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Abstract—The Electromyography (EMG) signals are one of
the most used biological signals which are essential for identi-
fying muscular abnormalities that cause a variety of diseases.
Many contemporary technologies are utilized to examine muscle
activities through EMG signals. This paper describes a novel
dry EMG electrode fabricated with the inkjet-printing (IJP)
technique of silver (Ag) nanoparticles on flexible polyamide (PI)
film. The design is made up of basic electronic components that
are affordable and easy to find. Current research on EMG-based
movement classification encounters difficulties with inaccurate
classification, lacking generalization ability, and poor robustness.
This paper discusses the classification of EMG signals by creating
and optimizing various machine-learning models to tackle these
issues. For the recognition of different hand gestures based
on EMG signals, we focus mainly on 3 areas: First, the pre-
processing of the EMG signal obtained from the IJP electrodes,
the next area is the extraction of various features in the time
domain, finally the recognition of the gestures in the signals
using the following classifiers: SVM (Support Vector Machine),
Random Forest (RF), Decision Tree (DT) and Artificial Neural
Network (ANN). We assessed the ML models’ performance using
a dataset containing 38,759 sample values. The RF model in the
proposed system reached a top accuracy of 99%. The outcomes
of the other classifiers were as follows: Artificial Neural Network
(97%), Decision Tree (94%), and Support Vector Machine (90%).
This suggested approach is very precise and cost-effective for
clinics, making it a possible tool for clinical support in diagnostics
and resource optimization.
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I. INTRODUCTION

The surface electromyography (sEMG) signal is a group
of potential changes recorded on the skin surface while mus-
cles contract, indicating neuromuscular activity [1]. Intelligent
prosthesis control, rehabilitation therapy, and clinical diagnosis
all greatly benefit from the noninvasive surface EMG signal
detecting technique. An EMG signal represents the muscle’s
electrical activity through a voltage versus time graph obtained
by placing electrodes on the skin. The voltage of sEMG signals
typically falls within the -5 to +5 mv range and is mostly
concentrated between 50 and 150 Hz. Electrodes pick up
subtle electrical fluctuations, which the outcomes of muscle
depolarization and repolarization occur after each movement.
Gathering EMG signals produced by the human body with
electrodes is now a common practice in both rehabilitation

engineering and medical research.[3]. There has been a grow-
ing emphasis on the advancement of EMG-based control in
order to enhance the quality of life and social acceptance of the
disabled and elderly populations in recent years. EMG devices
have been redesigned to prioritize patient comfort and can now
be remotely monitored outside of healthcare facilities without
disrupting daily tasks due to advancements in technology.

The field of flexible electronics is expanding with a range of
uses, including biomedical sensors, wireless communication,
and more. This technology shows great promise because it
can adapt to various shapes and is cost-effective [4]. Flexible
electronic sensors have the potential to improve user comfort
and enable earlier disease detection for remote monitoring, re-
sulting in more efficient medical services due to their reusabil-
ity. Traditional fabrication process uses a rigid substrate. But
flexible electronics devices are fabricated on flexible substrates
and can be easily created to become worn comfortably in any
chosen location. Inkjet Printing (IJP) technology stands out as
an appealing choice as it enables the creation of electronic
circuits on surfaces like paper, glass, polyamide film, and
more. The wet gel electrode commonly used in clinical settings
is typically seen as the standard electrode for assessing EMG
signals. They use a gel of Ag/AgCI to get better skin-electrode
coupling In the gel electrode.However, the gel electrode is
single-use and not designed for extended use. Numerous users
complained of skin irritation and discomfort caused by the gels
and adhesives that come in contact with the skin[5]. Inkjet-
printed (IJP) electrodes offer a low-cost and promising solu-
tion for efficient EMG signal analysis in modern healthcare,
reducing the issues associated with wet gel electrodes. They
are designed to be thin, flexible, and conformable to the body,
ensuring a more comfortable experience for users, even during
prolonged wear. Dry electrodes improve as time goes on
because more moisture seeps into the skin-electrode interface,
leading to better coupling. Dry electrodes ensure high signal
quality and reliability with strong adhesion, excellent physical
stability, extensive effective area, and thin yet highly flexible
construction.[6].

