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Abstract—Identifying, localizing, and resolving bugs in soft-
ware engineering is challenging and costly. Approaches to resolve
software bugs range from Large Language Model (LLM) code
analysis and repair, and automated code repair technology that
aims to alleviate the technical burden of difficult to solve bugs.
We propose RAGFix, which enhances LLM’s capabilities for bug
localization and code repair using Retrieval Augmented Gen-
eration (RAG) based on dynamically collected Stack Overflow
posts. These posts are searchable via a Question and Answer
Knowledge Graph (KGQA). We evaluate our method on the
HumanEvalFix benchmark for Python using relevant closed and
open-source models. Our approach facilitates error resolution
in Python coding problems by creating a searchable, embedded
knowledge graph representation of bug and solution information
from Stack Overflow, interlinking bugs, and solutions through
semi-supervised graph construction methods. We use cosine
similarity on embeddings based on LLM-synthesized summaries
and algorithmic features describing the coding problem and
potential solution to find relevant results that improve LLM
in-context performance. Our results indicate that our system
enhances small open-source models’ ability to effectively repair
code, particularly where these models have less parametric
knowledge about relevant coding problems and can leverage non-
parametric knowledge to provide accurate, actionable fixes.

Index Terms—Retrieval-augmented generation, Large Lan-
guage Models, knowledge graph, Bug detection, Code Repair

I. INTRODUCTION

Detecting, pinpointing, and fixing software bugs is both a
challenging and expensive aspect of software engineering [1].
Various strategies are employed to address these issues, in-
cluding the use of LLMs for code analysis and repair, as well
as automated code repair technologies [2]. These advanced
methods aim to reduce the technical burden associated with
resolving complex bugs, yet often struggle to localize and
repair bugs in code. Various technical stacks from low to
high-level programming paradigms offer unique challenges for
LLMs to solve coding problems for legacy and modern code
infrastructure [3]. Software development increasingly grapples
with the complexity of debugging, demanding advanced tools
for effective resolution.

Recent advancements in natural language processing (NLP)
have significantly improved the capabilities of language mod-
els. These advancements have paved the way for more so-
phisticated tools capable of understanding and generating
code. However, despite these innovations, the process of bug
localization and fixing remains labor-intensive and challenging
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due to the increasing complexity of software systems [4],
[5]. This study addresses these challenges by leveraging RAG
and KGQAs to enhance LLMs in handling complex bugs.
Our approach involves utilizing small to medium-sized LLMs,
such as LLAMA 3 models [6] with 8 billion and 70 billion
parameters, to extract and classify features from code, creating
a searchable dataset, embedded knowledge graph representa-
tion of bug and solution information from Stack Overflow.
By conducting similarity searches on these extracted features,
we can link relevant solutions to identified bugs, improving
the LLMs’ ability to provide accurate and actionable fixes.
Integrating advanced search techniques and optimizing the
use of external knowledge sources, this research aims to
reduce debugging time and effort, thus advancing software
engineering through more efficient and precise code repair
solutions. In this work, we make the following contributions:

o We propose a Stack Overflow vector database, leveraging
advanced search techniques to enhance LL.M-based code
repair through RAG.

o We apply a key feature extraction prompting technique to
improve the ability of LLMs to search natural language
APIs in a more human-like manner, enhancing their
capability to find relevant Stack Overflow information.

o We identify generalizable features of coding bugs, such
as algorithms and code summaries, to improve similarity
search and bug resolution.

o« We introduce a technique called Iterative Feature Ex-
traction, Search, and Database Expansion, which enables
the continuous integration of Stack Overflow data into
a vector database as users encounter new bugs without
sufficiently relevant results in the existing database.

o We present results from applying our technique to smaller
LLMs, including the LLAMA3 8B and 70B parameter
models, demonstrating that our solution improves LLMs’
reasoning abilities in code repair, leading to more effec-
tive bug fixes.

