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Abstract— Wearable cardiac monitors can be used to detect
potential heart attack by syncing with smartphone apps for instant
data analysis and alerts. Our goal is to build an efficient smart
health application to help patients prevent and early diagnose the
risk of heart disease. Our novel hybrid transformer neural
network model can effectively predict the occurrence of heart
disease and prevent it early. We used Artificial Neural Network
and Convolutional Neural Network and combined them with the
transformer model to form a hybrid transformer neural network
model, Transformer Artificial Neural Network and Transformer
Convolutional Neural Network, respectively. Used three different
feature modules, (1) top 10 ranked time series features, (2) noise-
removed MIT BIH ECG data, (3) combination module (top 10
ranked time series features and noise-removed MIT BIH ECG
data) as input data and sent into the hybrid transformer neural
network model to analysis their accuracy and power consumption,
respectively. Converted the best-performing hybrid transformer
neural network model into a pre-trained model and applied it to
our Smart-Health application to verify the correctness and
functionality of the algorithm. TCNN model achieved the highest
accuracy of 98% and an F1 score of 99%. The hybrid transformer
neural network model can be used in our application and detects
cardiac diseases more accurately than the neural network model.
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I. INTRODUCTION

Many healthcare wearable devices have been developed to
quickly detect physical conditions. Wearable devices often sync
with smartphone apps, allowing for instant data analysis and
alerts. In today’s wearable devices, heartbeat measurement
functions are often seen. An electrocardiogram (ECG) is a
diagnostic tool that measures and diagnoses the heart and
records its electrical activity. ECG can effectively identify
various heart diseases such as arrhythmia (AR) and myocardial
infarction (MI). Using smart wearable health care devices to
detect heart disease can enable early detection and prevention.

Analyzing heart disease through electrocardiogram can help
understand the health of the heart and help medical staff provide
immediate treatment. The transformer model in natural language
processing (NLP) is to extract meaningful features that help
predict future architectures [1]. The transformer model analyzes
continuous heartbeat signals through electrocardiogram to
detect abnormal heartbeats and provide immediate treatment [2-
8]. The broad and deep Transformer Neural Network classifies
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12-lead ECG sequences into 27 cardiac abnormalities by
combining hand-crafted features with automatically learned
discriminative features [2]. The transformer network algorithm
combines the convolutional neural network to automatically
extract high-dimensional ECG features through pre-processing
[3]. Transformer networks capture temporal information in
CNNs and enhance the classification capabilities of embedding
vectors [4].

The multi-module Recurrent Convolutional Neural Network
(RCNN) with transformer encoder architecture is an end-to-end
deep framework with time series module, spectrogram module,
metadata module and semantic fusion module [5]. The
embedded layer of the unsupervised transformer and the
standard transformer encoder evaluate and detect anomalies in
the electrocardiogram (ECG) signal [6]. Use ECG signals to fuse
hand-crafted temporal features with learned features through a
sequence-to-sequence model and capture the rhythm pattern
signal of the ECG through Transformer [7]. The component-
aware transformer (CAT) uses ECG waveform length and type
information as input to the transformer [8].

This work developed a hybrid model (Transformer
Artificial Neural Network (TANN) and Transformer
Convolutional Neural Network (TCNN)) to classify ECG
signals and apply it to a real-time monitoring system. Figure 1
illustrated step by step the process of using hybrid transformer
model of to classify ECG signals and apply them to the real-
time monitoring system. Users provided real-time ECG signal
data. Pretrained neural network models can be trained on large
datasets of labeled ECG recordings to identify different types
of heartbeats and then analyzed the real-time ECG signals. The
ECG signal is analyzed to detect individual heartbeats, and then
divided into five categories. When built the pre-trained model,
we used combination module (top 10 ranked time series
features and noise-removed MIT BIH ECG signal) as model
input data. After the transformer encoder, there was a neural
network processing that converted the multidimensional output
of the transformer into a one-dimensional array that can be fed
into the classifier. The classifier assigned each heartbeat to one
of the predefined categories based on features learned from the
material and finally outputs a classification. We used the
MITBIH testing dataset for our test input to check the validation
of the pretrained model. We deployed the pretrained model into
our application for heart disease detection.
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Fig 1: Analysis ECG signal using transformer model with deep learning
algorithm.

