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Abstract— Wearable cardiac monitors can be used to detect 
potential heart attack by syncing with smartphone apps for instant 
data analysis and alerts. Our goal is to build an efficient smart 
health application to help patients prevent and early diagnose the 
risk of heart disease. Our novel hybrid transformer neural 
network model can effectively predict the occurrence of heart 
disease and prevent it early. We used Artificial Neural Network 
and Convolutional Neural Network and combined them with the 
transformer model to form a hybrid transformer neural network 
model, Transformer Artificial Neural Network and Transformer 
Convolutional Neural Network, respectively. Used three different 
feature modules, (1) top 10 ranked time series features, (2) noise-
removed MIT BIH ECG data, (3) combination module (top 10 
ranked time series features and noise-removed MIT BIH ECG 
data) as input data and sent into the hybrid transformer neural 
network model to analysis their accuracy and power consumption, 
respectively. Converted the best-performing hybrid transformer 
neural network model into a pre-trained model and applied it to 
our Smart-Health application to verify the correctness and 
functionality of the algorithm. TCNN model achieved the highest 
accuracy of 98% and an F1 score of 99%. The hybrid transformer 
neural network model can be used in our application and detects 
cardiac diseases more accurately than the neural network model. 
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I. INTRODUCTION  
Many healthcare wearable devices have been developed to 

quickly detect physical conditions. Wearable devices often sync 
with smartphone apps, allowing for instant data analysis and 
alerts. In today’s wearable devices, heartbeat measurement 
functions are often seen. An electrocardiogram (ECG) is a 
diagnostic tool that measures and diagnoses the heart and 
records its electrical activity. ECG can effectively identify 
various heart diseases such as arrhythmia (AR) and myocardial 
infarction (MI). Using smart wearable health care devices to 
detect heart disease can enable early detection and prevention.  

Analyzing heart disease through electrocardiogram can help 
understand the health of the heart and help medical staff provide 
immediate treatment. The transformer model in natural language 
processing (NLP) is to extract meaningful features that help 
predict future architectures [1]. The transformer model analyzes 
continuous heartbeat signals through electrocardiogram to 
detect abnormal heartbeats and provide immediate treatment [2-
8]. The broad and deep Transformer Neural Network classifies 

12-lead ECG sequences into 27 cardiac abnormalities by 
combining hand-crafted features with automatically learned 
discriminative features [2]. The transformer network algorithm 
combines the convolutional neural network to automatically 
extract high-dimensional ECG features through pre-processing 
[3]. Transformer networks capture temporal information in 
CNNs and enhance the classification capabilities of embedding 
vectors [4].  

The multi-module Recurrent Convolutional Neural Network 
(RCNN) with transformer encoder architecture is an end-to-end 
deep framework with time series module, spectrogram module, 
metadata module and semantic fusion module [5]. The 
embedded layer of the unsupervised transformer and the 
standard transformer encoder evaluate and detect anomalies in 
the electrocardiogram (ECG) signal [6]. Use ECG signals to fuse 
hand-crafted temporal features with learned features through a 
sequence-to-sequence model and capture the rhythm pattern 
signal of the ECG through Transformer [7]. The component-
aware transformer (CAT) uses ECG waveform length and type 
information as input to the transformer [8].  

This work developed a hybrid model (Transformer 
Artificial Neural Network (TANN) and Transformer 
Convolutional Neural Network (TCNN)) to classify ECG 
signals and apply it to a real-time monitoring system. Figure 1 
illustrated step by step the process of using hybrid transformer 
model of to classify ECG signals and apply them to the real-
time monitoring system. Users provided real-time ECG signal 
data. Pretrained neural network models can be trained on large 
datasets of labeled ECG recordings to identify different types 
of heartbeats and then analyzed the real-time ECG signals. The 
ECG signal is analyzed to detect individual heartbeats, and then 
divided into five categories. When built the pre-trained model, 
we used combination module (top 10 ranked time series 
features and noise-removed MIT BIH ECG signal) as model 
input data. After the transformer encoder, there was a neural 
network processing that converted the multidimensional output 
of the transformer into a one-dimensional array that can be fed 
into the classifier. The classifier assigned each heartbeat to one 
of the predefined categories based on features learned from the 
material and finally outputs a classification. We used the 
MITBIH testing dataset for our test input to check the validation 
of the pretrained model. We deployed the pretrained model into 
our application for heart disease detection. 



