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Abstract

Offline policy evaluation (OPE) sits at the epicen-
ter of reinforcement learning (RL) research. It
is particularly vital when it comes to real-world
human-involved tasks, like e-learning and health-
care, where data may be scarce or not fully rep-
resentative. Data augmentation has demonstrated
considerable success in many tasks, including
inducing RL policies, but many existing meth-
ods may not suit OPE, considering its Marko-
vian nature and goal of generalizability over eval-
uation policies. We propose to facilitate OPE
with Augmented Trajectories (OAT) through gen-
erative sub-trajectory learning, which would ex-
tract potential sub-trajectories and generate di-
verse behaviors in offline trajectories to enrich
state-action space. In various simulation and real-
world human-involved environments, including
robotic control, healthcare, and e-learning, the
effectiveness of OAT has been assessed against
state-of-the-art data augmentation baselines, and
our findings indicate that OAT can greatly im-
prove OPE performance.

1. Introduction

Offline policy evaluation (OPE) has been recognized as an
important part of reinforcement learning (RL), especially
for human-involved RLs, in which evaluations of online
policies can have high stakes (Levine et al., 2020). The
objective of OPE is to evaluate target policies based on of-
fline trajectories collected from behavioral policies different
from the target ones. One major barrier often lies in the
fact that the offline trajectories in human-involved tasks of-
ten only provide limited state-action coverage of the entire
space. This can be caused by homogeneous behavioral poli-
cies; for example, during clinical procedures, physicians
need to follow certain standardized guidelines. However, a
sub-optimal autonomous control agent (e.g., surgical robots
under training) may deviate from such guidelines, and thus
result in trajectories where the state-action visitations may
not be fully covered by the offline trajectories collected,
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which introduces great challenges for OPE, as illustrated in
Figure 1. Therefore, to improving the OPE performance, it
is essential to enrich the offline trajectories.

Data augmentation is a powerful tool for data enrichment
by artificially generating new data points from existing data.
It has shown effectiveness in facilitating learning more ro-
bust supervised and unsupervised models (Iwana & Uchida,
2021a; Xie et al., 2020). Specifically, generative methods
such as variational autoencoder (VAE) have achieved supe-
rior performance in time-series augmentation by capturing
temporal and multivariate dependencies (Yoon et al., 2019;
Barak et al., 2022). However, an important characteristic of
OPE training data is the Markovian nature, as the environ-
ments are usually formulated as a Markov decision process
(MDP) (Thomas & Brunskill, 2016; Fu et al., 2021). As a
result, prior works on time-series augmentation may not be
directly applicable to MDP trajectory augmentation.

Recently, though data augmentation methods have been ex-
tended to facilitate RL policy optimization, most existing
works focus on enriching the state space, such as adding
noise to input images to generate sufficient data and improve
the generality of agents (Laskin et al., 2020b; Raileanu et al.,
2021), but overlook the coverage of the joint state-action
visitation distribution over time. More importantly, the
goal of data augmentation towards RL policy optimization
and OPE is different. Data augmentation in RL generally
aims to quickly facilitate identifying and learning from high-
reward regions of the state-action space (Liu et al., 2021;
Park et al., 2022). In contrast, the evaluation policies con-
sidered by OPE can be heterogeneous and lead to varied
performance, i.e., the policies to be evaluated by OPE do not
necessarily perform well; therefore, it is equally important
to allow the agent learning from trajectories resulted from
high- and low-reward regions. As a result, OPE methods
prefer training data that provides comprehensive coverage
of the state-action visitation space, including the trajectories
resulting from low-performing and sub-optimal policies. To
the best of our knowledge, there does not exist a method
that augments historical trajectories specific to OPE.

In this paper, we propose a framework to facilitate OPE
with Augmented Trajectories (OAT) in human-involved
systems. Specifically, motivated by the intrinsic nature that
human-involved systems are often provided biased cover-
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Figure 1. A conceptual illustration of the discrepancy between hu-
man demonstrations versus the empirical trajectories resulted from
a sub-optimal policy to be evaluated by OPE. It can be observed
that the autonomous agent may perform maneuvers unseen from
the training (demonstration) trajectories, and thus can potentially
hinder OPE’s performance.

1 2
£ PST® | section 2.1

8.0 Mining of
s Potential Sub-
2
8 .) Trajectories (PSTs)
L
=
‘g Section 2.2
g W) Augmentation of PSTs

T «—W,—» - W,y 71 72

VAE-MDP VAE-MDP |—»| @

g AL
s /\/\ i

#(1)
g T 1
Jpes) Section 2.3
; ' Fuse Back
% : Augmented PSTs
v :
£
é"f-(N)

ks LS

Figure 2. The illustration of OAT. It consists of three steps: (i)
Mining of potential sub-trajectories (PSTs), where human behave
similarly under behavioral policies at the grey-shaded area and
may have more potential to enrich its state-action visitation space;
(it) VAE-MDP for augmenting PSTs; (iii) Stitch back augmented
PSTs to trajectories.

age of the state-action visitation space and human may be-
have diversely when following heterogeneous policies (Yang
et al., 2020b; Wang et al., 2022), we propose potential sub-
trajectories (PSTs) mining to identify sub-trajectories of
historical trajectories whose state-action visitation space
is less covered but have great potential to enrich the space.
Then a generative modeling framework is used to capture the
dynamic underlying the PSTs and induce augmented sub-
trajectories. Based on that, we design the stitching process
by simultaneously taking the augmented sub-trajectories
while maintaining the part of the state-action visitation dis-
tribution associated with non-PSTs. The proposed work
is validated across various human-involved tasks, includ-
ing robotic control, disease treatment, and intelligent tutor-
ing. The key contributions of this work are summarized
as follows: (i) To the best of our knowledge, OAT is the
first method augmenting historical trajectories to facilitate
OPE in human-involved systems. (ii) We conduct exten-
sive experiments to validate OAT in a variety of simulation
and real-world human-involved environments, including
robotics, healthcare, and e-learning. (iii) The experimental
results present that OAT can significantly facilitate OPE per-
formance and outperforms all data augmentation baselines.

2. OPE with Augmented Trajectories (OAT)

We propose a framework to facilitate OPE with augmented
trajectories (OAT) towards human-involved systems. Specif-
ically, we first introduce offline trajectories and OPE. Then
we propose a sub-trajectory mining method that identifies
the sub-trajectories of trajectories that have great potential
to increase the offline trajectories’ coverage over the state-
action space, i.e., potential sub-trajectories (PSTs). A gen-
erative modeling framework is used to capture the dynamics
underlying the selected PSTs, followed by a stitching pro-
cess that generates augmented trajectories which will be
used to train the OPE methods.

Offline Trajectories. We consider framing an agent’s in-
teraction with the environment over a sequence of decision-
making steps as a Markov decision process (MDP), which
is formulated as a 6-tuple (S, A, P, S, 7, 7). S is the state
space. A is the action space. P defines transition dynamics
from the current state and action to the next state. Sy de-
fines the initial state distribution. r is the reward function.
v € (0, 1] is discount factor. Episodes are of finite horizon
T. At each time-step ¢, the agent observes the state s; € S
of the environment, then chooses an action a; € A follow-
ing a policy 7. The environment accordingly provides a
reward r; = r(s¢, a;), and the agent observes the next state
s¢41 determined by P. 7() is defined as a trajectory where
T = ..., (8¢, Qpy 7o, 8y o)y

Offline Policy Evaluation (OPE). The goal of OPE is to
estimate the expected total return over the evaluation (tar-
get) policy 7, V™ = B[S, 4"~ 'ri|a; ~ 7], using set of
historical trajectories D collected over a behavioral policy
B # . The historical trajectories D = {...,7() .. }N
consist of a set of N trajectories.

2.1. Mining of Potential Sub-trajectories (PSTs)

The historical trajectories D collected from human-involved
systems are often provided with biased coverage of the state-
action space, due to the intrinsic nature that human may
follow homogeneous behavioral policies or specific guide-
lines when performing their professions (Yang et al., 2020b;
Wang et al., 2022). For example, a surgeon could perform
appendectomy in various ways across patients depending on
each patient’s specific condition; however, they may strictly
follow similar steps at the beginning (e.g., disinfection) and
the end of surgeries (e.g., stitching). Therefore, the result-
ing trajectories may lead to limited coverage for part of the
state-action space representing similar scenarios. However,
a sub-optimal autonomous agent, subject to be evaluated
by OPE, may visit states unseen from the trajectories col-
lected from the surgeon, e.g., towards the beginning/end
of the surgery. As a result, we consider augmenting the
part of trajectories, i.e., the PSTs, that are more likely to be
insufficiently covered by the historical trajectories D. More-
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over, the downstream generative models, such as VAEs,
do not necessarily need to reconstruct entire trajectories
for long horizons and over limited samples which are the
common limitations of data collected from human-involved
systems (Yacoby et al., 2020).

To identify the PSTs that are subject to be augmented, we in-
troduce a three-step approach, i.e., (¢) discrete representation
mapping (Gao et al., 2022) which encodes the original tra-
jectories into one-dimensional temporal discrete sequences,
followed by (#7) determining support from discrete repre-
sentations, where the support is used in step (¢¢7) to identify
PSTs to be augmented.

Step (¢) — Discrete Representation Mapping. In this step,
we leverage Toeplitz inverse covariance-based clustering
(TICC) (Hallac et al., 2017) to map states s; € S into C'
clusters, where each s; is associated with a cluster from
the set K = {Kj,...,K¢c}. The states mapped to the
same cluster can be considered sharing graphical connec-
tivity structure of both temporal and cross-attributes infor-
mation captured by TICC. Discrete representation mapping
has been recognized as effectively providing high-level ab-
stractions from complex original data for supervised and
unsupervised learning (Yang et al., 2021; Gao et al., 2022).

Step (iz) — Determine Support from Discrete Repre-
sentations. After mapping, each state s;; on trajectory
7 is mapped to K;+ € K. We assume that each tra-
jectory 7(¥) can be mapped to a corresponding temporal
discrete sequence K" = [K;1,...,K;r] C ZT, based
on the state mapping, where 7' is the horizon of the en-
vironment and Z is the set of integers. We also define

= {..,K® __}N  which is the set of all temporal
dlscrete sequences mapped from the set of original tra-
jectories D. We define 6,; W1 =[Ki¢y oo, Kichrw—1]
as a temporal discrete sub-sequence (TDSS) with length
¢ € 1,T —W 4+ 1] of KO, W € [1,7], denoted
as 5é )C swo E K (1), Note that C' is generally greatly
smaller than 7" x NN as considered in discrete representa-
tion mapping in general (Hallac et al., 2017; Yang et al.,
2021). Therefore it is possible that a temporal discrete sub-

sequence 59 s +W 1 is “equal” to another temporal discrete

sub-sequence §< ¢+w_1» such that 6< Cawo1 = 5&+W L
ifevery K; ¢ = K ¢ given K; ¢, K < € 7Z. Then, the sup-

port (or frequency) of any TDSS 5 ¢.c4w—1 appears in H
can be calculated following the definition below.

Definition 2.1 (Support of Temporal Discrete Sub-Se-
quence). Given the temporal discrete sequence dataset H,

the support of a temporal discrete sub-sequence 5?)( W1

is the number of K in H containing 522.“,‘/71, ie.,
N j ;
Zj:l []1(584)41/1/71 C KW)x

(52 2+W 1)] , where supporty () € Z and

supportH(ééi)C+W )=

6+ -

1(+) is the indicator function.

Step (iii) — Identify PSTs. We define o)y,

(9,087 D Dy (s al

/C(i)w 1)] as a sub-trajectory with length W of 7). Given

the mapping from trajectory 7(Y to temporal discrete
sequence K ) (introduced in the step above), we define

that each sub-trajectory @éi)C 4w _1 can be mapped to a

corresponding TDSS (5? ¢+w—1- Now we can identify the
PSTs that will be used to train the generative model for
reconstructing new sub-trajectories (i.e., augmentation) in
Section 2.2, following the definition below.

Definition 2.2 (Potential Sub-Trajectory (PST)). Given his-
torical trajectories D and a threshold &, a sub-trajectory
goél)c w1 is considered as a potential sub-trajectory if
the support of its mapped temporal discrete sub-sequence

5(Z<+W | satisfies support;.[(5é )C+W eSS

Following the step above, a set of PSTs is determined
for historical trajectories D, from which we can obtain
a set of G distinct corresponding TDSSs {5g,<+w_1}.1,
g € [1,G] mapped from the PSTs. Then we can obtain

G sets of PSTs, such that each set 79 = {(péi)€~+w,1},

where all @éi)c +w—1 € TY satisfy that their corresponding
5é7:')<+W71 = 5< c+w—1- Each set of PS'.TS. may.cont.ain
unique information captured from the original historical
trajectories D, as previous works have found that the PSTs
in the same set, 7Y, are in general associated with similar

temporal and cross-attributes correlations (Gao et al., 2022).

2.2. Augmenting the PSTs

In this section, we introduce how to adapt VAE to capture
the MDP transitions, i.e., VAE-MDP, underlying each set
of PSTs, 79, as well as reconstruct new PST samples that
will be stitched with the original historical trajectories D for
OPE methods to estimate the returns of evaluation (target)
policies. The adaptation mainly consists of three parts:
the latent prior, variational encoder, and generative decoder.
Givenasetof PSTs, 79 = {J¢ c+w—1}7, the formulation of
VAE-MDP consists of three major components, i.e., (¢) the
latent prior p(z¢) that represents the distribution of the initial
latent states over 79, (i7) the encoder q, (2¢|St—1, ar—1, St)
that encodes the MDP transitions into the latent space, and
(i17) the decoders py, (2¢|2t—1, at—1), Pp(St|2¢), Py (Te—1]2¢)
that reconstructs new PST samples. The detailed setup can
be found in Appendix A.2, and the overall encoding and
decoding processes are illustrated in Figure 3.