Categorizing EMG signals based on their various applica-
tion is the most difficult aspect of creating interfaces that
utilize myoelectric control. This could be due to the differ-
ences in EMG signal features, which vary based on factors



such as age, muscle activity, motor unit pathways, skin-
fat layer, and movement style. Extracting different features
from EMG signals obtained from the muscles of amputees or
disabled individuals can be challenging at times. For accurate
classification of EMG signals for various hand gestures, the
implementation process includes three steps in sequence: data
pre-processing, extraction of features, and categorization [7].
Nevertheless, EMG signals can be affected by external factors
like electrode displacement and muscle tiredness, even slight
alterations can significantly influence classification outcomes.

In this study, we designed and fabricated flexible IJP EMG
electrodes to develop a cost-effective EMG signal acquisition
system to collect muscle activity for different hand gestures.
Utilizing the flexibility and accuracy of IJP technology, we
could develop electrodes that provide comfort to the skin,
guaranteeing both reliability and ease of use. The purpose
of this paper is to assess the effectiveness of utilizing EMG
data in distinguishing between various hand gestures. To
classify various motions and determine the user’s state, we
utilized different machine learning algorithms and evaluated
the accuracy outcomes to establish the superior one. Our new
system can help understand the patient’s muscle condition
and abnormalities by analyzing the EMG signals, which helps
doctors to take early steps in healthcare awareness.

II. EXPERIMENTAL SETUP

A. Ag 191 Ink

We have used the silver ink Ag 191 for our IJP elec-
trodes whose product name is silver nanoparticle (AgNP)
ink, Metalon® JS-A191. Novacentrix Inc., TX, USA is the
manufacturer of this commercial Ag 191 ink. This ink is
composed of 40% silver nanoparticles by weight, featuring
a silver concentration ranging from 25% to 50%. It includes
10-15% ethylene glycol and 0.2 – 1% polyethylene glycol 4-
(tert-octylphenyl) ether as part of its formulation. At 25°C,
the ink exhibits a viscosity ranging from 8 to 12 cP, and its
surface tension falls between 28 to 32 dyne/cm. The average
particle size (Z-avg) of JS-A191 ink is between 30 and 50 nm,
with a specific gravity of 1.6.

B. IJP Fabrication Process

To capture real-time EMG data, we created dry EMG elec-
trodes on flexible polyamide films using Inkjet Printing (IJP).
The fabrication process involved utilizing a PC-controlled
Dimatix Materials Printer (DMP-2850, FujiFilm Inc., USA)
equipped with a MEMS-based printer cartridge containing 12
linearly arranged printing nozzles with 338.67 µm gaps, with
the cartridge head angle set at 2.5°. This results in a 15 µm
drop spacing at a printing resolution of 1693 dpi. We have used
the polyamide film substrate as the base for our production
process. Before starting the fabrication process it was wiped
with isopropyl alcohol to eliminate any dust. Subsequently, the
ink JS-A191 was injected into the substrate using the DMP
printer to create the conductive layer.

During the IJP process, the ink is released drop by drop from
the nozzle of the cartridge in a printing direction from left to

right onto the polyamide substrate. After printing, we cured it
at 180 temperature for 20 minutes. The choice of Metalon®
JS-A191 silver nanoparticle (AgNP) ink was driven by its high
conductive properties and compatibility with polyamide. We
used an anchoring cavity construction technique to improve
substrate adherence and boost the reusability of large-area
traces, such as pads. The printed layers contain deliberate
gaps created by these holes. These spaces are meant to relieve
the thin-film remnants of stress. They successfully lessen the
possibility of surface stress mismatch between the printed thin-
film and substrate, which lowers the risk of adhesion-related
problems like delamination and attachment to the body. This
method guarantees that the traces will remain functional and
intact even after numerous uses.

C. Layouts of IJP Electrodes

In Fig. 1 the layouts of our designed IJP electrode are
shown. It is rectangular. These layouts have been created with
InkScape software. Then the image was exported in PNG
format at 1693 dpi resolution. The irfanView program changed
the PNG images to a 24-bit-bmp type. Next, we utilized the
MS Paint program to change these pictures into monochrome
bmp style.

Fig. 1. (Left) Proposed IJP EMG electrode layout design. (Right) An IJP
fabricated EMG electrode.

D. System Overview

To capture the EMG signals, three IJP electrodes are posi-
tioned on the hand muscle. The signal captured falls within the
mV range and includes a variety of signals from body parts
other than muscles. The method of acquiring the EMG signal
from the hand muscle is shown in Fig. 2.

