been considered for our evaluation.
Additionally, there was a reduction in the degree of bias as evidenced by the
decreased ratios of max–min accuracy and DoB by up to 31% and 21%,
respectively, on the FairFace dataset.

UTKFace: As seen from Table 9, we observed a fair significant
improvement in the overall classification accuracy and a reduction in
the bias on the UTKFace dataset. Evaluation of the Baseline model
on four folds of UTKFace obtained the lowest overall classification
accuracy of 93.078% (Fold 1), 93% (Fold 2), 92.139% (Fold 3), and
92.786% (Fold 4), and the highest ratio of max–min accuracy of 1.092
(Fold 1), 1.122 (Fold 2), 1.205 (Fold 3), and 1.137 (Fold 4) and the
highest DoB of 2.607 (Fold 1), 3.181 (Fold 2), 4.482 (Fold 3), and 3.58
(Fold 4).

On fine-tuning with the outliers of different Folds, we observed

an improvement in the overall accuracy. On Finetuned Model 1, the
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Table 6
Gender classification accuracy (%) on UTKFace testset across different folds, and gender-racial groups using expert labeling framework. M stands for Male, and F stands for Female.
Max/Min is the ratio of maximum and minimum classification accuracy values among genders and races; Overall and DoB are the overall classification accuracy and the standard
deviation of the accuracy values across genders and races.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Baseline

Fold 1 91.036 88.387 96.078 91.058 96.516 93.12 94.815 93.615 1.092 93.078 2.607
Fold 2 91.198 86.433 97 92.16 96.697 93.056 94.95 92.427 1.122 93 3.181
Fold 3 91.686 81.435 98.107 92.13 93.45 92.732 94.968 92.602 1.205 92.139 4.482
Fold 4 89.922 86.797 98.656 90.796 95.841 91.05 95.326 93.896 1.137 92.786 3.58

Expert labeling-BPCOD

Fold 1 92.437 92.043 96.242 93.796 96.7 94.5 95.48 94.91 1.05 94.512 1.571
Fold 2 92.176 91.028 97.508 94.425 97.064 94.907 95.527 95.164 1.071 94.725 2.072
Fold 3 92.637 88.4 98.451 94.242 94.867 96.49 95.758 94.604 1.114 94.431 2.785
Fold 4 92.248 90.043 98.656 93.274 96.187 92.841 96.068 95.652 1.0956 94.371 2.573

Expert labeling-EBOD

Fold 1 95.518 92.473 97.386 95.985 98.083 94.5 96.593 97.153 1.061 95.961 1.691
Fold 2 97.06 91.904 97.674 96 98.165 94.676 97.258 96.077 1.068 96.108 1.893
Fold 3 97.625 88.608 98.795 96.16 95.22 95.739 96.837 96.432 1.115 95.677 2.869
Fold 4 96.382 90.26 99.04 96.106 98.094 93.29 97.033 97.157 1.097 95.92 2.656
Table 7
Gender classification accuracy (%) on DiveFace testset across different folds and gender-racial groups using expert labeling framework. M stands
for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among genders and race;
Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race.

Race East Asian Sub-Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Baseline

Fold 1 97.51 98.84 97.642 96.237 98.074 97.287 1.027 97.6 0.79
Fold 2 97.94 96.953 97.82 94.97 99.46 95.56 1.047 97.118 1.51
Fold 3 98.03 99.33 97.02 96 98.053 96.739 1.035 97.529 1.079
Fold 4 97.1 98.66 96.92 97.3 98.61 97.015 1.0179 97.6 0.74

Expert labeling-BPCOD

Fold 1 97.865 99.5 98.428 97.85 98.249 98.373 1.017 98.378 0.553
Fold 2 98.127 98.03 98.322 97.486 99.637 96.803 1.029 98.067 0.863
Fold 3 98.029 99.33 97.207 97.64 98.053 97.645 1.022 97.983 0.666
Fold 4 97.283 99.424 97.464 98.558 98.61 98 1.022 98.225 0.732

Expert labeling-EBOD

Fold 1 99.11 100 99.017 98.925 98.95 99.638 1.01 99.273 0.404
Fold 2 99.064 99.82 99 99.46 99.82 98.756 1.01 99.319 0.41
Fold 3 99.104 100 98.138 99.273 99.47 99.094 1.019 99.18 0.557
Fold 4 98.913 100 98 99.64 99.306 99.17 1.02 99.173 0.625
Table 8
Gender classification accuracy (%) on FairFace testset for ResNet-18 across different folds, and gender-racial groups using continual learning framework with prior preservation
loss. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the
overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from data
old 𝑖 identified using BPCOD.
Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F M F M F M F

Baseline

Fold 1 85.643 85.96 91.453 91.1 94.54 93.846 89.44 92.54 97.087 94.624 91.379 91.011 93.662 89.431 1.134 91.54 3.108
Fold 2 89.64 84.7 93.01 93.264 94.5 94.38 94.86 96.55 96.208 94.9 93.407 94.631 93.214 94.98 1.14 93.446 3.018
Fold 3 90.164 80.2 92.353 94.413 95.19 94.15 93.9 94.089 95.098 95.495 90.206 95.745 93.725 91.428 1.194 92.58 3.86
Fold 4 93.229 87.437 94.118 93.33 93.989 88.442 95.161 92.453 97.92 90.426 90.27 91.52 94.719 93.133 1.12 92.58 2.67

Finetuned Model 1
Fold 2 85.586 81.967 95.161 94.819 96.5 94.382 95.327 97.044 96.68 91.837 92.307 92.617 93.57 92.887 1.184 92.91 4.11

Finetuned Model 2
Fold 3 89.617 85.787 92.353 93.737 95.192 94.149 95.305 94.09 96.57 96.4 89.175 94.681 95.29 89.39 1.126 92.9 3.122

Finetuned Model 3
Fold 4 89.583 89.447 92.513 93.809 94 90.452 94.624 95.283 96.875 94.681 89.73 94.54 94.389 94.421 1.083 93.167 2.31
11 
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Table 9
Gender classification accuracy (%) on UTKFace testset for ResNet-18 across different folds, and gender-racial groups using a continual learning
framework with prior preservation loss. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification
accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy
values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using BPCOD.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Baseline

Fold 1 91.036 88.387 96.078 91.058 96.516 93.12 94.815 93.615 1.092 93.078 2.607
Fold 2 91.198 86.433 97 92.16 96.697 93.056 94.95 92.427 1.122 93 3.181
Fold 3 91.686 81.435 98.107 92.13 93.45 92.732 94.968 92.602 1.205 92.139 4.482
Fold 4 89.922 86.797 98.656 90.796 95.841 91.05 95.326 93.896 1.137 92.786 3.58

Finetuned Model 1
Fold 2 91.687 90.153 96.179 93.21 94.495 92.593 94.3 94.16 1.067 93.347 1.748

Finetuned Model 2
Fold 3 89.55 89.24 96.56 93.67 92.39 96 94.25 93.56 1.082 93.15 2.504

Finetuned Model 3
Fold 4 91.473 89.18 97.7 93.097 94.974 93.29 94.585 93.9 1.0955 93.523 2.348
overall accuracy of Fold 2 increased to 93.347% from 93%, similarly
from 92.139% to 93.15% on Fold 3, and from 92.786% to 93.523%
on Fold 4, respectively on Finetuned Model 2 and 3. Moreover, a
ignificant reduction in bias was observed, and it was observed as the

DoB was reduced from 3.181 to 1.748 on Fold 2 on Finetuned Model
1, followed by 2.504 from 4.482 on Fold 3 and 2.348 from 3.58 on
Fold 4, respectively on Finetuned Model 2 and 3. Furthermore, the
ratio of max–min accuracy was reduced to 1.067 from 1.122 on Fold
2 on Finetuned Model 1, followed by 1.082 from 1.205 on Fold 3, and
1.0955 from 1.137 on Fold 4, respectively on Finetuned Model 2 and 3.
The gap between the maximum and minimum has reduced to around
8% (initially, it was around 15%), with a maximum accuracy of 97.7%
for Black Males and a minimum of 89.18% for Black Females.

In summary, the human–machine partnership with the continual learning
process with BPCOD as an outlier detection on UTKFace improved the
classification accuracy by up to 1%. This slight improvement could be
because fewer iterations of continual learning have been considered for our
evaluation. Additionally, there was a reduction in the degree of bias as
evidenced by the decreased ratios of max–min accuracy and DoB by up to
30% and 74% respectively on the UTKFace dataset.

DiveFace: Furthermore, on the DiveFace dataset with the gen-
der classification task, from Table 10, the evaluation with the Base-
line model, Fold 1, 2, 3 & 4 respectively obtained 97.6%, 97.118%,
97.529%, and 97.6% as the overall classification accuracy, and 1.027
& 0.79, 1.047 & 1.51, 1.035 & 1.079, and 1.0179 & 0.74 as the ratio of
max–min & the DoB. Similarly, as we observed from Table 9, on fine-
tuning with the outliers, it was observed that the overall classification
accuracy was improved and the ratio of max–min accuracy and the DoB
were reduced.

On fine-tuning with the outliers of Fold 1, Finetuned Model 1
obtained an increment in overall accuracy on Fold 2 from 97.118%
to 98.4%. Similarly, Finetuned Model 2 and 3 obtained an increment
in the overall accuracy from 97.529% to 98.287%, and from 97.6%
to 98.249% respectively on Fold 3 and Fold 4. Moreover, we have
observed a decline in bias, as the fine-tuning process progressed, the
DoB reduced from 1.51 to 0.564 on Fold 2 using Finetuned Model 1,
followed by 0.49 from 1.076 on Fold 3 and 0.663 from 0.74 on Fold 4
using Finetuned Model 2 and 3, respectively. Further, the ratio of max–
min accuracy reduced to 1.0137 from 1.047 on Fold 2 using Finetuned
Model 1, followed by 1.015 from 1.035 on Fold 3 using Finetuned
Model 2, and no further improvement was found on Fold 4 using
Finetuned Model 3. The gap between the maximum and minimum has
reduced to less than 2% (initially, it was around 5%), with a maximum
accuracy of 99.13% for White Males and a minimum of 97.84% for
White Females.