"From now we use superscript ¢ to replace (@ for §’s, since
there may exist multiple TDSSs that are eqeuivalent.
From now on we omit the superscripts of & for conciseness.
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Figure 3. Illustration of VAE-MDP for Sub-Trajectory Augmen-
tations. The PSTs are extracted by PSTs mining from original
offline trajectories. Then VAE-MDP is employed to roll out new
PSTs by reconstructing state-action space and inducing rewards.
The augmented trajectory (colored in green) is formed by stitching
back augmented PSTs to offline trajectories.

The training objective for VAE-MDP is to maximize the
evidence lower bound (ELBO), which consists of the log-
likelihood of reconstructing the states and rewards, and
regularization of the approximated posterior, i.e.,

CHw-1

L =—ELBO(w,n) = —Eq, [thg log pn (s¢]2t)

C+W—1
LD

CH+W— 1KL
=3 EL(qu(alze i, s lp (1, ae0)) .
M

log py (re-1]2t) — K L(qu(z¢|s¢)lIp(2¢))

The proof of Equation 1 are provided in Ap-
pendix A.3. Consequently, given a set of PSTs,
T9, a VAE-MDP to the set can be trained to re-
construct a  set of new PST samples, denoted as

To = = {&¢caw_1}> v € [1,V], where <p<<+w L=

[(Sc’ac’rogc) (S<+W 1w o1 Pw -1 8w 1))
is a augmented PST and V is the total number of augmented

PST samples, generated from VAE-MDP, for the set 79.

2.3. Stitching Augmented PSTs back to their Origins

With new augmented sub-trajectories rolled out by the VAE-
MDP, we stitch them back to the original historical trajec-
tories D for the OPE methods to leverage. This stitching
process is designed to (i) provide enhanced coverage over
the state-action visitation space where the corresponding
PSTs do not explicitly capture homogeneous behaviors, and
still (ii) maintain the part of the state-action visitation distri-
bution associated with non-PSTs, since those may indicate
object-specific information that is not shared across all tra-
jectories, e.g., the part of the surgical procedure specific
to each patient, following from the surgery analogy above.
Below we introduce how to stitch 79 with the original tra-

jectories from D. A graphical illustration of this step can be
found in Figure 2.

Given a trajectory 7() € D, the G sets of PSTs
{T",.., 7%} mined from D following Section 2.1,

and G sets of augmented sub-trajectories {Tl TG}
generated from G corresponding VAE-MDPs follow—
ing Section 2.2, an augmented trajectory 7(9) corre-

sponding to 7(¥) can be obtained by 7() = {]l(t €
¢+ W — 1])(8“@?772?7%;) VIt ¢ [¢.¢+
w - 1])(St 7a§1)77nt(1)7 (2)) :; (§%’7&;’,'f%’,§g’) €

Plerw—1 € T9, Yo € [1,V]and g € [1,G].

3. Experiments

In this section, we first introduce augmentation baselines
and OPE methods used for experiments, and environments.
Then, results presented are discussed.

3.1. Setup

Baselines. We investigate a variety of general augmenta-
tion methods from prior work as baselines, including (i)
RL-augmentation methods: TDA (Park et al., 2022) which
originally incorporates with rewards learning by randomly
extracting sub-trajectories from trajectories, we replace
PST mining by TDA in OAT so that TDA can be used
for OPE with augmentation; permutation, Gaussian jitter-
ing, and scaling have been broadly employed for image
inputs (Laskin et al., 2020a; Liu et al., 2020; Raileanu et al.,
2021); (ii) generative methods: TimeGAN (Yoon et al.,
2019) and VAE (Barak et al., 2022) which are proposed
towards time series; (iii) time-series augmentation methods:
SPAWNER (Kamycki et al., 2019) and DGW (Iwana &
Uchida, 2021b) that consider time-series similarities. We im-
plement RL-augmentation methods strictly following orig-
inal algorithms, and use open-sourced code provided by
the authors for the generative and time-series augmentation
methods. Since generative and time-series augmentation
methods are not proposed towards trajectories, we treat tra-
jectories as multivariate time series as their input.

Ablations. One ablation of our approach is to apply VAE-
MDP to reconstruct entire trajectories as augmentations, i.e.,
without PST mining (Section 2.1) and stitching (Section 2.3).
Moreover, TDA (Park et al., 2022) and VAE (Barak et al.,
2022) can be considered as two ablations as well, since TDA
can isolate our PST mining from OAT and VAE augments
entire trajectories following the vanilla VAE (Kingma &
Welling, 2013), i.e., without being adapted to the Markovian
setting.

OPE methods considered. Outputs from all augmentation
methods are fed into five OPE methods to compare the per-
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Three sets of PSTs that have significantly improved
coverage after augmentation

Original Augmented (X10)
Figure 4. Visualization of trajectories in Maze2D-umaze. Left: the
original 250 trajectories; Right: augmented data with ten times

numbers of trajectories (x 10).

formance achieved with versus without augmentations. The
OPE methods we consider include importance sampling
(IS) (Precup, 2000), fitted Q-evaluation (FQE) (Le et al.,
2019), distribution correction estimation (DICE) (Yang
et al., 2020a), doubly robust (DR) (Thomas & Brunskill,
2016), and model-based (MB) (Zhang et al., 2020a). We
use the open-sourced implementations provided by the deep
OPE (DOPE) benchmark (Fu et al., 2021).

Standard validation metrics. To validate OPE’s perfor-
mance (for both with and without augmentations), we use
standard OPE metrics as introduced in the DOPE bench-
mark, which include absolute error, Spearman’s rank correla-
tion coefficient (Spearman, 1987), regret@ 1, and regret@5.
Definitions of the metrics are described in Appendix B.3.

3.2. Environments

To evaluate our method, OAT, as well as the existing aug-
mentation approaches for OPE, we use both simulated and
real-world environments, spanning the domains of robotics,
healthcare, and e-learning. The environments are human-
involved which is generally challenging with highly limited
quantity of human demonstrations containing underrepre-
sented state space, due to homogeneous human interventions
when collecting the historical trajectories.

Adroit. Adriot (Rajeswaran et al., 2018) is a simulation
environment with four synthetic real-world robotics tasks,
where a simulated Shadow Hand robot is asked to ham-
mer a nail (hammer), open a door (door), twirl a pen
(pen), or pick up and move a ball (relocate). Each
task contains three training datasets with different levels
of human-involvements, including full demonstration data
from human (human), induced data from a fine-tuned RL
policy (expert), and mixing data with a 50-50 ratio of
demonstration and induced data (cloned).

Real-World Sepsis Treatment. We investigate a chal-
lenging task in healthcare, sepsis treatments, which has
raised broad attention in OPE (Namkoong et al., 2020;
Nie et al., 2022). Specifically, the trajectories are taken
from Electronic Health Records containing 221,700 pa-

tient visits collected from a hospital over two years. The
state space is constituted by 15 continuous sepsis-related
clinical attributes that represent patients’ health status, in-
cluding heart rate, temperature, and creatinine etc. The
cardinality of the action space is 4, i.e., two binary treat-
ment options over {ant ibiotic_administration,
oxygen_assistance}. Given the four stages of sepsis
defined by the clinicians (Delano & Ward, 2016), the re-
wards are set for each stage: infection (£5), inflammation
(£10), organ failure (+20), and septic shock (£50). Nega-
tive rewards are given when a patient enters a worse stage,
and positive rewards are given when the patient recovers
to a better stage. The environment considers discrete time
steps, with the horizon being 1160 steps. We use the earlier
80% trajectories (sorted by time of the first visit in patients’
records) as training set and the later 20% as test set, fol-
lowing the common practice while splitting up time-series
for training and testing (Campos et al., 2014). We assume
that the clinical care team is well-trained with sufficient
medical knowledge and follows standard protocols in sepsis
treatments, thus we consider the behavioral policy, parame-
terized through behavior cloning (Azizsoltani & Jin, 2019),
that generates the trajectories above as an expert policy. Five
evaluation (target) policies are obtained by training 5 Deep
Q Networks (DQNs) (Mnih et al., 2015) respectively over
different hyper-parameters. More details are provided in
Appendix D.

Real-World Intelligent Tutor Another important human-
involved task for OPE is intelligent tutoring, where students
interact with intelligent tutors, with the goal of improving
students’ engagements and learning outcomes. Such topics
have been investigated in prior OPE works (Mandel et al.,
2014; Nie et al., 2022). Specifically, we collect trajectories
recorded from 1,307 students’ interaction logs with an in-
telligent tutor, over seven semesters of an undergraduate
course at an university. Since students’ underlying learning
states are considered unobservable (Mandel et al., 2014),
we consult with domain experts who help defines the state
space which is constituted by 142 attributes that could pos-
sibly capture students’ learning status from their logs, e.g.,
time elapsed since the start of the current working problem.
During the tutoring, each student is required to solve twelve
problems which cover various topics taught in course, thus
the horizon of the environment is considered as 12 discrete
steps. The cardinality of the action space is 3, i.e., on each
problem, the tutor need to decide whether the student should
solve the next problem by themselves, study a solution
provided by the tutor, or work together with the tutor
to solve on the problem. Sparse rewards are obtained at the
end of the tutoring, which is defined as students’ normalized
learning gain before and after tutoring (Chi et al., 2011).
We use the trajectories collected from first six semesters as
the training set, where the behavior policy follows an expert
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Figure 5. OPE improvement results averaging across five OPE
methods and four tasks in Adroit human using each augmenta-
tion method. Top-left: Mean absolute error (MAE) percentage
improved. Top-right: rank correlation improvements. Bottom-left
& bottom-right: Regret@1 and @5 improvements, respectively.

policy commonly used in e-learning (Zhou et al., 2019),
while the trajectories from the last semester constitute the
test set. Four evaluation (target) policies, including three ob-
tained by training 3 DQNs over different hyper-parameters
respectively, in addition to one expert policy. More details
are provided in Appendix E.

3.3. Results

Now we present and discuss the results obtained from the
experimental setting introduced above.

3.3.1. THE NEED OF PSTS MINING

To better understand the need of PSTs mining (Section 2.1)
conceptually, we visualize the set of augmented trajectories
produced by our method, against the original set of histori-
cal trajectories D, over the Maze2D—-umaze environment
which is a toy navigation task requiring an agent to reach a
fixed goal location (Fu et al., 2020). We uniformly down-
sample a limited number (i.e., 250) of trajectories from the
original dataset provided by D4RL (overall 12k trajectories),
and use our method to augment this subset such that the to-
tal number of trajectories becomes ten times (x 10) larger.
The visualization is shown in Figure 4. It can be observed
that there exist 3 sets of PSTs (as circled in the figure) that
have significantly increased state space coverage after aug-
mentation, benefiting from the PSTs mining methodology
introduced in Section 2.1.

3.3.2. RESULTS OVER ADROIT

Figure 5 presents the averaged improvements across five
OPE methods, over all four tasks (i.e., hammer, door,
pen, relocate) in Adroit human datasets, quantified
by the percentage increases over the four validation met-
rics achieved by the OPE methods evaluated over the aug-
mented against the original datasets. Overall, our method
significantly improves OPE methods in terms of all stan-
dard validation metrics, and achieves the best performance
compared to all augmentation baselines. This illustrates
the effectiveness and robustness of our proposed methods
across environments and tasks. There is no clear winner
among baselines, where VAE, TimeGAN, and scaling in
general perform better in terms of MAE, DGW and scaling
performs better in terms of rank correlation, permutation
and jittering perform better in terms of regrest@5. More
specifically, besides the fact that all methods can in general
improve MAE, most baselines lead to negative effects in
terms of the other three metrics.

More importantly, it can be observed that the ablation base-
line VAE-MDP is significantly outperformed by OAT across
all metrics, which further justifies the importance of aug-
menting over the PSTs instead of the entire horizon. It
can be also observed that VAE-MDP in general outperforms
VAE Augmenter which uses the vanilla VAE instead without
adaptation to the Markovian setting, illustrating the impor-
tance of the adaptation step introduced in Section 2.2. We
also find that generative models achieve the best perfor-
mance among the baselines over environments that have rel-
atively shorter horizons (e.g., pen), while their performance
is diminished when horizons increased. That is aligned with
findings in prior work, and further support our design of
PSTs mining that provides much shorter and representative
trajectories for generative learning.

3.3.3. RESULTS OVER REAL-WORLD HEALTHCARE
AND E-LEARNING

Figure 6 shows the intelligent tutor GUI and empirical re-
turns of the four evaluation policies being considered. Fig-
ure 7 presents the average MAE improvements across all
OPE methods in e-learning (left), and improved rank correla-
tion in healthcare (right). Complete results for all validation
metrics are provided in Appendix E. Regret@S5 is not ap-
plicable to both environments, since the total number of
evaluation policies are less than or equal to five.

Overall, our method can significantly improve OPE perfor-
mance in terms of MAE, rank correlation, and regret@ 1
in both real-world human-involved environments. In both
e-learning and healthcare, most augmentation baselines lead
to neutral to negative percentage improvements over the met-
rics considered, while OAT significantly improved OPE’s
performance over all baselines, with the ablation VAE-MDP
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Figure 6. Our intelligent tutor GUI (left) and emplrlcal results with
three RL-induced policies and one expert policy (right).
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Figure 7. OPE improvement results averaging across five OPE
methods in e-learning (left) and healthcare (right).

attaining the 2nd best performance. A possible reason for
baselines perform worse in real-world environments than in
simulations is that real-world human-involved systems are
considered sophisticated, as the human mental states that
may impact their behaviors implicitly. This further indicates
the importance of extracting underlying information from
historical trajectories D, as did in OAT and VAE-MDP, as
well as effectively enriching the state-action visitation space
to provide more comprehensive coverage for OPE methods
to leverage, powered by the methodologies introduced in
Section 2.

3.3.4. MORE DISCUSSIONS

To further understand the effectiveness of OAT, we discuss
the following two questions that are commonly involved in
analyses over human-involved systems, i.e., human-involved
levels and statistical significance.

