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Abstract—Anomaly Detection (AD) is widely used in security
applications such as intrusion detection, but its vulnerability to
nondeterminism attacks has not been noticed, and its robustness
against such attacks has not been studied. Nondeterminism, i.e.,
output variation on the same input dataset, is a common trait
of AD implementations. We show that nondeterminism can be
exploited by an attacker that tries to have a malicious input point
(outlier) classified as benign input (inlier). In our threat model,
the attacker has extremely limited capabilities – they can only
retry the attack; they cannot influence the model, manipulate
the AD/IDS implementation, or insert noise. We focus on three
concrete, orthogonal attack scenarios: (1) a restart attack that
exploits a simple re-run, (2) a resource attack that exploits the use
of less computationally-expensive parameter settings, and (3) an
inconsistency attack that exploits the differences between toolkits
implementing the same algorithm. We quantify attack vulnera-
bility in popular implementations of four AD algorithms – IF,
RobCov, LOF, and OCSVM – and offer mitigation strategies. We
show that in each scenario, despite attackers’ limited capabilities,
attacks have a high likelihood of success.

Index Terms—Anomaly Detection, Adversarial ML, Program
Nondeterminism

I. INTRODUCTION

Anomaly, or outlier, detection (AD) is widely used, in-
cluding in domains such as security, healthcare, or finance,
where reliability is critical [1]. Due to nondeterminism in AD
implementations, AD results are not stable across runs, which,
as we show, makes AD exploitable. In computer security, such
as intrusion detection (IDS), AD is increasingly preferred due
to the growing threat of zero-day attacks, where signature-
based systems are less effective [2]. IDS failures have severe
implications: a single mis-identified/mis-classified point can
lead to a security breach.1

When AD toolkit developers implement an AD algorithm,
they make decisions such as when to use randomness, what
“control knobs” (parameters) to offer users, and setting default
parameter values. While developers’ intention is to optimize
performance, these decisions can lead to nondeterministic
execution, which, as we show, is exploitable by adversaries.

Restarting a task, e.g., a process or thread implementing
AD, is routine in modern data centers (e.g., Netflix’s Chaos
Monkey [4]), and is becoming more common, as major com-
panies embrace “resilience engineering” where a node restart
is a feature, not a bug. In this paper we show how such restarts,
coupled with AD nondeterminism, open the door to attacks;

1“The malicious activity affects one data sample, e.g., a packet [...] An
attack leaves a footprint in a single record” [3].

we quantify the vulnerability of popular AD algorithms and
implementations, and offer attack mitigation strategies.

In our model, the defender’s AD classifies incoming input
(e.g., packets, strings) into malicious or benign. The attacker
tries to “sneak in” a malicious input (outlier) by having the
defender AD’s classify it as benign (inlier). Therefore, the
fundamental concept in our work is a flip: a point whose class
switches from outlier to inlier in a subsequent classification,
due to nondeterminism, e.g., induced by a restart. A defense
strategy susceptible to flips is vulnerable even to attackers with
limited capabilities, whose only option is to retry the attack.
As discussed shortly, modern IDS configurations favor such
simple, low-cost, retry attacks.

We consider three realistic scenarios: a restart attack where
the AD implementation is restarted (re-run) with the same
parameters; a resource attack where the defender adjusts the
AD parameters to attain faster anomaly detection, though in-
creasing the mis-classification rate, and an inconsistency attack
where the attacker leverages the fact that the defender has
switched the AD implementation to a different toolkit. These
attacks are orthogonal (independent): they can be employed
separately or combined.

In Sections IV to VI we quantify vulnerability to restart,
resource and inconsistency attacks, respectively, and propose
effective mitigation strategies. We examined 4 AD algorithms
(Isolation Forest, Robust Covariance, One Class SVM, and
Local Outlier Factor), implemented in 3 popular toolkits
(Scikit-learn, R, and Matlab). In all, we conducted 68,190
experiments on 55 datasets. We found that flips are widely-
spread, hence exploitable, across implementations, algorithms,
and datasets. We make the following contributions:

• We introduce three novel attack scenarios, (1) restart
attack, (2) resource attack, and (3) inconsistency attack.

• We demonstrate and quantify the vulnerability of four
popular AD algorithms – IF, RC, LOF, and OCSVM –
in the context of the aforementioned attacks.

• We provide an analysis of the causes of such vulnerabil-
ities and present mitigation strategies to reduce them.

II. NONDETERMINISM ATTACKS

We first discuss nondeterminism and instability; next, we
define flipping formally; and then argue that attacks are
essentially free.

Program nondeterminism and instability. Program de-
terminism is defined as a program always producing the



same output on a given input. The negative consequences
of nondeterminism have mainly been studied in non-ML
settings, e.g., in the context of concurrent programs, where
nondeterminism leads to races, crashes, or incorrect output [5].
The ML literature has extensive studies on the stability of
ML models, but their focus is primarily on how sensitive the
algorithm’s output (solution) is to changes in the input data [6],
[7], [8], [9], rather than on deterministic stability, i.e., changes
in the algorithm’s output when there is no change in the input
data, and its security implications.

Definitions: outlier detection and flipping. Let D =
{x1, x2, . . . , xm} be a dataset with m points where each point
xi is a d-dimensional vector over the real space. The AD
output consists of outliers O and inliers I;2 O and I form
a partition of D, i.e., I∪O = D and I∩O = ∅. For a specific
run i, we denote its output (outliers and inliers) as Oi and Ii,
respectively. Let j be a run subsequent to i, with output Oj

and Ij . The following hold: Ii ∪ Oi = D, Ii ∩ Oi = ∅, and
Ij ∪Oj = D, Ij ∩Oj = ∅. However due to nondeterminism,
there exist points xf such that xf ∈ Oi ∧ xf ∈ Ij or
xf ∈ Ii ∧ xf ∈ Oj . We name such points flips because their
class label has flipped between runs, from outlier to inlier or
vice versa.