The rest of the paper is structured as follows: Section §II
explains the literature review, Section §III presents the method-
ology, Section §IV discusses the evaluation, Section §IV
describes the limitations, and Section §VI provides the con-
clusion and future work.
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II. RELATED WORK

Software development faces significant challenges in de-
bugging due to increasing system complexity, necessitating
advanced tools for effective bug resolution. Key advancements
in NLP, such as the Transformer architecture introduced in
”Attention is All You Need” [7], BERT’s bidirectional context
understanding [8], and specialized models like CodeBERT for
programming languages [9], have paved the way for improved
tools. Word embeddings, as presented in the Word2Vec pa-
per [10], also enhanced NLP task performance by capturing
semantic relationships. Despite these advancements, bug lo-
calization and fixing remain labor-intensive. RAG enhances
LLM capabilities by utilizing Question and Answer Knowl-
edge Graphs (KGQAs) to retrieve relevant Stack Overflow
posts, thereby improving LLMs’ ability to handle complex
bugs [11]. This study aims to enhance LLM-based code repair
by leveraging advanced search techniques and key feature
extraction to a Stack Overflow vector database, ultimately
improving LLMs’ ability to identify and resolve coding bugs.
By optimizing these techniques, this research seeks to reduce
debugging time and effort, accelerating software development
and paving the way for advanced applications in software
engineering.

Our proposed system enhances LLMs’ ability to identify
and repair code bugs through a multi-step approach. Users start
by providing a docstring and buggy code, which allows the
system to pinpoint potential algorithms and retrieve relevant
solutions from sources like Stack Overflow. This process
builds on advancements in retrieval-augmented generation
and the use of external knowledge sources, as outlined in
recent studies [11] [12]. To evaluate the effectiveness of
our approach, we use the HumanEvalFix benchmark [13]
for Python, comparing LLMs’ initial performance with their
performance using our system. Our method utilizes LLMs,
including LLAMA 3, to classify and extract features from user
prompts and buggy code. This approach benefits from the suc-
cess of models like CodeBERT, which excels in programming
language understanding [9], and the embedding techniques
introduced by Word2Vec [10].

The system creates a knowledge graph through similarity
searches on extracted features, linking relevant solutions to
identified bugs. This technique aligns with recent research
emphasizing the role of contextual knowledge in bug localiza-
tion and repair [14] [15] [2]. Initially, similarity searches on
extracted features identify related bugs, which are then mapped
onto a bug graph and refined into a solution graph linking rel-
evant solutions to the bugs. Our system enhances LLMs’ code
repair capabilities by creating an embedded knowledge graph
for more relevant and effective solutions using semi-supervised
graph construction methods [16] [17]. Vector databases capture
the input’s semantics, enabling efficient similarity searches.
We employ cosine similarity on embeddings derived from
LLM-synthesized summaries and algorithmic features to lo-
cate the most pertinent results, thereby improving LLMs’ code
repair capabilities and providing accurate results to users.

7492

This method aligns with recent advancements in retrieval-
augmented generation [11], nearest neighbor knowledge graph
embeddings [12], and integrating graph neural networks with
retrieval techniques [18] [19]. Moreover, unifying LLMs with
knowledge graphs [20] and handling multi-hop question an-
swering [21] further enhance the system’s effectiveness in
debugging tasks.

Prompt 1

As an expert in information distillation and Python program-
ming, your task is to interpret and understand a Python coding
problem with buggy code.

Each coding problem can be broken down into a series of dis-
tinct sub-algorithms. Each of these sub-algorithms addresses
a specific part of the problem and contributes to the overall
solution. It is crucial that each sub-algorithm is unique and
does not overlap conceptually with others. Your task is to
identify these individual sub-algorithms and describe them in
a way that they can be easily searched and understood.
Guidelines:

1) Extract essential information to solve the given prob-
lem.

2) Provide a concise, generalized description of each al-

gorithm, not the implementation.