II. METHODOLOGY

A. ECG data preprocessing

In this study, we utilized the MIT BIH arrhythmia repository
from PhysioNet, an open source database [9]. Our focus was on
the classification of beat types according to the AAMI criteria
[10], which divided beats into five groups: normal and bundle
branch block beats (N), supraventricular ectopic beats (S),
ventricular ectopic beats (V ), fusion beat (F), and unknown beat
(Q). They have been defined by experts at MIT BIH to add
annotations to the database. We use low pass filter to reduces
high-frequency noise, and wavelet transform to decomposes the
ECG signal into wavelet components to remove noisy ECG
signal. The Pan Tompkins algorithm can accurately detect R
peaks and is a pioneer in the accuracy of ECG heartbeat
identification [11]. The open source "Neurophysiological Signal
Processing Python Toolbox" in Neurokit 2 facilitates the
implementation of this algorithm [12]. After successfully
detecting the R peak, we calculate the RR interval and the
average RR interval, and detect the P, Q, S, T, and T' peaks.
Figure 2 represented each peak be detected using Pan Tompkins
algorithm from interval 200 to 800 sampling rate. The R peak
was the reference point used as a benchmark for identifying and
labeling other peaks. P peak (blue), Q peak (green), R peak (red),
S peak (pink), T peak (yellow).

B. Feature extraction

We leveraged the Time Series Feature Extraction Library
(TSFEL) in Python [13]. A comprehensive set of 175 features
was extracted from ECG beats processed using a sliding
window technique, which sequentially processed two beats at a
time before advancing. The selection of features was refined by
applying the analysis of variation (ANOVA) algorithm, and the
top 10 features that were most useful for classification purposes
were identified. ANOVA is a suite of statistical models and
estimation procedures that evaluates variability between group
means to inform feature selection [14]. Table I introduced the
technical description (TD) and clinical significance (CS) of the
top 10 features selected by TSFEL and ANOVA.
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Fig2: P, Q, R, S, and T peak detection.

Table I: Summary the technical description (TD) and clinical significance
(CS) of ANOVA selection features.

ANOVA Selected features (top 10 ranked time series features)

Wavelet variance TD: The wavelet coefficient variance of the time
frequency of the ECG signal at different scales.
CS: Identify heart rhythm changes that may not
be visible in the original ECG.

Signal distance TD: Measures the similarity or variability
between consecutive waveforms.

CS: Detect heart rhythm changes and identify
arrhythmia episodes.

Root mean square TD: Calculates the square root of the squared
mean of the signal's median value.

CS: Overall energy of the ECG.

Peak to peak distance | TD: Measures the change in signal amplitude
between the highest and lowest points in the ECG
cycle.

CS: Shows the electrical instability of the heart.

Slope TD: Calculate the slope of each segment within
the ECG signal.

CS: Changes in slope can reveal heart conditions.

ORS pos TD: The position of the QRS complex within the
electrocardiogram cycle.

CS: Changes in QRS positioning indicate
conduction abnormalities or ectopic beats.

RR interval TD: Measure the time interval between
consecutive R peaks.

CS: Variations in the RR interval can diagnose
conditions such as sinus arrhythmia.

Absolute energy TD: Calculate the total amount of energy in the
ECG signal.

CS: Higher energy levels may be related to
thicker heart muscle or increased cardiac
workload.

Neighborhood pealks TD: Calculate the maximum number of peaks in
a specific neighborhood around each point in
the signal.

CS: Identify arrhythmias in which normal
rhythm patterns are disrupted.

Spectral distance TD: Use the Fourier transform to measure the
spectral differences between ECG segments.
CS: Helps identify changes in heart rate.