Let F be the set of flippable points in n runs, defined as:

F =
⋃

j=2,n

{xf | (xf ∈ Ij ∧ xf ∈ Oj−1)∨

(xf ∈ Oj ∧ xf ∈ Ij−1)), 1 ≤ f ≤ m}

i.e., the union of points that can flip in each execution j
with respect to a prior execution. For example, given three
runs where points {xa, xb} flip between Run1 and Run2, while
xc flips between Run2 and Run3, then F = {xa, xb, xc}. We
define |F |

|D| as the flippable ratio, i.e., the fraction of all points
that can flip across n executions.

When ground truth is available, we can define true outliers
TO (actual malicious input) and true inliers TI, as well as
false outliers and inliers, FO and FI. Let TOi be the set of
points correctly classified as outliers in run i and FIj be the
points that are incorrectly classified as inliers in a subsequent
run j. A successful attack happens when TOi ∩ FIj ̸= ∅
because one or more points flip from an outlier classification
in run i to an inlier classification in run j. In other words,
while the defender will correctly reject one such point in run
i, the defender will then incorrectly accept that point in run
j, and the attack succeeds. For brevity, we denote this set as
TOi → FIj . Note that a TI → FO flip is undesirable as well,
causing the defender to reject legitimate input.

We define |TOi∩FIj |
|O| as the flippable ratio from TO to FI

between runs i and j. Where, TOi be the set of points that
are correctly classified as outliers by run i, and FIj the set of
points incorrectly classified as inliers by run j. Similarly, we
define |TIi∩FOj |

|I| as the TIi → FOj flippable ratio.

2An outlier is an extreme or exceptional data point that deviates significantly
from the other points, called inliers. Outliers are detected by finding significant
deviations from the inlier group, e.g., using density or distance metrics.

To sum up, the attacker aims to “sneak in” a malicious input
by leveraging flipping, i.e., the existence of “attack” points,
denoted xattack where xattack ∈ F whose classification flips
from outlier to inlier. Our goal is to quantify the vulnerability
of popular AD implementations to flipping.

Attacks are essentially free. Modern cyber assets are at
high risk of being attacked. For example, studies indicate that
bad bots are responsible for 25%–30% of Internet traffic [10].
To counter this, Intrusion Detection Systems (IDS) are used
anywhere from core Internet routers to firewalls, to anti-
malware running on PCs, phones, or IoT devices. We focus
on the scenario where IDS employ AD techniques. Prior work
on adversarial AI (Section VII) has made strong assumptions,
e.g., the attacker can influence the model, manipulate the
AD/IDS implementation, insert noise, or incrementally craft
input. In contrast, in our threat model, attackers have extremely
limited capabilities – they simply retry the attack, without
having to actually induce a defender-side event (e.g., restart,
performance degradation, or implementation switching). In
the current threat environment, attackers can conduct free,
persistent retry attacks, e.g., 10–10,000 attacks per hour,
which, thanks to node/task restarts, will exploit any of the
restart/resource/inconsistency vulnerabilities at the defender.

III. ALGORITHMS AND EXPERIMENTAL SETUP

We now describe the AD algorithms we studied and the
experimental setup.

A. AD Algorithms

We studied 4 AD algorithms: Isolation Forest [11], Robust
Covariance [12], One Class SVM [13], Local Outlier Fac-
tor [14]. We selected these algorithms as they are popular
and have been used in AD benchmarking [1]. We present an
overview of each algorithm.

Isolation Forest (IF) identifies anomalies in a dataset by
randomly dividing the data into subsets and assessing how
many divisions are needed to isolate an anomaly: samples
that can be separated from the rest with fewer partitions are
deemed anomalies. Parameters that influence flipping include
(a) number of estimators, determining how many estimators
the algorithm will create to produce the final result, (b) sam-
ples per estimator, i.e, the number of samples each estimator
examines, and (c) features per estimator, setting the fraction
of features that each estimator explores.

Robust Covariance (RobCov) uses a robust covariance
matrix, less affected by extreme data points, to identifies
anomalies based on distance: data points with large distances
are considered anomalies. Two parameters that affect flipping
are (a) covariance estimation, which determines the method
used to generate the covariance matrix, and (b) support frac-
tion, i.e., the portion of the dataset that contributes to the
Minimum Covariance Determinant [12].

One Class SVM (OCSVM) creates a boundary around
normal data points by optimizing a hyperplane’s margin in a
high-dimensional space. Points outside the boundary are con-
sidered anomalies. The most important parameters impacting
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(a) Run2: 7 flips (b) Run3: 2 new flips (c) Run4: 4 new flips
(9 accumulated flips) (13 accumulated flips)

Fig. 1. Restart attack illustrating the growth of flipped points (shown encircled), as runs accumulate (Sklearn/IF on dataset fertility).

flips are the kernel function (e.g., linear, polynomial, RBF),
and kernel-specific parameters, (e.g., the RBF γ, or the degree
of polynomial kernels).

Local Outlier Factor (LOF) measures the “degree of
being an outlier” [14] of each data point by quantifying
how it deviates from the typical neighborhood density. LOF
determines this degree, i.e., the anomaly score of a point,
by comparing its local density to the average density of its
k-nearest neighbors. Points with lower scores are considered
potential anomalies depending on a user-specified threshold,
suggesting they are isolated from their local neighborhood.
Key flipping parameters in LOF include (a) k, the number
of neighbors, (b) the threshold used to separate normal from
anomalous scores, and (c) the distance metric.

