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Abstract. Clustering is a key technique in a wide range of data analy-
sis tasks. However, algorithms that ensure stable, deterministic, accurate
clustering are computationally expensive, having superlinear complexity
for both memory and time. Therefore, even when using HPC hardware,
there are hard limits to dataset sizes that can be clustered, as clustering
implementations can run out of memory or take unacceptably long. We
introduce an approach called ACE that applies algorithm-independent,
black-box parallelization to superlinear sequential clustering algorithms,
thereby making the clustering of substantial datasets feasible, even on
commodity desktop/laptop systems. ACE starts by partitioning data to
fit onto a given machine, and via divide-and-conquer, reduce the com-
plexity of clustering steps. Next, ACE uses parallel, automated hyper-
parameter search to find optimal parameters for the current dataset. Fi-
nally, ACE aggregates intermediate results effectively and efficiently so
that the final clustering output does not sacrifice clustering quality com-
pared to the original algorithm. An evaluation on four popular clustering
algorithms — Affinity Propagation, DBSCAN, Hierarchical Agglomera-
tive Clustering, and Spectral Clustering — shows that ACE substantially
reduces memory requirements and achieves linear processing time. ACE
was able to process an entire suite of 164 datasets, including substan-
tial datasets with 1.4M points or 1,000 dimensions, whereas the default
implementations failed to process between 15 and 149 datasets from the
suite. Moreover, for those datasets that could be processed by the default
implementations, ACE achieved a 1.13x—102x time reduction.
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1 Introduction

Clustering, or cluster analysis, is an unsupervised learning technique for grouping
similar objects (represented as points in a multidimensional space) into groups
called clusters. Clustering is appealing as it does not require labels or ground
truth, and is used in a wide range of fields, e.g., medical, finance, or manufac-
turing. A fundamental obstacle to using precise and stable clustering algorithms
such as DBSCAN, Affinity Propagation, or Hierarchical Agglomerative Cluster-
ing, is their computational complexity, e.g., O(n * logn)-O(n3) time and O(n?)
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Fig. 1. Time and memory comparison of default vs. ACE.

memory. As datasets continue to grow in size and complexity (number of points
n, number of dimensions d), computational resources become severely inade-
quate, with even “resource frugal” algorithms unable to process commonly used
datasets (100,000-1,000,000 points) on contemporary commodity hardware. In
contrast, ACE clusters datasets with n > 1M and n*d = 100M in 6—40 minutes.

Prior efforts on accelerating clustering have focused on data parallelization
(data/feature partitioning), white-box approaches (e.g., algorithm-specific paral-
lelization), and hardware acceleration [6, 16, 17,22, 3, 21]. These techniques share
three main disadvantages: they require source code, are labor-intensive, and, be-
ing designed for specific algorithms and implementations, do not generalize.

To address these issues, we introduce ACE (“Algorithm-independent Clustering
AccEleration and paralellization”). ACE takes a sequential, resource-intensive
clustering “task” (clustering implementation and input dataset) and turns it into
a runtime-efficient, memory-thrifty, parallel task. ACE parallelizes implementa-
tions regardless of the underlying algorithm’s structure, and without requiring
access, or changes, to source code.

Availability. We made ACE public: https://github.com/Anonymous-User-7/ACE

To motivate our approach, we illustrate the lack of scalability on two al-
gorithms, Affinity Propagation (AP) and Spectral Clustering (SC): when using
default implementations, runtime and memory requirements can quickly get out
of hand even for moderately-sized datasets.

Runtime. To assess the impact of dataset size on runtime, we ran AP on
subsets with sizes ranging from 1,000 to 20,000 data points, extracted from the
numer.ai [1] dataset. Figure 1(a) illustrates how runtime grows superlinearly with
dataset size. For example, when clustering a 5,000-point subset, the algorithm ex-
ecuted in 18.35 seconds. However, when the subset size doubled (10,000 points),
time went up almost 4x, to 71.68 seconds. The algorithm took 10,611 seconds
(=3 hours), to cluster the entire 96,320-point dataset (148x increase in time for
a 9.6x size increase). This superlinear runtime increase with set size highlights
the challenge presented by large datasets. In comparison, ACE completed in
just 12.6 seconds, i.e., a speedup of 842x, and the increase in runtime w.r.t. the
number of points n is linear with a very low slope, rather than superlinear.



