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Abstract—Electromyography (EMG) signals are very useful for
the development of active prosthetic devices and for detecting
various muscle abnormalities now-a-days. Many modern tech-
nologies are being employed for this purpose, utilizing EMG data
to evaluate muscle activity. The existing research on EMG-based
movement classification faces the challenges of inaccurate classi-
fication, insufficient generalization ability, and weak robustness.
To address these problems, this paper proposes a novel EMG
signal acquisition system using an Inkjet-printed (IJP) electrode
array. IJP EMG electrodes were fabricated on flexible polyimide
substrates using silver nanoparticle inks for the conductive layer
and provided the flexibility of the shape and size of electrodes. In
this work, a classification method with different machine learning
(ML) models was performed on the datasets collected from our
designed EMG circuit system. We have extracted 145 features
from the dataset to properly train and test our ML models.
The Random Forest (RF) model yielded a maximum accuracy of
98% for the suggested system. To validate the result, we classified
the datasets by using the K-nearest Neighbor Algorithm (90%),
Decision Tree (94%), and Artificial Neural Network (97%) and
compared the results with the RF model. This proposed method
is highly accurate for actuating prosthetics, or it has the ability
to maximize medical resources and serve as a clinical auxiliary
diagnostic tool.

Keywords: EMG signals, EMG sensors, Feature extraction,
Finger movements, Inkjet-printed electrode, Machine learning
model

I. INTRODUCTION

Electromyography (EMG) research is gaining great impetus
nowadays. Much of its credit can be given to the fact that
EMG represents the activity of muscles [1]. Collecting surface
EMG (sEMG) signals emanating from the human body using
electrodes has become a routine procedure both in rehabilita-
tion engineering and medical research. Surface EMG (sEMG)
records vital information which is from the muscle action that
is responsible for the contraction and extraction of skeletal
muscles [2]. The clinically used wet gel electrode where a
gel of Ag/AgCl is normally used for getting better skin-
electrode coupling in collecting sEMG data is considered the
standard electrode. However, because of its disposable nature
and irritation to the skin, this electrode is not appropriate
for long-term signal monitoring. Also, the gel dries out over
time, which degrades the signal quality [3]. Inkjet-printed (IJP)
electrodes offer a low-cost and promising solution for efficient
sEMG signal analysis. In contrast to gel electrodes, a dry

electrode’s efficacy often improves with time as more mois-
ture permeates the skin-electrode contact, increasing coupling.
They are designed to be thin, flexible, and conformable to
the body, ensuring a more comfortable experience for users,
even during prolonged wear. To achieve reliable classification
of the sEMG signals for different finger movements, three
consecutive phases make up the implementation procedure:
data pre-processing, feature extraction, and classification [4].
However, real-world variables like electrode displacement and
muscle fatigue can contaminate EMG signals; even little
adjustments can have a significant impact on classification
outcomes.

To achieve high classification performance and to overcome
the limitations of the existing techniques, we proposed a novel
approach to develop a affordable EMG signal acquisition
system that gathers finger activity using an IJP dry flexible
electrode array. The goal of the research is to determine if
using EMG data obtained with our newly built IJP electrode
array—which can differentiate between different finger move-
ments is advantageous. We used machine-learning models
to classify various movements and estimate the user’s state.
The accuracy results were compared to find the best model.
Through the analysis of the EMG signals obtained from our
suggested system, we can create a process that will help
understand the patient’s state and any muscle abnormalities.

II. EXPERIMENTAL SETUP

A. Electrode Fabrication

To capture real-time EMG data, we created dry EMG elec-
trodes on flexible polyimide films using Inkjet Printing (IJP).
We have designed this new electrode layout for collecting
EMG because we have seen that if we placed positive and
negative electrodes in the liner line with every finger then we
can get the best EMG signal for the fingers. So to collect EMG
for 5 fingers we have designed 5 positive points in upper line
and 5 negative points in lower line so that when we placed the
whole electrode on the back of the palm, they stayed in the
liner line with the fingers. The fabrication process involved
the utilization of a PC-controlled Dimatix Materials Printer
(DMP-2850, FujiFilm Inc., USA) equipped with a MEMS-
based printer cartridge containing 12 linearly arranged printing
nozzles with 338.67 µm gaps, with the cartridge head angle



set at 2.5°. This results in a 15 µm drop spacing at a printing
resolution of 1693 dpi.