 
Fig 1: Analysis ECG signal using transformer model with deep learning 

algorithm. 

II. METHODOLOGY 

A. ECG data preprocessing 
In this study, we utilized the MIT BIH arrhythmia repository 

from PhysioNet, an open source database [9]. Our focus was on 
the classification of beat types according to the AAMI criteria 
[10], which divided beats into five groups: normal and bundle 
branch block beats (N), supraventricular ectopic beats (S), 
ventricular ectopic beats (V ), fusion beat (F), and unknown beat 
(Q). They have been defined by experts at MIT BIH to add 
annotations to the database. We use low pass filter to reduces 
high-frequency noise, and wavelet transform to decomposes the 
ECG signal into wavelet components to remove noisy ECG 
signal. The Pan Tompkins algorithm can accurately detect R 
peaks and is a pioneer in the accuracy of ECG heartbeat 
identification [11]. The open source "Neurophysiological Signal 
Processing Python Toolbox" in Neurokit 2 facilitates the 
implementation of this algorithm [12]. After successfully 
detecting the R peak, we calculate the RR interval and the 
average RR interval, and detect the P, Q, S, T, and T' peaks. 
Figure 2 represented each peak be detected using Pan Tompkins 
algorithm from interval 200 to 800 sampling rate. The R peak 
was the reference point used as a benchmark for identifying and 
labeling other peaks. P peak (blue), Q peak (green), R peak (red), 
S peak (pink), T peak (yellow). 

B. Feature extraction 
We leveraged the Time Series Feature Extraction Library 

(TSFEL) in Python [13]. A comprehensive set of 175 features 
was extracted from ECG beats processed using a sliding 
window technique, which sequentially processed two beats at a 
time before advancing. The selection of features was refined by 
applying the analysis of variation (ANOVA) algorithm, and the 
top 10 features that were most useful for classification purposes 
were identified. ANOVA is a suite of statistical models and 
estimation procedures that evaluates variability between group 
means to inform feature selection [14]. Table I introduced the 
technical description (TD) and clinical significance (CS) of the 
top 10 features selected by TSFEL and ANOVA. 

 
Fig 2: P, Q, R, S, and T peak detection. 

 
Table I:  Summary the technical description (TD) and clinical significance 

(CS) of ANOVA selection features. 
ANOVA Selected features (top 10 ranked time series features) 
Wavelet variance TD: The wavelet coefficient variance of the time 

frequency of the ECG signal at different scales. 
CS: Identify heart rhythm changes that may not 
be visible in the original ECG. 

Signal distance TD: Measures the similarity or variability 
between consecutive waveforms. 
CS: Detect heart rhythm changes and identify 
arrhythmia episodes. 

Root mean square TD: Calculates the square root of the squared 
mean of the signal's median value. 
CS: Overall energy of the ECG. 

Peak to peak distance TD: Measures the change in signal amplitude 
between the highest and lowest points in the ECG 
cycle. 
CS: Shows the electrical instability of the heart. 

Slope TD: Calculate the slope of each segment within 
the ECG signal. 
CS: Changes in slope can reveal heart conditions. 

QRS pos TD: The position of the QRS complex within the 
electrocardiogram cycle. 
CS: Changes in QRS positioning indicate 
conduction abnormalities or ectopic beats. 

RR interval TD: Measure the time interval between 
consecutive R peaks. 
CS: Variations in the RR interval can diagnose 
conditions such as sinus arrhythmia. 

Absolute energy TD: Calculate the total amount of energy in the 
ECG signal. 
CS: Higher energy levels may be related to 
thicker heart muscle or increased cardiac 
workload. 

Neighborhood peaks TD: Calculate the maximum number of peaks in 
a specific neighborhood around each point in 
the signal. 
CS: Identify arrhythmias in which normal 
rhythm patterns are disrupted. 

Spectral distance TD: Use the Fourier transform to measure the 
spectral differences between ECG segments. 
CS: Helps identify changes in heart rate. 