In summary, the human–machine partnership with the continual learn-

ing process with BPCOD as outlier detection on DiveFace improved the
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classification accuracy by up to 1%. This slight improvement could be
because of the higher performance of the dataset even on the baseline.
Additionally, there was a reduction in the degree of bias as evidenced by
the decreased DoB by up to 87%. Additionally, the framework performed
better in the cross-dataset evaluation, obtaining a difference of up to 60%
in bias reduction.
EBOD. FairFace: Table 11 showed the performance of the baseline and
fine-tuned gender classifier when trained on FairFace and evaluated on
the FairFace test set with EBOD used as a means to detect the out-
liers. On fine-tuning with subsequent outliers of each fold/timestamp
using EBOD, it was observed that overall classification accuracy was
improved and the ratio of max–min accuracy and Degree of Bias (DoB)
were reduced across all the folds and the sub-groups. The Black Female
and Male subgroups performed the least for all the baseline models.

As discussed before the baseline model obtained an overall classi-
fication of 91.54%, 93.446%, 92.58%, and 92.58% across four-folds,
and the ratio of max–min accuracy and the DoB of 1.134 & 3.108, 1.14
& 3.018, 1.194 & 3.86, and 1.12 & 2.67 across Fold 1, Fold 2, Fold 3
and Fold 4 respectively. Fine-tuning with outliers of Fold 1 (Finetuned
Model 1) did not improve the overall accuracy on Fold 2, but Finetuned
Model 2 and 3 improved the overall accuracy on Fold 3 and Fold
4 from 92.58% to 92.95% and from 92.58% to 92.9%, respectively.
Moreover, the DoB was reduced from 3.86 to 2.493 on Fold 3 using
Finetuned Model 2, and on Fold 4, it was reduced from 2.67 to 2.02
using Finetuned Model 3. Subsequently, the ratio of max–min accuracy
was also found to be reduced from 1.194 to 1.089 on Fold 3 using
Finetuned Model 2, and from 1.12 to 1.095 on Fold 4 using Finetuned
Model 3. The gap between the maximum and minimum has reduced
to around 8% (initially, it was 17.7%), with a maximum accuracy of
96.875% for Middle Eastern Males and a minimum of 88.44% for Black
Females.

In summary, the human–machine partnership with the continual learning
process with EBOD as outlier detection on FairFace slightly improved the
classification accuracy by around 0.5%. This slight improvement could be
because fewer iterations of continual learning have been considered for our
evaluation. Further, there was a reduction in the degree of bias as evidenced
by the decrement in DoB by up to 60%.

On a similar task but on two different datasets, UTKFace and
DiveFace, Tables 12 and 13 showed the increment in classification ac-
curacy, and the decrement in the bias was observed on the cross-dataset
evaluation.
UTKFace: From Table 12, as discussed before, the baseline model
obtained an overall classification accuracy of 93.078%, 93%, 92.139%,
and 92.786%, and the ratio of max–min and the degree of bias as 1.092
& 2.607, 1.122 & 3.181, 1.205 & 4.482 and 1.137 & 3.58, respectively,

for Fold 1, 2, 3 and 4. On fine-tuning the model with the outliers of Fold
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Table 10
Gender classification accuracy (%) on DiveFace testset for ResNet-18 across different folds and gender-racial groups using a continual learning
framework with prior preservation loss. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification
accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy
values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using BPCOD.

Race East Asian Sub-Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Baseline

Fold 1 97.51 98.84 97.642 96.237 98.074 97.287 1.027 97.6 0.79
Fold 2 97.94 96.953 97.82 94.97 99.46 95.56 1.047 97.118 1.51
Fold 3 98.03 99.33 97.02 96 98.053 96.739 1.035 97.529 1.079
Fold 4 97.1 98.66 96.92 97.3 98.61 97.015 1.0179 97.6 0.74

Finetuned Model 1
Fold 2 97.94 99.283 97.987 98.025 99.09 98.046 1.0137 98.4 0.564

Finetuned Model 2
Fold 3 98.208 99.33 97.95 97.82 98.23 93.19 1.015 98.287 0.49

Finetuned Model 3
Fold 4 98.19 98.848 97.1 98.378 99.13 97.84 1.021 98.249 0.663
Table 11
Gender classification accuracy (%) on FairFace testset for ResNet-18 across different folds, and gender-racial groups using a continual learning framework with prior preservation
oss. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the

overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖
dentified using EBOD.
Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F M F M F M F

Baseline

Fold 1 85.643 85.96 91.453 91.1 94.54 93.846 89.44 92.54 97.087 94.624 91.379 91.011 93.662 89.431 1.134 91.54 3.108
Fold 2 89.64 84.7 93.01 93.264 94.5 94.38 94.86 96.55 96.208 94.9 93.407 94.631 93.214 94.98 1.14 93.446 3.018
Fold 3 90.164 80.2 92.353 94.413 95.19 94.15 93.9 94.089 95.098 95.495 90.206 95.745 93.725 91.428 1.194 92.58 3.86
Fold 4 93.229 87.437 94.118 93.33 93.989 88.442 95.161 92.453 97.92 90.426 90.27 91.52 94.719 93.133 1.12 92.58 2.67

Finetuned Model 1
Fold 2 88.74 84.153 91.4 92.746 97.5 94.382 90.65 95.57 95.734 94.9 92.308 91.275 92.143 93.724 1.159 92.516 3.227

Finetuned Model 2
Fold 3 87.98 89.34 92.94 92.18 95.67 93.617 95.775 94.09 95.098 95.5 89.69 94.68 94.118 90.61 1.089 92.95 2.493

Finetuned Model 3
Fold 4 90.625 88.44 92.513 92.38 92.35 91.96 95.16 94.34 96.875 92.553 91.35 94.54 94.389 93.133 1.095 92.9 2.02
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1 (Finetuned Model 1), the overall accuracy was improved from 93% to
3.053%. Similarly, with Finetuned Model 2 & 3, the overall accuracy
as improved to 93.29% from 92.14% on Fold 3, and to 93.66% from
2.786% on Fold 4 respectively. On considering the reduction in bias,
he DoB reduced from 3.181 to 2.104 in Fold 2 with Finetuned Model
, similarly on Fold 3, and Fold 4, the DoB reduced from 4.482 to
.66 and from 3.58 to 1.562 with Finetuned Model 2 & 3 respectively.
he gap between the maximum and minimum has reduced to around

5% (initially, it was 15%), with a maximum accuracy of 96.106% for
Black females and a minimum of 91.473% for Asian males.

In summary, the human–machine partnership with the continual learning
process with EBOD as outlier detection on UTKFace slightly improved the
classification accuracy by around 2%. This slight improvement could be
because fewer iterations of continual learning have been considered for our
valuation. Further, there was a reduction in the degree of bias as evidenced
by the decrement in DoB by up to 85%.
DiveFace: From Table 13, as discussed prior, the baseline gender clas-
sification accuracy on Fold 1, Fold 2, Fold 3, and Fold 4 was obtained as
97.6%, 97.118%, 97.529% and 97.6% respectively. The baseline ratio
of max–min accuracy and the degree of bias were obtained as 1.027 &
0.79, 1.047 & 1.51, 1.035 & 1.079, and 1.0179 & 0.74 for Fold 1, 2, 3,
and 4 respectively.

On fine-tuning as observed in Tables 11 and 12 the overall clas-
ification accuracy was improved and the rate of disparity across

race and gender was reduced. On fine-tuning with the outliers from
old 1 (Finetuned Model 1), obtained improved overall classification

ccuracy on Fold 2 to 98.128% from 97.12%. Similarly on Fold 3, f

13 
nd Fold 4 with Finetuned Model 2 & 3 respectively, the overall
lassification accuracy increased from 97.53% to 98.287% and from
7.6% to 98.276% respectively. Moreover, a continuous reduction in

bias was observed in terms of the DoB. On Fold 2, the DoB reduced
from 1.51 to 0.477 with Finetuned Model 1, followed by 0.629 from
1.079 on Fold 3 with Finetuned Model 2 and from 0.74 to 0.668 on Fold
4 with Finetuned Model 3. In terms of the ratio of max–min accuracy,
on Fold 2, it was reduced to 1.013 from 1.047 with Finetuned Model
, and on Fold 3, from 1.035 to 1.018 with Finetuned Model 2. No
urther improvements were observed on Fold 4 with Finetuned Model
. The gap between the maximum and minimum has reduced to less
han 2% (initially, it was 5%), with a maximum accuracy of 99.46%
or Sub-Saharan & South Indian females and a minimum of 97.464%
or Sub-Saharan & South Indian males.
In summary, the human–machine partnership with the continual learning

rocess with EBOD as outlier detection on DiveFace improved the classifica-
ion accuracy by up to 1%. This slight improvement could be because fewer
terations of continual learning have been considered for our evaluation.
dditionally, there was a reduction in the degree of bias as evidenced by
he decreased DoB by up to 80%. Additionally, the framework performed
etter in the cross-dataset evaluation, achieving a difference of up to 20%
n bias reduction.

Visualizing the model’s decision-making process is crucial for gain-
ng insights into its behavior and the impact of our proposed approach.
urthermore, Fig. 7 provides compelling insights into the changes
bserved in the Grad-CAM (Selvaraju et al., 2017) representations

or gender classifiers. Grad-CAM is utilized to visualize the specific
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Table 12
Gender classification accuracy (%) on UTKFace testset for ResNet-18 across different folds and gender-racial groups using a continual learning
framework with prior preservation loss. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification
accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy
values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from data Fold 𝑖 identified using EBOD.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Baseline

Fold 1 91.036 88.387 96.078 91.058 96.516 93.12 94.815 93.615 1.092 93.078 2.607
Fold 2 91.198 86.433 97 92.16 96.697 93.056 94.95 92.427 1.122 93 3.181
Fold 3 91.686 81.435 98.107 92.13 93.45 92.732 94.968 92.602 1.205 92.139 4.482
Fold 4 89.922 86.797 98.656 90.796 95.841 91.05 95.326 93.896 1.137 92.786 3.58

Finetuned Model 1
Fold 2 90.71 88.62 94.68 94.6 94.862 93.056 94.37 93.52 1.07 93.053 2.104

Finetuned Model 2
Fold 3 91.45 87.34 95.7 96 94.96 93.484 94.896 92.776 1.1 93.288 2.66

Finetuned Model 3
Fold 4 91.473 91.558 94.817 96.106 92.374 94.407 94.139 94.4 1.05 93.66 1.562
Fig. 7. Visualization of Grad-CAM (Top) and Combined Grad-CAM with Guided Back-propagation(Bottom) for Gender Classifiers: Baseline and Fine-tuned Models[1–3] (from left
o right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mage regions utilized by the model for prediction. It generates a
oarse localization map highlighting distinctive image regions crucial
or decision-making by using gradients of a target concept. This method
isually explains the decision-making process of deep neural networks,
evealing which regions of an input image contribute most to the net-
ork’s prediction. The map indicates highly activated regions through

ed, followed by green and blue zones.
Augmenting Grad-CAM with Guided Back-propagation enhances our

esult analysis by identifying specific features or patterns influencing
the model’s decision. By combining these techniques, a deeper under-
standing of the relationship between input features and predictions can
be achieved, enabling more informed interpretations of the model’s
behavior. To this front, we generated the Grad-CAM visualization for
both the baseline and iteratively fine-tuned gender classifiers.