Fig. 2. a) Circuit setup for EMG signal acquisition b) Examples of different
hand positions 1) Relax hand position 2) Hand Stretch position

The main elements used were an ATmega 328 micro-
controller linked to an MPU-6050 module. MPU-6050 have



applications like the IMU sensor in this study. It contains
a unit with 6 separate analog-to-digital converters (ADCs)
that includes a 3-axis accelerometer and a 3-axis gyro meter.
One AD8232 chip was connected through connecting wires
to ATmega328 and three electrodes were connected to the
microcontroller from the muscle. The sensor values were
collected from the MPU-6050 sensor and then saved in a CSV
file.

III. METHODOLOGY

A. Data Acquisition

We have collected 7 participants’ (Age range: 25-35 years
old) EMG data at a 100 Hz sampling rate for various hand
gestures for the duration of 13 minutes each. To ensure
an organized data collection, Our data collection protocol
involved a series of different hand gesture steps. The steps
are as follows:

1) Place the electrodes and keep the hand in a still and
relaxed position for 20 seconds.

2) Then bend the wrist to the right (open palm) for 10
seconds and then bend the wrist to the left (open palm)
for 10 seconds.

3) After that, again keep the hand in a still and relaxed
position for 10 seconds and straight hand with fist for
10 seconds.

4) Then, bend wrist to the right (with fist) for 10 seconds
and then bend wrist to the left (with fist) for 10 seconds.

5) Again keep the hand in a still and relaxed position for
10 seconds.

6) Then, stretch the hand for 20 seconds.
7) At last, keep the hand in a still and relaxed position for

20 seconds.
8) Then we saved our all EMG data in a CSV file in our

working PC.

B. Data Visualization

Figure 2 (b) illustrates a useful arrangement of a user with
the electrodes placed on the hand muscles. We used 2 types
of EMG electrodes for real-time EMG data collection. These
Electrodes are commercial gel electrodes (Red Dot Electrodes
2560, 3M, Maplewood, MN) and our fabricated IJP electrodes.
The collected signals from the user 1 are plotted in Fig. 3 to
compare both signals. In order to determine the signal-to-noise
ratio (SNR) [8] of the EMG signal we collected, we employed
the following calculation:

SNR = 10 log (S/N)

S represents the signal power in its original form while N
represents the power of the noise. The SNR for gel and IJP
electrode were 18.97 dB and 18.94 dB respectively for user
1. We also calculated the SNR for other users to compare the
results.

Fig. 3. Data visualization of EMG signal using IJP electrode and gel electrode

C. Feature Extraction

Feature extraction from unprocessed data is an essential
phase in data analysis. Our research consisted of gathering
50 batches of EMG signal information while capturing dif-
ferent hand gestures from multiple participants at a sampling
rate of 100 Hz. In this study, we gathered various features
from all the datasets we collected. The features that were
obtained were divided into three groups: temporal, spectral,
and statistical. 145 signal-independent features were derived
by utilizing Time series feature extraction library (TSFEL)
[9], a python package designed for analyzing time series data.
Main extracted features are outlined in Table I. Fig. 4 shows
the flow diagram of the overall classification process.

Fig. 4. Flow diagram for processing, analyzing, and classifying EMG signals
using machine learning algorithms.



TABLE I
MAIN FEATURES EXTRACTED FOR MACHINE LEARNING ALGORITHM

Features
0 Absolute energy 0 Fundamental frequency
0 Area under the curve 0 Kurtosis
0 Centroid 0 Human range energy
0 ECDF 3 0 Max power spectrum
0 ECDF 7 0 Mean absolute deviation
0 FFT mean coefficient 0 0 Mean absolute diff
0 Histogram 2 0 Median frequency
0 Histogram 5 0 Spectral positive turning points
0 Histogram 8 0 Peak to peak distance
0 FFT mean coefficient 9 0 Root mean square

D. Model Training

In order to ensure accurate detection and compare the
outcomes, we analyzed our dataset using 4 machine learning
models. The Support Vector Machine (SVM), Random Forest
(RF), Decision Tree (DT), and Artificial Neural Network
(ANN) are included. Model training is crucial for a classifying
task because it is the process through which a machine
learning model learns from the provided data to make accurate
predictions or classifications on new data [10].