Combination 
features 

Noise-remove MIT BIH ECG signal + top 10 
ranked time series features 



C. Classification 
We classified normal and bundle branch block beats (N), 

supraventricular ectopic beats (S), ventricular ectopic beats (V), 
fusion beats (F), and unknown beats (Q). To classify the data, 
we used all Tsfel features as input and train machine learning 
and deep learning models such as Decision Tree (DT), Support 
Vector Machine (SVM), Bagging Tree, Naive Bayes, K Nearest 
Neighbors (KNN), artificial neural network (ANN), 
convolutional neural network (CNN), recurrent neural network 
(RNN) and long short-term memory (LSTM). The performance 
of the classifier was evaluated using 10-fold cross-validation. 
We selected the best-performing ANN and CNN models and 
combined them with the Transformer model to form a hybrid 
model of Transformer Artificial Neural Network (TANN) and 
Transformer Convolutional Neural Network (TCNN). We 
selected three data combination modules to evaluate 
performance and power. (1) Top 10 features, (2) MIT BIH 
noise-removed ECG signal and (3) a combination module of (1) 
and (2) to evaluate performance and power consumption and 
adjusted parameters for comparison.  

We used key parameters of the transformer model to 
combine with the neural network to form a hybrid model. Head 
size: 32. Number of head: 4. Feed forward dimension: 32. 

1)  Transformer Artificial Neural Network (TANN): The 
output of this transformer, 𝐻(")  was full of features after 
traversing the  L layers. They were then fed into an artificial 
neural network through one or more dense layers. Each layer in 
the ANN applied weights and biases, 𝑊$%%  and 𝑏$%% , to the 
input. 
2) Transformer Convolutional Neural Network (TCNN): 

The output of the Transformer encoder 𝐻(")  was the feature 
input to the CNN. The feature applied filter 𝑊&, and the feature  
𝐹  was generated through the convolution operation	 𝐹 =
𝑅𝑒𝐿𝑈(𝐻 ∗𝑊& +	𝑏&). Features were max-pooled to capture the 
most important features and passed through additional 
convolutional layers or flattened into vectors for processing.  

D. Performance 
Accuracy measures the overall correctness of the model. F1 

score is used to evaluate the accuracy of the model when the 
class distribution is uneven. Our deep learning model was 
trained on a High-Performance Computing Cluster (HPCC) 
equipped with an AMD EPYC™ 7702 processor, 64 cores, and 
512 GB of memory, running on CentOS 8.1 within the Nocona 
partition. To weigh the model's efficiency, we measured power 
consumption by assessing computer usage, and running time of 
various neural network architectures.  

E. Pre-trained model 
We built Smart-Health applications using Android Studio 

Java and integrated pre-trained machine learning models for 
smart health diagnosis [15]. Use model.save() to save the model 
trained on the MIT-BIH dataset in Keras, .h5 file. Then 
converted the model to TensorFlow Lite format and add 
this .tflite model to the asset folder. Use ByteBuffer to store 
input data. We used the offline MIT-BIH test data set to verify 
the accuracy of the model. Passed the ECG signal data through 

the interpreter to obtain predictions. This validation was critical 
to whether the application can make correct predictions in the 
field before conducting clinical trials. 

III. RESULTS  
Figure 3 provided a comparative analysis based on the 

accuracy of various machine learning models in classification 
tasks using total of 175 time series features. The ANN model 
achieved an accuracy of 84%, CNN performed slightly better 
than ANN, with an accuracy of 85%.  

 

 
Fig 3: Analysis the accuracy of various machine learning models using total 

of 175 time series features. 
 
Tables II  summarized the performance of CNN, TCNN, 

ANN and TANN on the noise-removed ECG signal and the top 
10 time series features, respectively. The TCNN model was 
overall better than the CNN, TANN and ANN models. The 
performance of these models all improved when trained on the 
first 10 features extracted by TSFEL. Transformer models 
outperform traditional ML models in the task of identifying 
time and space between features. CNN and ANN models 
provide capabilities in efficient feature selection. 
 
Table II :  Summary the performance of CNN, TCNN, ANN and TANN on 

the noise-removed ECG signal and the top 10 time series features, 
respectively.  