B. Experimental Setup

We studied the 4 algorithms’ implementations in 3 popular
toolkits: Scikit-learn (Sklearn for short), R, and Matlab. We
used 55 AD-specific datasets from ODDS [15] and the UCI
ML repository [16]. We now discuss each attack and our
findings in detail.

IV. RESTART ATTACK

A. Definition and Attack in Practice

Definition. Let us assume that the attacker wants their
input (point), denoted xattack, classified as an inlier, but was
unsuccessful in Run 1, i.e., the defender’s AD implementation
T has classified xattack as outlier (xattack ∈ O). The attacker
then re-launches the attack and leverages the nondeterminism
that comes included with a defender re-running the AD
implementation. If, in a subsequent run, e.g., Run 2, due
to nondeterminism, the defender classifies xattack as inlier
(xattack ∈ I), the attack succeeds.

Attack in practice. Server-side software, e.g., as used for
Intrusion Detection, has been using a thread-per-request or
process-per-request model for decades [17]. In this model,
a new task (thread or process) is created for running the
AD implementation T to classify input x. New tasks run
the same code T , but due to nondeterminism, the class of
x can flip from one run to the next, e.g., from outlier to inlier.
Restarting a task is already routine in modern data centers, and
is becoming more common. The philosophy of a node restart
is a feature, not a bug has been embraced by major companies,
e.g., Netflix’s Chaos Monkey [4], Amazon’s GameDay [18],
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Fig. 2. Sklearn/IF: flipped points after each run on dataset ionosphere.

Etsy’s fault injection [19], or Facebook’s Project Storm [20].
Thanks to increasing adoption of frequent restarts, attackers
can increase their success rate by simply retrying a request,
because restarting an implementation T induces nondetermin-
istic behavior. The current IDS environment favors attackers,
by allowing them the opportunity to retry attacks at negligible
cost. For example, CloudFlare3 suggests the following rate-
limits: 20 login requests per hour and 5 query requests per
second [21]. Hence the attacker can easily retry close to 20
login attacks and 18,000 (5 × 3,600) query attacks per hour
before raising a flag.

B. Examples of Flipping Behavior

Flips are common. We first illustrate how flipped points
accumulate with successive runs, which increases an attacker’s
success rate. Figure 1 shows4 the impact of flipping across 4
Sklearn/IF runs. After an initial run Run1, we ran the toolkit
again on the same dataset, fertility, with the same, default
parameters. The Run2 outcome is shown in Figure 1 (a). The
round points are “stable”, i.e., have retained their classification,
either inlier or outlier, from Run1. However, for 7 points,
indicated with ‘×’, the algorithm has flipped their classification
from inlier to outlier or vice versa. During Run3 (Figure 1
(b)), 2 more points have flipped classification, leading to a
cumulative count of 9 flipped points across 3 runs (or 2
restarts). Subsequently, in Run4 (Figure 1 (c)), we observed 4
more point flips, hence in total across three restarts, 13 points

3A prominent CDN and cybersecurity service provider.
4Note that the figure is a two-dimensional projection of a 9-dimensional

dataset; while some points appear close in the two-dimensional space, they
might be substantially distant in 9-dimensional space.
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Fig. 3. Sklearn/IF & Matlab/IF: reason behind flips.

have flipped. After 30 runs conducted on this dataset consisting
of 100 points, a total of 29 points flipped their classification.

Flipping behavior across runs. We now illustrate flipping
behavior across a longer sequence of runs, focused on attacker-
favorable TO→FI flips. Figure 2 shows flipping in Sklearn/IF,
run 30 times with default parameters, on dataset ionosphere.
Each point on the x-axis represents a new run; the bars
indicate the number of points that flip in that run, compared
to the previous run. The first two bars, corresponding to x=0,
show the effect of the first restart – points that flipped when
comparing the second run, “Run2”, to Run1. We found that
after this first restart, 4 points flipped from TI to FO and 7
points flipped from TO to FI. When comparing Run3 to Run2,
8 points flipped from TI to FO and 14 points flipped from TO
to FI. In the worst case, Run28 to Run29, 16 points flipped from
TO to FI and 8 points from TI to FO. The figure illustrates
two characteristics of AD behavior: (a) flipping is a persistent
behavior, run after run; (b) both types of flips, TO→FI and
TI→FO, are present across a long streak of restarts.

What causes flips? Flips are due to (a) the design of AD
algorithms, and (b) the parameters controlling AD algorithm
implementations. Figure 3 illustrates flips in IF; this behavior
is common across all IF implementations. IF creates a number
of estimators, each containing a number of points randomly
selected, as determined by the parameter max samples. In
this example we have 12 points and 1 estimator, and the
max samples is set to 5. Due to random selection, in two
separate runs the estimator chooses two different 5-point sets.
Using orange down-arrow, we indicate the points selected by
the estimator in Run1, and in blue up-arrow, points chosen by
the estimator in Run2. Notice how only one point out of five
gets selected by the estimator in both runs. As a result, the
two runs will produce two different AD outcomes.

C. Vulnerability Quantified

We found that, for Sklearn/IF, all but one of the 55 datasets
are susceptible to flips, as quantified next; the results for other
toolkits will be discussed shortly.