The polyimide film substrate served as the foundation for
our fabrication. the film was cleaned properly with isopropyl
alcohol to remove all the dust. Subsequently, silver nanopar-
ticle (AgNP) ink, Metalon® JS-A191 (Novacentrix Inc., TX,
USA) was injected into the substrate using the DMP printer to
create the conductive layer. The Silver A191 ink is composed
of 40% silver nanoparticles by weight, featuring a silver
concentration ranging from 25% to 50%. It includes 10-15%
ethylene glycol and 0.2 – 1% polyethylene glycol 4-(tert-
octylphenyl) ether as part of its formulation. At 25°C, the ink
exhibits a viscosity ranging from 8 to 12 cP, and its surface
tension falls between 28 to 32 dyne/cm. The average particle
size (Z-avg) of JS-A191 ink is between 30 and 50 nm which
has a specific gravity of 1.6. In the IJP process, the ink is
ejected drop by drop from the cartridge nozzle in a left-to-
right printing direction on the polyimide substrate.

After printing, we cured it at 180° temperature for 20
minutes. The choice of Metalon® JS-A191 silver nanoparticle
(AgNP) ink was driven by its high conductive properties and
compatibility with polyimide. We used an anchoring cavity
construction technique to improve substrate adherence and
boost the reusability of large-area traces, such as pads. The
printed layers contain deliberate gaps created by these holes.
These spaces are meant to relieve the thin-film remnants of
stress. They successfully lessen the possibility of surface stress
mismatch between the printed thin-film and substrate, which
lowers the risk of adhesion-related problems like delamination
and attachment to the body. This method guarantees that the
traces will remain functional and intact even after numerous
uses. The electrode layout is shown in Fig. 1

Fig. 1. (Left) EMG electrode array layout design. (Right) An IJP fabricated
EMG electrode array.

B. System Overview

The system consists of an EMG signal collection technique
which is based on an AD8232 (Analog Devices, Wilmington,
MA) and Arduino Uno with an ATmega 328 microcontroller
connected with the IJP electrode. To record the EMG signals
in the mV range, an IJP electrode array is placed on the back
of the palm with the use of transparent silicone tape. In Fig.
2 the overall methods of the EMG signal acquisition process
are shown.

Fig. 2. a) Basic steps of EMG signal classification b) Circuit setup for EMG
signal acquisition c) A practical setup of a user wearing the electrode array
and numbering of fingers

III. METHODOLOGY

A. Data Acquisition

5 participants’ (Age range: 25-35 years old) EMG data were
collected at a 100 Hz sampling rate for various movements for
the duration of 15 minutes each. We adhered to a methodology
consisting of several steps in order to ensure a similar data
collection for each participant for every finger one by one.
The steps are as follows:

1) After positioning the EMG electrode array on the back
of the hand, keep the hand in a still and relaxed position
for 20 sec.

2) After that, rotate one finger for 20 sec in both clockwise
and counterclockwise directions, then hold the hand
stationary for 10 sec.

3) After that, move the finger for 20 sec in each direc-
tion—up, down, and left, right.

4) At last, keep the hand in a still and relaxed position for
20 sec and we saved the EMG data in CSV format.

Fig. 3. Data visualization of EMG signal using IJP electrode and gel electrode

B. Data Visualization

A practical setup of a user wearing the electrode is shown in
Fig. 2 (c) for reference. We have also collected the EMG signal
with commercial gel electrodes (Red Dot Electrodes 2560, 3M,
Maplewood, MN) and plotted them with the fabricated IJP
electrode-acquired EMG signal to compare both signals for



all the participants. The plot for participant 1 is shown in Fig.
3 for reference. The thumb finger is designated as finger 1,
the remaining are as fingers 2, 3, 4 and 5 as depicted in Fig.
2(c). We used the following formula to determine the signal-
to-noise ratio (SNR) [6] of both of the EMG signals we had
collected:

SNR = 10 log (S/N)

where S represents the raw signal power and N shows

Fig. 4. Cross-correlation between two EMG signals from IJP electrode and
gel electrode

the noise power. The SNR for gel and IJP electrode were
18.97 dB and 18.94 dB respectively for user 1. We also
calculated the SNR for other users to compare the results. To
see the correlation between two EMG signals, we calculated
the Pearson correlation coefficient which is 0.7132364631,
suggesting a strong positive linear relationship. To visualize
the cross-correlation between the signals, we have plotted the
signals in Fig. 4.

C. Data Processing

Feature extraction from unprocessed data is an essential
stage in data processing [5]. We extracted several features
and ranked the top 10 features in order to obtain an accurate
detection and apply the machine learning models. Those
features are outlined in Table I.