Model 
Layers 

Accuracy % F1 score % Accuracy % F1 score % 

Features Noise-removed ECG signal TSFEL top 10 
CNN / TCNN 
16 78 / 82 82 / 89 88/ 97 92/ 98 
32 81 / 85 90 / 90 90/ 96 92/ 97 
64 83 / 87 93 / 90 91/ 97 94/ 97 
128 86 / 87 90/ 92 93/ 97 93/ 97 
256 89 / 89 93/ 92 94/ 98 94/ 98 
512 90 / 92 94/ 93 95/ 97 95/ 98 
1024 91/ 94 96/ 93 96/ 98 97/ 98 
ANN / TANN 
16 72 / 80 88 / 90 83 / 95 90 / 96 
32 73 / 81 88 / 91 85 / 97 90/ 97 
64 77 / 81 89 / 90 89 / 98 89 / 98 
128 80 / 82 92 / 92 92 / 98 92 / 98 
256 81 / 85 91 / 93 92 / 98 91 / 97 
512 83 / 88 93 / 93 94 / 97 91 / 98 
1024 89 / 90 93 / 94 95 / 97 92 / 97 
 
Fig 4 compared the accuracy and CPU usage of four 

different neural network models using the combination model. 
As the number of layers increases, the accuracy of all models 



showed an overall increase. The accuracy of CNN and TCNN 
models started from 83% and 88% respectively, and both 
reached a peak of 98%. CPU usage resource consumption also 
increased for all models. Higher CPU usage indicated that 
TCNN has higher computational complexity but also improved 
performance. TCNN started at aroun 10% and was just over 
22.5% of CPU usage. TCNN handles local pattern recognition 
space and global context understanding to achieve better 
performance, but also loses more power consumption. 
 

 
Fig 4: Comparison the accuracy and CPU usage of four different neural 

network models using combination module. 
 

Fig 5 compared the runtime and CPU time used of four 
different neural network models using the combination module. 
The running time and CPU time of all models increase with the 
number of layers. TCNN and CNN can provide better 
performance, but will increase computing resources. ANN and 
TANN may not provide the same accuracy in processing 
complex patterns but consume less energy. Deep learning is 
good at processing spatial and temporal data and is suitable for 
complex applications that do not limit computing resources. 
 

 
Fig 5: Comparison the runtime and CPU time used of four different neural 

network models using combination module. 

Table III summarized the performance of four pre-trained 
models evaluated on the Smart-Health Applications using MIT 
BIH test dataset. TCNN performed best, achieving a top 
accuracy of 98% and an F1 score of 99%. 

 
Table III : Summarizes the performance of four pre-trained models 

evaluatation using MIT BIH test dataset. 
MIT BIH test dataset 
Model Accuracy % F1 score % 
ANN 92 96 
CNN 95 96 
TANN 96 98 
TCNN 98 99 

IV. DISCUSSION. 
 Our study of a hybrid transformer neural network model for 
a wearable cardiac monitor achieved significant accuracy and F1 
scores, demonstrating its efficacy in detecting cardiac events. 
Our future work will focus on enhancing the robustness and 
generalization of the model across different patient populations. 
This includes employing data augmentation strategies, such as 
synthetic ECG generation and transformation techniques, to 
expand the model's exposure to a variety of cardiac diseases and 
patient demographics. Optimizing models to instantly process 
and integrate multimodal health data on mobile devices can 
significantly expand their applicability and effectiveness in real-
world scenarios. Further research to improve model 
interpretability will also enhance trust and usability between 
clinicians and patients. 

V. CONCLUSION. 
 Heart disease affects the body by impairing the functioning 
of the heart, leading to a range of health problems. Prompt 
prevention and detection are very important for people. Our 
study built a hybrid transformer model combined with neural 
networks to evaluate the efficiency and power consumption of 
algorithm in ECG heartbeat classification. We selected the top 
10 ranked time series features and combined with the noise-
removed MIT BIH ECG signal to fed into a hybrid transformer 
neural network model for performance and power usage 
comparison. TCNN model performed better than CNN, TANN 
and ANN models on noise-removed ECG signals and top 10 
ranked features respectively. The accuracy of all models 
generally improved when testing the combination module, but 
CPU usage, runtime and CPU time resource consumption also 
increased across all models. TCNN has the best performance but 
consume the most power. We converted CNN, ANN, TCNN 
and TANN models into pre-trained models for Smart-Health 
application used and detected the validation of each model, 
respectively. TCNN model achieved the highest accuracy of 
98% and an F1 score of 99%. Hybrid transformer neural network 
model can be use in our application and detect heart disease 
accurate than the trinational neural network model.  
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