Fifty restarts. Figure 4 shows the percentage of points
that can be flipped at least once in 50 restarts when running
Sklearn/IF with defaults. Each point on the x-axis represents a
dataset, and the two corresponding bars represent the flippable
percentages of TI to FO, i.e., |TI→FO|

|TI| (in blue) and TO to FI,

i.e., |TO→FI|
|TO| (in orange). The datasets are sorted ascendingly

by the percentage of points that flipped from TO to FI. For
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Fig. 4. Sklearn/IF: percentage of flipped points in each of the 55 datasets
after 50 runs; default setting.
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Fig. 5. Sklearn/IF: average percentage of flipped points in each of the 55
datasets after 1 Run; default setting.

example, the dataset analcatdata challenger (third from left), was
the only dataset where we observed no flips. However, for the
dataset pc1 (sixth from left) in 50 restarts, 4.3% of the true
inliers were mis-classified as outliers and 3.9% of the true
outliers were mis-classified as inliers. In the worst case, for the
dataset wine (rightmost point on the graph), 70% of the outliers
can be classified as inliers in at least one of the 50 restarts. The
figure shows that (a) flips affect virtually any dataset, and (b)
TO→FI flips, i.e., a malicious outlier input being erroneously
classified as inlier after restart, are predominant.

One restart. In Figure 5 we show the typical percentage
of points that can flip in a single restart (computed as the
geometric mean across 50 runs). For example, for the dataset
wbc, 1.4% of the TI will be re-classified as outliers in a typical
restart; conversely, 3.2% of the TO will be re-classified as
inliers. In the worst case, for dataset wine, on average 23.6%
of TO can be re-classified as inliers in just a single restart.
More than 5% points flipped from TI to FO for 12 datasets a
single run, and for 21 datasets it took a single restart to convert
more than 5% of the TO to FI. These findings illustrate the
vulnerability of Sklearn/IF to just one restart.

D. Effect of Run Order

So far we have not considered the effect of run order
on attack success – rather we only looked at default restart
outcomes. We now investigate how run order can affect the
number of flips, hence the chance of a successful attack.

We first focus on dataset breastw, which has 64 flippable
points out of 569 points in total. We studied three possible
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Fig. 6. Sklearn/IF: undiscovered flipped points as runs accumulate.

run orders: typical, optimistic, and pessimistic (from the
perspective of the attacker), illustrated in Figure 6. In each case
we show the CDF, i.e., the cumulative percentage of flippable
points discovered as the number of runs increase.

Typical. When restarts follow a random order, in just 6 runs
the attacker can flip 50% of flippable points; it takes 27 more
runs to flip the remaining 50%.

Optimistic. This scenario favors the attacker: we sort runs in
decreasing order of flipped points, i.e., the attacker is “lucky”
in that the first runs have the highest number of flips. In this
scenario, it takes just 8 restarts for the attacker to flip all
flippable points at least once, and just one restart to discover
50% of flippable points.

Pessimistic. In this scenario, we sort runs in increasing order
by the number of flipped points, i.e., the attacker is “unlucky”
in that the first runs are those runs with a low number of flips,
and later runs have an increasing number of flips. Note that
even in this defender-favorable scenario, in 8 restarts, 20% of
the total flippable points will be discovered, and to discover
50% of the total flippable points, it will take 23 restarts.

Results across all datasets. Our experiment shows that,
for most datasets, 50% of the flippable points were discovered
within 7 restarts; this holds for all implementations. To deter-
mine the number of restarts required to flip 50% of the points,
we ran the implementations on the 55 datasets 50 times and
calculated the number of flippable points for each dataset, then
we determined how many restarts it will take to identify 50%
of those flippable points. The median for each implementation
ranged from 3 to 6, which suggests that no particular algorithm
or implementation is immune to flips.

E. Vulnerability Mitigation via Increased Determinism

We now discuss an attack mitigation strategy – increasing
determinism – and quantify its effectiveness. Our insight is
to run AD in an optimized configuration, designed to reduce
nondeterminism, hence reduce the chance of a restart attack.
We first examine Sklearn/IF in two configurations: default
configuration (parameter settings) which has high nondeter-
minism, and optimized, low nondeterminism configuration.

Default, high-nondeterminism settings. Table I’s “De-
fault” columns show the results: the number (#) and percentage
(%) of points that flip, and the flip direction. We show the
top-5 datasets in terms of flip percentage, as well as results

TABLE I
RESTART ATTACK: POINTS FLIPPED IN A SINGLE RUN: # OF FLIPS AND

AS % OF TI (OR TO, RESPECTIVELY).

Dataset Points Flipped
Default Optimized for

max determinism
TI→FO TO→FI TI→FO TO→FI
# % # % # % # %

Sklearn/IF
climate-model 80 16 6 11.7 13 2.5 1 1.7
v. livestock 12 12 5 18.5 0 0 0 0
optdigits 470 9.3 31 20.3 78 1.5 3 2.2
arsenic-f.-bladder 37 7.9 7 9.2 17 3.3 3 4.3
arsenic-f.-lung 43 8.1 1 4.5 19 3.5 1 2.8
All datasets
Sklearn/IF 2.9 4.4 1.2 1.4
Sklearn/RobCov 1.1 2 0.9 1.2
Matlab/RobCov 0.2 0.1 0 0
Matlab/IF 1.8 3.9 0.8 1.4
Matlab/OCSVM 13.8 17 2.8 3.7

across all datasets. Datasets such as optdigits are among the
most vulnerable with 31 points (20.3%) of the outliers being
re-classified as inliers, and 470 points (9.3%) of the inliers
being re-classified as a outliers after restart. This shows a
concerning picture, where 501 points can flip in just one
restart. Overall, across all datasets, with default parameter
settings, on average 2.87% of TI flip to FO in a single restart,
but the more concerning part is that 4.43% of the outliers were
mis-classified as inliers (TO→FI).

Optimized, low-nondeterminism settings. For each
dataset, we explored parameter settings that yield the low-
est flipping rates, to obtain an idea of the measures de-
fenders can take, and the efficacy of those measures. To
increase Sklearn/IF determinism we used a higher number for
n estimators (number of estimators used to predict the final
output, by default set to 100). We also tuned the max samples
parameter, that determines the number of points used to
generate an estimator (by default set to 256). For example, for
the dataset climate-model-simulation-crashes we set n estimators
to 500 and max samples to 0.5, i.e., 50% of the sample size.
This change (shown in the first data row) reduced the TI→FO
flip from 16% to 2.5% and TO→FI from 11.7% to 1.7%.
Overall, for Sklearn/IF the TI→FO flips went from 2.87% to
1.21% and TO→FI flips reduced from 4.43% to 1.43%.