Upon analyzing the Grad-CAM visualizations for the baseline model
and the models obtained after each iteration of our proposed continual
learning approach, which used prior preservation loss and EBOD for
outlier detection, we noticed the baseline model primarily focused on
the right eye area when making gender predictions. However, through
the continual learning process, the model’s attention expanded to a
wider range of facial features, indicating an improved understanding
of gender attributes beyond just the eye region.

Additionally, experimental results (See details at A.1) revealed a
significant decline in accuracy up to 21% and increased discrimination
up to 200% without prior preservation loss for gender classification,
indicating catastrophic forgetting and underscoring its critical role in
preserving knowledge and enhancing fairness in continual learning
scenarios.

5.2. Smile attribute classification

I

14 
5.2.1. Outlier detection
Table 14 presents the percentages of outliers identified by various

outlier detection methods discussed in Section 5.2.1, including BPCOD,
EBOD, MD, EUE, and DUE on smile attribute classification tasks. Among
the listed methods, BPCOD obtained the lowest percentage of outliers at
0.5%, followed by EBOD at 1.136%. On the other hand, the remaining

ethods, namely MD, EUE, and DUE, exhibit increasing percentages
anging from 1.5% to 9.4%. Our comprehensive analysis is based on
he BPCOD and the EBOD methods for outlier detection in congruence
ith our objective of a minimum trade-off between human involvement
nd performance.

.2.2. Expert labeling
Table 15 presented the performance analysis of the baseline smile

ttribute classifier and the human–machine partnership via expert la-
eling. The classifier was trained on the CelebA dataset and evaluated
n the LFW test set. BPCOD and EBOD methods were utilized for
utlier detection. By combining the efforts of humans and machines, it
as observed that the overall classification accuracy improved for all

olds or timestamps. However, in most cases, the ratio of maximum–
inimum accuracy and the Degree of Bias (DoB) did not decrease

ignificantly across the sub-groups.
From Table 15, it was observed that on different non-overlapping

olds of the LFW test set, the Baseline model obtained an overall
accuracy of 83.48%, 83.318%, 83.739%, and 84% across Folds 1, 2,
, & 4 respectively. When it comes to bias metrics, the ratio of max–

min accuracy & the DoB obtained the highest values of 1.793 & 13.823
on Fold 1, 1.732 & 13.76 on Fold 2, 1.754 & 13.194 on Fold 3 and
finally, 1.78 & 13.778 on Fold 4. Additionally, we observed there is
 notable gap between the maximum accuracy (100% for Asian and

ndian females on multiple folds) and the minimum accuracy (56.25%
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Table 13
Gender classification accuracy (%) on DiveFace testset for ResNet-18 across different folds, and gender-racial groups using continual learning
framework using prior preservation loss. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum
classification accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the
accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using EBOD.

Race East Asian Sub-Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Baseline

Fold 1 97.51 98.84 97.642 96.237 98.074 97.287 1.027 97.6 0.79
Fold 2 97.94 96.953 97.82 94.97 99.46 95.56 1.047 97.118 1.51
Fold 3 98.03 99.33 97.02 96 98.053 96.739 1.035 97.529 1.079
Fold 4 97.1 98.66 96.92 97.3 98.61 97.015 1.0179 97.6 0.74

Finetuned Model 1
Fold 2 97.56 98.75 97.48 98.56 98.37 98.046 1.013 98.128 0.477

Finetuned Model 2
Fold 3 98.208 99.33 97.58 97.82 97.876 98.913 1.018 98.287 0.629

Finetuned Model 3
Fold 4 97.645 98.46 97.464 99.46 98.61 98 1.02 98.276 0.668
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Table 14
Overall outlier detection performance on smile attribute classification test bench.

Method BPCOD EBOD MD EUE DUE

% outliers 0.5 1.136 1.5 8.9 9.4

for Asian males on Fold 4). This large gap of around 54% indicates a
igh degree of bias in the baseline model’s performance across different
emographic groups.

When using BPCOD as the outlier detection method in the human–
achine partnership with expert labeling, there were slight improve-
ents. The overall accuracy slightly improved by 0.5%, and for each

old, it increased to 83.66%, 83.45%, 83.91%, and 84.052%, respec-
ively. However, the ratio of maximum–minimum accuracy did not
hange across the subsequent folds, while the degree of bias slightly
ncreased by 0.74%, with values of 14, 13.87, 13.29, and 13.82.

Better enhancements were obtained by utilizing EBOD as the outlier
etection method. The overall accuracies improved by up to 4%, and
or each fold, they increased to 85.78%, 85.5%, 87.38%, and 85.44%.
t the same time, the ratio of maximum–minimum accuracy slightly
ecreased to 1.76, 1.702, 1.724, and 1.78 compared to the baseline
atio. Similarly, the degree of bias increased to 15.117, 14.97, 14.118,

and 14.93.
Additionally, the expert labeling framework could not reduce the

gap between the maximum and minimum accuracy compared to the
baseline. This may be because there were too few uncertain samples to
significantly improve the accuracy for the underperforming subgroups.

5.2.3. Continual learning
This section presents the evaluation of the smile attribute classifier

in a continual learning setting (For details, refer to Section 4.2). Fur-
hermore, this section showcases the significance of prior preservation

loss in the continual learning framework.

BPCOD. On the smile attribute classifier, the human–machine part-
nership with continual learning, wherein the outliers were identified
using BPCOD, reduced the extent of bias and improved the overall
classification accuracy. From Table 16, it was observed that on different
non-overlapping folds of the LFW test set, the Baseline model achieved
n overall accuracy of 83.48%, 83.318%, 83.739%, and 84% across

Fold 1, 2, 3, & 4, respectively. When it comes to bias metrics, the ratio
f max–min accuracy & the Degree of Bias (DoB) attained the highest
alues of 1.793 & 13.823 on Fold 1, 1.732 & 13.76 on Fold 2, 1.754 &

13.194 on Fold 3, and finally, 1.78 & 13.778 on Fold 4.
On the human–machine partnership with continual learning frame-

work, fine-tuning with the outliers identified using BPCOD, the Fine-
tuned Model 1 model showed improved overall accuracy on Fold 2 from
15 
83.32% to 85.19%. Followed by 83.75% from 83.74% on Fold 3 with
Finetuned Model 2, and from 84% to 84.532% on Fold 4 with Finetuned
Model 3. Moreover, a significant reduction in bias was observed. As
in terms of DoB, on Fold 2, it was reduced to 10.82 from 13.76 with
inetuned Model 1, then 7.42 from 13.194 on Fold 3 with Finetuned
odel 2, and finally from 13.778 to 6.675 on Fold 4 with Finetuned
odel 3. Further, the ratio of max–min accuracy was found to be

educed, on Fold 2 with Finetuned Model 1, the ratio of max–min
ccuracy reduced from 1.732 to 1.571, then on Fold 3 with Finetuned
odel 2, the ratio reduced from 1.754 to 1.523, and on Fold 4 with

inetuned Model 3, the ratio reduced from 1.78 to 1.4. Additionally.
he gap between the maximum and minimum has reduced to around
7% (initially, it was 54% (maximum of 100% for Asian and Indian
emales on multiple folds and a minimum of 56.25% for Asian males
n Fold 4)), with a maximum accuracy of 93.548% for Black Females
nd a minimum of 66.67% on Indian females.
In summary, the human–machine partnership with the continual learning

rocess with BPCOD as outlier detection on LFW led to a slight improvement
n overall accuracy by up to 2%. This slight improvement could be because
ewer outliers, as well as fewer iterations of continual learning, have been
onsidered for our evaluation. Also, it is worth noting the difference in
he distribution of training data, CelebA, and test distribution, LFW. Ad-
itionally, there was a reduction in the degree of bias as evidenced by the
ecreased DoB by up to 70%.
BOD. For the same task of smile attribute classification, from Table 17
e could observe the baseline overall classification accuracy was
btained as 83.48%, 83.318%, 83.739%, and 84% after evaluating on
old 1, Fold 2, Fold 3 and Fold 4 as discussed prior in Section 4.2. Also,
he ratio of max–min accuracy and the degree of bias were obtained as
.793 & 13.823, 1.732 & 13.76, 1.754 & 13.194, and 1.78 & 13.778
hen evaluated on Fold 1, Fold 2, Fold 3, and Fold 4, respectively.