Memory. Figure 1(b) illustrates superlinear memory demands and the en-
suing severe limitations on dataset size. We show the minimum memory re-
quired for Spectral Clustering (SC) as the number of points varies from 10,000
to 1,000,000. The superlinear memory demand is apparent from the figure: even
for 10,000 points, SC requires a minimum of 320GB of memory, but this require-
ment escalates to 32TB when processing a dataset containing 1,000,000 data
points (1M for short). In contrast, ACE could seamlessly fit the 1M clustering
task onto commodity desktop/laptop systems or typical datacenter nodes. With
a maximum partition size set to 1,000 ACE only requires 32MB+¢ memory for
each partition. ACE automatically adjusts the number of concurrently processed
partitions to fit into, and efficiently occupy, the machine’s physical memory.

In terms of memory, on a 1M dataset, Hierarchical Agglomerative Clustering
(HAC) would require more than 16TB (Section 4.1), whereas ACE uses less
than 20GB. Even assuming access to an HPC system with more than 16TB
of memory, Affinity Propagation (AP) would take more than 14 days on a 1M
dataset. In contrast, when running ACE on 117 datasets that exceeded 1M
points, the average runtime on our slowest system was less than 14 minutes.

Our experiments demonstrate that ACE is particularly effective for memory-
and time-intensive algorithms such as AP and SC. These algorithms’ default
implementations failed to cluster 136 and 139 datasets, respectively (out of 164)
due to running out of memory, whereas ACE successfully ran all 164 and proved
to be 14x-102x faster. While HAC’s implementation was significantly faster than
AP/SC, ACE was able to further improve its efficiency, by 6x and allowed
HAC to run on all datasets whereas the default implementation failed to run
on 132-136 datasets due to unmet memory demands. Finally, DBSCAN ran out
of memory for 2-15 datasets (depending on system), whereas ACE clustered all
datasets, and improved DBSCAN’s performance by about 2x. ACE supports
any type of clustering algorithm and is compatible with any numerical dataset.

In Section 2, we present our experimental setup. In Section 3, we discuss
ACE’s design and implementation. We evaluate ACE on the four algorithms,
in terms of runtime and memory (Section 4) as well as accuracy (Section 5). In
summary, this paper makes the following contributions:

— An algorithm-independent tool, ACE, enabling parallelization of clustering
tasks without accessing or altering the source code of underlying algorithms.

— An approach for auto-tuning partition size and hyperparameters, and an
approach for merging clusters from different partitions.

— Experimental results confirming that ACE achieves substantial reductions
in runtime and memory usage.

2 Experimental Setup

Algorithms. We studied four clustering algorithms, Affinity Propagation (AP) [10],
Density-Based Spatial Clustering (DBSCAN) [9], Hierarchical Agglomerative
Clustering (HAC) [4] and Spectral Clustering (SC) [20], as implemented in the
Scikit-learn toolkit.



Table 1. System Configurations

System |CPU Frequency (GHz)| Cores| RAM (GB)| Swap (GB)
Sysl Mac M2 Pro 3.5GHz 12 32 <1,000
Sys2 Intel Xeon E5-2697 2.6GHz 14 64 128
Sys3 Intel Xeon W-2145 3.7GHz 8 256 512
Svsd Intel Core i7-6950X 3.0GHz 10 128 256
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Fig. 2. ACE architecture.

Datasets. We used 164 datasets from OpenML [2], with a number of points
varying between 10,000-1,455,525. These datasets come from a wide range of
domains, e.g., medical, engineering, finance, social media. On average, datasets
have 507,468 instances and 28 attributes. We used classification datasets as their
labels allow us to gauge accuracy; the number of clusters ranged from 2 to 1,454.