For training, we split our dataset into 2 types of groups. The
dataset was split into a training set of 80% and a testing set of
20% in the initial group. For our second method, we divided
the complete data into three separate sections: the training
set, the validation set, and the testing set, with proportions of
70%, 15%, and 15% respectively. This enables us to assess our
model with a separate testing set and confirm its performance
while training.

The study’s goal was to create a custom EMG recognition
model, so we concentrated on assessing each model’s per-
formance. Hence, we utilized a 10-fold cross-validation on all
models to minimize the variability in performance evaluations.
Once we trained our dataset with the optimal parameter set-
tings for all three dataset distributions, we calculated accuracy
and performance metrics. Table II displays a list of crucial
parameters of the models.

TABLE II
KEY PARAMETERS OF DIFFERENT MACHINE LEARNING MODELS

Classifier Combination of hyperparameter
SVM SVC (kernel=’rbf’, C =0.3, gamma =’scale’
RF Number of trees=100 , max depth=8, criterion = ’entropy’
DT Max depth = 7 , random state= ’none’
ANN Optimizer = ’SGD’, three layers of neurons

IV. RESULTS

Different hand gestures collected from the datasets are
regarded as different classes which are shown in the following
Table III.

In Table IV we have provided the specifics of the computer
where all the algorithms were computed to compare the
performance metrics accurately. Table V presents the results
of different ML models, showcasing training and testing

TABLE III
DIFFERENT CLASS LIST

Position Target class
Hand in still and relax position Relax Hand

Bend wrist to the right (open palm) Wrist Right
Bend wrist to the left (open palm) Wrist Left

Straight hand with fist Fist
Bend wrist to the right (with fist) Fist Right
Bend wrist to the left (with fist) Fist Left

Hand stretch Stretch

accuracy, along with error metrics such as Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), R-squared, and
Mean Log Squared Error (MLSE) [12], for different dataset
distributions. Based on the results we calculated, we can
conclude that RF had the top performance. Figures 5, 6, 7,
and 8 show the comparison between predicted and true class
distributions for 4 models in 10-fold cross-validation where
they excel.

TABLE IV
SPECIFICS OF THE COMPUTER WHERE ALL THE ALGORITHMS WERE

COMPUTED

Specifics Information
OS Name Microsoft Windows 11 Home
Version 10.0.22631 Build 22631

System Manufacturer SAMSUNG ELECTRONICS
CO., LTD.

System Model 930XDB/931XDB/930XDY
System Type x64-based PC

Processor

11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz,
2803 Mhz, 4 Core(s),
8 Logical Processor(s)

Installed Physical
Memory (RAM) 8.00 GB

Disk Type SSD
Swap Size 15817MB

Table VI presents the precision, recall, and f1-score for
different models for 10-fold cross-validation split group. Based
on these metrics also, the RF classifier shows the most
promising results and is a suitable choice for our purpose.
The RF classifier also minimizes the uses of time resources
and memory consumption of the system. Table VII shows the
time and memory consumption levels for different models for
different dataset setups which shows that the RF model is more
effective.

V. DISCUSSION

We designed flexible EMG electrodes with Ag nanoparti-
cle ink on polyamide films in a rectangular shape for this
study. We additionally gathered real-time EMG data with our
produced IJP electrodes and compared the signals with that
of gel electrodes available. We gathered the data at the same
time with both the elctrodes enabling precise comparison of
data. Our fabricated EMG electrodes displayed nearly similar
SNR and coherence as gel electrodes. The flexibility and
extended wear of IJP electrodes outperformed gel electrodes.



TABLE V
PRESENTATION OF PERFORMANCE METRICS FOR VARIOUS MODELS ON DIFFERENT DATASET SPLITS ACROSS A RANGE OF HAND GESTURES

Dataset with 80/20 split Dataset with 70/15/15 split 10-fold cross validation
SVM RF DT ANN SVM RF DT ANN SVM RF DT ANN

Training set accuracy (%) ↑ 86 96 94 95 89 98 94 97 90 99 94 98
Testing set accuracy (%) ↑ 85 95 93 94 89 98 94 96 90 98 94 97

RMSE ↓ 0.94 0.33 0.41 0.66 0.84 0.36 0.45 0.53 0.79 0.2 0.41 0.44
MAE ↓ 0.31 0.04 0.08 0.14 0.24 0.05 0.1 0.09 0.22 0.02 0.08 0.05