On the human–machine partnership with continual learning frame-
ork, fine-tuning the Baseline with the outliers from Fold 1 (Finetuned
odel 1), we observed an increment in overall classification on Fold

, it improved to 84.526% from 83.318%. Similarly, on Folds 3 and
, the overall classification accuracy increased to 89% from 83.739%,
nd to 89.44% from 84% respectively with Finetuned Model 2, and
. Moreover, the DoB of Fold 2 reduced to 8.861 from 13.76 with
inetuned Model 1, followed by 7.075 from 13.194 on Fold 3 with
inetuned Model 2, and finally 5.908 from 13.778 on Fold 4 with
inetuned Model 4. Further, the ratio of max–min accuracy was also
educed to 1.354 from 1.732 on Fold 2 with Finetuned Model 1,
ollowed by 1.44 to 1.754 on Fold 3 with Finetuned Model 2, and
inally 1.26 from 1.78 on Fold 4 with Finetuned Model 3. Further,
he gap between the maximum and minimum has reduced to around
1% (initially, it was 54% (maximum of 100% for Asian and Indian
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able 15
mile attribute classification accuracy (%) on LFW testset across different folds and gender-racial groups using expert labeling framework. M stands for Male, and F stands for

Female. NS stands for Non-Smiling and S stands for Smiling Face. Max/Min is the ratio of maximum and minimum classification accuracy values among genders and race; Overall
and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F

NS S NS S NS S NS S NS S NS S NS S NS S
Baseline
Fold 1 98.46 55.769 100 76.67 91.025 71.428 85.714 81.48 95.918 58.14 100 77.78 96.01 71.023 94.34 81.98 1.793 83.48 13.823
Fold 2 95.21 57.73 100 76.47 92.42 63.49 85.71 85.71 96.552 71.053 100 63.63 96.35 74.65 95.94 78.16 1.732 83.318 13.76
Fold 3 97.059 57 93.33 68.33 87.037 74.194 69.231 93.33 95.652 70 100 93.75 96.635 74.213 95.109 74.937 1.754 83.739 13.194
Fold 4 98.413 56.25 100 73.08 91.549 68.254 100 74.19 92.98 72.093 100 72.22 96.976 72 93.72 82.258 1.78 84 13.778
Expert labeling-BPCOD
Fold 1 98.46 55.77 100 76.67 91.025 71.429 85.714 81.48 97.96 58.14 100 77.78 96.3 71.024 94.81 81.984 1.793 83.659 13.986
Fold 2 95.21 57.732 100 76.47 93.94 63.492 85.714 85.714 96.552 71.053 100 63.64 96.49 74.654 96.446 78.158 1.732 83.454 13.868
Fold 3 97.794 57 93.33 68.33 88.89 74.193 69.231 93.33 95.65 70 100 93.75 96.854 74.213 95.11 74.94 1.754 83.914 13.291
Fold 4 98.413 56.25 100 73.077 91.549 68.254 100 74.194 92.982 72.093 100 72.22 97.336 72 94.203 82.258 1.78 84.052 13.821
Expert labeling-EBOD
Fold 1 100 56.73 100 78.33 98.718 71.429 100 81.48 97.96 58.14 100 77.78 99.644 71.18 98.585 82.506 1.76 85.78 15.117
Fold 2 100 58.763 100 76.471 96.97 65.079 100 85.714 98.276 71.053 100 63.636 99.713 74.654 98.985 78.68 1.702 85.5 14.966
Fold 3 100 58 100 68.33 100 74.194 92.308 93.33 98.551 70 100 93.75 99.781 74.363 100 75.439 1.724 87.378 14.118
Fold 4 100 56.25 100 73.077 100 68.254 100 74.194 96.491 72.093 100 72.22 99.712 72 100 82.8 1.78 85.443 14.927
Table 16
Smile attribute classification accuracy (%) on LFW testset for ResNet-18 across different folds, and gender-racial groups using continual learning framework using prior preservation
oss. M stands for Male, and F stands for Female. NS stands for Non-Smiling and S stands for Smiling Face. Max/Min is the ratio of maximum and minimum classification accuracy

values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model
𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using BPCOD.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F

NS S NS S NS S NS S NS S NS S NS S NS S
Baseline
Fold 1 98.46 55.769 100 76.67 91.025 71.428 85.714 81.48 95.918 58.14 100 77.78 96.01 71.023 94.34 81.98 1.793 83.48 13.823
Fold 2 95.21 57.73 100 76.47 92.42 63.49 85.71 85.71 96.552 71.053 100 63.63 96.35 74.65 95.94 78.16 1.732 83.318 13.76
7Fold 3 97.059 57 93.33 68.33 87.037 74.194 69.231 93.33 95.652 70 100 93.75 96.635 74.213 95.109 74.937 1.754 83.739 13.194
Fold 4 98.413 56.25 100 73.08 91.549 68.254 100 74.19 92.98 72.093 100 72.22 96.976 72 93.72 82.258 1.78 84 13.778
Finetuned Model 1
Fold 2 90.419 77.32 97.059 86.27 90.91 65.079 85.71 85.71 98.276 73.684 100 63.64 94.628 76.96 92.893 84.474 1.571 85.19 10.82
Finetuned Model 2
Fold 3 86.029 79 83.33 78.33 83.33 87.1 61.538 86.67 88.406 75 90.91 93.75 90.93 86.207 83.7 85.714 1.523 83.746 7.42
Finetuned Model 3
Fold 4 83.33 84.375 89.286 80.769 77.465 85.714 83.33 93.548 85.945 93.023 66.67 83.33 86.825 88.563 77.295 93.01 1.4 84.532 6.675
Fig. 8. Visualization of Grad-CAM(Top) and Combined Grad-CAM with Guided Back-propagation(Bottom) for Smile Attribute Classifiers: Baseline and Fine-tuned Models[1–3] (from
left to right).[Best viewed in color.].
Females on multiple folds and a minimum of 56.25% for Asian males
on Fold 4)), with a maximum accuracy of 100% for Indian Females and
a minimum of 79.365% on Black males.

In summary, the human–machine partnership approach involving a
continual learning process with EBOD as the outlier detection method on the
LFW dataset led to an improvement in overall accuracy by up to 5%. This
improvement could be due to the identification of more outliers compared
to the previous continual learning framework that used BPCOD for outlier
detection. It is also worth noting the difference in the distribution of the
training data (CelebA) and the test distribution (LFW). Additionally, there
was a significant reduction in the degree of bias, as evidenced by a decrease
of up to 80% in the DoB (degree of bias) metric and the ratio of max–min
accuracy.

Furthermore, for the smile attribute classification task, we observed
improvements in the Grad-CAM visualizations when comparing the
16 
baseline model and the fine-tuned models obtained after each iteration
of our proposed continual learning approach using prior preservation
loss and EBOD for outlier detection (Fig. 8). Initially, the baseline
model primarily focused on the bottom right part of the face when
making smile predictions. However, through the continual learning
framework, the iteratively trained models gradually shifted their atten-
tion to the regions near the mouth. These visualizations demonstrate
that the continual learning process enabled the model better to identify
relevant facial features for smile attribute classification. Specifically,
the model’s enhanced ability to focus on the mouth region, which is a
crucial indicator of smiles, provides compelling evidence of the effec-
tiveness of our continual learning approach in improving performance
for this task.

Additionally, experimental results (See details at A.2) revealed a
significant decline in accuracy up to 34% and increased discrimination
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Table 17
Smile attribute classification accuracy (%) on LFW testset for ResNet-18 across different folds and gender-racial groups using a continual learning framework using prior preservation
loss. M stands for Male, and F stands for Female. NS stands for Non-Smiling and S stands for Smiling Face. Max/Min is the ratio of maximum and minimum classification accuracy
values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model
𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using EBOD.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F

NS S NS S NS S NS S NS S NS S NS S NS S
Baseline
Fold 1 98.46 55.769 100 76.67 91.025 71.428 85.714 81.48 95.918 58.14 100 77.78 96.01 71.023 94.34 81.98 1.793 83.48 13.823
Fold 2 95.21 57.73 100 76.47 92.42 63.49 85.71 85.71 96.552 71.053 100 63.63 96.35 74.65 95.94 78.16 1.732 83.318 13.76
Fold 3 97.059 57 93.33 68.33 87.037 74.194 69.231 93.33 95.652 70 100 93.75 96.635 74.213 95.109 74.937 1.754 83.739 13.194
Fold 4 98.413 56.25 100 73.08 91.549 68.254 100 74.19 92.98 72.093 100 72.22 96.976 72 93.72 82.258 1.78 84 13.778
Finetuned Model 1
Fold 2 93.413 88.66 94.118 90.2 86.36 69.84 71.429 89.286 93.103 71.053 71.429 81.82 94.56 78.96 91.878 86.316 1.354 84.526 8.861
Finetuned Model 2
Fold 3 93.382 88 100 83.33 88.89 90.32 69.231 93.33 91.304 82.5 90.91 93.75 97.293 82.459 93.478 85.714 1.44 89 7.075
Finetuned Model 3
Fold 4 93.65 81.25 85.714 90.385 92.958 79.365 100 83.871 87.72 90.7 100 88.89 94.89 82.55 87.44 91.67 1.26 89.44 5.908
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up to 42% for smile attribute classification without prior preservation
loss, indicating catastrophic forgetting and underscoring its critical role
in preserving knowledge and enhancing fairness in continual learning
scenarios.

5.3. Comparative analysis with SOTA bias mitigation techniques

To comprehensively evaluate the effectiveness of our proposed ap-
roach, we conducted a comparative analysis against popular state-of-

the-art (SOTA) bias mitigation techniques for gender classification. As
ost bias mitigation strategies are applied to the gender classification

problem, we chose this task for our comparative analysis. We evaluated
our approach alongside techniques based on multi-tasking (Das et al.,
2018), adversarial debiasing (Zhang et al., 2018), deep generative
views (Ramachandran & Rattani, 2023), and consistency regulariza-
ion (Krishnan & Rattani, 2023), using the FairFace and UTKFace
atasets. The algorithms were trained on the FairFace dataset and
ested on both FairFace and UTKFace datasets. We compared these
echniques against our proposed continual learning approach using the
esNet-18 model, which was trained with prior preservation loss and
tilized EBOD for outlier detection. For evaluation, we used the fine-
uned model after the third iteration. We chose EBOD as the outlier
etection mechanism because it strikes a good balance in terms of
uman intervention compared to other methods.

For the comparative analysis, we utilized overall classification ac-
uracy, the ratio of maximum and minimum accuracy values, and the
egree of Bias (DoB) as evaluation metrics, as shown in Table 18.
s evident from Table 18, our proposed human–machine partnership
odel obtained the lowest DoB and max–min ratio, and achieved the
ighest accuracy on the FairFace test set, while on the UTKFace dataset,
t obtained the highest overall accuracy.

On the FairFace test set, our proposed human–machine partnership
ethod achieved the lowest DoB of 1.164, the ratio of 1.037, and

he highest overall accuracy of 96.47%. On the UTKFace dataset, our
roposed method obtained the highest overall accuracy of 95.91%,
hile Krishnan and Rattani (2023) achieved the lowest DoB of 0.95
nd the ratio of maximum and minimum accuracy values of 1.02.

It is noteworthy that an existing technique based on adversarial
ebiasing (Zhang et al., 2018) exhibited a trade-off between accuracy
nd fairness, attributable to the addition of the adversarial component,
hich reduced the model’s generalization capacity. Additionally, ad-
ersarial debiasing and multi-tasking (Das et al., 2018; Zhang et al.,
018) based bias mitigation techniques require demographically anno-
ated data. Furthermore, the technique based on deep generative views
s computationally expensive and limited in its ability to synthesize
mages of the 3D scene with multi-view consistency. Consequently,
n comparison to the existing State-of-the-Art (SOTA) methodologies
hich are in-processing techniques, our proposed technique is applied

uring test time. It can be used with already deployed models. Our

17 
pproach has the advantage of reducing bias even when protected
ttributes are not available, and it can be applied across different
omains and applications. Most importantly, it incorporates a human
ubject matter expert, making it a reliable and trustworthy approach
uring testing. Worth mentioning, our proposed methodology offers
he benefit of improved fairness without compromising classification
ccuracy.