TABLE I
TOP 10 FEATURES EXTRACTED FOR MACHINE LEARNING ALGORITHM

Features
0 MFCC 8 0 Peak to peak distance 0 FFT mean coeffi 2
0 Spectral centroid 0 Spectral decrease 0 LPCC 10
0 Spectral kurtosis 0 Spectral skewness 0 Spectral slope
0 Spectral spread

We have used 4 machine learning models to assess the
dataset we have gathered. They are the Artificial Neural
Network (ANN), Decision Tree (DT), Random Forest (RF),
and K-nearest Neighbor (KNN). Because model training is
the process by which a machine learning model learns from

the supplied data to produce accurate classifications on fresh,
unseen data, it is essential for a classifying task [7].

We divided our dataset into two categories for training.In
the first group, the dataset was divided into a training set
(80%) and a testing set (20%). In the second method, the
whole dataset has been divided into three groups: testing,
validation, and training sets, which make up 70%, 15%, and
15% of the total. This enables us to validate the model’s
performance and assess our models on an alternative testing
set. We also applied a 10-fold CV to all models to lessen the
variance in performance. After our dataset was trained using
the best parameter variation configuration for each of our three
dataset distributions, accuracy and performance measures were
computed.

IV. RESULTS

The acquired datasets’ various finger movement variations
are categorized into classes, which are shown in Table II. We
have gathered datasets containing all of these classes for each
finger, for a total of 25 classes in the class variation. Some
of the examples are ”Relax 1”, ”Cir-Anti 1” for thumb finger,
”Cir-clock 2”, ”Up/Down 2”, ”Left/Right 2” for Index finger.
We have computed various statistical metrics to compare the
results of all ML models. In addition to training and testing
accuracy, we also determined the error metrics as Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and R-
squared [8] to evaluate the best performing ML method which
are listed in Table III.A confusion matrix is a particular type
of matrix that is used to show how well a machine learning
algorithm performs. In this matrix, each row denotes the actual
category and each column the predicted value. The confusion
matrix for a 10-fold CV is represented in Fig. 5.

TABLE II
DIFFERENT CLASS LIST

Position Target class
Hand in still and relax position Relax Hand

Finger moving in Circular direction - Anticlockwise Cir-Anti
Finger moving in a Circular direction - clockwise Cir-Clock

Finger moving in up and down direction Up/Down
Finger moving in left and right direction Left/Right

V. DISCUSSION

Reusable IJP electrodes excelled gel electrodes which offer
superior performance without causing skin irritation. They
proved comfortable for users and effectively captured EMG
signals during finger movements. From the correlation graph,
we can say that the two EMG signals are strongly correlated,
implying that the muscle activities recorded by these signals
are synchronized to a significant extent. From our calculated
results for every test subject, we can state that the RF model
performs better than all ML models in terms of categorizing
distinct finger movements. In every one of our tests, the RF
model has continuously performed better, with an accuracy
rate as high as 98%. Large and complicated datasets with
millions of observations and thousands of characteristics can



TABLE III
PRESENTATION OF ALL THE MODELS’ PERFORMANCE INDICATORS FOR VARIOUS DATASET SPLITS FOR DIFFERENT FINGER MOVEMENTS

Dataset with 80/20 split Dataset with 70/15/15 split 10-fold cross validation
KNN RF DT ANN KNN RF DT ANN KNN RF DT ANN

Training set accuracy (%) ↑ 86 95 94 95 89 97 94 97 90 98 94 98
Testing set accuracy (%) ↑ 85 94 93 94 89 97 94 96 90 98 94 97

RMSE ↓ 0.94 0.33 0.41 0.66 0.84 0.36 0.45 0.53 0.79 0.2 0.41 0.44
MAE ↓ 0.31 0.04 0.08 0.14 0.24 0.05 0.1 0.09 0.22 0.02 0.08 0.05

R-squared ↑ 0.84 0.96 0.95 0.92 0.87 0.98 0.96 0.95 0.89 0.99 0.97 0.97

Fig. 5. Visualization of true (actual) class and predicted class for RF model with 10-fold Cross Validation split

be handled by RFs, which are also very scalable. On the
other hand, the KNN is often particularly tricky for expan-
sive datasets, and the performance tends to degrade as the
dimensionality of the feature increases.

VI. CONCLUSION

An approach to design an EMG signal acquisition system
to easily collect the EMG signals from the users’ fingers
using an IJP EMG electrode array and to classify all 5 finger
movements are presented in this paper. We collected EMG
data from our IJP electrode simultaneously and compared
the data with gel electrodes sold in markets. This study also
emphasized the algorithms used for processing, and classifying
EMG signals. The outcomes showed that the random forest
(RF) model performed better than the other models. Thus,
we can use the new fabricated flexible IJP electrodes in

various new EMG wearables and it can also used to enhance
the performance of models for disease detection or actuating
prosthetics.
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