Would the level of human involvements affect trajec-
tory augmentations for OPE? As presented in Figure 8,
we evaluate augmentation methods across the four tasks
in Adroit environment with three different levels of hu-
man involvements (LoHI) sorted from the most to least, i.e.,
human, cloned, and expert. The results show that our
method achieves the best performance in terms of all vali-
dation metrics when humans are involved in data collection
(i.e., human, cloned). The performance of our method
is slightly attenuated (but still effective) when the LoHI
decreased, while our ablation VAE-MDP leads MAE when
the LoHI is 0% (i.e., expert). Though TDA is effective
under the case when the LoHI is 0%, it still performs worse
than OAT and consistently worse at other levels. Such a
finding further confirms the effectiveness of PST mining.
Moreover, most baselines are ineffective when the LoHI
is below 50%. A possible reason is that the trajectories

MAE Perc. Improved Rank Corr. Improved

T
100%

T T T T T T
100% 50% 0%  100% 50% 0%
OAT ~m- TDA  -®- TimeGAN —#- DGW —»— Jittering

VAE-MDP —o— VAE M- SPAWNER =»=- Perm. »- Scaling

Figure 8. OPE improvement results with three human-involving
levels, i.e., 100% (human), 50% (cloned), 0% (expert), aver-
aging across five OPE methods and four tasks in Adroit.

obtained from human demonstrations often provide limited
and/or biased coverage over the state-action space, thus
any augmentation methods that can potentially increase the
coverage might be able to improve OPE’s performance. In
contrast, the historical trajectories induced from simulations
tend to result in better coverage over the state-action space
in general, and the augmentation methods that do not con-
sider the Markovian setting may generate trajectories that
could be less meaningful to the OPE methods, making them
less effective.

Can trajectory augmentation facilitate OPE in terms of
significance test? OPE validation metrics generally focus
on standard error metrics as proposed in (Fu et al., 2021;
Voloshin et al., 2021b), while domain experts may emphasis
statistical significance test for real-world human-involved
tasks (Robertson & Kaptein, 2016; Zhou et al., 2022). For
example, rank correlation summarizes the performance of a
set of policies’ relative rankings using averaged returns; in
contrast, statistical significance tests can help determine if
the relationships being found are due to randomness. More-
over, they can be easier conveyed to and interpreted by
domain experts (Guilford, 1950; Ju et al., 2019).

One key measurement for RL-induced policies is whether
they significantly outperform the expert policy in human-
involved systems (Zhou et al., 2019; 2020). We conduct a
t-test over OPE estimations (with and without augmenta-
tions) obtained from bootstrapping as introduced in (Hao
et al., 2021), and measure whether there is a significant dif-
ference between the mean value of OPE estimation for each
RL-induced policy against the expert policy. Interesting,
the results show that IS performs the best among all 5 OPE
methods we considered, in terms of all standard validation
metrics in our e-learning experiments, with and without aug-
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IS result 1ty T2 tp 3 tp
No Aug. 7.24_0() 7.07,()0 -4.48(00
OAT 3.10. o0 1.33.19 2.11 06
TDA 1014 00 58200  -13.58.00
VAE 19406  -1.92.06 5443
TimeGAN 1.90.06 -2.25 o3 -2.25 o3
SPAWNER -1.00.32 -1.00.32 1.00.32
DGW -1.43 o6 -1.43 16 1.43 16
Perm. 71.78_08 ’1-77.08 1-77.08
Jittering -1.89 06 -1.89 06 1.90 06
Scaling ‘1-33,06 -1.33.05 1-33,06

Empirical result 2.01 o4 0.61 54 0.20. 84

Table 1. Statistical significance test at the level of p < 0.05 with
bootstrapping on three RL-induced policy 71, w2, 73 compared
to expert policy Tezpert from real-world intelligent tutoring. The
results that show significance are in bold.

mentations using each augmentation method. We conjecture
that this may be due to the fact that the behavioral policies
are intrinsically similar, as shown in Figure 6 (right) that
3 out of the 4 policies (i.e., T2, T3, Texpert) lead to rather
similar returns, and the unbiased nature of IS estimators
may dominate it’s high variance downside. The statistical
significance results are summarized in Table 1. It can be
observed that, without augmentation, IS estimates that all
RL-induced policies performs significantly different from
the expert policy. However, in empirical study, only m;
performs significantly better than expert policy, while the
other two, i.e., m2 and 73 not. And our proposed method is
the only one that improve the IS estimation to be aligned
with empirical results across all three policies, while the
baselines improve estimation at most one policy. There-
fore, the results indicate the effectiveness of our proposed
method in terms of both standard OPE validation metrics
and human-centric statistical significance test.

4. Related Works

OPE A variety of contemporary OPE methods has been
proposed, which can be mainly divided into three cat-
egories (Voloshin et al., 2021b): (i) Inverse propensity
scoring (Precup, 2000; Doroudi et al., 2017), such as Im-
portance Sampling (IS) (Doroudi et al., 2017). (ii) Di-
rect methods that directly estimate the value functions of
the evaluation policy (Nachum et al., 2019; Uehara et al.,
2020; Xie et al., 2019; Zhang et al., 2021; Yang et al.,
2022), including but not limited to model-based estima-
tors (MB) (Paduraru, 2013; Zhang et al., 2021), value-based
estimators (Munos et al., 2016; Le et al., 2019) such as
Fitted Q Evaluation (FQE), and minimax estimators (Liu
et al., 2018; Zhang et al., 2020b; Voloshin et al., 2021a)
such as DualDICE (Yang et al., 2020a). (iii) Hybrid meth-
ods combine aspects of both inverse propensity scoring and
direct methods (Jiang & Li, 2016; Thomas & Brunskill,
2016), such as DR (Jiang & Li, 2016). However, a major
challenge of applying OPE to real-world is that many meth-

ods can perform unpleasant when human-collected data is
highly limited as demonstrated in (Fu et al., 2020; Gao et al.,
2023). Therefore, augmentation can be an important way to
facilitate OPE performance.

Data Augmentation for RL In RL, data augmentation has
been recognized as effective to improve generalizability of
agents over various tasks (Laskin et al., 2020a;b; Kostrikov
et al., 2020; Liu et al., 2021; Raileanu et al., 2021; Joo
et al., 2022; Goyal et al., 2022). For instance, automatic
augmentation selection frameworks are proposed for actor-
critic algorithms by regularizing the policy and value func-
tions (Raileanu et al., 2021). However, most of the prior
work only consider image input which may not capture
temporal dependencies in trajectories. More importantly,
the prior work is proposed towards RL policy optimization
by learning from high-reward regions of state-action space,
while OPE aims to generalize over evaluation policies that
can be heterogeneous and lead to varied performance. To
the best of our knowledge, no prior work has extensively
investigated various prior augmentation methods in OPE,
nor proposed augmentation towards offline trajectories to
scaffold OPE in real-world domains.

More comprehensive review of related works on OPE and
data augmentations in general can be found in Appendix F.

5. Conclusion and Social Impact

We have proposed OAT which can capture the dynamics
underlying human-involved environments from historical
trajectories that provide limited coverage of the state-action
space and induce effective augmented trajectories to fa-
cilitate OPE. This is achieved by mining potential sub-
trajectories which have great potential to increase the histor-
ical trajectories’ coverage over state-action space, as well
as extending a generative modeling framework to capture
dynamics under the potential sub-trajectories. We have
validated OAT in both simulation and real-world human-
involved environments, including robotic control, disease
treatment, and intelligent tutoring, and the results have
shown that OAT can generally improve OPE performance
and outperform a variety of data augmentation methods.

All educational and healthcare data employed in this pa-
per were obtained anonymously through an exempt IRB-
approved protocol and were scored using established rubrics.
No demographic data or class grades were collected. All
data were shared within the research group under IRB, and
were de-identified and automatically processed for labeling.
This research seeks to remove societal harms that come
from lower engagement and retention of students who need
more personalized interventions and developing more robust
medical interventions for patients.
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A. More Details on Methodology
A.1. Toeplitz Inverse Covariance-Based Clustering (TICC) Problem

Each cluster ¢ € [1, C] is defined as a Markov random field (Rue & Held, 2005), or correlation network, captured by its
Gaussian inverse covariance matrix Zc_l € R™*™ where m is the dimension of state space. We also define the set of
clusters M = {M;,..., Mo} C R as well as the set of inverse covariance matrices £~ = {X71,.. ., 251}. Then the
objective is set to be

C

max Z [ Z (C(ogi);gc—l) —€l{o)", ¢ Mc})], @)

where the first term defines the log-likelihood of oii) coming from M, as E(ogi); »oh = —%(oii) — pek)Te ! (ogi) — ) +

c
1logdet £ ! — Z log(2n) with . being the empirical mean of cluster M., the second term 1{01(521 ¢ M.} penalizes the
adjacent events that are not assigned to the same cluster and € is a constant balancing off the scale of the two terms. This
optimization problem can be solved using the expectation-maximization family of algorithms by updating X! and M
alternatively (Hallac et al., 2017). There are variations of TICC targeting specific characteristics of data. Specifically, we
used MT-TICC (Yang et al., 2021) which is proposed towards time-awareness and multi-trajectories.

A.2. Detailed Formulation of the VAE-MDP

The latent prior p(z.) ~ N(0, I) representing the distribution of the initial latent states (at the beginning of each PST in
the set 79), where I is the identity covariance matrix.

The encoder ¢, (z;|s;—1,a:—1,5;) is used to approximate the posterior distribution p,(2¢|si—1,a1-1,5:) =
Pn(Zt—lyat—lyzt,St)
thezP(thhat—lazmst)dzt

, where Z C R™ and m is the dimension. Given that q,,(z¢c.c+w—1|Scic4w—1,ac.c+w—2) =

qw(2¢]s¢) Hf;rg;l qw(2¢|zi—1, at—1, 8¢), both distributions g, (z¢|s¢) and g, (z¢|zi—1, ai—1, s;) follow diagonal Gaussian,
where mean and diagonal covariance are determined by multi-layer perceptrons (MLPs) and long short-term memory (LSTM),
with neural network weights w. Thus, one can infer 2§ ~ q.,(2¢|s¢), 2 ~ qu(2t|hy), with hi = fo, (R, 2{" 1, ar—1, st)
where f,, represents LSTM layer and h$’ represents LSTM recurrent hidden state.

The decoder  p,(z:,5¢7¢—1|2¢—1,a¢—1) is used to sample new trajectories. Given

Ww-1 T
Pr(zciiciw—1,sccrw—nrecrwalz, B) =TI 7 po(silz) Tli—c 1 Pal2tl2e-1, @ 1)py(ri-1]z),  where

a;’s are determined following the behavioral policy 3, distributions p, (s¢|z) and p,(r:—1|z) follow diagonal Gaussian
with mean and covariance determined by MLPs and p,, (2¢|2¢—1, a;—1) follows diagonal Gaussian with mean and covariance
determined by LSTM.

Thus, the generative process can be formulated as, i.e., at initialization, 2! ~ p(z¢), s{ ~ py(sclz), ac ~ Blac|s();

followed by z;' ~ pn(iL?), Ty~ pp(re—1]zy), i~ py(selz)), ar ~ B(as]sy), with /3;7 = gyl fy(h{_1, 21, ai—1)] where
gn represents an MLP.
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A.3. Proof of Equation 1

The derivation of the evidence lower bound (ELBO) for the joint log-likelihood distribution can be found below.

log py(Scicqw—1,re:cyw—2) 3)
=10g/ P (S¢:c4W =15 Ze41:c4W—1, Te:c4w—2)d2 “
Z¢41:c+W—1€Z
PnS¢:c+W—1, 2¢4+1:¢4+W -1, T¢:¢C+W -2
Zlog/ (S cHlict St )Qw(ZC:§+W71|SC:C+W717aC:C+W72)dZ
Ze41:c+W—1EZ Qw(24:<+W—1|3¢:c+W—1,a<;<+W—2)
)
Jensen's inequality
> Eq [logp(2¢) +10g py(Scicow —1, Zeg1:c4w—1,Teic+w—2]2¢) — 108 qu (ze:cqw —1]Sc:c4w—1, ac:c4w—2)]
(6)
C+W-1
=Eq, [IOgP(ZC)+10gpn(5<|ZC "’Z log py(st, zt, Te—1]2t—1, ar—1)
CHW 1
—log qu(z¢ls¢) — Zt:CH log qu (2|2t -1, at—1, St)] (N

Crw—
:Eqw[Ing<ZC) log ¢u (2¢[s¢) +1og py(sclzc) +Z e IOg(pn(stlzt)pn(rtfl‘Zt>pn(zt|zt71aat71)>
CH+wW— 11 g
—Zt 41 08w (zt]ze-1, ar— 175t)} ®)

C+W—1 _
:Eq“{zf:c log py(st|zt) +Z 41 logpn(rt—ﬂzt)

¢+W—-1
— KL(qu(zc|sc)llp(2c)) — Zt=<+1 KL(Qw(zt|Zt717at71a5t)|‘pn(zt|zt717at71))}~ 9

B. Experimental Setup
B.1. Training Resources

We implement the proposed method in Python. Training of our method and baselines are supported by four NVIDIA TITAN
Xp 12GB, three NVIDIA Quadro RTX 6000 24GB, and four NVIDIA RTX A5000 24GB GPUs.