. Key findings

In this section, we will address the important findings and observa-
ions from the experiments conducted:

• The visual examples in Fig. 9 highlight outlier instances, detected
using the EBOD method, that deviates substantially from normal
cases, posing challenges for accurate gender and smile attribute
classification.

• Systematic approach to harness sample prediction uncertainty
(outliers), and human–machine partnership at test time, enhances
the fairness of the system without compromising its classification
performance.

• With our proposed human–machine partnership approach, the
groups that had the lowest performance (Black ethnicity in Fair-
Face & Asian ethnicity in UTKFace for gender classification, and
Asian Males in LFW for smile attribute classification) when using
the baseline framework improved their classification accuracy.
Importantly, this improvement did not negatively impact the
groups that performed best (Middle Eastern ethnicity in Fair-
Face, & White ethnicity in UTKFace for gender classification, and
White Females in LFW for smile attribute classification) with the
baseline framework.

• With the human–machine partnership approach involving expert
labeling, the accuracy improved by up to 6% for the Black de-
mographic group in the FairFace dataset, & 5% for the Asian
demographic group in the UTKFace dataset for gender classifi-
cation, and 1% for Asian Males in the LFW dataset for smile
attribute classification. Similarly, through the third iteration of
continual learning, the accuracy further increased by up to 3% for
the Black group in FairFace & 3% for the Asian group in UTKFace
for gender classification and 10% for Asian Males in LFW for smile
attribute classification.

• Overall, the human–machine partnership with a continual learn-
ing framework improved classification accuracy (up to 3% for
gender and 5% for smile attribute) and significantly reduced bias
(up to 60% for gender and 80% for smile attribute) as shown in
Figs. 10–12.

• The GradCAM visualizations in Figs. 7 and 8 compellingly demon-
strate that incorporating the continual learning framework en-
abled the models to focus on more relevant facial regions, result-
ing in enhanced discrimination capabilities for both the gender

and smile attribute classification tasks.
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Table 18
Comparative analysis of gender classification task. A: Multi-Tasking (Das et al., 2018), B: Adversarial debiasing (Zhang et al., 2018), D: Deep Generative Views
(Ramachandran & Rattani, 2023). E: Consistency Regularization (Krishnan & Rattani, 2023). The top performance results are highlighted in bold.

Method Accuracy DoB↓ Max/Min↓

Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Overall↑

FairFace

A 91.26 94.45 95.05 95.19 97.35 94.2 94.96 94.64 1.81 1.067
B 87.66 91.93 93.67 93.8 95.96 91.81 93.96 92.69 2.62 1.095
D 91.64 95.29 95.38 95.32 97.11 93.5 94.92 94.72 1.72 1.06
E 90.83 93.6 94.48 94.7 95.94 93.64 94.57 94 1.59 1.056
Ours 94.25 96.34 97.59 96.65 97.76 96.03 96.67 96.47 1.164 1.037

UTKFace

B 94.62 – 93.65 – – 91.89 94.97 93.78 1.38 1.03
E 95.85 – 95.43 – – 93.67 95.16 95.03 0.95 1.02
Ours 97.17 – 96.17 – – 93.49 96.82 95.91 1.67 1.039
Fig. 9. Illustrates examples of normal and uncertain/outlier cases for gender classification and smile attribute classification tasks. The top left shows normal examples for gender
classification, and the bottom left shows normal examples for smile attribute classification. The top right displays outlier examples identified by the EBOD method for gender
classification, while the bottom right shows outlier examples detected by EBOD for smile attribute classification. These outlier examples on the right exhibit unique characteristics
like occlusion, varying poses, and facial expressions, which can make classification particularly challenging for the model.
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• Finally, experimental results (A.1 and A.2) revealed a significant
decline in accuracy (up to 21% for gender and 34% for smile at-
tribute) and increased discrimination (up to 200% for gender and
42% for smile attribute) without prior preservation loss using a
continual learning framework, indicating catastrophic forgetting
and underscoring its critical role in preserving knowledge and
enhancing fairness in continual learning scenarios.

• We observed that incorporating the uncertain samples via expert
labeling or continual learning did not significantly enhance the
overall classification accuracy, this is due to the nature of incre-
mental learning challenge, as the existing weights and parameters
are heavily biased towards the initial training data distribution,
and outliers in different data folds could be in small numbers
to overpower the existing distribution. However, we observed a
performance gain of up to 5% in the third iteration of continual
learning. The performance of the classifier is bound to improve
with the number of adaptations in an iterative manner.

6.1. Explanation of accuracy vs. Fairness trade-off

To explain the modest improvement in overall accuracy but sig-
ificant reduction in bias, we can refer to Table 12 as an example.
he accuracy boost is incremental (around 1%), while the substantial
eduction in bias (around 50%) is a notable achievement. This indicates
hat the fine-tuned model is better calibrated and less discriminatory
owards specific demographic subgroups.

From the baseline results on Fold 4, there is a notable gap of around
2% between the highest accuracy (98.656 for Black Males) and the
owest accuracy (86.797% for Asian Females). This large gap indicates a
igh degree of bias in the baseline model’s performance across different
emographic groups. However, after the third iteration of re-training
18 
Finetuned 3) on Fold 4, the highest accuracy is 96.106% for Black
emales, and the lowest is 91.473% for Asian Males. The gap between
he highest and lowest accuracy has been reduced to around 4.6%. This
eduction in the gap between the maximum and minimum accuracy
alues across demographic groups is reflected in the ratio of max–min
ccuracies, which decreases from 1.137 for the baseline to 1.05 for

FineTuned 3 (a lower value indicates less disparity).
Additionally, the fine-tuned model has improved the accuracy for

underperforming groups like Asian Females (from 86.797% to
91.558%) and Indian Males (from 95.841% to 92.374%). Consequently,
the standard deviation of accuracy values across gender and race
groups, represented by the DoB, has decreased substantially from 3.58
or the baseline to 1.562 for FineTuned 3. Therefore, it is evident that
he continual learning process has helped to uplift the performance
f underperforming demographic groups while maintaining or slightly
mproving the performance of well-performing groups. This has led to a
ore uniform and fair distribution of accuracy across different gender

nd race categories, resulting in a significant reduction in the degree
f bias while still providing a modest overall accuracy gain.
The key inferences suggest that a human–machine partnership with

ontinual learning exhibits a higher potential for mitigating bias without
ompromising the generalization capacity, thereby enhancing the fairness of
acial attribute classification compared to a static expert labeling framework.

. Conclusion and future work

Much of the existing machine learning-based fairness literature is in-
rocessing techniques that assume the presence of protected attributes
uring the training stage, such as ethnicity and sex, for bias mitigation.
owever, in practice, the collection of protected features, or their
se for training or inference is often precluded due to privacy and

regulation. This severely limits the applicability of traditional fairness
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Fig. 10. Boxplots of overall classification accuracy for ResNet18 model: Baseline, expert labeling, and continual learning frameworks across different folds for gender classification
(FairFace, UTKFace & DiveFace) and smile attribute classification (LFW).
Fig. 11. Boxplots of degree of bias (DoB) for ResNet18 model: Baseline, expert labeling, and continual learning frameworks across different folds for gender classification (FairFace,
TKFace & DiveFace) and smile attribute classification (LFW).
Fig. 12. Boxplots of the ratio of max–min accuracies for ResNet18 model: Baseline, expert labeling, and continual learning frameworks across different folds for gender classification
FairFace, UTKFace & DiveFace) and smile attribute classification (LFW).
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esearch. Further, existing approaches to mitigating bias may offer a
rade-off between fairness and classification performance. Furthermore,
he existing in-processing bias mitigation techniques cannot be utilized
or already deployed models.

We have proposed a novel approach for mitigating bias at test-time
y incorporating minimal human–machine partnership with expert
abeling and continual learning for facial attribute classifiers as a
ase study. By leveraging the expertise of human experts to label
he outliers/uncertain data samples, we have demonstrated the better
ffectiveness of fine-tuning a deep neural network through an iter-
tive process that combines human guidance with machine learning
 t

19 
ver expert labeling. Through extensive experimentation on gender
nd smile attribute classification tasks, our approach has shown sig-
ificant improvements in both accuracy and fairness. The results of
ur experiments indicate that our method achieves a noteworthy 2%
mprovement in gender classification accuracy and a substantial 5%
mprovement in smile attribute classification accuracy when compared
o baseline models. Furthermore, our approach has demonstrated its
otential in reducing bias at test-time, with an impressive over 80%
eduction in bias for both gender and smile attribute classification
asks.
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As a part of future work, the efficacy of our proposed mitigation
techniques will be evaluated for multi-attribute classifiers across sev-
ral protected attributes. Lastly, we will extend our work to address
emographic bias mitigation in other domains such as general image
lassification and natural language processing.
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ppendix

This section discusses the performance of the gender classifier and
he smile attribute classifier when using a continual learning framework
ithout the prior preservation loss during iterative training on ResNet-
8 architecture. The gender classifier was initially trained on the Fair-
ace training set and then evaluated on different non-overlapping
est folds from the FairFace, UTKFace, and DiveFace datasets. The
mile attribute classifier was trained on the CelebA training set and
valuated on different non-overlapping test folds from the LFW dataset.
he performance was assessed across different genders and races. The
rotocol for retraining the models followed the same approach as
escribed in the paper. Additionally, we have presented the results of
ender classifiers trained on the Vision Transformer (ViT) architecture.
e observed a similar trend as the models trained on the ResNet-

8 architecture. Therefore, due to the straightforward and expected
ature of the results, we have omitted the evaluation of the smile
ttribute classifier trained on ViT. However, we want to emphasize
hat the trends observed for the smile attribute classification task were
qually compelling and aligned with the results of the one trained on
esNet-18, further solidifying the efficacy of our approach.