F. Results for all Toolkits

Besides Sklearn/IF, we also tested the other nondeterminis-
tic implementations: RobCov in Sklearn, as well as RobCov,
IF, and OCSVM in Matlab. Table I’s “Optimized” columns
show the results, confirming that our mitigation strategies
were effective across all algorithms. With Sklearn/RobCov, on
average we observed 1.1% TI→FO flips in default settings,
and 0.9% in optimized settings; for TO→FI, we observed a
2% flip in default settings and 1.2% in optimized settings.
This improvement was primarily due to using the optimum
value for the contamination parameter. With Matlab/RobCov
we observed the least amount of TI→FO and TO→FI flips,
where in default settings the averages over 55 datasets were
only 0.2% and 0.1%, respectively. We observed no flips in 42
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out of the 55 datasets. After optimizing the settings – in this
case using the most effective value of the Method parameter
for each dataset, we were able to increase the number to 55,
i.e., no flips in any dataset. In Matlab/OCSVM we observed
the most flips in default settings: on average, 13.8% TI→FO
flips and 17% TO→FI flips. Optimizing the hyperparameters,
i.e., ContaminationFraction, KernelScale, Lambda, and Beta-
Tolerance, reduced flipping 4.5x–4.9x: TI→FO and TO→FI
were reduced to 2.8% and 3.7% respectively.

Lack of correlation between flips and size, attributes.
We performed a correlation analysis between restart flip
percentage and dataset size (#instances aka points) as well
as #attributes (aka dimensions). The analysis indicates little
correlation; ranging from -0.13 to +0.1 for #instances, and
from -0.11 to 0.45 for #attributes. These results indicate that
flipping behavior is pervasive across datasets with varying
sizes and dimensionalities.

Concluding remarks and mitigation strategy. While non-
determinism is systematic, it can be reduced via hyperparam-
eter tuning, thereby reducing the vulnerability potential.

V. RESOURCE ATTACK

A. Definition and Attack in Practice

Definition. Certain parameters govern AD algorithm com-
plexity, e.g., in IF, the number of estimators (n estimators) or
estimator sample size (max samples) [11]. Other algorithms
have parameters with a similar functionality.5 Therefore in
practice parameter settings are used to balance precision and
efficiency. Note that high efficiency (“efficiency” as in speed)
is essential for effective, real-time security [23], [24], therefore
AD-based security deployments might decide to switch to a
higher-efficiency (but potentially lower accuracy) AD. The im-
petus to switch to a more resource-friendly AD configuration
is even higher under load. Therefore, in this threat model,
the attacker leverages the fact that “degrading” a low-flip but
slow implementation T to a fast but high-flip implementation
Tdegraded increases the attack success rate.

More precisely, we assume that the attacker was unsuc-
cessful in Run 1, as the defender’s AD implementation T
has classified xattack as outlier. The attacker waits for the
defender to run in degraded mode Tdegraded, i.e., the same
implementation T but with modified parameters to increase
throughput at the expense of precision. If, in subsequent runs,
e.g., Run 2, due to the T → Tdegraded switch, the defender
system classifies xattack as inlier, the attack succeeds.

Attack in practice. The attacker has several options, de-
pending on how urgently they want the attack to succeed.
For non-urgent scenarios, the attacker can launch the attack
for free during high-traffic, resource-intensive periods such as
Black Friday or Christmas. For urgent scenarios, the attacker
can force the defender into a resource crunch by running
a Distributed Denial of Service (DDOS) attack, forcing the

5For LOF, lowering k (number of nearest neighbors) reduces running
time [11], [14]. For OCSVM, kernel selection can determine running time: a
linear kernel is faster than a polynomial kernel, and the latter’s time increases
with the polynomial degree [22].

Stable Points
Flipped Points

(a) Flips with default parameters

Stable Points
Flipped Points

(b) Flips with resource-friendly parameters (resource attack)

Fig. 7. Resource attack: increase in vulnerable points when switching to a
resource-friendly parameter configuration (Sklearn/IF on dataset glass).

defender to degrade service. A DDOS attack is easy to
purchase and cheap, around $5–$20 per hour [25], [26].

B. Example: Flipping Behavior When Changing Settings

Figure 7 provides a visual representation of the significant
impact that different configurations can have on the number of
flips. In Figure 7 (a) default settings were used, resulting in 4
points, indicated with ‘×’, that flip in one restart. However, in
Figure 7 (b), we chose a more resource-friendly setting, i.e.,
reducing n estimators to 50 and max samples to 64, where the
implementation runs twice as fast. The contrast is immediately
evident: 16 points changed classification in a single restart.
Hence the second configuration achieves results twice as fast,
but at a substantial security loss: a 4x increase in vulnerability.

Why does vulnerability increase in resource-constrained
environments? We now illustrate how parameter selection that
might increase performance can also increase flipping. Fig-
ure 8 shows an example of two runs. In one, computationally-
expensive run, the parameters are set so the IF implementation
uses 5 samples for each estimator, indicated by the orange
down-arrow; in the other, computationally-light run, we use
2 samples for each estimator, indicated by blue up-arrow.
Due to selecting a lower number of samples in the second
run, the estimator will require less time, leading to a faster
run; however, with the latter setting, the IF implementation’s
inlier/outlier estimation will be less reliable.