B.2. Implementation Details & Hyper-Parameters

The cluster number for discrete representation mapping can be determined by silhouette score using training data follow-
ing (Hallac et al., 2017), we perform search among [10, 20] for C'in all datasets and the one with the highest silhouette score
is selected. In our experiments, C' = 18,10, 19, 16 for {pen, door, relocate, hammer}-human, respectively;
C = 20,10,10,10 for {pen, door, relocate, hammer}-cloned, respectively; C = 11, 10,10, 10 for {pen,
door, relocate, hammer}-expert, respectively; C' = 14,17 for e-learning and healthcare, respectively. The
experimental results are obtained with selecting the PSTs using the threshold at the top 1, i.e., we use the PST with the
highest support of its corresponding TDSS, for easier investigation of the PSTs mining and comparison to other augmentation
baselines such as TDA, and present straightforward and general effects of our method. The percentage supports of the
selected PSTs, i.e., support(-)/N, are all > 82% across all datasets and all experimental environments, especially can cover
100% trajectories in all Adroit human tasks, which may further indicates the effectiveness of PSTs mining. We choose the
neural network architectures as follows. For the components involving LSTMs, which include g, (2¢|2¢—1, a1—1, $¢) and
Dn (2¢|zt—1, at—1), their architecture include one LSTM layer with 64 nodes, followed by a dense layer with 64 nodes. All
other components do not have LSTM layers involved, so they are constituted by a neural network with 2 dense layers, with
128 and 64 nodes respectively. The output layers that determine the mean and diagonal covariance of diagonal Gaussian
distributions use linear and softplus activations, respectively. The ones that determine the mean of Bernoulli distributions
(e.g., for capturing early termination of episodes) are configured to use sigmoid activations. For training OAT and its
ablation VAE-MDP, maximum number of iteration is set to 100 and minibatch size set to 4 (given the small numbers
of trajectories, i.e., 25 for each task) in Adroit, and 1,000 and 64 for real-world healthcare and e-learning, respectively.
Adam optimizer is used to perform gradient descent. To determine the learning rate, we perform grid search among
{le —4,3e —3,3e — 4, 5e — 4, Te — 4}. Exponential decay is applied to the learning rate, which decays the learning rate by
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0.997 every iteration. For OPE, the model-based methods are evaluated by directly interacting with each target policy for 50
episodes, and the mean of discounted total returns (y = 0.995 for Adroit, v = 0.99 for Healthcare, v = 0.9 for e-learning)
over all episodes is used as estimated performance for the policy.

B.3. Evaluation Metrics

Absolute error The absolute error is defined as the difference between the actual value and estimated value of a policy:
AE = |VT — V7| (10)

where V'™ represents the actual value of the policy 7, and v represents the estimated value of 7.

Regret@ ] Regret@1 is the (normalized) difference between the value of the actual best policy, and the actual value of the
best policy chosen by estimated values. It can be defined as:

Rl = (max V;" —  max V[)/ max V] (11)
i€1:P jebest(1:P) i€L:P

where best(1 : P) denotes the index of the best policy over the set of P policies as measured by estimated values V.

Rank correlation Rank correlation measures the Spearman’s rank correlation coefficient between the ordinal rankings of the
estimated values and actual values across policies:

_ Cov(rank(VyTp), rank (V7)) )
)

where rank(V;7) denotes the ordinal rankings of the actual values across policies, and rank(V;"p) denotes the ordinal
rankings of the estimated values across policies.

o(rank(V{"p))o (rank (V7]

C. Adroit
C.1. Detailed Results
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| Pen Relocate
‘ MAE  Rank Corr. Regret@1 Regret@5 ‘ MAE  Rank Corr. Regret@] Regret@5
NoAug. 3014 -0.104 0.184 0.03 1956.4 0.204 0.434 0.298
OAT 886.8 0.094 0.146 0.02 474.8 0.384 0.176 0.16
VAE-MDP | 1527.8 0.226 0.204 0.02 430.8 0.142 0.53 0.256
VAE 1302.4 -0.03 0.334 0.062 834.8 0.04 0.654 0.484
TimeGAN | 1538.2 0.006 0.216 0.022 1209 0.408 0.604 0.34
SPAWNER | 1817.8 -0.192 0.218 0.144 1560.6 0.338 0.436 0.272
DGW 1578 -0.028 0.292 0.054 1226.8 0.164 0.434 0.294
Permutation | 1548.6 -0.132 0.27 0.076 1628 0.338 0.51 0.152
Jittering 1632.8 -0.096 0.202 0.076 1407.4 0.038 0.574 0.168
Scaling 1308.2 -0.02 0.382 0.076 1462.8 0.244 0.72 0.212
TDA 1030.4 -0.116 0.262 0.06 832.2 0.182 0.608 0.496
‘ Hammer Door
‘ MAE  Rank Corr. Regret@1 Regret@5 ‘ MAE  Rank Corr. Regret@1 Regret@5
NoAug. 5266 0.344 0.34 0.058 603.8 0.14 0.274 0.004
OAT 2901.6 0.566 0.116 0.028 388.8 0.474 0.232 0.008
VAE-MDP | 3418.6 0.02 0.454 0.126 497.2 0.336 0.224 0.052
VAE 3733.2 -0.198 0.47 0.104 642.8 0.482 0.288 0.046
TimeGAN 4681 0.262 0.34 0.24 507 0.392 0.27 0.03
SPAWNER | 4244.8 -0.156 0.55 0.37 687.6 0.146 0.37 0.186
DGW 5238.8 0.242 0.296 0.144 578.2 0.342 0.134 0.052
Permutation | 4103.2 -0.202 0.534 0.076 583.4 0.264 0.236 0.088
Jittering 4256.4 0.004 0.452 0.102 700.2 0.268 0.342 0.056
Scaling 38324 0.166 0.404 0.102 580.8 0.222 0.326 0.078
TDA 3448 -0.298 0.56 0.078 511.2 0.118 0.376 0.112

Table 2. OPE results averaging across five OPE methods without augmentation and with each augmentation method in Adroit human.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 3872+140 389460 593£113 6000+612 1218423  403+18  353£21 3778+78
OAT 540+17 255+17 452440 3359+113 556+207 373+59  263+15 29851384
VAE-MDP 843144 498110 41946 3358+24 5414310 49343 42341 2912+13
TimeGAN 919+141 459492 962496 43534495 1063+450 435+34  413+1 5811497
VAE 614+9 531£7 520£2 3746x16 61514 530+£3 4211 373449
SPAWNER 1508452 504435 7354131 65291172 110740 47344 698+4 3561+11
DGW 792£222 320+£20 787+69 95781431 1278+175  430+£29 810+6 3779+37
Permutation ~ 924+140 520+41 542410 4069156 998+0 48314 75444 3324411
Jittering 1092+105 403430 74610 55264323 1064+9 539+11  512+60  3257+103
Scaling 875+52 360+20 6244179 45994306 9614337 478+5 524484 3627463
TDA 1185429 46916 805+£10 3407422 4714248 470+4 810+4 3402+11
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 3926+£128 870+173  3926+128  7352+1118 28464200 379+£65 606116 5768+751
OAT 1328+£69 502+11 43542 3529+13 731+50 340+21  447+24 33794458
VAE-MDP  1315+383 49946 437+4 3678+83 29544883  502+£10  451+23  3811+£262
TimeGAN 17524212  591£12 199545 5683+12 13524282  494£70 667+£122 4224+138
VAE 1896187 513+5 93047 3628+174 784+155 515+7 545+16  3832+166
SPAWNER 276940 1007+9 287119 3567+10 870+39 450+£86  591+£69  4008+444
DGW 2360+0 541£10 534+£8 5289411 861+99 545£55  5734£38 4270192
Permutation ~ 2433=£11 520+13 3093420 5332411 787+149  368+42  613+84 44674245
Jittering 235040 1114£2 2111428 5334£10 1058£127 419+12 519428 38414274
Scaling 1284+40 523+£8 2118+72 3710+16 822+£132 525+7 642+29 38924239
TDA 1269+101 572+5 882+25 3418+134 991+£193  477£11 857£156 36134261
DICE pen door relocate hammer
NoAug. 3208422 978+10 4304+68 343246
OAT 127945 474+5 777+14 1256+8
VAE-MDP 1986440 49445 42443 33344+9
TimeGAN 2605+15 556£6 2008=£15 333449
VAE 260343 1125+11  1758+10 3726+18
SPAWNER  2835£11 1004£10  2908+49 3559+12
DGW 259940 1055+£10  3430+63 327849

Permutation 260142 102611 3138+49 3324+10
Jittering 2600£1 102611 3149451 3324410
Scaling 259940 1018+11  3406+60 3334+10

TDA 1236+8 568+5 807+14 3400411

Table 3. MAE results of OPE without and with each augmentation method in Adroit human environment. Results are obtained by
averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.31+0.21  0.07£0.09  0.62£0.11  0.14+£0.10 -0.12+0.33  0.13£0.13  0.16£0.10  0.29+£0.23
OAT -0.10£0.09  0.56+0.07  0.25+0.11  0.53£0.12 0.23+0.38  0.37+0.35 0.30+0.00  0.411+0.05
VAE-MDP  -0.02+0.64  0.68+0.24 -0.86+0.04 -0.44+0.72 0.12+0.34  0.14+0.58  0.71+0.16  0.29£0.00
TimeGAN  -0.17£0.28  0.39+£0.20  0.76+0.07  0.3740.06 0.52+0.48 0.18+0.13 -0.02+0.19  0.16+0.23
VAE -0.52+0.38  0.39+0.20 -0.83£0.11 -0.61£0.46 0.46+0.28  0.93+0.02 0.25+0.30  0.1140.67
SPAWNER  0.12+0.20  0.44£0.17  0.62+0.11  -0.11£0.31 0.13+£0.44  0.04+0.79  0.19£0.60  -0.82+0.02
DGW -0.12+£0.25  047+021  0.17+£0.36  0.47£0.16 -0.02+0.15  0.29£0.19  0.35£0.31  0.20+0.19
Permutation -0.17£0.18  0.50+0.05  0.43+0.09  0.48+0.03 -0.18+0.56  0.02+£0.74  0.23+0.07 -0.85+0.10
Jittering -0.17+£0.21  0.45+0.00 -0.33£0.78 -0.29+£0.26 0.05+0.04 0.314+0.01  0.17+0.42  -0.22+0.20
Scaling 0.36+0.24  0.53+0.06  0.40£0.15  0.35+0.34 -0.35+0.38  0.21£0.65 0.24+0.33  0.35+0.15
TDA -0.26+0.68 -0.41+0.35 -0.27£0.89 -0.12+0.52 0.09+0.09 0.724+0.11  0.71+0.12  -0.21+£0.60
IS pen door relocate hammer DR door relocate hammer
NoAug. 0.28+£0.28  0.12+0.35  0.23+0.07  0.394+0.07 0.36+0.29  0.01+0.18  0.65+0.19  0.04+0.25
OAT 0.26+0.30  0.28+0.46  0.82+£0.07 0.18+0.44 0.294+0.04  0.66+0.05 0.76+0.14  0.5510.15
VAE-MDP  0.48+0.36 0.12+0.71  0.22+0.70  -0.284+0.51 0.34+0.68 0.50+0.11  0.724+0.18  -0.35+0.79
TimeGAN  -0.01+£0.80  0.38+0.75 - -0.85+0.01 -0.20+0.64 0.53£0.10  0.65+0.08  0.40+0.03
VAE - 0.65+0.00 -0.31£0.00 0.31£0.86 -0.17£0.64 0.29£0.29 -0.04£0.69  0.06=£0.75
SPAWNER -0.83+0 - - 0.81+0.16 -0.09+£0.20 0.36£0.26  0.62+£0.09  0.47+0.16
DGW - -0.03+0.61  0.82+0.16  0.26+0.57 0.02+0.06  0.63+0.15  0.09+0.67  0.27£0.36
Permutation -0.21£0.74  0.37£0.56  -0.70%0.00 - -0.12+0.37 0.57£0.14 0.38£0.31  0.27+0.36
Jittering -0.28+0.79  0.12+0.38  0.85+0.00  0.23£0.73 -0.08+0.51  0.64+£0.18 -0.04:£0.42  0.18+0.84
Scaling - 0244042  0.65+0.00 0.66+0.14 -0.15+£0.67 0.26£0.45 0.09£0.67  0.09+0.67
TDA -0.15+£0.53  0.37+£0.28  -0.67£0.00 0.81+0.13 -0.11+£0.63  0.18+£0.34  -0.22+0.85 -0.284+0.79
DICE pen door relocate hammer
NoAug. -0.01£0.39  0.61+0.34 -0.18+0.45 0.94+0.01
OAT -0.21+£045  0.50+0.21  0.33+0.86  0.52+0.67

VAE-MDP  0.21+0.59  0.244+0.53  0.02+0.68  0.38+0.73
TimeGAN  -0.11£0.19  0.48+0.09 0.27+0.84  0.38+0.73

VAE 0.08+£0.45  0.15£0.74  0.17£0.76  -0.2440.16
SPAWNER  -0.294+0.59 -0.11+£0.71  0.26£0.83  -0.32+0.58
DGW -0.02£0.54  0.35+0.57  0.24+0.87 -0.55+0.28

Permutation  0.02+0.64  -0.14+0.59 0.28+0.88  -0.21+0.75
Jittering 0.00£0.58  -0.18+£0.60  0.274+0.84  -0.50+0.45
Scaling 0.04£0.67 -0.13£0.58  0.25+0.87 -0.61+0.30