Ensure each sub-algorithm addresses a different aspect

of the problem.

Provide a concise description of each sub-algorithm,

under 12 words.

Write the descriptions as if searching for their imple-

mentation on Google.

Each algorithm must be general enough for use in

similar problems with different contexts.

Include up to 3 novel sub-algorithms per function.

Only include unique, non-trivial algorithms relevant to

Python.

Avoid redundant, easily implemented, and simple algo-

rithms that are answerable quickly.

Ensure each sub-algorithm can stand alone and be

described independently of the others.

It is acceptable to generate fewer than 3 algorithms if

the problem only requires one or two.

Here are some examples to follow with different numbers
of provided algorithms: Details of easy, medium, and hard
examples can be found on a GitHub repository [22].

Ensure your algorithms are brief, precise, and novel.

You will be provided with the following:

1) Function Signature and Docstring.

2) Description of the buggy code that needs fixing.

3) Identification of the type of bug (syntax, logic, etc.).
4) Description of the symptoms of the failure.

5) Test cases to validate the function.

Please only focus on generating sub-algorithms. Ensure that
each sub-algorithm can stand alone, is essential to solv-
ing the overall problem, and can be described indepen-
dently of the other sub-algorithms. Important: Please en-
close each algorithm in <algorithm> algorithm contents
</algorithm> HTML tags, as explained earlier in the
examples. You can only create up to three novel algorithms.
Remember to place the algorithm INSIDE the HTML tags.

3)
4)
5)
6)

7)
8)

9)
10)
11)

Using prompt engineering, we carefully craft prompts to
ensure that the models generate accurate and relevant feature
vectors. Techniques from recent research, such as prompt
distillation [23] and automatic chain of thought prompt-
ing [24], enhance the system’s ability to understand and
process complex queries. Buffer of Thoughts [23] identifies
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prompt distillation techniques to extract generalizable features,
while the Tree of Thoughts framework [21] provides deliberate
problem-solving strategies. Retrieval-Augmented Generation
for knowledge-intensive tasks [11] further supports our ap-
proach by improving model performance in handling complex
queries. Creating a system that utilizes these techniques results
in more effective and precise bug detection and repair.

III. METHODOLOGY

In this paper, we propose a novel system designed to en-
hance the code repair capabilities of LLMs by utilizing Stack
Overflow as a data source. Our methodology, as shown in Fig-
ure 1, involves constructing a specialized database populated
with technical solutions from Stack Overflow complemented
with key extracted features of these posts, which are then
used to inform and improve the LLM’s performance in bug
localization and code repair tasks. We implement an iterative
feature extraction, search, and database expansion process,
allowing the system to continually refine its understanding
of relevant code features. If there are not relevant enough
features in our database, we search for more Stack Overflow
posts on Google and add these to our database. We use cosine
similarity thresholds on embeddings to determine how relevant
a stack overflow question is to a user question based on
key extracted features. These features, extracted using specific
prompt and zero temperature, include summaries of the Stack
Overflow posts, in addition to the high-level algorithm that
describes the correct implementation of a function in code. The
details of iterative feature extraction are shown in Figure 2. By
employing human-like natural language queries to search for
pertinent technical information, our system aims to improve
similarity search and feature generalization. The effective-
ness of this approach is evaluated using the HumanEvalFix
Python Benchmark [13], demonstrating significant accuracy
improvements, particularly for smaller LLMs. Algorithms are
an appropriate generalized feature of Stack Overflow post
documents because Stack Overflow has an abundance of
documentation about the correct algorithmic implementation
of a buggy function. Stack Overflow also has an abundance of
documentation about project dependency, compile-time, and
library exceptions. Custom features can be extracted from
these documents that describe them consistently and reliably
for vector database search.