C. Efficiency vs. Flipping Trade-off

We begin with a study of efficiency vs. flipping trade-
off in Sklearn/IF and Matlab/IF. Recall that the algorithm
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Points Selected (max_samples=2)

Fig. 8. Sklearn/IF & Matlab/IF: a lower max samples increases vulnerability
in a resource-friendly environment.
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Fig. 9. Sklearn/IF & Matlab/IF: n estimators’ effect on time and flipped
points (dataset: spambase).

uses a parameter that determines the number of estimators
to create (named n estimators in Sklearn and NumLearners in
Matlab). The estimators are independent of each other, hence if
creating one estimator takes time t, creating n estimators takes
n ∗ t. On dataset spambase, we conducted experiments with
10 increasing n estimators values: [50, 100, ..., 500]. Figure 9
illustrates the efficiency vs. flipping trade-off: the percent-
age of flipped points is shown in red, while the execution
time (normalized with respect to the base, and fastest value
n estimators=50) is shown in blue. We observed a linear
increase in execution time as n estimators increases. For
example, increasing n estimators from 50 to 100 doubles the
AD execution time. More importantly, the graph shows that
this parameter effectively dictates attack resilience, i.e., the
fraction of points that can be flipped: lowering n estimators
increases flip likelihood. When n estimators=50, an average
of 11.3 points flipped, whereas when n estimators=500, only
2.8 points flipped on average. We observed similar trade-
offs with other parameters of IF, such as max samples and
max features, and in other implementations, for instance,
support fraction in Sklearn/RobCov.

D. Efficiency and Attack Resistance in IF

These three examples have illustrated the trade-off between
flip ratio and efficiency (execution time) on individual datasets.
We now use statistical measures to study the impact of
efficiency on attack resistance, in IF; the results for the other
algorithms will be discussed shortly, in Section V-E. We com-
pare defaults (n estimators=100 and max samples=256) to a
fast (efficient) setting, which reduced the number of estimators
and sample size (to n estimators=50 and max samples=64)

TABLE II
RESOURCE ATTACK, POINTS FLIPPED IN A SINGLE RUN: # OF FLIPS AND

AS % OF TI (OR TO, RESPECTIVELY).

Dataset Points Flipped
Fast Compared

(imprecise) to default (multi. runs)
Flip increase Time

TI→FO TO→FI TI→FO TO→FI Saved
# % # % %

Sklearn/IF
climate-model. 84 17.8 5 12.2 1.11x 1.04x 51
v. livestock 14 12.7 5 20 1.06x 1.08x 52
optdigits 1102 22 38 23.7 2.37x 1.17x 45
ars.-f.-bladder 64 14 8 10.4 1.77x 1.13x 52
ars.-f.-lung 72 14 1 4.8 1.73x 1.07x 53
All datasets
Sklearn/IF 6.26 5.71 2.16x 1.3x 50
Sklearn/RobCov 2.7 4.9 2.45x 2.45x 9
Matlab/IF 1.9 3.2 1.04x 1.22x 48

and ran it on the 55 datasets. This reduced AD run time by
around 50%, but in doing so it increased vulnerability.

Table II quantifies efficiency vs. attack resistance. The ‘Fast’
columns show the number and percentage of points that
flipped when using the efficient parameter settings, whereas
the last three columns compare the efficient configuration
to the default (slow) configuration. The third-from-last and
second-from-last columns show the increase in the number of
flips when using the fast configuration. The last column shows
time saved by the fast configuration.

The first five rows in Table II show the results for datasets
where the number of flips increased the most. For example, for
optdigits, time decreased by 45%, but the percentage of points
that flip from TI to FO increased from 9.3% (rate for default
parameters, omitted from the table for brevity) to 22%, while
TO→FI flips increased from 20.3% to 23.7%. Similarly, for
dataset arsenic-female-bladder the time decreased by 52%, but
TI→FO flips increased from 7.9% to 14%, whereas TO→FI
flips increased from 9.3% to 10.4%. Overall, the execution
time reduced by 50%, but the percentage of points that can
flip from TI to FO more than doubled, from 2.87% to 6.26%,
while the percentage of points that can flip from TO to FI
increased from 4.43% to 5.71%.

E. Results for all Toolkits

Besides Sklearn/IF whose aggregate results are shown in the
third-to-last row, we also experimented on four other nonde-
terministic implementations. We discuss Sklearn/RobCov and
Matlab/IF, shown in the last two rows of Table II; for the other
two implementations, Matlab/RobCov and Matlab/OCSVM,
the time savings were negligible hence we omit the flip ratio
figures. For Sklearn/RobCov and Matlab/IF we were able to
reduce execution time by 15.46% and 50.72%, respectively.
However, this led to a increase in flip percentage, where for
Sklearn/RobCov both TI→FO and TO→FI flips increased by
2.45x. For Matlab/IF, TI→FO increased by 1.04x and TO→FI
increased by 1.22x. Similar to Section IV-F, there was little
correlation, if any, between flip percentage and dataset size
(number of instances) as well as number of attributes. Overall,
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Table II shows that the defender pays a steep price when
using a resource-efficient implementation, as flip potential can
increase substantially, e.g., between 1.22x–2.45x for TO→FI.

F. Parameter-induced Trade-offs

We conducted experiments examining key parameters af-
fecting AD operations, by quantifying the trade-off between
efficiency and flipping. For each parameter, we varied its value
v from min to max, ran the AD toolkit on all datasets, and
recorded the time, as well as flips, associated with each v.
Next, we computed the β, i.e., the slope of a line where v
was on the x-axis while time (and flips, respectively) were
on the y-axis. The goal of this experiment was to study the
magnitude and sign of the β as v changes between min and
max. These β values across 55 datasets form a distribution.
Ideally, the defender could find parameter values that minimize
both time and flips. In practice though, this is only possible for
some parameters, while for others, the defender must balance
time against flips. For example, the time’s β distribution has
typically positive values for support fraction parameter in
Sklearn/RobCov, with a median of 0.17. In contrast, the flips’
β distribution has negative values with a median of -0.76.
Therefore, raising the value of support fraction leads to time
increases and flip decreases. In both Matlab/IF and Sklearn/IF,
the parameters n estimators and max samples exhibit similar
outcomes. In contrast, increasing the value of max features
consistently reduces flips without increasing execution time; a
defender could hence choose a high value for n estimators to
reduce flipping potential.