R-squared ↑ 0.84 0.96 0.95 0.92 0.87 0.98 0.96 0.95 0.89 0.99 0.97 0.97
MLSE ↓ 0.07 0.01 0.02 0.03 0.06 0.01 0.02 0.02 0.05 0 0.02 0.02

TABLE VI
PRESENTATION OF DIFFERENT MODELS’ PRECISION, RECALL, AND F1-SCORE FOR 10-FOLD CROSS-VALIDATION SPLIT FOR DIFFERENT HAND GESTURES

SVM RF DT ANN
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Relax Hand 1 1 1 1 1 1 1 1 1 0.99 1 1
Wrist Right 0.6 0.62 0.61 1 0.93 0.96 0.73 0.83 0.78 0.92 0.94 0.93
Wrist Left 0.68 0.78 0.72 1 1 1 0.96 0.81 0.88 0.9 0.89 0.89

Hand with Fist 0.87 0.84 0.85 0.98 0.98 0.98 0.83 0.71 0.77 1 0.98 0.99
Fist Right 0.77 0.86 0.81 0.94 1 0.97 0.79 0.95 0.86 0.99 1 0.99
Fist Left 0.85 0.65 0.74 1 1 1 0.99 0.96 0.97 0.95 0.94 0.95

Hand Strech 1 1 1 1 1 1 1 1 1 1 0.98 0.99

Fig. 5. Actual class and predicted class presentation for SVM model utilizing
a 10-fold Cross Validation split

Our study’s findings indicate that the RF model is superior to
all other models in classifying various hand gestures with the
dataset. In all of our experiments, the RF model has consis-
tently demonstrated superior performance with an accuracy
rate as high as 99%. RFs are extremely flexible and can
manage enormous and intricate datasets containing millions
of observations and thousands of features. Utilizing bagging
and feature randomness in the algorithm’s ensemble approach
assists in decreasing overfitting and improving overall perfor-
mance through generalization.

However, the SVM does not perform well with our large
dataset. Expansive datasets can make the SVM challenging,

Fig. 6. Actual class and predicted class presentation for RF model utilizing
a 10-fold Cross Validation split

especially when there is a lot of noise and outliers present.
SVM may require a significant amount of time to process
large datasets, especially if the data is not well separated or
the feature space is intricate.

VI. CONCLUSION

EMG signals have various applications, notably in prosthetic
devices and rehabilitation fields. The outside surroundings can
easily interfere with those signals, causing them to lose crucial
information. To overcome these problems an approach to
design an EMG signal acquisition system using IJP dry EMG
electrodes on flexible polyamide films, which is a low-cost
manufacturing technique from users’ muscles is presented in



Fig. 7. Actual class and predicted class presentation for DT model utilizing
a 10-fold Cross Validation split

Fig. 8. Actual class and predicted class presentation for ANN model utilizing
a 10-fold Cross Validation split

this paper. The aim of this EMG system is to assist individuals
in monitoring their muscle strength level and obtain valuable
muscle signals for purposes of rehabilitation. After gathering
data, the process of feature extraction was conducted to
obtain valuable insights from the signal to get it ready for
classification. Supervised methods, such as SVM, RF, DT, and
ANN, are employed in this phase for the classification of EMG
signals. The experimental result was processed and compared
with each other in terms of different performance metrics.
Through experimentation and comparing performance with
various types of datasets, it was discovered that the RF model
was superior to other models across all three datasets. Our
suggested method could improve the effectiveness of machine
learning models for disease identification by minimizing error
rates. By analyzing these EMG signals we can help to make

TABLE VII
TIME AND MEMORY CONSUMPTION OF DIFFERENT MODELS FOR

DIFFERENT DATASET SPLITS FOR DIFFERENT HAND GESTURES

Dataset with
80/20 split

Dataset with
70/15/15 split

10-fold
CV

Model Time
(s)

Memory
usage
(MB)

Time
(s)

Memory
usage
(MB)

Time
(s)

Memory
usage
(MB)

SVM 265.11 118.32 274.32 120.34 256.37 119.71
RF 76.87 0.001 72.41 0.001 71.65 0.001
DT 81.22 0.001 66.53 0.001 65.89 0.001

ANN 410.33 74.56 371.45 75.23 333.76 76.56

a person aware of his muscle strength level and also give a
detailed indication about different diseases to the doctors.
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