Combination Noise-remove MIT BIH ECG signal + top 10

features ranked time series features



C. Classification

We classified normal and bundle branch block beats (N),
supraventricular ectopic beats (S), ventricular ectopic beats (V),
fusion beats (F), and unknown beats (Q). To classify the data,
we used all Tsfel features as input and train machine learning
and deep learning models such as Decision Tree (DT), Support
Vector Machine (SVM), Bagging Tree, Naive Bayes, K Nearest
Neighbors (KNN), artificial neural network (ANN),
convolutional neural network (CNN), recurrent neural network
(RNN) and long short-term memory (LSTM). The performance
of the classifier was evaluated using 10-fold cross-validation.
We selected the best-performing ANN and CNN models and
combined them with the Transformer model to form a hybrid
model of Transformer Artificial Neural Network (TANN) and
Transformer Convolutional Neural Network (TCNN). We
selected three data combination modules to evaluate
performance and power. (1) Top 10 features, (2) MIT BIH
noise-removed ECG signal and (3) a combination module of (1)
and (2) to evaluate performance and power consumption and
adjusted parameters for comparison.

We used key parameters of the transformer model to
combine with the neural network to form a hybrid model. Head
size: 32. Number of head: 4. Feed forward dimension: 32.

1) Transformer Artificial Neural Network (TANN): The
output of this transformer, H®) was full of features after
traversing the L layers. They were then fed into an artificial
neural network through one or more dense layers. Each layer in
the ANN applied weights and biases, W,y and by yy, to the
input.

2) Transformer Convolutional Neural Network (TCNN):
The output of the Transformer encoder H) was the feature
input to the CNN. The feature applied filter W, and the feature
F was generated through the convolution operation F =
ReLU(H * W, + b,). Features were max-pooled to capture the
most important features and passed through additional
convolutional layers or flattened into vectors for processing.

D. Performance

Accuracy measures the overall correctness of the model. F1
score is used to evaluate the accuracy of the model when the
class distribution is uneven. Our deep learning model was
trained on a High-Performance Computing Cluster (HPCC)
equipped with an AMD EPYC™ 7702 processor, 64 cores, and
512 GB of memory, running on CentOS 8.1 within the Nocona
partition. To weigh the model's efficiency, we measured power
consumption by assessing computer usage, and running time of
various neural network architectures.

E. Pre-trained model

We built Smart-Health applications using Android Studio
Java and integrated pre-trained machine learning models for
smart health diagnosis [15]. Use model.save() to save the model
trained on the MIT-BIH dataset in Keras, .h5 file. Then
converted the model to TensorFlow Lite format and add
this .tflite model to the asset folder. Use ByteBuffer to store
input data. We used the offline MIT-BIH test data set to verify
the accuracy of the model. Passed the ECG signal data through

the interpreter to obtain predictions. This validation was critical
to whether the application can make correct predictions in the
field before conducting clinical trials.

1. RESULTS

Figure 3 provided a comparative analysis based on the
accuracy of various machine learning models in classification
tasks using total of 175 time series features. The ANN model
achieved an accuracy of 84%, CNN performed slightly better
than ANN, with an accuracy of 85%.
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Fig 3: Analysis the accuracy of various machine learning models using total
of 175 time series features.

Tables II summarized the performance of CNN, TCNN,
ANN and TANN on the noise-removed ECG signal and the top
10 time series features, respectively. The TCNN model was
overall better than the CNN, TANN and ANN models. The
performance of these models all improved when trained on the
first 10 features extracted by TSFEL. Transformer models
outperform traditional ML models in the task of identifying
time and space between features. CNN and ANN models
provide capabilities in efficient feature selection.

Table IT : Summary the performance of CNN, TCNN, ANN and TANN on
the noise-removed ECG signal and the top 10 time series features,
respectively.