TDA -0.15£0.64 -0.274+0.62  0.32+0.91 -0.21+0.84

Table 4. Rank correlation results of OPE without and with each augmentation method in Adroit human environment. Results are obtained
by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.07+0.05 0.05£0.08 0.17£0.14 0.46+0.23 0.15+0.15 0.44+042 0.73£0.36  0.15+0.17
OAT 0.23+0.17 0.17£0.15  0.03£0.02 0.01+0.01 0.05+0.03 0.51+0.37 0.41£0.28 0.524+0.37
VAE-MDP  0.38+0.21  0.01+0.01 1.00£0.01 0.8140.30 0.13+0.11  0.39+0.45 0.41£0.28 0.4240.16
TimeGAN  0.194+0.13  0.23£0.13  0.39+0.24  0.15+0.17 0.22+0.25 0.51+0.36  1.00£0.00 0.19£0.24
VAE 0.57+0.00 0.05£0.05 1.00£0.01 0.731+0.26 0.094+0.06  0.00+£0.01 0.03£0.02 0.341+0.48
SPAWNER  0.03£0.00 0.01+£0.00 0.27+0.32 0.94+0.11 0.12+£0.12  0.35+0.48 0.41+043 1.02£0.00
DGW 0.23+0.17  0.14£0.08 0.32+0.42  0.02+0.01 0.33+0.12  0.12+0.09 0.67£0.47  0.14+0.18
Permutation 0.37+0.16 0.15+0.16 0.87£0.11  0.05+0.03 0.19£0.13  0.37+0.47 0.09£0.09 1.02+£0.00
Jittering 0.11+0.06  0.12£0.00 0.67£0.47  0.731+0.26 0.084+0.07 0.63+0.10 0.48+0.41 0.45+0.31
Scaling 0.13£0.16  0.17+0.11 0.814£0.12  0.25£0.22 0.50+£0.10 0.68+0.48 0.944+0.04 0.14£0.08
TDA 0.35+0.25 0.79£0.29 0.68+0.45 0.81%0.30 0.264+0.23  0.12+0.10  0.31£0.30  0.724+0.37
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 0.17£0.15 0.45+0.40 0.63+0.41 0.19£0.30 0.09+0 0.05+0.09 0.17+0.15  0.46£0.23
OAT 0.00+0.00 0.04+0.06 0.02+0.02 0.00+-0.00 0.044+0.04 0.00+0.01 0.05£0.00 0.024-0.01
VAE-MDP  0.05+0.03 0.37+0.47 0.37£0.45 0.30+0.34 0.164+0.22  0.00+0.01 0.05£0.00 0.7140.43
TimeGAN  0.384+0.27 0.13£0.17 1.00£0.00 1.00+0.02 0.164+0.21  0.13+0.17 0.26£0.33  0.334+0.32
VAE 0.444+0.19 0.68+0.48 1.00£0.00 0.194+0.25 0.36+0.15 0.21£0.25 0.74£0.37 0.371+0.46
SPAWNER  0.57£0.00 1.03+0.00 1.00£0.00 0.34+0.45 0.1240.08  0.01£0.01  0.00£0.00 0.02+0.25
DGW 0.444+0.19 0.15£0.16  0.00£0.00 0.59+0.28 0.25+0.24  0.03+£0.02 0.68+£0.44  0.03+0.00
Permutation  0.44+0.19 0.05£0.06 0.91+0.13  0.74£0.39 0.10+0.06  0.08+0.12  0.31£0.19  0.5040.40
Jittering 0.444+0.19 0.34+0.48 0.68+0.45 0.361+0.46 0.10+0.05  0.09+0.11 0.54£0.31 0.354+0.47
Scaling 0.57+0.00 0.06£0.05 0.67£0.47 0.26+0.18 0.394+0.19  0.19£0.26 0.68+£0.44 0.681+0.44
TDA 0.10+0.13  0.05+£0.06  1.00£0.00  0.00+0.01 0.394+0.19 0.35+£0.46 0.68+£0.44 0.60+0.43
DICE pen door relocate hammer
NoAug. 0.44£0.19 0.38+0.46 0.47+0.40 0.4440.01
OAT 0.4140.17 0.44+£0.09 0.37+0.45 0.0310.05

VAE-MDP  0.30+0.22 0.35+0.15 0.82£0.26  0.03+£0.05
TimeGAN  0.13+0.12 0.35£0.15 0.37+0.45 0.03+0.05
VAE 0.21£0.15 0.50+0.35 0.504+0.39  0.72+0.37
SPAWNER  0.25£0.11 0.45+0.32 0.50+0.39  0.43£0.39
DGW 0.21+£0.11 0.23+£0.23  0.50+0.39  0.70+0.42
Permutation  0.25+0.11 0.53+£0.22 0.37£045 0.36+£0.44
Jittering 0.284+0.15 0.53+£0.22 0.50+0.39 0.37+0.43
Scaling 0.32+£0.20 0.53+0.22 0.50+0.39  0.69+0.41
TDA 0.21£0.15 0.57+0.16  0.37+045 0.67+£0.47

Table 5. Regret@1 results of OPE without and with each augmentation method in Adroit human environment. Results are obtained by
averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.01+0.02  0.00+£0.01 0.75+0.22  0.13%0.09 0.03+0.04  0.02+0.03  0.03£0.02 0.01%0.01
OAT 0.01£0.02 0.00+0.01 0.45+0.37 0.13£0.09 0.01+£0.01  0.00+0.00 0.05+0.00 0.00£0.00
VAE-MDP  0.06£0.08  0.00+0.00 0.87£0.10 0.134+0.09 0.01+0.01 0.08+0.12  0.00£0.00 0.1740.05
TimeGAN  0.03£0.04 0.00£0.01 0.47+0.35 0.13+0.09 0.00+£0.00 0.01+0.01 0.02+0.02 0.02+0.01
VAE 0.06+0.08  0.00+£0.00 0.75+0.22  0.13%0.09 0.00+0.00  0.00£0.00 0.00£0.00 0.0740.09
SPAWNER  0.02£0.01  0.01+0.00 0.00+£0.00 0.01+0.01 0.02+0.01  0.19+0.26  0.07£0.10  0.1740.05
DGW 0.01+0.02  0.00+£0.00 0.68+0.32  0.10+0.08 0.03+0.04 0.01£0.01 0.15£0.10 0.01%0.01
Permutation  0.00+0.00  0.00+0.00 0.02+£0.02 0.01+0.01 0.10£0.06  0.19+0.26  0.00+0.00 0.23£0.12
Jittering 0.00+0.00  0.00+£0.00 0.45+0.37 0.02+0.01 0.084+0.07 0.01£0.01 0.07£0.10  0.05+0.04
Scaling 0.00+0.00 0.01+£0.01 0.03£0.02  0.00+0.01 0.084+0.07 0.08+0.12  0.07£0.10  0.0140.01
TDA 0.07+0.08 0.27+£0.23  0.56+0.41 0.01+0.01 0.10+0.06  0.00+£0.00 0.07£0.10  0.154+0.17
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 0.00+0.00  0.00+£0.00 0.07£0.10 0.01%0.02 0.10£0.08  0.00+0.01 0.324+0.46 0.14+£0.18
OAT 0.00+0.00  0.04+0.06 0.00+0.00 0.00+-0.00 0.01+0.01  0.00+0.01  0.00£0.00 0.00+-0.00
VAE-MDP  0.01+0.01 0.094+0.11 0.30£0.43  0.14+0.18 0.01+0.01  0.00+£0.00 0.02+£0.02  0.16%0.16
TimeGAN  0.01+0.01 0.08£0.12 0.97£0.00 1.024+0.00 0.064+0.08  0.00+£0.01  0.09£0.09  0.00+-0.00
VAE 0.19+0.27  0.00£0.00 0.95+0.03 0.13+0.18 0.05+0.06 0.08+0.12 0.40£0.41 0.1440.18
SPAWNER  0.57£0.00 0.56+0.00 0.97+0.00 1.024+0.00 0.044+0.04 0.01£0.01  0.00£0.00 0.60+0.43
DGW 0.19+0.27  0.15£0.16  0.00+£0.00 0.461+0.40 0.01+0.01 0.01+£0.01 0.34£0.45 0.00+0.01
Permutation  0.19£0.27  0.04£0.06 0.44+0.00 0.00+0.00 0.03+0.00  0.00+0.00  0.00£0.00 0.00+-0.01
Jittering 0.19+0.27  0.00£0.00  0.00+£0.00 0.15+0.17 0.05+0.06  0.00+£0.01 0.02£0.02 0.13+0.18
Scaling 0.18+0.00 0.05+0.06 0.32£0.46 0.0140.01 0.064+0.08 0.08+0.12 0.34+£0.45 0.3440.45
TDA 0.01+0.02  0.00+£0.01 0.97+0.00  0.00+0.00 0.06+0.08  0.00£0.00 0.56+£0.41 0.16+0.16
DICE pen door relocate hammer
NoAug. 0.01+0.01 0.00+£0.01 0.32+0.42  0.00+0.00
OAT 0.07+0.08  0.00+£0.00 0.30+0.43  0.01+0.02

VAE-MDP  0.01+0.01 0.094+0.11  0.09£0.09 0.03+0.05
TimeGAN  0.01+0.02 0.06£0.00 0.15£0.21 0.03£0.05
VAE 0.01+£0.02 0.15+0.16 0.32+0.42  0.05£0.03
SPAWNER  0.07£0.08 0.16+0.12 0.32+0.42  0.05£0.04
DGW 0.03+£0.04 0.09+0.11 0.30+0.43  0.15+£0.17
Permutation  0.06+0.08 0.21+0.15 0.30£0.43  0.14+0.18
Jittering 0.06£0.08 0.27+0.22 0.304+0.43 0.16£0.16
Scaling 0.06+£0.08 0.17+0.11 0.30+0.43  0.15£0.17
TDA 0.06+£0.08 0.294+0.21 0.32+0.46 0.07£0.05

Table 6. Regret@5 results of OPE without and with each augmentation method in Adroit human environment. Results are obtained by
averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 715£11 359+16 371+5 3714+34 6224102 1009+92 357+6 41197
OAT 24845 295435 356+33  3453+73 522442 418133 352+14 3518428
VAE-MDP 32349 539+6 384+4 3624+16 813+£674 538+3 386=+1 3611+4
TimeGAN 1237425 572+7 53944 5268124 1065+118 57344 541+1 5268+15
VAE 41248 561£6 384+2 3823+14 409+19 561+3 385+1 3814+10
SPAWNER 1173+0 502+£5 44342 398846 1173£0 50243 446=+1 3988+6
DGW 11760 550+£5 864+£8 412716 11760 550+3 871+4 412716
Permutation 117610 537+£5 822+11 412816 117640 5364£3 83244 4128+6
Jittering 11760 537+£5 820£11 412816 117640 5364£3 833+4 412816
Scaling 117610 517+6 69645 412316 117640 51743 705+4 412316
TDA 610+4 526£6 438+3 374616 59940 52743 441£1 371514
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 636121 1072+24  458+13 8162491 731+£115 458+34 475422  6719£118
OAT 25949 48248 43843 3752410 241+4 382170 388+11  3396+166
VAE-MDP 300417 507+4 406+11  3686+47 493+76 542420 415+40 3689+89
TimeGAN 978+192 576+4 695+27 5325485 771£191 60618 69626 55144133
VAE 300421 51742 433£15 3722415 386+19 540+22 437+20 3764+80
SPAWNER 1173+0 611+£3 506+1 398946 117440 527+14 509+14 3990+5
DGW 11760 56743 114944 412946 117610 597+23  1180%£35 412945
Permutation 117610 557+£3 1107+4 412916 117640 592425  1110£39 412945
Jittering 11760 55743 1107+4 412946 117610 588+24  1115£89 413045
Scaling 117610 543+£3 94544 412416 117640 580£31 968435 412545
TDA 60416 50145 445+£10 3725411 261+£12 539+34 453+9 3765+142
DICE pen door relocate hammer
NoAug. 1218441 113847  1841+15 375248
OAT 1123+£169  775£164  1820+6  3748+15

VAE-MDP T78+5 538+4 16068  3614+15
TimeGAN 1276+42 573+4 1925+£10 5252+18

VAE 1020+14 561+£5 1602+10  3813+20
SPAWNER 1173+0 106717 1856+4 398846
DGW 1176+0 1140£3 869+8 412716
Permutation 11760 114047 832+5 412816
Jittering 1176+0 1140£7 831+£8 412816
Scaling 11760 1098+7 70448 412316
TDA 6010 1119£9 1835+6  3731+15

Table 7. MAE results of OPE without and with each augmentation method in resampled Adroit cloned environment. The data are
randomly sampled from original training data as the same data points as the corresponding task in human environment. Results are
obtained by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.51+£0.25 0.55=+£0.27 -0.28+0.17 0.50 £ 0.09 0.29£0.19  0.63£0.14  0.45+0.30  0.22+0.12
OAT 0.40£0.60  0.59+0.18  0.18£0.44  0.55+0.34 -0.10£0.41  0.49+0.10  0.14+0.78  0.20£0.19
VAE-MDP  -0.18+£0.44  0.26£0.52  -0.32+0.65  0.28=+0.78 0.10£0.44  0.19£0.18  0.88+0.11  0.05+0.61
TimeGAN  -0.39+0.43  0.54£0.28 -047£0.41 -0.01£0.71 -0.12£0.63  0.58+0.34  0.46+0.71  0.68+0.30
VAE -0.69£0.19  0.38+£0.48  -0.40+0.62  0.16+0.50 0.37£047 0.56+£0.29 0.36+0.73 -0.23+0.23
SPAWNER  -0.1940.68  0.18+£0.59  -0.32+0.73  0.02£0.79 0.05£0.70  0.62£0.06  0.794+0.19  0.40+0.82
DGW -0.46£0.49 -0.07+0.67 -0.75+0.11  -0.324+0.82 -0.30£0.20  0.47+0.14  -0.09+0.58  0.09+0.25
Permutation -0.36+0.69 -0.2840.24  0.12+0.59  -0.294+0.79 0.15+£0.25  0.60£0.13  0.43+£0.75  0.51+0.32
Jittering -0.32+0.80  0.54+0.49  -0.17£0.53  -0.47+0.49 0.25£0.60  0.67£0.10 -0.19£0.46 0.45+0.44
Scaling -0.194£0.80  0.63+0.22  -0.254+0.64 -0.2640.83 0.03+0.62  0.45+0.30 0.67£0.29  0.66+0.18
TDA -0.26£0.77  0.37£0.26  -0.22+0.48 -0.31+0.87 0.00£0.50  0.35£0.33  0.61£0.27 -0.45+0.62
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 0.00£0.00  -0.32+0.59  0.25£0.54  0.79£0.04 0.42+0.24  0.46+0.72  -0.22+0.70  0.29+0.49
OAT 0.78£0.00  0.60+£0.30  0.98+0.00  0.86+0.03 0.37£033  0.17£036  0.37+0.83  0.58+0.17
VAE-MDP  0.15+£0.28  0.55£0.06  0.96£0.04  -0.02+0.74 -0.15£0.60 -0.57£0.06  -0.02+0.19 -0.23+0.82
TimeGAN  0.89£0.00 -0.78+£0.27  0.88+0.08  0.50+0.29 -0.43£0.36 -0.42+0.14 -0.10+0.62 -0.18+0.78
VAE 0.61+0.11  -0.23£0.66  0.88£0.10  0.98+0.01 -0.46+0.34 -0.10£0.62 -0.02+0.70  -0.20+0.76
SPAWNER  -0.89+0.00 -0.10+0.00 -0.29+0.25  0.37£0.39 -0.23£0.66  0.02+0.64 -0.06+0.64 -0.16+0.78
DGW - -0.45£0.00 -0.67£0.00 - -0.05£0.32  -0.36+0.31 -0.09+0.63 -0.20+0.77
Permutation - -0.50£0.00  -0.67+0.00 - -0.18£0.36  -0.43+0.21 -0.20+0.71 -0.22+0.75
Jittering - - -0.42£0.02 - -0.31£0.26  -0.33£0.39  0.03+0.74  0.06+0.78
Scaling - -0.67£0.00  -0.24£0.44 - 0.07£0.55 -0.31£0.38 -0.25£0.71 -0.20%0.73
TDA 0.37£0.42  041£0.22 -0.48+0.35 0.7940.13 -0.22+0.37 -0.32+0.41 -0.05+0.70 -0.25+0.79
DICE pen door relocate hammer
NoAug. 0.03+0.56  0.39£0.51  0.05+0.52  0.31+0.76
OAT -0.24£0.06  0.38+0.42  0.39+0.66  0.28+0.72