Concluding remarks and mitigation strategy. Increasing
throughput typically aggravates flipping. We quantify an ef-
ficient configuration’s increase in vulnerability, compared to
a default configuration. Our univariate parameter study has
(1) shown that defenders have control over time, flips, and
their balance, and (2) identified relevant parameters and their
effectiveness – the higher the β, the more effective the control.

VI. INCONSISTENCY ATTACK

A. Definition and Attack in Practice

Definition. For a given algorithm and dataset, the toolkit
(implementation) has a marked effect on AD performance,
typically measured via the F1-score, due to various factors,
e.g., implementation strategy or hyperparameter settings [1],
[27]. Beyond performance, AD users might have other reasons
to switch toolkits, e.g., the emergence of a more suitable
open source project [28] or moving away from a toolkit after
multiple CVEs were found in that toolkit, or after a single
critical vulnerability has been found [29]. When a toolkit
change leads to flips, attackers can exploit the flips. Therefore,
we quantify the vulnerability of AD to toolkit changes, which
we name an inconsistency attack due to the inconsistencies
between two implementations of the same algorithm.

More precisely, in this case the attacker takes advantage
of the defender switching the AD implementation from T1 to
T2, e.g., from R to Sklearn. We assume that the attacker was
unsuccessful in Run 1, i.e., the defender’s AD implementation

Stable Points
Flipped Points

Fig. 10. Inconsistency attack: flips when switching LOF toolkits between
Matlab and Sklearn (dataset: ionosphere).

T1 has classified xattack as outlier. If, in a subsequent run,
due to the switch from T1 to T2, the defender’s AD classifies
xattack as inlier, the attack succeeds.

Attack in practice. The attacker can use Banner Grabbing6

to figure out the specific AD toolkit, say X, the defender is
currently using, or learn when the defender switches toolkits
from Y to X.

B. Example: Flipping Behavior While Switching Toolkits

Figure 10 illustrates the potential challenges that can arise
when transitioning between different toolkits: switching from
one toolkit to another can lead to a significant number of points
undergoing a change in classification. In this example, we ran
LOF on dataset ionosphere in both Sklearn and Matlab and
compared the output. The ‘×’ points exhibit different outcomes
when analyzed by the two toolkits. In other words, if the
defender were to switch from using Sklearn to Matlab or vice
versa, these marked points would flip their classification. Out
of a total 351 points, 37 points switched classification. We
now discuss inconsistency results for each algorithm.

C. Isolation Forest

The IF algorithm is non-deterministic by design, so for
every dataset, we ran the algorithm 50 times in each toolkit.
We then compared each run of toolkit A with each run of
toolkit B and calculated the minimum, geometric mean, and
maximum percentage of TI→FO and TO→FI. We conducted
our experiments on 3 toolkits, i.e., 6 toolkit switch scenar-
ios. We used the same values of hyperparameters across all
toolkits: n estimators=500, while the number of samples and
features used for each estimator was set to 50%.

Table III shows the results. We observed the highest per-
centage of TO→FI flips when we switched from Sklearn
to R; typically 17.6% of TO flipped to FI (between 12.3%
and 23.5%, depending on dataset). When switching in the
opposite direction, R to Sklearn, we observed the highest
percentage of TI→FO, with 6.81% typically and 8.74% in
the worst case. These results are particularly concerning, as
the numbers are computed across all datasets. Notably, for

6A technique to expose critical information regarding the software, and
operating system, the defender is running [30].
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TABLE III
ISOLATION FOREST: INCONSISTENCY ATTACK.

Toolkits Flipped (%)
TI → FO TO → FI

Min Mean Max Min Mean Max
R → Matlab 3.73 4.22 4.65 0.59 0.81 1.49
Matlab → R 0.38 0.46 0.57 9.8 11.6 12.1
Sklearn → R 0.02 0.09 0.17 12.3 17.6 23.5
R → Sklearn 5.03 6.81 8.74 0.23 0.22 0.15
Sklearn → Matlab 0.22 0.88 1.67 1.09 2.81 5.79
Matlab → Sklearn 0.99 1.95 3.35 0.49 1.13 1.87

TABLE IV
ONE CLASS SVM: INCONSISTENCY ATTACK.

Toolkits Flipped (%)
TI → FO TO → FI

Min Mean Max Min Mean Max
R → Matlab 4.5 8.1 12.7 39.4 43.2 46.9
Matlab → R 26.3 27.7 28.8 8.96 26.9 48.1
Sklearn → R 35.2 35.2 35.2 58 58 58
R → Sklearn 58.5 58.5 58.5 20.4 20.4 20.4
Sklearn → Matlab 3.4 6.6 10.1 80.1 82.9 89.4
Matlab → Sklearn 45.4 47.3 49.4 3.5 7.6 19.4

dataset analcatdata chlamydia: all TO predicted by Sklearn were
classified as inliers by Matlab; all TI predicted by Matlab
flipped to FO when we switched to Sklearn.