Model Accuracy % = F1score % Accuracy % F1 score %
Layers

Features Noise-removed ECG signal TSFEL top 10
CNN / TCNN

16 78 /82 82 /89 88/ 97 92/ 98
32 81/85 90 /90 90/ 96 92/ 97
64 83 /87 93 /90 91/97 94/ 97
128 86 /87 90/ 92 93/97 93/97
256 89 /89 93/ 92 94/ 98 94/ 98
512 90 /92 94/ 93 95/ 97 95/ 98
1024 91/ 94 96/ 93 96/ 98 97/ 98
ANN / TANN

16 72/ 80 88/90 83/95 90 /96
32 73 /81 88/91 85/97 90/ 97
64 77/ 81 89/90 89/98 89/98
128 80 /82 92/92 92 /98 92 /98
256 81/85 91/93 92 /98 91/97
512 83 /88 93/93 94/97 91/98
1024 89/90 93 /94 95/97 92/97

Fig 4 compared the accuracy and CPU usage of four
different neural network models using the combination model.
As the number of layers increases, the accuracy of all models



showed an overall increase. The accuracy of CNN and TCNN
models started from 83% and 88% respectively, and both
reached a peak of 98%. CPU usage resource consumption also
increased for all models. Higher CPU usage indicated that
TCNN has higher computational complexity but also improved
performance. TCNN started at aroun 10% and was just over
22.5% of CPU usage. TCNN handles local pattern recognition
space and global context understanding to achieve better
performance, but also loses more power consumption.
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Fig 4: Comparison the accuracy and CPU usage of four different neural
network models using combination module.

Fig 5 compared the runtime and CPU time used of four
different neural network models using the combination module.
The running time and CPU time of all models increase with the
number of layers. TCNN and CNN can provide better
performance, but will increase computing resources. ANN and
TANN may not provide the same accuracy in processing
complex patterns but consume less energy. Deep learning is
good at processing spatial and temporal data and is suitable for
complex applications that do not limit computing resources.
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Fig 5: Comparison the runtime and CPU time used of four different neural
network models using combination module.

Table III summarized the performance of four pre-trained
models evaluated on the Smart-Health Applications using MIT
BIH test dataset. TCNN performed best, achieving a top
accuracy of 98% and an F1 score of 99%.

Table III : Summarizes the performance of four pre-trained models
evaluatation using MIT BIH test dataset.

MIT BIH test dataset

Model Accuracy % F1I score %
ANN 92 96

CNN 95 96

TANN 96 98

TCNN 98 99

IV. DISCUSSION.

Our study of a hybrid transformer neural network model for
a wearable cardiac monitor achieved significant accuracy and F1
scores, demonstrating its efficacy in detecting cardiac events.
Our future work will focus on enhancing the robustness and
generalization of the model across different patient populations.
This includes employing data augmentation strategies, such as
synthetic ECG generation and transformation techniques, to
expand the model's exposure to a variety of cardiac diseases and
patient demographics. Optimizing models to instantly process
and integrate multimodal health data on mobile devices can
significantly expand their applicability and effectiveness in real-
world scenarios. Further research to improve model
interpretability will also enhance trust and usability between
clinicians and patients.

V. CONCLUSION.

Heart disease affects the body by impairing the functioning
of the heart, leading to a range of health problems. Prompt
prevention and detection are very important for people. Our
study built a hybrid transformer model combined with neural
networks to evaluate the efficiency and power consumption of
algorithm in ECG heartbeat classification. We selected the top
10 ranked time series features and combined with the noise-
removed MIT BIH ECG signal to fed into a hybrid transformer
neural network model for performance and power usage
comparison. TCNN model performed better than CNN, TANN
and ANN models on noise-removed ECG signals and top 10
ranked features respectively. The accuracy of all models
generally improved when testing the combination module, but
CPU usage, runtime and CPU time resource consumption also
increased across all models. TCNN has the best performance but
consume the most power. We converted CNN, ANN, TCNN
and TANN models into pre-trained models for Smart-Health
application used and detected the validation of each model,
respectively. TCNN model achieved the highest accuracy of
98% and an F1 score of 99%. Hybrid transformer neural network
model can be use in our application and detect heart disease
accurate than the trinational neural network model.
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