VAE-MDP  -0.61£0.38  0.26+0.65  0.82+0.17  -0.28%+0.79
TimeGAN  -0.36+£0.36  0.06£0.70  0.77£0.24  -0.43£0.62
VAE -0.18+0.45  0.18+0.79  0.30+0.61  -0.1140.64
SPAWNER  -0.30+0.33  0.47+0.66 -0.18+0.78 -0.19+0.73
DGW 0.16+0.10  0.38+£0.58  0.22+0.85 -0.36£0.45
Permutation  0.24+043  -0.48+0.11  0.96+0.02  -0.20+0.75
Jittering -0.39+0.61  0.37+0.43  -0.30+£0.82  -0.14%+0.77
Scaling 0.14+£0.60  0.40+£0.55  0.14£0.81 -0.16£0.70
TDA -0.02+0.56  -0.11+0.61  0.30+0.83  -0.3140.78

Table 8. Rank correlation results of OPE without and with each augmentation method in resampled Adroit cloned environment. The
data are randomly sampled from original training data as the same data points as the corresponding task in human environment. Results
are obtained by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after 4-.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.10£0.13  0.07+0.04 1.00£0.01  0.03£0.01 0.06+£0.06 0.19+0.14 0.34+045 0.21£0.18
OAT 0.05£0.06 0.00+0.01 0.174+0.20 0.07+0.09 0.07+£0.08 0.17+0.11 0.63+0.26 0.36+0.24
VAE-MDP  0.30£0.22 0.13£0.17 0.67+0.47 0.26+0.37 0.20£0.26  0.79+0.19  0.02+0.02 0.39£0.31
TimeGAN  0.414+0.23 0.39£0.45 1.00+£0.00 0.404+0.44 0.31+£0.22 0.424+0.44 0.35+0.46 0.08+0.08
VAE 0.57£0.00 0.46+0.41 0.66+0.47 0.47£0.39 0.12+£0.06  0.08+0.12  0.33£0.47 0.94=£0.11
SPAWNER  0.20£0.26 0.44+0.32 0.67+0.47 0.37£0.46 0.13£0.16  0.21+0.25 0.264+0.33  0.26+0.37
DGW 0.05£0.03 0.43+0.43 0.994+0.02 0.68+0.48 0.57£0.00 0.52+0.41 0.90£0.12 0.01£0.02
Permutation  0.38+0.27 0.724+0.27 0.74£0.36  0.60+0.43 0.57£0.00  0.00+0.00 0.404+0.42 0.34+0.48
Jittering 0.35£0.25 0.09+0.11 0.67£047 0.47£0.39 0.14£0.11  0.02+0.03 0.81+0.12  0.01£0.02
Scaling 0.35£0.25 0.09+0.11 0.67+0.47 0.60£0.43 0.24+0.24 0.19+0.26  0.59+0.39 0.01+0.01
TDA 0.35£0.25 0.19+0.26 0.67£0.47 0.68+0.48 0.17£0.21 0.47+0.42 0.40+042 0.81£0.30
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 0.57+0.00 0.47£0.42 0.68+0.45 0.341+0.48 0.224+0.25  0.26+£0.36  0.68+0.45  0.26+0.37
OAT 0.19+£0.27 0.08+0.12  0.00+0.00 0.00+0.00 0.08+0.07 0.25+0.22 0.37+0.45 0.34+0.45
VAE-MDP  0.194+0.13  0.07+0.04 0.00£0.00 0.351+0.47 0.17£0.10  0.93+0.11 0.82+0.26  0.37£0.46
TimeGAN  0.57+0.00 1.02£0.00 0.02+0.02  0.85+0.09 0.50+£0.05 0.93+0.11 0.82+0.26 0.37£0.46
VAE 0.35+0.24 0.68+0.48  0.00+0.00 0.341-0.46 0.44+0.19 0.62+£0.41 0.67£0.47 0.37£0.46
SPAWNER  0.57£0.00 0.81+0.31 1.00£0.00 0.37£0.43 0.35+£0.24 0.60+0.43 0.68+0.45 0.37£0.46
DGW 0.57£0.00 1.03+£0.00 1.004£0.00 1.02+0.00 0.35+£0.24 0.93+0.11 0.68+0.45 0.37£0.46
Permutation  0.57+0.00 1.03£0.00 1.00£0.00 1.02+0.00 0.35+£0.25 0.93+0.11 0.68+0.44 0.37£0.46
Jittering 0.57£0.00 1.03+£0.00 1.004£0.00 1.02+0.00 0.54£0.05 0.62+0.41 0.73£0.36  0.37£0.46
Scaling 0.57£0.00 1.03+0.00 0.9140.13  1.02£0.00 0.17£0.21 0.62+0.41 0.81£0.26 0.37£0.46
TDA 0.17£0.21  0.08+0.06 1.00+0.00 0.07£0.09 0.25+£0.24 0.62+0.41 0.68+0.45 0.37£0.46
DICE pen door relocate hammer
NoAug. 0.26£0.18  0.34+0.48 0.73+0.36  0.34+0.48
OAT 0.36£0.18 0.37+0.44 0.37£045 0.17£0.05

VAE-MDP  0.36+0.18 0.36£0.30  0.03+0.02 0.67+0.47
TimeGAN  0.44+0.12 0.60£0.25 0.11£0.08 0.68+0.48
VAE 0.31£0.24 0.50+0.35 0.35+0.46 0.65+0.46
SPAWNER  0.26£0.23 0.34+0.48 0.65+0.43 0.40£0.44
DGW 0.29+£0.23  0.36+0.47 0.414+043 0.53£0.35
Permutation  0.50+0.10 0.94+0.12  0.02£0.02 0.40+0.44
Jittering 0.38+£0.27 0.02+0.03  0.68+0.45 0.47£0.42
Scaling 0.50£0.10 0.34+0.48 0.73+0.36  0.40£0.44
TDA 0.08+0.06 0.60+0.25 0.37£0.45 0.681+0.48

Table 9. Regret@1 results of OPE without and with each augmentation method in resampled Adroit cloned environment. The data
are randomly sampled from original training data as the same data points as the corresponding task in human environment. Results are
obtained by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.00£0.00  0.00+0.00 0.00+0.00 0.00+0.01 0.00£0.00 0.00+0.01 0.02+0.02 0.01£0.01
OAT 0.01£0.02 0.00+0.01 0.15+0.21  0.00£0.01 0.00+£0.00 0.00+0.00 0.324+0.46 0.00£0.00
VAE-MDP  0.07£0.08 0.08+£0.12  0.34+0.45 0.03+0.05 0.00+£0.00 0.02+0.03  0.00+0.00 0.07£0.09
TimeGAN  0.06+0.08 0.00£0.01 0.36+0.43 0.074+0.09 0.01£0.02  0.00+0.00 0.00+0.00 0.00£0.00
VAE 0.08+£0.07  0.00+0.01 0.45+0.37 0.08+0.09 0.01£0.02  0.00+0.00 0.02+0.02 0.01£0.01
SPAWNER  0.07£0.08 0.13+0.17 0.67+0.47  0.08+0.09 0.05£0.06  0.00+0.00 0.07+0.10  0.03£0.05
DGW 0.31+£0.24 0.23+0.24 0.87£0.10 0.16£0.16 0.19£0.27  0.00+0.00 0.35+0.45 0.00£0.00
Permutation  0.38+0.27 0.094+0.11 0.15£0.21 0.16+£0.16 0.10£0.08  0.00+0.00 0.244+0.34  0.00£0.00
Jittering 0.07£0.08 0.08+0.12 0.17£0.20 0.16£0.16 0.01£0.01  0.00+0.00 0.64+0.31 0.01£0.01
Scaling 0.35£0.25 0.02+0.03 0.394+0.30 0.16£0.16 0.07+0.08  0.08+0.12  0.00+£0.00 0.00+0.00
TDA 0.07£0.08 0.04+0.06 0.17£0.20 0.10£0.08 0.01£0.02  0.00+0.00 0.094£0.09 0.14£0.08
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 0.18+£0.00 0.25+0.00 0.63+0.44 0.13£0.18 0.00+0.00 0.13+0.18 0.56£0.41  0.00+0.00
OAT 0.00£0.00 0.00+0.01  0.00+0.00 0.00+0.00 0.00+£0.00 0.05+0.06 0.244+0.34 0.00+0.01
VAE-MDP  0.01£0.01  0.00+£0.01  0.00+0.00 0.1440.18 0.094+0.06  0.25+£0.18  0.02£0.02 0.16%0.16
TimeGAN  0.02+0.02 0.16£0.12  0.00+£0.00 0.01+0.01 0.10+£0.08 0.25+0.18 0.40+0.41 0.14+£0.18
VAE 0.10£0.08 0.27+0.23  0.00+0.00  0.00£0.00 0.09+£0.06 0.19+0.26  0.32+0.46 0.14£0.18
SPAWNER  0.18£0.00 0.56+0.00 0.02+0.02 0.00+0.01 0.06+£0.08 0.13+0.18 0.264+0.33  0.14+£0.18
DGW 0.18£0.00 0.56+0.00 0.9740.00 0.39£0.00 0.00+£0.00 0.15+0.16 0.34+0.45 0.14£0.18
Permutation  0.18+0.00 0.56+0.00 0.97£0.00 0.39+£0.00 0.05£0.06 0.15+0.16 0.56+0.41 0.14+0.18
Jittering 0.18£0.00 0.56+0.00 0.974+0.00 0.39£0.00 0.01£0.01 0.13+0.17 0.24+0.34  0.13£0.18
Scaling 0.18£0.00 0.56+0.00 0.114£0.08  0.39£0.00 0.05£0.06 0.13+0.17 0.56+0.41 0.14+£0.18
TDA 0.01£0.01  0.04+0.06 0.65+0.46 0.00+0.00 0.05£0.06 0.13+0.17 0.34+045 0.16£0.16
DICE pen door relocate hammer
NoAug. 0.05+0.06  0.02£0.03  0.00+0.00 0.03+0.05
OAT 0.02+£0.02  0.00+0.00 0.02+0.02 0.03+£0.05

VAE-MDP  0.06+0.04 0.13£0.17  0.00+£0.00 0.074+0.05
TimeGAN  0.11£0.07 0.19£0.26  0.00+0.00 0.08+0.09
VAE 0.03£0.04 0.13+0.18 0.15+0.21  0.07£0.05
SPAWNER  0.02£0.02 0.13+0.18 0.56+0.41 0.07£0.05
DGW 0.01+0.01  0.00£0.00 0.30£0.43  0.0710.04
Permutation  0.00+0.00 0.13+0.18  0.00£0.00 0.07+0.05
Jittering 0.04+0.04  0.00+£0.00 0.60+0.43  0.0510.04
Scaling 0.03£0.04  0.00+0.00 0.32+0.46 0.07£0.05
TDA 0.06£0.04 0.23+0.24 0.30+0.43  0.07£0.05

Table 10. Regret@5 results of OPE without and with each augmentation method in resampled Adroit cloned environment. The data
are randomly sampled from original training data as the same data points as the corresponding task in human environment. Results are
obtained by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 110147  1751£52  1729£557  2822+756 2363+135  708+88 621428 13110+£535
OAT 1270+39  816+122 469+5 29274119 1212+6 9724172 474+1 11556+1335
VAE-MDP 467+5 793+36 468+5 1983+45 1217+1 74610 474+1 9890+105
TimeGAN 2012424 1008437 994+11 63171+194 3108+2 102741 100742 1919741121
VAE 1250+12 903+14 1605+8 2039443 3109+1 91246 1610+6 10031210
SPAWNER 1247411 1264447 778+10  4738+157 3108+1 273846 778+10 21218+915
DGW 1245+11  1343+29 762+8 7264+117 3109+1 288516 762+8 36422433
Permutation  1249+12  1270+£28 76348 6350+104 3109+1 2725+6 763+8 31965428
Jittering 1247+£13  1259+43 1772+£19  6267+£158 3108+2 272446 763+8 2947176
Scaling 1247411 1500+49  1495+15  5729+144 25894367 1478+13 76248 27187+209
TDA 1251+£12  1058+45 477+4 3420£186 1217+2 1043+13 481+1 12350£1943
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 1881+23  1005+22  1863+43  3659+159 1632+783 970186 1837452 32624856
OAT 904+48 983+25 1897+89 3809454 1450+515  853+63  1888+145 2840+180
VAE-MDP 676124 871423 1858+42  2225+110 1260+299 886471 1837£52 24941901
TimeGAN 833+43 1054+44  1858+42 5929483 12994452 97247 1837452 502941100
VAE 1579£38  1480+41 1741£46  2481£209 2149+477 654163 1734£77 2179+158
SPAWNER  1933£14 2400+6 1526+19 4128+6 23844309 1089451  1529+19 38404606
DGW 279319 2571+6 149616 693516 3109+£347  1172+£53 1499+16 65561643
Permutation = 2675£12 238616 1497+16 582046 29974344  1081+61  1500+17 5380+780
Jittering 2675+14 238616 1499£17 582146 3038+349  1081+£50  1503+17 5465+701
Scaling 2683+12 2858+6 1498+16 532046 3046392  1288+75  1501+16 4909+707
TDA 733427 985+18  2052+113  3542£138 13254398  963+89  2015+161 31414902
DICE pen door relocate hammer
NoAug. 31224106 1250£21  2369+19 4171147
OAT 1228+73 112048 47514 4201433