A. Preprocessing With Data Loading

A Stack Exchange Query is utilized to extract relevant
Python coding bugs and results. Each of these curated posts
that have a verified answer is added to the vector database.
An LLM utilized feature extraction techniques to summarize
the Stack Overflow post’s questions and answers. For coding
problems, a high-level description of the coding problem
is called an algorithm. An algorithm is a specific type of
document summary that can be utilized for coding problems
that have to do with algorithmic implementation. An algorithm
in this setting is the high-level 1 sentence description of what
the code implements to achieve the desired outcome. Please
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reference the Prompt 1 for details on the system prompt
utilized for feature extraction.

Prompt 2

You are a professional Python programmer. Fix the following
buggy code using the provided context: docstring, function
signature, buggy code, cause of the bug, and a relevant
stack overflow post. Explain your fix step by step. Trace the
provided test cases with detailed algorithm logic to solve the
problem. Write the corrected implementation within [code]
[/code] tokens. Ensure no extra characters or spaces out-
side these tags. Ensure to make all necessary imports based
on the function signature and docstring. Template:

‘python

# Your Python imports here

# ALWAYS include the below import
whenever you write code
from typing import List, Tuple

""" This import only. This import is
exactly as it is. MEMORIZE IT.
ALWAYS, I REPEAT ALWAYS INCLUDE
THIS IMPORT exactly it is.

In all code you write, include: """

from typing import List, Tuple

""at the top. Please DO NOT

import int, float, str, or bool

from typing - because this is incorrect.
Remember, you must ALWAYS place your
FINISHED CODE within ‘' ‘' brackets
before and after the code. Remember
the brackets []"""

Feature extraction using Prompt 1 through an algorithmic
summary is a generalizable feature of coding documents
because the same LLM with zero temperature will generate
similar algorithms for similar coding problems. The LLM
has to introduce one to three algorithms that summarize and
explain the coding problem and solution introduced by the
Stack Overflow post.

B. System at Runtime

The system, at runtime, asks the user to provide the function
they are writing with docstring documentation. This function
is assumed to be incorrectly implemented. The LLM also
provides the bug type and failure symptoms, which are used
as additional context for the LLM to identify the coding
bug. Based on this context, the large language model utilized
feature extraction to create searchable features that describe
the user’s bug.

The LLM generates a summary of the coding bug, in
addition to 1-3 algorithms that describe the potential imple-
mentation at a high level that would fix the current bug. The
key question that needs to be asked is as follows: If we were
to propose an algorithm(s) to fix the current logical coding
bug, what would it be?

The extracted features are utilized to identify if there are
similar enough features in the database that reflect a similar
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Fig. 2. Iterative Feature Extraction, Search, and Database Expansion

algorithm utilized to solve a coding problem. The goal is to
identify if the Al-generated features are similar enough to ex-
isting features. This implementation utilizes cosine similarity
with a cosine similarity threshold. This paper utilizes Chroma
DB as the vector database backend. Chroma DB returns results
in the range of [0,1], where 0 is the same document, and 1 is a
completely unrelated document. The vector database identifies
the most relevant stack overflow post per algorithm using
similarity search. This implementation uses a constant cosine
similarity threshold Theta as a hyperparameter for the system,
and future implementations could use dynamic thresholds. In
the current implementation, the threshold was set at 0.195 and
different thresholds were experimented with from 0.1 to 0.23.

If the most relevant results are below the set threshold, this
indicates there is a relevant stack overflow post in the vector
database that is relevant to the user’s query. In this case, the
most relevant question and answer is returned to the client for
additional context to the LLM.

If the most relevant results are not below the set threshold,
the process of dynamic search and database expansion is
utilized. Google search queries are crafted in the following
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format: Stack Overflow Algorithm describing potential correct
implementation of buggy code Python. This query is used to
search Google for relevant stack overflow posts. Since the
LLM generates 1-3 algorithms that describe the coding bug,
1-3 searches are used where various result numbers can be
considered, anywhere in the range of 2 to 10 results.