D. One Class SVM

This algorithm is deterministic in Sklearn and R, but not in
Matlab. Therefore, we ran Matlab 50 times on each dataset,
and compared its output with the outputs of Sklearn and R.
We used the same value for common hyperparameters across
toolkits, where supported, e.g., kernel=Radial Basis Function,
gamma=1/# of features, tolerance=0.001. Table IV shows the
results. Switching from Sklearn to R produces the highest
TI→FO flips (58.5% on average). The switch from Sklearn to
Matlab produces the highest TO→FI flip percentage, 80.05%
on average. Again, these numbers are concerning as they
indicate that a majority of outliers are expected to flip when
switching toolkits, hence an attacker has a clear advantage.

E. Local Outlier Factor

While the Local Outlier Factor (LOF) algorithm is by
design deterministic, outputs differ between toolkits. To min-
imize the difference in hyperparameters, we used the same
value threshold=1.5, per LOF’s authors [14], and k=20, the
default value for both Sklearn and Matlab. Table V shows
the results. The flip potential is much lower than in IF and
OCSVM, typically less than 1%. However, certain datasets
exhibit higher flip values. For example, for dataset breastw we
observed 22.9% (66 out of the 288) TI→FO flips when we
switched from Sklearn to R. Similarly, when we switched from
Matlab to R, 20.2% points flipped from TI to FO.

Lack of correlation between flips and size/attributes. We
ran a correlation analysis between inconsistency flip percent-
age and #instances, as well as #attributes, for all datasets. We
found little correlation: between -0.19 and +0.20 for #instances
and between -0.47 and 0.44 for #attributes, but typically less

TABLE V
LOCAL OUTLIER FACTOR: INCONSISTENCY ATTACK.[M: MATLAB, S:

SKLEARN]

Toolkits Flipped (%) Toolkits Flipped (%)
TI→FO TO→FI TI→FO TO→FI

R → M 0.16 0.35 M → R 0.18 0.40
S → R 0.28 0.39 R → S 0.14 0.32
S → M 0.15 0.15 M → S 0.03 0.05

than 0.1 in absolute value, which indicates that inconsistency is
present across dataset sizes, algorithms, and implementations.

Concluding remarks and mitigation strategy. We found
that toolkit changes favor the attacker: inconsistency affects
all algorithms and toolkits, with OCSVM the most prone to
flips, and LOF the least prone. Therefore, defenders looking
for flexibility in toolkit choice or anticipating toolkit changes
might prefer LOF. For other algorithms, the defender can em-
ploy “parameter synchronization” between toolkits to reduce
the attack surface, as we report next.

IF. For parameters that are supported across toolkits, such
as n estimators, max samples, and max features, a straight-
forward defensive measure when switching toolkits is to
use the same values. However, synchronizing the contam-
ination fraction parameter is more involved, as the three
toolkits handle this parameter differently: Matlab specifies
the fraction of outliers, while R specifies a threshold score.
Sklearn also uses a fraction of outliers, but by default, it is
set to ‘auto’ (meaning it determines contamination using a
default threshold value). Hence the defender can synchronize
parameters according to the following equivalence scheme:
Sklearn(contamination = auto) ≡ R(threshold = 0.5);
Sklearn(contamination = n) ≡ Matlab(ContFraction =
n), where n = (0, 0.5].

LOF. LOF toolkits use different threshold/contamination
values, so the strategy, similar to the one just described for IF,
is to synchronize these values between toolkits. Additionally,
the defender must synchronize the choice of algorithm used
for finding nearest neighbors. While both Matlab and R default
to using Kd-tree, Sklearn employs a heuristic to determine
the most suitable algorithm based on the dataset. Therefore,
when transitioning from Sklearn, the defender must retain
the algorithm choice of Sklearn for the particular dataset.
Furthermore, parameters such as k, distance metric, and leaf
size, need to be synchronized during the transition.

OCSVM. Here synchronization follows a similar strategy,
though more default values need to be overridden: although
all three toolkits employ the same default kernel type, the
default values for max iter and ContaminationFraction/nu
differ among toolkits.

VII. RELATED WORK

We found no prior work on attacks against unsupervised
AD. Adversarial AI/ML work has mostly focused on attacks
on neural networks (NN), which assume the attacker has
the ability to manipulate input data to deceive the NN’s
model [31], manipulate/perturb graphs [32], [33], [34], insert
noise into images [35], etc. We make no such assumptions.
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Ahmed et al.’s work [27] studied 4 AD algorithm implemen-
tations in 3 toolkits. They found 5 out of 11 implementations
to be non-deterministic and all 4 algorithms’ implementations
to be inconsistent. They also introduced a tool to reduce
nondeterminism and inconsistency of these implementations,
by determining the most suitable parameter setting for a given
dataset [36]. However, they did not study flips, neither have
they considered the security implications of AD nondetermin-
ism. Their nondeterminism metrics were ARI between runs
and F1 score, orthogonal to this work.

Tran et al. [37] showed that data quality can decisively
influence ML-based IDS outcomes, and discussed systems
for evaluating data quality in such settings; our work is
primarily focused on nondeterministic behavior caused by AD
implementations, rather than intrinsic data quality.

Perini et al. [38] introduced a method for evaluating the
stability of ML models by creating multiple models using
distinct subsets of the training data, and measuring their
variance. Park [39] proposed a new loss function to improve
Neural Network performance and stability. Gao et al. [40]
proposed a method for quantifying the stability of an algorithm
by removing elements from the sample set. All these efforts
change the input set between runs, whereas we demonstrate
attacks that do not change the input set. None of these efforts
identified or measured flips, however.

VIII. CONCLUSIONS

When AD is used in security applications, the adversarial
angle needs to be studied and quantified. We show that
classification flips, inherent in AD due to nondeterminism,
can allow malicious input to “fly under the radar”. We outline
mitigation strategies, based on reducing the likelihood of flips,
hence reducing the attackers’ success rate.
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