VAE-MDP 1146£53 812+6 473+£3 1996+44
TimeGAN 1943+94 570£10 694+£5 6637168

VAE 3014+£140 428+1 38742 2021438
SPAWNER  3067+143  1294+7 1524+19 4985130
DGW 3103437 1363+7 1492+16 7411£26

Permutation =~ 3108+63 1284+1 1495+16 6510+21
Jittering 3104£57 128817 1495+16 6510130
Scaling 3097452 153148 1494+16 5970430

TDA 1193+54 1087+7 47942 3697429

Table 11. MAE results of OPE without and with each augmentation method in resampled Adroit expert environment. The data are
randomly sampled from original training data as the same data points as the corresponding task in human environment. Results are
obtained by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.19+£0.22  0.87£0.07 -0.38+£0.12  0.29+0.34 0.24£0.30  0.74£0.15  0.86+0.05  0.06+0.35
OAT -0.55£0.29  0.85+0.04  0.24+0.74  0.56£0.15 0.42+0.49 0.15£0.11  0.85+0.04 -0.014+0.31
VAE-MDP  -0.18+0.53  0.33£0.47 -0.10£0.51 -0.314+0.90 0.29+0.71 0.86£0.00 0.30£0.73  -0.27+0.41
TimeGAN  -0.78£0.17  0.94+0.02 -0.10£0.51 -0.20%0.85 0.07£0.75  0.36£0.75  0.30£0.73  -0.25+0.56
VAE -0.50£0.35  0.63+0.25 -0.47+0.35 -0.44+0.73 0.09+£0.25  0.54£0.61 -0.15£0.72 -0.79£0.14
SPAWNER  -0.82+0.10  0.96£0.04 -0.22+£0.50 -0.31£0.91 -0.40+0.53  0.29+0.60 -0.08+£0.61 -0.00+0.68
DGW -0.88+0.00  0.21+0.14  -0.96+0.03 -0.32+0.91 0.06+£0.53  0.19£0.62  0.27£0.33  -0.01£0.72
Permutation -0.79+0.13  0.80+0.19  -0.254+0.78 -0.31£0.92 -0.294+0.70  0.13+0.75  0.14£0.74  -0.65+£0.32
Jittering -0.82+£0.12  0.92+0.09 -0.21+0.60 -0.31£0.92 0.58+0.09 0.23£0.83  0.93+0.05 -0.40£0.66
Scaling -0.82+0.11  0.86+0.16  -0.09+0.55 -0.31£0.91 0.22+0.79  0.77£0.29  0.92+0.07 -0.37£0.55
TDA -0.68+£0.12  0.80+0.25 -0.06+0.80 -0.31+0.92 0.46+£0.52  0.55+£0.33  0.72£0.24  0.00£0.53
IS pen door relocate hammer DR pen door relocate hammer
NoAug. -0.02+£0.48  0.08+0.38  0.96+0.04  0.34+0.50 -0.85+0.03  0.32+0.18  -0.284+0.75  0.33£0.85
OAT -0.26£0.39  0.58+0.03  0.92+0.02  0.73£0.13 -0.85+0.05  0.76+0.06  0.11+£0.37  0.59+0.06
VAE-MDP  -0.25+0.32  0.28+0.02  0.96+0.00  1.00+0.00 -0.83+£0.08 0.41+0.31  -0.284+0.75  0.15£0.63
TimeGAN  0.89£0.03  0.87+0.00 0.96+0.00 0.61+0.14 -0.82+0.05 0.42+0.10 -0.28+0.75  0.15+0.80
VAE - 0.19£0.04  0.75£0.00  0.4910.45 -0.89+0.02  0.35+£0.46  -0.26+0.38  0.08+0.75
SPAWNER  -0.89+0.00 - -0.04+0.64  0.10£0.14 -0.89+0.02  0.08+0.28  0.10+£0.69  0.23£0.85
DGW -0.32+0.37 - -0.594+0.26 - -0.88+0.03  -0.16+0.28 -0.55+0.18  0.22+0.84
Permutation  -0.23£0.45 - 0.23£0.59 - -0.90+0.02  0.19+0.16  -0.11+0.27  0.18£0.83
Jittering 0.11£0.59 - 0.50+0.07 - -0.90£0.01  0.05+£0.20 -0.75+0.16  0.22+0.84
Scaling -0.46+0.21 - 0.27£0.62  0.00£0.00 -0.91+0.02  0.32+0.07 -0.52+0.16  0.19£0.84
TDA 0.31£0.00  0.59£0.35 0.90+0.11  0.80+0.14 -0.87£0.00  0.31+0.33  0.02+£0.72  0.24£0.82
DICE pen door relocate hammer
NoAug. 0.23£0.39  -0.33+£0.89  0.114+0.62  -0.06%0.73
OAT 0.83£0.08 0.21+0.83 0.35+£091  0.43+0.12

VAE-MDP  0.87+0.07 -0.23+0.82 -0.17+0.84 -0.20£0.85
TimeGAN  0.85£0.05 -0.07£0.61 -0.17£0.84 -0.2440.86
VAE 0.65£0.19 -0.16+£0.58  0.254+0.67 -0.1140.59
SPAWNER  0.55+0.50  0.11+£0.74  -0.16£0.67 -0.10£0.78
DGW 0.86+0.06 0.16+0.77  0.18£0.84  -0.07+0.75
Permutation  0.93+0.00 0.13+0.73  0.81+0.21 -0.21+0.84
Jittering 0.72+0.19  0.28+0.85 0.21£0.83  -0.12+0.79
Scaling 0.81£0.14  0.25+0.81  0.15+0.80 -0.11%0.79
TDA 0.76£0.08  0.17£0.80  0.23+0.57 -0.2640.89

Table 12. Rank correlation results of OPE without and with each augmentation method in resampled Adroit expert environment. The
data are randomly sampled from original training data as the same data points as the corresponding task in human environment. Results
are obtained by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after 4-.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.17£0.14 0.05+0.06 0.91£0.13  0.05+0.04 0.22+0.25 0.07+0.04 0.15+0.10 0.34+£0.18
OAT 0.28+0.15  0.03+0.02 0.33+0.47 0.10+0.08 0.20+£0.26  0.09+0.05  0.00+0.00 0.23£0.12
VAE-MDP  0.26£0.23  0.35+£0.48 0.68+0.45 0.68+0.48 0.17£0.21  0.01+0.01 0.41+043 0.91£0.09
TimeGAN  0.544+0.05 0.02£0.03 0.68+0.45 0.6040.43 0.24+0.24 0.34+0.48 0.414+043 0.73£0.26
VAE 0.38+£0.27 0.30+0.33  1.00£0.01  0.60£0.43 0.29+£0.00 0.26+0.36  0.66+0.47 0.94£0.11
SPAWNER  0.46£0.09 0.01+0.01 0.66+0.47 0.68+0.48 0.41+£0.17 0.60+0.43 0.57+042 0.20£0.16
DGW 0.46+£0.09 0.19+0.26 1.00£0.01  0.68+0.48 0.20£0.19 0.34+0.48 0.41+£043 0.34+0.48
Permutation 0.37+0.16  0.05+0.06 0.67£0.47 0.68+0.48 0.36+£0.23 0.67+0.48 0.57+0.42 0.94£0.11
Jittering 0.46£0.09 0.01+0.01 0.68+0.45 0.68+0.48 0.07+£0.08 0.34+0.48 0.16+0.08 0.67£0.46
Scaling 0.50£0.10  0.01+0.01 0.684+0.45 0.68+0.48 0.16£0.22  0.00+0.01  0.02+0.02 0.74+0.39
TDA 0.37£0.16  0.01+0.01 0.68+0.45 0.68+0.48 0.18+£0.14 0.34+0.48 0.41£043 0.52£0.41
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 0.14+0.03  0.94+£0.12  0.00+£0.00 0.05%+0.04 0.37+0.16  0.00+£0.00 0.68+0.44 0.3410.48
OAT 0.23£0.24  0.01+0.01  0.00+0.00 0.00+0.00 0.37+£0.16 0.09+0.05 0.37+0.45 0.03£0.01
VAE-MDP  0.19£0.13  0.39+£0.45 0.67+0.47  0.00+0.00 0.37+0.16  0.00+£0.01 0.68£0.44 0.2040.15
TimeGAN  0.01+0.00 0.69£0.48 0.67+£0.47 0.05+0.04 0.46£0.09 0.02+0.03 0.68+0.44 0.38+0.45
VAE 0.57£0.00 0.38+£0.46 0.82+0.26  0.08+0.09 0.464+0.09 0.34+0.48 0.37£0.45 0.401+0.44
SPAWNER  0.44£0.19 1.03+£0.00 0.40+0.41 0.20£0.15 0.46+£0.09 0.34+0.48 0.37+0.45 0.34+0.48
DGW 0.29+£0.23  1.03+£0.00 0.81£0.26 1.02+0.00 0.37+£0.16 0.67+0.48 1.00£0.01 0.35+0.47
Permutation  0.14+0.15 1.03£0.00 0.24£0.34  1.02+0.00 0.37+£0.16 0.67+£0.48 1.00+0.01 0.41£0.44
Jittering 0.17£0.21  1.03+£0.00 0.17£0.20 1.02£0.00 0.37+£0.16 0.34+0.48 1.00£0.01 0.40£0.44
Scaling 0.36+£0.18 1.03+0.00 0.33+0.47 0.86£0.23 0.46+£0.09  0.00+0.00 1.00+0.01 0.41£0.44
TDA 0.57£0.00  0.01+0.01 0.02+0.02  0.01£0.01 0.37+£0.16  0.00+0.00 0.37+0.45 0.35+£0.47
DICE pen door relocate hammer
NoAug. 0.20£0.26  0.69+0.48 0.30+0.43 0.67+£0.47
OAT 0.02+£0.01  0.34+0.48 0.33+0.47 0.18£0.25

VAE-MDP  0.01+0.01 0.68+0.48 0.64+£0.45 0.66+0.46
TimeGAN  0.00+0.00 0.42+0.44 0.64+0.45 0.67+0.47
VAE 0.02+£0.01 0.76+0.36  0.58+0.42 0.40+0.41
SPAWNER  0.06£0.05 0.42+0.44 0.66+0.46 0.67£0.47
DGW 0.02+0.01  0.34+£0.48 0.58+0.42 0.67+0.47
Permutation 0.01+£0.01 0.34+0.48 0.31+£0.30 0.67+0.47
Jittering 0.114+0.13  0.34+£0.48 0.58+0.42 0.65+0.46
Scaling 0.02+£0.01  0.34+0.48 0.58+042 0.67£0.47
TDA 0.03+0.00 0.34+£0.48 0.68+0.45 0.67+0.47

Table 13. Regret@1 results of OPE without and with each augmentation method in resampled Adroit expert environment. The data
are randomly sampled from original training data as the same data points as the corresponding task in human environment. Results are
obtained by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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FQE pen door relocate hammer MB pen door relocate hammer
NoAug. 0.02+£0.01  0.00+0.01 0.244+0.34  0.00£0.01 0.01£0.01  0.00+0.01  0.00+0.00 0.07£0.09
OAT 0.07£0.08  0.00+0.00 0.30+0.43  0.01£0.01 0.01+£0.02 0.094+0.05 0.00+0.00 0.01£0.01
VAE-MDP  0.10£0.06  0.00+£0.01  0.17+0.20 0.13+0.09 0.06£0.08  0.00+0.00 0.02+0.02  0.03£0.00
TimeGAN  0.08+0.06 0.00£0.00 0.17+0.20 0.1040.08 0.07£0.08  0.00+0.00 0.02+0.02  0.13£0.09
VAE 0.01£0.02  0.00+0.01 0.45+0.37 0.13£0.09 0.05£0.06  0.00+0.01 0.454+0.37 0.29£0.14
SPAWNER  0.12£0.06  0.00+0.00 0.264+0.33  0.13£0.09 0.09+£0.07  0.024+0.03  0.094+0.09 0.07+0.09
DGW 0.14£0.03  0.00+0.01 0.95+0.03 0.16£0.16 0.06£0.08  0.00+0.00 0.07+0.10 0.13£0.18
Permutation  0.14+0.03  0.00+0.01 0.45+£0.37 0.13+£0.09 0.08+£0.06 0.19+0.26  0.244+0.34  0.20£0.16
Jittering 0.08+£0.06  0.00+0.01 0.17+0.20 0.13£0.09 0.00+£0.00 0.19+0.26  0.00+0.00 0.07£0.05
Scaling 0.08£0.06  0.00+0.01 0.174+0.20 0.13£0.09 0.06£0.08  0.00+0.00 0.00+0.00 0.08+0.08
TDA 0.09£0.04  0.00+0.01 0.244+0.34  0.13£0.09 0.00£0.00  0.00+0.00 0.00+0.00 0.01£0.02
IS pen door relocate hammer DR pen door relocate hammer
NoAug. 0.02+0.02  0.23£0.24  0.00£0.00 0.031+0.05 0.14+0.03  0.00+£0.00 0.56+£0.41 0.13+0.18
OAT 0.04£0.04  0.01+0.01  0.00+0.00 0.00+0.00 0.14£0.03  0.00+0.00 0.02+0.02 0.00+£0.01
VAE-MDP  0.04£0.04 0.23£0.24 0.65+0.46  0.00+0.00 0.14£0.03  0.00+0.00 0.56+0.41 0.07+0.05
TimeGAN  0.00+0.00 0.37£0.26 0.65+0.46  0.00+0.00 0.11+£0.07  0.00+0.00 0.56+0.41 0.13£0.18
VAE 0.18£0.00 0.21£0.25 0.794+0.25 0.01£0.01 0.14£0.03  0.00+0.00 0.274+0.32 0.13£0.18
SPAWNER  0.06£0.08 0.56+0.00 0.15+0.10 0.39£0.00 0.14£0.03  0.00+0.00 0.244+0.34 0.13£0.18
DGW 0.06£0.08 0.56+0.00 0.71£0.21  0.39£0.00 0.14£0.03  0.00+0.01 0.58+0.39 0.13£0.18
Permutation  0.05+£0.03 0.56+0.00 0.15£0.21  0.39+£0.00 0.14£0.03  0.00+0.00 0.03+0.02 0.13£0.18
Jittering 0.04£0.04 0.56+0.00 0.02+0.02  0.39£0.00 0.14£0.03  0.00+0.00 0.70+0.34 0.13£0.18
Scaling 0.13£0.07 0.56+0.00 0.15+0.21 0.27£0.17 0.14£0.03  0.00+0.00 0.414+0.40 0.13£0.18
TDA 0.13£0.07  0.00+0.00  0.00+0.00 0.00+0.00 0.14£0.03  0.00+0.00 0.304+0.43 0.13£0.18
DICE pen door relocate hammer
NoAug. 0.00£0.00 0.37+0.26 0.154+0.21 0.04£0.04
OAT 0.00+£0.00 0.19+0.26 0.30+0.43 0.01£0.01