For each Stack Overflow post found based on these Google
searches, the Stack Exchange API is utilized to extract the
question and verify the answer for the relevant post. If a
verified answer is not found for the relevant post, this post is
ignored. The algorithm used to search for this post is appended
to the post question. These results are extracted and added to
the vector database, where the algorithm describing the stack
overflow post is created as an embedding, and the question-
and-answer documentation for the post is used as metadata.
Currently, entire stack overflow posts are not being searched
in embedding space. Only the algorithm describing the stack
overflow post is searched in the embedding space.

Once all of the relevant stack overflow posts are added to the
database, the iterative feature extraction, search, and database
expansion process is repeated. With the new features in the
vector database, the system determines if these new features
are relevant enough features for the user bug.

The amount of times iterative search and database updating
is run is a hyperparameter that can be set in the project. Cur-
rently, this process iterates up to 3 times. Future improvements
to this work can consider generating more search queries to
filter for more relevant results.

At inference time, the LLM is provided the buggy code,
in addition to 1-3 stack overflow posts based on relevant
algorithms that may help solve the current coding problem.
Using the system prompt provided in Prompt 2, the LLM is
guided through three algorithms that could potentially solve
the current problem, along with a Stack Overflow post that
offers a correct implementation of the algorithm.

The LLM generates the final solution to the user’s prompt
and this solution is run at run time in a Python code sandbox
with the associated dataset test cases. If the provided LLM
solution passes all of the test cases, this is considered the
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correct code repair of the buggy code. If the provided solution
fails any test cases, this is considered a zero-shot failure at
resolving the current coding bug.

IV. EVALUATION

This paper uses the HumanEvalFix benchmark from the
Octopack: Instruction Tuning Code Large Language Mod-
els [13] benchmark for Python code repair. There are 164
examples in the dataset. Each example includes the function
header, buggy code, bug type, bug description, and test cases
for evaluating the generated code. The proposed methodology
does not involve training any models; all 164 samples are used
for evaluation. This paper implements our solution for the
LLAMA-3 8B and 70B parameter models. For the evaluations,
a vanilla LLM with zero shot reasoning is evaluated against
the LLM that is provided additional context from the stack
overflow vector database question and answer repository. The
generated code evaluated with the provided test cases is used to
calculate an accuracy score seen in the results below. Our pro-
posed method provides valuable context for small to medium-
sized LLMs in the form of relevant coding documentation that
helps an LLM reason through software repair. We show that
our technique has promising early results for small LLMs. We
conclude that using a Stack Overflow vector database with
advanced search techniques enhances LLMs in code repair by
applying RAG. As demonstrated in Figure 3, The proposed
technique improves LLMS using Chain of thought (CoT)
with Stack Overflow RAG on the HumanEvalFix Python
benchmark. Llama3-8b’s detection and localization accuracy
rises from 41.4% in the Zero Shot setting to 51.2% with
RAGFix, while Llama3-70b improves from 72.5% to 78.0%.
This demonstrates the effectiveness of CoT with RAG in
enhancing model performance. Using key feature extraction
techniques, we improved LLMs’ ability to search natural
language APIs efficiently. Overall, identifying generalizable
features of coding bugs has improved our system’s similarity
search, which enhanced bug resolution.

A. Results and Discussion

To thoroughly evaluate our approach, we develop several
research questions that guide our investigation.

1) RQI. What data source and data arrangement strategy is
relevant for LLM code repair with RAG? : The primary data
source for LLM code repair with RAG is Stack Overflow,
given its extensive repository of coding questions and veri-
fied answers. The arrangement strategy involves dynamically
collecting and curating relevant posts into a vector database,
enriched with extracted features such as problem summaries
and algorithmic descriptions. This structured knowledge graph
allows for efficient retrieval of contextually relevant solutions,
enhancing the LLM’s ability to address specific coding issues.
Utilizing cosine similarity in embeddings of these features
ensures that only the most pertinent information is used, thus
optimizing the bug localization and repair process.