.1. Gender classifier

Tables 19, 20, and 21 present the evaluation results of the base-
line and fine-tuned gender classification models without the prior
preservation loss on the FairFace, UTKFace, and DiveFace test sets,
respectively, across different gender and race subgroups. The outliers in
he datasets were identified using the Boundary Proximity Confidence-
ased Outlier Detection (BPCOD) method. Similarly, Tables 22, 23, and
4 exhibit the same evaluation results but with outliers identified using
he Ensemble-Based Outlier Detection (EBOD) method. It is evident
rom the above-mentioned tables that the overall classification dropped
p to 21% over each iteration, accompanied by an increasing rate of

ias up to 200%.

20 
A.2. Smile attribute classifier

Table 25 presents the evaluation results of the baseline and fine-
uned smile attribute classification models without the prior preser-
ation loss on the LFW test sets, across different gender and race

subgroups. The outliers in the datasets were identified using the Bound-
ary Proximity Confidence-based Outlier Detection (BPCOD) method.
imilarly, Table 26 exhibits the same evaluation results but with out-
iers identified using the Ensemble-Based Outlier Detection (EBOD)
ethod. Similarly, on the gender classification task, we observed de-

creasing classification performance up to 34% as each fine-tuning took
place, on top of that, the decreased fairness up to 42% was also
observed.

A.3. Classifiers trained on ViT architecture

Tables 27–44 show the evaluation of gender classifiers trained on
he Vision Transformer (ViT) architecture. From the Tables 28, 34, and

40, by applying our proposed expert learning framework, the overall
classification accuracy on the FairFace test set improved by up to 4%
when using BPCOD for outlier detection and 5% when using EBOD.
Similarly, on the UTKFace dataset, improvements of 2% and 4% were
observed when using BPCOD and EBOD, respectively. Additionally, an
improvement of almost 1% was observed on the DiveFace test set when
using both BPCOD and EBOD, as the DiveFace test set already exhibited
fair performance even with the baseline models.

Regarding bias reduction, the FairFace test set showed a bias reduc-
tion of up to 20% when using BPCOD as the outlier detection method
and up to 48% when using EBOD. Similarly, on the UTKFace dataset, a
bias reduction of up to 36% was observed when utilizing BPCOD, and
up to 45% when using EBOD. Finally, on the DiveFace dataset, a bias
reduction of up to 50% was observed when using BPCOD, and up to
40% when using EBOD.

Additionally from the Tables 29, 30, 35, 36, 41 and 42, when
applying continual learning with prior preservation loss, as shown
in the tables, the overall accuracy on the FairFace test set slightly
improved by up to 2% for both BPCOD and EBOD, as this is an iterative
process. The bias was reduced by up to 12% when using BPCOD and
up to 22% when using EBOD. Similarly, on the UTKFace dataset, the
overall accuracy improved by up to 1%–2% for both BPCOD and EBOD,
and the bias reduction was up to 15% for BPCOD and 28% for EBOD.
Finally, on the DiveFace dataset, a modest increment of 1% in overall
accuracy was observed when using both BPCOD and EBOD, and the
bias reduction was up to 22% when using BPCOD and 62% when using
EBOD.

Moreover from the Tables 31, 32, 37, 38, 43 and 44, when continual
learning was performed without using prior preservation loss, the
overall accuracy decreased by up to 20%, and the bias increased up to
six times compared to the baseline model’s performance. Similar trends
were observed for the smile attribute classification task on the ViT
architecture, where our proposed continual learning framework using
EBOD for outlier detection significantly reduced bias and modestly
improved classification performance.

In summary, by leveraging the expertise of human experts to label
outliers and uncertain data samples, and fine-tuning deep neural net-
works through an iterative process that combines human guidance with
machine learning based on expert labeling, we can improve the fairness
of facial-based gender and smile attribute classification tasks without
negatively affecting the model’s ability to generalize to new data.

Data availability

Data will be made available on request.



A.K.U. Nair and A. Rattani

i
o
l

i
o
l

Machine Learning with Applications 19 (2025) 100610 
Table 19
Gender classification accuracy (%) on FairFace testset on ResNet18 architecture across different folds and gender-racial groups. M stands for Male, and F stands for Female. Max/Min
s the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation
f the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers identified from Fold 𝑖 using BPCOD without the prior preservation
oss.
Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min(↓) Overall(↑) DoB(↓)
Gender M F M F M F M F M F M F M F
Baseline
Fold 1 85.643 85.96 91.453 91.1 94.54 93.846 89.44 92.54 97.087 94.624 91.379 91.011 93.662 89.431 1.134 91.54 3.108
Fold 2 89.64 84.7 93.01 93.264 94.5 94.38 94.86 96.55 96.208 94.9 93.407 94.631 93.214 94.98 1.14 93.446 2.91
Fold 3 90.164 80.2 92.353 94.413 95.19 94.15 93.9 94.089 95.098 95.495 90.206 95.745 93.725 91.428 1.194 92.58 3.86
Fold 4 93.229 87.437 94.118 93.33 93.989 88.442 95.161 92.453 97.92 90.426 90.27 91.52 94.719 93.133 1.12 92.58 2.67
Finetuned Model 1
Fold 2 75.225 74.863 74.731 89.119 78 89.89 78.505 93.596 84.834 91.837 79.121 79.866 80 92.47 1.252 83 6.774
Finetuned Model 2
Fold 3 74.863 68.02 87.647 68.156 81.25 78.723 79.343 82.76 86.765 87.387 83.505 61.702 80.39 72.653 1.42 78.083 7.7
Finetuned Model 3
Fold 4 64.583 77.89 77.54 71.905 63.388 79.9 73.66 83.02 70.31 86.17 77.838 63.03 69.637 83.69 1.367 74.47 7.35
Table 20
Gender classification accuracy (%) on UTKFace testset on ResNet18 architecture across different folds and gender-racial groups. M stands for Male, and F stands for Female. Max/Min
s the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation
f the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers identified from Fold 𝑖 using BPCOD without the prior preservation
oss.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Baseline

Fold 1 91.036 88.387 96.078 91.058 96.516 93.12 94.815 93.615 1.092 93.078 2.607
Fold 2 91.198 86.433 97 92.16 96.697 93.056 94.95 92.427 1.122 93 3.181
Fold 3 91.686 81.435 98.107 92.13 93.45 92.732 94.968 92.602 1.205 92.139 4.482
Fold 4 89.922 86.797 98.656 90.796 95.841 91.05 95.326 93.896 1.137 92.786 3.58

Finetuned Model 1
Fold 2 77.017 90.591 87.874 93.554 84.404 94.68 85.137 93.978 1.23 88.404 5.682

Finetuned Model 2
Fold 3 63.183 91.983 86.231 91.55 79.823 93.484 84.975 90.95 1.48 85.273 9.372

Finetuned Model 3
Fold 4 68.217 87.88 88.676 78.23 79.896 82.327 84.125 78.344 1.3 80.96 6.094
Table 21
Gender classification accuracy (%) on DiveFace testset on ResNet18 architecture across different folds and different demographics. M stands for
Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall
and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖
is the fine-tuned model with the outliers identified from Fold 𝑖 using BPCOD without the prior preservation loss.

Race East Asian Sub-Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Baseline

Fold 1 97.51 98.84 97.642 96.237 98.074 97.287 1.027 97.6 0.79
Fold 2 97.94 96.953 97.82 94.97 99.46 95.56 1.047 97.118 1.51
Fold 3 98.03 99.33 97.02 96 98.053 96.739 1.035 97.529 1.079
Fold 4 97.1 98.66 96.92 97.3 98.61 97.015 1.0179 97.6 0.74

Finetuned Model 1
Fold 2 90.449 98.387 89.094 97.67 92.014 97.513 1.104 94.187 3.773

Finetuned Model 2
Fold 3 88.89 99.162 93.296 95.636 90.973 97.1 1.116 94.176 3.525

Finetuned Model 3
Fold 4 84.783 95.97 84.42 93.33 85.417 95.854 1.137 89.963 5.17
21 
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Table 22
Gender classification accuracy (%) on FairFace testset on ResNet18 architecture across different folds and gender-racial groups. M stands for Male, and F stands for Female. Max/Min
s the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation
f the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers identified from Fold 𝑖 using EBOD without the prior preservation
oss.
Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min(↓) Overall(↑) DoB(↓)
Gender M F M F M F M F M F M F M F
Baseline
Fold 1 85.64 85.96 91.45 91.1 94.54 93.85 89.44 92.54 97.09 94.62 91.38 91.01 93.66 89.43 1.13 91.54 3.11
Fold 2 89.64 84.7 93.01 93.26 94.5 94.38 94.86 96.55 96.21 94.9 93.41 94.63 93.21 94.98 1.14 93.45 2.91
Fold 3 90.16 80.2 92.35 94.41 95.19 94.15 93.9 94.09 95.1 95.5 90.21 95.74 93.72 91.43 1.19 92.58 3.86
Fold 4 93.23 87.44 94.12 93.33 94 88.44 95.16 92.45 97.92 90.43 90.27 91.52 94.72 93.13 1.12 92.58 2.67
Finetuned Model 1
Fold 2 74.32 77.6 74.73 89.12 74 88.76 80.84 89.66 85.78 91.84 73.08 79.87 78.21 90.8 1.26 82.04 6.75
Finetuned Model 2
Fold 3 48.09 73.1 87.06 56.98 73.08 79.79 77.46 75.86 81.86 73.87 69.59 62.77 85.49 55.51 1.81 71.46 11.26
Finetuned Model 3
Fold 4 61.98 73.87 76.47 67.14 65.57 82.41 75.27 79.72 75.52 78.72 74.59 73.33 76.9 68.24 1.33 73.55 5.59
Table 23
Gender classification accuracy (%) on UTKFace testset on ResNet18 architecture across different folds and different demographics. M stands for
Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall
and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖
is the fine-tuned model with the outliers identified from Fold 𝑖 using EBOD without the prior preservation loss.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Baseline

Fold 1 91.04 88.39 96.08 91.06 96.52 93.12 94.82 93.62 1.09 93.08 2.61
Fold 2 91.2 86.43 97 92.16 96.7 93.06 94.95 92.43 1.12 93 3.18
Fold 3 91.69 81.44 98.11 92.13 93.45 92.73 94.97 92.6 1.2 92.14 4.48
Fold 4 89.92 86.8 98.66 90.8 95.84 91.05 95.33 93.9 1.14 92.79 3.58

Finetuned Model 1
Fold 2 67.48 91.25 74.42 95.3 76.15 93.29 81.89 92.24 1.41 84 9.78

Finetuned Model 2
Fold 3 60.1 89.45 66.95 92.71 74.16 89.72 77.35 86.34 1.54 79.6 11.13

Finetuned Model 3
Fold 4 58.14 89.39 71.78 90.44 63.6 90.6 69.29 88.54 1.5 77.72 12.6
Table 24
Gender classification accuracy (%) on DiveFace testset on ResNet18 architecture across different folds and different demographics. M stands for
Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall
and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖
is the fine-tuned model with the outliers identified from Fold 𝑖 using EBOD without the prior preservation loss.