VAE-MDP  0.00+0.00 0.19+0.26 0.54+0.39  0.14+0.18
TimeGAN  0.00+0.00 0.21£0.25 0.54+0.39 0.07£0.05
VAE 0.00+0.00 0.17+0.16 0.17£0.20  0.08%0.08
SPAWNER  0.01£0.01 0.19+0.26 0.56+0.41 0.05+0.04
DGW 0.00+0.00 0.19+0.26 0.32+0.46  0.05%+0.04
Permutation  0.00+0.00 0.19+0.26 0.02£0.02  0.07+£0.05
Jittering 0.00+0.00 0.19+0.26 0.32+0.46  0.05%+0.04
Scaling 0.00£0.00 0.19+0.26 0.34+0.45 0.04£0.04
TDA 0.00+0.00 0.19+0.26 0.02+0.02 0.14+0.18

Table 14. Regret@5 results of OPE without and with each augmentation method in resampled Adroit expert environment. The data
are randomly sampled from original training data as the same data points as the corresponding task in human environment. Results are
obtained by averaging over 3 random seeds used for training at a discount factor of 0.995, with standard deviations shown after +.
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D. Real-World Sepsis Treatment

Sepsis, which is defined as life-threatening organ dysfunction in response to infection, is the leading cause of mortality and
the most expensive condition associated with in-hospital stay (Liu et al., 2014). In particular, septic shock, which is the most
advanced complication of sepsis due to severe abnormalities of circulation and/or cellular metabolism (Bone et al., 1992),
reaches a mortality rate as high as 50% (Martin et al., 2003). It is critical to find an effective policy that can be followed to
prevent septic shock and recover from sepsis.

D.1. Task Description

Labels. The hospital provided the EHRs over two years, including 221,700 visits with 35 static variables such as gender,
age, and past medical condition, and 43 temporal variables including vital signs, lab analytes, and treatments. Our study
population is patients with a suspected infection which was identified by the administration of any type of antibiotic, antiviral,
antibacterial, antiparasitic, or antifungal, or a positive test result of PCR (Point of Care Rapid). On the basis of the Third
International Consensus Definitions for Sepsis and Septic Shock (Singer et al., 2016), our medical experts identified septic
shock as any of the following conditions are met:

* Persistent hypertension as shown through two consecutive readings (< 30 minutes apart). Systolic Blood Pressure
(SBP) < 90 mmHg Mean Arterial Pressure (MAP) < 65 mmHg Decrease in SBP > 40 mmHg with an 8-hour period

* Any vasopressor administration.

From the EHRs, 3,499 septic shock positive and 81,398 negative visits were identified based on the intersection of the expert
sepsis diagnostic rules and International Codes for Disease 9th division (ICD-9); the 36,122 visits with mismatched labels
between the expert rule and the ICD-9 were excluded in our study. 2,205 shock visits were obtained by excluding the visits
admitted with septic shock and the long-stay visits and then we did the stratified random sampling from non-shock visits,
keeping the same distribution of age, gender, ethnicity, and length of hospital stay. The final data constituted 4,410 visits
with an equal ratio of shock and non-shock visits.

States. To approximate patient observations, 15 sepsis-related attributes were selected based on the sepsis diagnostic rules.
In our data, the average missing rate across the 15 sepsis-related attributes was 78.6%. We avoided deleting sparse attributes
or resampling with a regular time interval because the attributes suggested by medical experts are critical to decision making
for sepsis treatment, and the temporal missing patterns of EHRs also provide the information of patient observations. The
missing values were imputed using Temporal Belief Memory (Kim & Chi, 2018) combined with missing indicators (Lipton
etal., 2016).

Actions. For actions, we considered two medical treatments: antibiotic administration and oxygen assistance. Note that the
two treatments can be applied simultaneously, which results in a total of four actions. Generally, the treatments are mixed
in discrete and continuous action spaces according to their granularity. For example, a decision of whether a certain drug
is administrated is discrete, while the dosage of drug is continuous. Continuous action space has been mainly handled by
policy-based RL models such as actor-critic models (Lillicrap et al., 2015), and it is generally only available for online RL.
Since we cannot search continuous action spaces while online interacting with actual patients, we focus on discrete actions.
Moreover, in this work, the RL agent aims to let the physicians know when and which treatment should be given to a patient,
rather than suggests an optimal amount of drugs or duration of oxygen control that requires more complex consideration.

Rewards. Two leading clinicians, both with over 20-year experience on the subject of sepsis, guided to define the reward
function based on the severity of septic stages. The rewards were defined as follows: infection [-5], inflammation [-10],
organ failures [-20], and septic shock [-50]. Whenever a patient was recovered from any stage of them, the positive reward
for the stage was gained back.

The data was divided into 80% (the earlier 80% according to the time of the first event recorded in patients’ visits) for
training and (the later) 20% for test, as the most common task for OPE was using historical data to validate policies then
applied selected policies for test.

Policies We estimate the behavior policy with behavior cloning as in (Fu et al., 2021; Hanna et al., 2019). The evaluation
policies were trained using off-policy DQN algorithm with different hyper-parameter settings, where DQN was trained
using default setting (learning rate le — 3, v = 0.99), learning rate le — 4, learning rate le — 5, a different random seed,
v = 0.9, respectively.
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D.2. Septic Shock Rate.

Since the RL agent cannot directly interact with patients, it only depends on offline data for both policy induction and
evaluation. In similar fashion to prior studies (Komorowski et al., 2018; Azizsoltani & Jin, 2019; Raghu et al., 2017), the
induced policies were evaluated using the septic shock rate. The assumption (Raghu et al., 2017) behind that is: when a
septic shock prevention policy is indeed effective, the more the real treatments in a patient trajectory agree with the induced
policy, the lower the chance the patient would get into septic shock; vice versa, the less the real treatments in a patient
trajectory agree with the induced policy (more dissimilar), the higher the chance the patient would get into septic shock.
Specifically, we measured agreement rate with the agent policy, a € [0, 1] was the number of events agreed with the agent
policy among the total number of events in a visit; a = 0 if the actual treatments and the agent’s recommendations are
completely different in a visit trajectory, and a = 1 if they are the same. According to the agreement rate, the average septic
shock rate is calculate, which is the number of shock visits among the visits with the corresponding agreement rate > a. If
the agent policies are indeed effective, the more the actually executed treatments agree with the agent policy, the less likely
the patient is going to have septic shock. This metric was first used in (Raghu et al., 2017).

E. Real-World Intelligent Tutoring
E.1. Task Description

Our data contains a total of 1,307 students’ interaction logs with a web-based ITS collected over seven semesters’ classroom
studies. During the studies, all students used the same tutor, followed the same general procedure, studied the same training
materials, and worked through the same training problems. All students went through the same four phases: 1) reading
textbook, 2) pre-test, 3) working on the ITS, and 4) post-test. During reading textbook, students read a general description
of each principle, reviewed examples, and solved some training problems to get familiar with the ITS. Then the students
took a pre-test which contained a total of 14 single- and multiple-principle problems. Students were not given feedback on
their answers, nor were they allowed to go back to earlier questions (so as the post-test). Next, students worked on the ITS,
where they received the same 10 problems in the same order. After that, students took the 20-problem post-test, where 14 of
the problems were isomorphic to the pre-test and the remainders were non-isomorphic multiple-principle problems. Tests
were auto-graded following the same grading criteria. Test scores were normalized to the range of [0, 1].

States. During tutoring, there are many factors that might determine or indicate students’ learning state, but many of them
are not well understood by educators. Thus, to be conservative, we extract varieties of attributes that might determine or
indicate student learning observations from student-system interaction logs. In sum, 142 attributes with both discrete and
continuous values are extracted, which can be categorized into the following five groups:

(i) Autonomy (10 features): the amount of work done by the student, such as the number of times the student restarted a
problem;

(ii) Temporal Situation (29 features): the time-related information about the work process, such as average time per step;
(iii) Problem-Solving (35 features): information about the current problem-solving context, such as problem difficulty;

(iv) Performance (57 features): information about the student’s performance during problem-solving, such as percentage
of correct entries;

(v) Hints (11 features): information about the student’s hint usage, such as the total number of hints requested.

Actions. For each problem, the ITS agent will decide whether the student should solve the next problem, study a solution
provided by the tutor or work together with the tutor to solve on the problem. For each problem, the agent makes two
levels of granularity: problem first and then step. For problem level, it first decides whether the next problem should be a
worked example (WE), problem solving (PS), or a collaborative problem solving worked example (CPS). In WEs, students
observe how the tutor solves a problem; in PSs, students solve the problem themselves; in CPSs, the students and the tutor
co-construct the solution. If a CPS is selected, the tutor will then make step-level decisions on whether to elicit the next step
from the student or to tell the solution step to the student directly.

Rewards. There was no immediate reward but the empirical evaluation matrix (i.e., delayed reward), which was the students’
Normalized Learning Gain (NLG). NLG measured students’ learning gain irrespective of their incoming competence. NLG

is defined as: NLG = Score\‘“/“f““t7560%’”’6““ , where 1 denotes the maximum score for both pre- and post-test that were
—8COTepretest
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Figure 9. OPE improvement results averaging across OPE methods in e-learning.

taken before and after usage of the ITS, respectively.

Policies. The study were conducted across seven semesters, where the first six semesters’ data were collected over expert
policy and the seventh semester’s data were collected over four different policies (three policies were RL-induced policies
and one was the expert policy). The expert policy randomly picked actions. The three RL-induced policies were trained
using off-policy DQN algorithm with different learning rates Ir = {le — 3,1le — 4,1e — 5}.

F. More Related Works

OPE In real-world, deploying and evaluating RL policies online are high stakes in such domains, as a poor policy can be
fatal to humans. It’s thus crucial to propose effective OPE methods. OPE is used to evaluate the performance of a rarget
policy given historical data drawn from (alternative) behavior policies. A variety of contemporary OPE methods has been
proposed, which can be mainly divided into three categories (Voloshin et al., 2021b): (i) Inverse propensity scoring (Precup,
2000; Doroudi et al., 2017), such as Importance Sampling (IS) (Doroudi et al., 2017), to reweigh the rewards in historical
data using the importance ratio between 3 and 7. (ii) Direct methods directly estimate the value functions of the evaluation
policy (Nachum et al., 2019; Uehara et al., 2020; Xie et al., 2019; Zhang et al., 2021; Yang et al., 2022), including but not
limited to model-based estimators (MB) (Paduraru, 2013; Zhang et al., 2021) that train dynamics and reward models on
transitions from the offline data; value-based estimators (Munos et al., 2016; Le et al., 2019) such as Fitted Q Evaluation
(FQE) which is a policy evaluation counterpart to batch Q learning; minimax estimators (Liu et al., 2018; Zhang et al.,
2020b; Voloshin et al., 2021a) such as DualDICE that estimates the discounted stationary distribution ratios (Yang et al.,
2020a). (iii) Hybrid methods combine aspects of both inverse propensity scoring and direct methods (Jiang & Li, 2016;
Thomas & Brunskill, 2016). For example, DR (Jiang & Li, 2016) leverages a direct method to decrease the variance of
the unbiased estimates produced by IS. However, a major challenge of applying OPE to real world is many methods can
perform unpleasant when human-collected data is highly limited as in (Fu et al., 2020; Gao et al., 2023), augmentation can
be an important way to facilitate OPE performance.

Data Augmentation Data augmentation has been widely investigated in various domains, including computer vision, time
series, and RL. In computer vision, images are the major target and augmentation have improved downstream models’
performance (LeCun et al., 1998; Deng et al., 2009; Cubuk et al., 2019; Xie et al., 2020). However, many image-targeted
methods, such as crop and rotate images, will discard important information in trajectories. In time series, a variety of data
augmentation has been proposed to capture temporal and multivariate dependencies (Le Guennec et al., 2016; Kamycki
et al., 2019; Yoon et al., 2019; Iwana & Uchida, 2021a). For instance, SPAWNER (Kamycki et al., 2019) and DGW (Iwana
& Uchida, 2021b) augment time series by capturing group-level similarities to facilitate supervised learning. Generative
models such as GAN and VAE have achieved state-of-the-art performance in time series augmentation for both supervised
and unsupervised learning (Antoniou et al., 2017; Donahue et al., 2018; Yoon et al., 2019; Barak et al., 2022). However,
those approaches for images and time-series do not consider the Markovian nature in OPE training data, and may not be
directly applicable to MDP trajectory augmentation.