7495

2) RQ2. How can an LLM craft human-like natural lan-
guage API queries (e.g., Stack Overflow) to search for relevant
technical information?: An LLM can craft human-like natu-
ral language API queries by leveraging prompt engineering
techniques and pre-trained models. By generating high-level
summaries and algorithmic descriptions of the coding problem,
the LLM can formulate precise search queries that mimic
human inquiry patterns. This involves creating search queries
that reflect the specific bug symptoms and potential solutions,
thus enabling the retrieval of highly relevant Stack Overflow
posts. The iterative process of feature extraction, search, and
database expansion ensures that the queries evolve to target
the most accurate and useful technical information.

100
Zero Shot
HEm CoT With Stack Overflow RAG

78.0%

[=1]
(=]

Accuracy (%)
=
=]

20

Llama3-8b

Llama3-70b
Models

Fig. 3. LLM Model Performance on HumanEvalFix Python Benchmark

3) RQ3. What are relevant and generalizable features that
can be extracted from code to improve similarity search on
technical documentation?: Relevant and generalizable features
extracted from code include high-level algorithmic summaries,
problem descriptions, and the nature of the bugs and their
symptoms. These features, generated by the LLM, provide a
consistent and structured representation of the coding issues,
facilitating effective similarity searches in the technical doc-
umentation. By focusing on these abstracted features rather
than specific code details, the system can identify and retrieve
solutions that are applicable across different contexts and
coding environments, thus enhancing the LLM’s ability to
generalize and solve a wide range of coding problems.

V. LIMITATIONS

Our current implementation requires a docstring for any
buggy function that needs to be fixed, which can be a limitation
if users do not provide one. Additionally, while the general-
izable features we extract work well for algorithmic coding
problems, different features may be needed for other types of
coding issues, such as compile-time and runtime errors often
seen on Stack Overflow. In the future, we aim to enhance our
technique and apply it to LLMs for solving more complex
coding problems. Currently, our system is limited to small-
to medium-sized LLMs, ranging from 8 billion to 70 billion
parameters. We plan to explore larger models in the future.
Furthermore, our approach has only been evaluated on the
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HumanEvalFix benchmark for Python. We intend to expand
our evaluation to include other benchmarks and programming
languages, such as Java and C, to generalize our approach to
addressing more challenging coding problems with LLMs.

VI. CONCLUSIONS AND FUTURE WORK

This research presents a novel system that enhances Large
Language Models’ (LLMs) code repair capabilities by lever-
aging Retrieval-Augmented Generation (RAG) and a dynam-
ically curated database of Stack Overflow posts. By con-
structing an embedded knowledge graph and utilizing cosine
similarity on LLM-synthesized embeddings, the proposed sys-
tem significantly improves bug localization and resolution.
Evaluation using the HumanEvalFix benchmark indicates that
our approach effectively refines the performance of vari-
ous LLMs, including smaller models with limited paramet-
ric knowledge. The system’s ability to create and utilize
a searchable knowledge graph, along with advanced search
techniques and prompt engineering, demonstrates its potential
to reduce debugging time and enhance software development
processes. Our methodology not only addresses the challenges
of bug fixing but also advances the application of LLMs
in software engineering, paving the way for more efficient
and precise debugging tools. Future research will expand our
vector database to include more programming languages and
provide additional context. Moreover, we plan to refine the
transformer model for generating human-like Stack Overflow
search queries to achieve more relevant and accurate results.
We also aim to develop benchmarks to specifically target
managing project dependencies and compile-time errors using
Stack Overflow’s extensive knowledge base. User studies will
provide feedback for iterative improvements, which will im-
prove the conditioning of the system architecture and advance
LLM-based code repair.

VII. DATA AVAILABILITY

Our approach, benchmarks, and evaluation results are avail-
able on a GitHub repository [22].
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