Race East Asian Sub-Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Baseline

Fold 1 97.51 98.84 97.642 96.237 98.074 97.287 1.027 97.6 0.79
Fold 2 97.94 96.953 97.82 94.97 99.46 95.56 1.047 97.118 1.51
Fold 3 98.03 99.33 97.02 96 98.053 96.739 1.035 97.529 1.079
Fold 4 97.1 98.66 96.92 97.3 98.61 97.015 1.0179 97.6 0.74

Finetuned Model 1
Fold 2 90.075 97.31 90.1 98.025 93.103 97.51 1.088 94.355 3.42

Finetuned Model 2
Fold 3 78.136 99.33 89.013 95.45 82.12 97.283 1.27 90.22 7.89

Finetuned Model 3
Fold 4 74.82 98.273 82.246 95.135 81.076 97.512 1.313 88.18 9.142
22 



A.K.U. Nair and A. Rattani

i
o

Machine Learning with Applications 19 (2025) 100610 
Table 25
Smile attribute classification accuracy (%) on LFW testset on ResNet18 architecture across different folds and different demographics. M stands for Male, and F stands for Female.
NS stands for Non-Smiling and S stands for Smiling Face. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and
DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers
identified from Fold 𝑖 using BPCOD without the prior preservation loss.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F

NS S NS S NS S NS S NS S NS S NS S NS S
Baseline
Fold 1 98.46 55.77 100 76.67 91.025 71.43 85.71 81.48 95.918 58.14 100 77.78 96.01 71.023 94.34 81.98 1.79 83.48 13.82
Fold 2 95.21 57.73 100 76.47 92.42 63.49 85.71 85.71 96.55 71.05 100 63.63 96.35 74.65 95.94 78.16 1.73 83.32 13.76
Fold 3 97.06 57 93.33 68.33 87.04 74.19 69.23 93.33 95.65 70 100 93.75 96.63 74.21 95.11 74.94 1.75 83.74 13.19
Fold 4 98.41 56.25 100 73.08 91.55 68.25 100 74.19 92.98 72.09 100 72.22 96.98 72 93.72 82.26 1.78 84 13.78
Finetuned Model 1
Fold 2 59.28 86.6 61.76 94.12 63.64 73.02 28.57 92.86 75.86 86.84 42.86 63.64 64.54 87.3 53.81 94.21 3.3 70.56 18.71
Finetuned Model 2
Fold 3 50 58 33.33 63.33 42.59 38.71 53.85 43.33 52.17 40 54.54 25 57.06 53.82 55.98 52.88 2.53 48.41 9.94
Finetuned Model 3
Fold 4 59.52 42.71 67.86 42.31 60.56 33.33 83.33 32.26 52.63 39.53 50 33.33 63 46.77 66.67 38.71 2.58 50.78 14.37
Table 26
Smile attribute classification accuracy (%) on LFW testset on ResNet18 architecture across different folds and different demographics. M stands for Male, and F stands for Female.
NS stands for Non-Smiling and S stands for Smiling Face. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and
DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers
identified from Fold 𝑖 using EBOD without the prior preservation loss.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F

NS S NS S NS S NS S NS S NS S NS S NS S
Baseline
Fold 1 98.46 55.769 100 76.67 91.025 71.428 85.714 81.48 95.918 58.14 100 77.78 96.01 71.023 94.34 81.98 1.793 83.48 13.823
Fold 2 95.21 57.73 100 76.47 92.42 63.49 85.71 85.71 96.552 71.053 100 63.63 96.35 74.65 95.94 78.16 1.732 83.318 13.76
Fold 3 97.059 57 93.33 68.33 87.037 74.194 69.231 93.33 95.652 70 100 93.75 96.635 74.213 95.109 74.937 1.754 83.739 13.194
Fold 4 98.413 56.25 100 73.08 91.549 68.254 100 74.19 92.98 72.093 100 72.22 96.976 72 93.72 82.258 1.78 84 13.778
Finetuned Model 1
Fold 2 82.036 85.567 64.71 92.157 71.21 71.429 71.429 96.429 72.414 76.316 57.143 81.82 84.24 88.48 71.066 92.895 1.687 78.71 10.66
Finetuned Model 2
Fold 3 77.206 78 86.67 83.33 83.33 79.03 69.231 80 78.261 87.5 63.64 87.5 88.66 80.21 82.609 85.714 1.393 80.68 6.547
Finetuned Model 3
Fold 4 56.349 89.58 71.429 98.077 80.282 74.603 66.67 90.322 64.912 86.046 50 100 77.754 85.63 68.116 93.817 2 78.349 14.262
Table 27
Gender classification accuracy (%) on FairFace testset on ViT architecture across different folds, and gender-racial groups. M stands for Male, and F stands for Female. Max/Min
s the ratio of maximum and minimum classification accuracy values among genders and races; Overall and DoB are the overall classification accuracy and the standard deviation
f the accuracy values across genders and races.

Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F M F M F M F

Baseline

Fold 1 88.24 88.64 94.44 94.24 95.15 95.9 92.22 93.87 97.09 97.85 94.25 92.13 94.72 95.53 1.11 93.88 2.68
Fold 2 90.22 86.67 95.7 95.85 96 94.38 94.86 97.54 97.63 97.96 93.96 94.63 94.29 95.4 1.13 94.65 2.89
Fold 3 91.89 87.69 93.53 93.86 94.66 96.32 95.31 94.09 95.59 98.2 89.69 94.68 95.67 92.65 1.12 93.845 2.61
Fold 4 90.67 89.9 93.05 93.33 96.15 94.5 94.09 94.34 97.4 90.43 94.05 93.33 97.03 94.85 1.08 93.79 2.21
Table 28
Gender classification accuracy (%) on FairFace testset on ViT architecture across different folds, and gender-racial groups on expert labeling framework. M stands for Male, and F
stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among genders and races; Overall and DoB are the overall classification accuracy
and the standard deviation of the accuracy values across genders and races.

Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F M F M F M F
Expert labeling-BPCOD
Fold 1 90.41 92.69 94.88 97.49 95.76 99.3 95.2 96.17 97.57 98.7 95.44 95.55 96.14 99.3 1.1 96.04 2.46
Fold 2 92.34 92.58 99.34 98.87 97.524 96.63 95.33 99.41 98.59 99.15 93.96 95.97 95.37 97.08 1.08 96.58 2.43
Fold 3 94.73 98.24 98.91 99.35 96.1 99.54 96.26 99.87 96.573 99 93.64 96.26 95.69 94.31 1.07 97.03 2.09
Fold 4 92.78 99.63 99.18 99.78 97.27 99.54 96.2 98.71 97.4 99.87 95.2 97.032 97.37 95.73 1.076 97.55 2.08
Expert labeling-EBOD
Fold 1 94.36 97.9 97.09 99.11 97.6 99.3 96.23 97.61 97.57 98.7 97.81 97.25 98.28 99.3 1.052 97.722 1.31
Fold 2 94.64 95.06 99.37 99.87 98.54 96.07 97.2 99.41 99.07 99.15 96.72 96.64 98.26 97.92 1.05 97.66 1.62
Fold 3 96.9 99.35 98.84 99.2 98.01 99.54 96.73 99.41 97.559 99.15 93.28 97.31 97.69 98.03 1.07 97.97 1.68
Fold 4 97.18 99.63 99.76 98.92 98.95 99.54 95.68 99.41 97.914 99.15 99.69 98.89 99.74 98.35 1.04 98.76 1.15
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Table 29
Gender classification accuracy (%) on FairFace testset on ViT architecture across different folds, and gender-racial groups on a continual learning framework. M stands for Male,
and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the overall classification
accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using
BPCOD.

Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F M F M F M F
Finetuned Model 1
Fold 2 91.25 90.1 97.91 97.45 98.03 95.7 94.7 98.04 98.11 94.8 94.8 95.7 94.7 96.2 1.09 95.53 2.47
Finetuned Model 2
Fold 3 92.3 89.2 94.5 95.16 95.52 94.5 95.33 97.03 98.13 97.96 93.42 94.1 95.06 93.69 1.1 94.71 2.29
Finetuned Model 3
Fold 4 91.63 91.1 95.3 95.31 97.2 97.95 95.31 96.48 98.21 97 95.84 97.81 97.56 95.7 1.08 95.88 2.17
Table 30
Gender classification accuracy (%) on FairFace testset on ViT architecture across different folds, and gender-racial groups on a continual learning framework. M stands for Male,
and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the overall classification
accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using
BOD.
Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F M F M F M F
Finetuned Model 1
Fold 2 91.71 92.3 94.04 95.32 99.05 95.7 94.7 96.55 97.15 97.96 94.8 95.7 94.7 96.2 1.08 95.42 2
Finetuned Model 2
Fold 3 92.3 91.89 99.48 95.61 97.47 94.5 95.8 96.528 97.63 96.15 96.16 94.63 96.29 94.12 1.08 95.61 2.03
Finetuned Model 3
Fold 4 92.45 91.3 94.75 95.89 97.2 97.38 94.77 94.56 96.1 97.08 94.27 95.91 95.352 95.7 1.07 95.19 1.73
Table 31
Gender classification accuracy (%) on FairFace testset on ViT architecture across different folds and gender-racial groups. M stands for Male, and F stands for Female. Max/Min
is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation
of the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers identified from Fold 𝑖 using BPCOD without the prior preservation
oss.
Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F M F M F M F
Finetuned Model 1
Fold 2 75.71 76.6 76.89 91.59 79.24 89.9 78.51 94.553 86.09 94.8 79.59 79.86 80.92 92.88 1.25 84.09 7.21
Finetuned Model 2
Fold 3 76.3 74.37 88.76 67.75 80.8 80.53 80.53 82.76 87.21 89.86 83.03 61.02 82.07 73.63 1.47 79.19 8.02
Finetuned Model 3
Fold 4 62.81 80.08 76.66 71.9 64.85 85.37 72.828 84.71 69.94 86.17 81.1 64.28 71.34 85.23 1.37 75.52 8.38
Table 32
Gender classification accuracy (%) on FairFace testset on ViT architecture across different folds and gender-racial groups. M stands for Male, and F stands for Female. Max/Min
is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and DoB are the overall classification accuracy and the standard deviation
of the accuracy values across gender and race. Finetuned Model 𝑖 is the fine-tuned model with the outliers identified from Fold 𝑖 using EBOD without the prior preservation
oss.
Race Black East Asian Indian Latino Hispanic Middle Eastern Southeast Asian White Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F M F M F M F
Finetuned Model 1
Fold 2 74.8 79.4 76.89 91.59 75.17 88.77 80.84 90.58 87.05 94.87 73.51 79.86 79.11 91.2 1.29 83.11 7.262
Finetuned Model 2
Fold 3 49 79.92 88.17 56.65 72.67 81.62 78.62 75.86 82.28 75.97 69.19 62.07 87.28 56.25 1.8 72.54 12.23
Finetuned Model 3
Fold 4 60.28 75.95 75.6 67.14 67.08 88.05 74.42 81.34 75.12 78.72 77.71 74.78 78.77 69.5 1.46 74.61 6.89
Table 33
Gender classification accuracy (%) on UTKFace testset on ViT architecture across different folds, and gender-racial groups. M stands for Male,
and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among genders and races; Overall and
DoB are the overall classification accuracy and the standard deviation of the accuracy values across genders and races.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Baseline

Fold 1 91.43 91.84 98.39 89.28 98.18 97.56 96.18 96.19 1.1 94.88 3.28
Fold 2 91.43 88.37 100 91.8 92.59 97.67 92.75 95.93 1.13 93.82 3.53
Fold 3 91.84 93.88 100 92.86 96.43 92.1 95.56 95.83 1.1 94.81 2.55
Fold 4 92.1 90.91 95.56 97.87 88.52 93.88 97.9 91.17 1.1 93.49 3.19
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Table 34
Gender classification accuracy (%) on UTKFace testset on ViT architecture across different folds, and gender-racial groups on expert labeling
framework. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among
genders and races; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across genders
and races.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Expert labelings-BPCOD

Fold 1 92.836 95.636 100 91.971 98.369 99.007 96.858 97.521 1.087 96.525 2.875
Fold 2 92.409 93.07 100 94.059 92.944 99.617 93.318 98.776 1.082 95.524 3.311
Fold 3 92.79 99.13 100 94.986 97.89 95.838 96.355 97.902 1.078 96.861 2.346
Fold 4 94.487 94.31 95.56 98.2 92.61 95.724 98.664 94.75 1.065 95.538 2.025

Expert labeling-EBOD

Fold 1 95.93 96.082 99.726 96.13 99.776 99.007 97.987 99.825 1.041 98.058 1.769
Fold 2 97.306 95.81 100 96 95.61 99.374 95.009 99.724 1.053 97.354 2.051
Fold 3 97.786 99.13 100 96.919 98.254 95.092 97.441 99.794 1.052 98.052 1.627
Fold 4 98.722 94.537 95.932 98.2 98.83 96.187 99.655 97.56 1.054 97.453 1.746
Table 35
Gender classification accuracy (%) on UTKFace testset on ViT architecture across different folds, and gender-racial groups on a continual learning
framework. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among
gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and
race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using BPCOD.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Finetuned Model 1
Fold 2 91.919 92.175 99.154 94.56 93.68 97.188 92.119 97.734 1.079 94.817 2.859

Finetuned Model 2
Fold 3 90.637 95.457 96.73 92.1 95.696 93.46 96.148 95.564 1.0679 94.474 2.169

Finetuned Model 3
Fold 4 93.963 91.135 95.94 97.317 92 94.5 97.825 92 1.0739 94.335 2.539
Table 36
Gender classification accuracy (%) on UTKFace testset on ViT architecture across different folds, and gender-racial groups on a continual learning
framework. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among
gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and
race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using EBOD.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Finetuned Model 1
Fold 2 92.58 91.87 97.608 94.234 94.19 97.674 94.81 97.069 1.063 95 2.241

Finetuned Model 2
Fold 3 94.36 93.878 99.467 95.74 97.8 95.83 96.512 95.2 1.059 96.1 1.827

Finetuned Model 3
Fold 4 94.23 93.111 98.49 98.416 96.98 94.5 98.367 96.76 1.058 96.36 2.134
Table 37
Gender classification accuracy (%) on UTKFace testset on ViT architecture across different folds, and gender-racial groups. M stands for Male,
and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and
DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the
fine-tuned model with the outliers identified from Fold 𝑖 using BPCOD without the prior preservation loss.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Finetuned Model 1
Fold 2 77.212 92.62 90.592 93.19 80.82 99.38 83.17 97.544 1.287 89.316 8.044

Finetuned Model 2
Fold 3 63.28 91.57 87.895 92.272 82.37 92.852 85.505 94.12 1.487 86.23 10.11

Finetuned Model 3
Fold 4 69.87 92.04 85.89 84.327 73.8 84.883 86.4 76.074 1.317 81.66 7.537
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Table 38
Gender classification accuracy (%) on UTKFace testset on ViT architecture across different folds, and gender-racial groups. M stands for Male,
and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and
DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the
fine-tuned model with the outliers identified from Fold 𝑖 using EBOD without the prior preservation loss.

Race Asian Black Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F M F

Finetuned Model 1
Fold 2 67.651 93.294 76.721 94.927 72.915 97.916 80 95.741 1.447 84.895 11.893

Finetuned Model 2
Fold 3 60.194 90.57 68.245 93.438 76.522 89.117 77.836 89.35 1.552 80.659 12

Finetuned Model 3
Fold 4 59.55 93.63 69.532 97.49 58.749 93.417 71.161 85.98 1.659 78.69 15.817
Table 39
Gender classification accuracy (%) on DiveFace testset on ViT architecture across different folds, and gender-racial groups. M stands for Male,
and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among genders and races; Overall and
DoB are the overall classification accuracy and the standard deviation of the accuracy values across genders and races.

Race East Asian Sub Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Baseline

Fold 1 97.865 99.67 97.249 97.491 97.723 99.457 1.025 98.242 1.0249
Fold 2 98.127 98.746 98.154 98.205 99.0926 98.4 1.01 98.454 0.35
Fold 3 98.028 99.665 96.462 98.73 98.053 98.551 1.033 98.248 0.967
Fold 4 97.283 99.04 96.739 98.74 99.132 98.839 1.025 98.295 0.93
Table 40
Gender classification accuracy (%) on DiveFace testset on ViT architecture across different folds, and gender-racial groups on expert labeling
framework. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among
genders and races; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across genders
and races.

Race East Asian Sub Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Expert labeling-BPCOD

Fold 1 99.7 100 98.032 99.2 97.897 100 1.021 99.138 0.95
Fold 2 99.13 100 98.658 100 99.269 99.51 1.013 99.42 0.523
Fold 3 99.54 100 98.51 100 98.053 99.3 1.02 99.2 0.798
Fold 4 99.79 100 99.18 100 99.132 100 1 99.68 0.417

Expert labeling-EBOD

Fold 1 99.471 100 98.618 99.2 98.596 100 1.0142 99.31 0.629
Fold 2 99.253 100 99.338 100 99.451 99.51 1.007 99.592 0.3283
Fold 3 99.102 100 97.574 100 99.47 99.3 1.025 99.241 0.895
Fold 4 99.099 100 97.817 100 99.832 100 1.022 99.458 0.877
Table 41
Gender classification accuracy (%) on DiveFace testset on ViT architecture across different folds, and gender-racial groups on a continual learning
framework. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among
gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and
race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using BPCOD.

Race East Asian Sub Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Finetuned Model 1
Fold 2 98.127 99.3 98.321 98.7 98.724 99.5 1.014 98.779 0.536

Finetuned Model 2
Fold 3 98.5 100 98 99.105 99.57 98.74 1.02 98.986 0.728

Finetuned Model 3
Fold 4 99.13 99.233 97.3 98.74 99.132 98.84 1.02 98.729 0.725
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Table 42
Gender classification accuracy (%) on DiveFace testset on ViT architecture across different folds, and gender-racial groups on a continual learning
framework. M stands for Male, and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among
gender and race; Overall and DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and
race. Finetuned Model 𝑖 is the fine-tuned model with the outliers from Fold 𝑖 identified using EBOD.

Race East Asian Sub Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Finetuned Model 1
Fold 2 99.56 99.3 98.85 98.7 99.71 99.5 1.01 99.27 0.408

Finetuned Model 2
Fold 3 99.764 100 99.24 99.231 98.2 99.13 1.018 99.261 0.623

Finetuned Model 3
Fold 4 98.5 98.46 98.54 99.279 99.132 98.658 1 98.761 0.353
Table 43
Gender classification accuracy (%) on DiveFace testset on ViT architecture across different folds and gender-racial groups. M stands for Male,
and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and
DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the
fine-tuned model with the outliers identified from Fold 𝑖 using BPCOD without the prior preservation loss.

Race East Asian Sub Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Finetuned Model 1
Fold 2 90.622 99 89.4 98.7 91.6744 99.6 1.114 94.832 4.739

Finetuned Model 2
Fold 3 88.89 99.496 92.759 98.356 90.973 98.92 1.119 94.9 4.59

Finetuned Model 3
Fold 4 84.943 96.34 84.262 94.711 85.869 97.656 1.16 90.63 6.232
Table 44
Gender classification accuracy (%) on DiveFace testset on ViT architecture across different folds and gender-racial groups. M stands for Male,
and F stands for Female. Max/Min is the ratio of maximum and minimum classification accuracy values among gender and race; Overall and
DoB are the overall classification accuracy and the standard deviation of the accuracy values across gender and race. Finetuned Model 𝑖 is the
fine-tuned model with the outliers identified from Fold 𝑖 using EBOD without the prior preservation loss.

Race East Asian Sub Saharan & South Indian White Max/Min↓ Overall↑ DoB↓

Gender M F M F M F

Finetuned Model 1
Fold 2 90.247 99.11 90.407 95.61 92.759 94.32 1.098 93.74 3.374

Finetuned Model 2
Fold 3 78.134 99.665 88.501 98.16 82.12 99.105 1.276 90.948 9.41

Finetuned Model 3
Fold 4 74.96 98.651 82.092 96.543 81.505 99.345 1.325 88.85 10.563
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