Measuring Clustering Quality. For measuring clustering similarity or
accuracy, we use the Adjusted Rand Index (ARI) [13]. ARI is an intuitive and
effective scalar metric for clustering similarity: given two clusterings U and V'
of the same dataset, ARI(U,V) can range from —1 (strongest disagreement)
to +1 (perfect agreement). To gauge accuracy of a clustering C, we measure
ARI(C,G) where G is the ground truth (classification labels). We also used the
Silhouette Score [19] to measure clustering quality, with values ranging from -1
to 1 (higher values indicate clearer, more compact clusters).

Hardware Configurations. For our experiments we used four hardware
configurations, detailed in Table 1. In the remainder of the paper we will refer to
these systems as Sys1 through Sys4. The systems span the gamut from a “pro”
laptop (Apple MacBook with an M2 Pro chip, 32GB RAM), to a workstation
(Intel i7-6950x, 128GB RAM), and typical data center servers, e.g., 8-14 core
Intel Xeon servers with 64-256 GB RAM.



3 ACE Architecture

Figure 2 shows ACE’s architecture. We designed ACE to operate in a black-
box (no source code required) and algorithm-independent manner: ACE only
requires the black-box implementation and parameter information (parameter
names and their ranges). ACE takes the original implementation OI of a clus-
tering algorithm and dataset D as inputs, and produces [ (i.e., a clustering of D)
as output. ACE consists of four main parts. First, ACE divides the dataset D
into multiple chunks or partitions ([S1, 52,...]). Next, ACE determines the pa-
rameter values with highest accuracy (HAPV) for D through parallel execution
with different parameter settings. Then, ACE concurrently runs the algorithm
on each partition using the HAPV. Finally, ACE merges the output of the indi-

vidual data partitions ([I1,la, ..., 5]), and returns the clustering output (7). The
average time ACE spent at each stage is shown in the following table.
AP|DBSCAN| HAC SC
3.1 Data Partitioning 0.00088% 0.15%]0.029%0.00014%
3.2 Tuning Parameters for HAPV| 23.02%| 15.24%| 1.71%| 87.11%
3.3 Generating Labels 66.27%| 13.68%|28.35% 11.5%
3.4 Merging Labels 10.7%| 70.93%69.91% 1.44%

Note the different time balances, e.g., merging takes most (70%) of the time for
DBSCAN and HAC, while labeling and HAPV dominate in AP and SC, respec-
tively. These findings underscore ACE’s adaptability to various algorithms.

3.1 Data Partitioning

ACE starts by partitioning! the dataset, which (1) decomposes a superlinear
task via divide-and-conquer, (2) enables parallelization of a sequential task, and
(3) limits resource use. Partitioning is done after shuffling the order in which the
points appear in the input file, to reduce bias and ensure uniformity. Partitioning
is a balancing act between efficiency and memory: a small partition size reduces
memory demands, but might increase running time. We illustrate this trade-
off in Figure 3, showing how runtime varies with partition size, and how long
each of ACE’s four stages takes. Figure 3(a) shows this distribution for the
AP algorithm while Figure 3(b) shows the distribution for HAC (DBSCAN is
similar to HAC, and SC is similar to AP). In both cases, the first phase, data
partitioning, takes less than 1% of the overall time hence is not discernible.
The time for the next stage, parameter tuning, increases linearly, albeit with
a steeper slope for AP; label generation shows a similar behavior. The final
stage, merging, takes a similar time for both algorithms across varying partition
sizes. The difference between the two figures arises from AP taking more time
to generate labels, compared to HAC. For both algorithms, with small partition
sizes, the merging time dominates; however, as partition sizes increase, parameter
tuning and label generation times dominate. While users can tailor the partition

! Where partitioning is defined as expected: no partitions share a common point, i.e.,
S,NS, = 0; and the partitions cover the whole dataset D, i.e., S;US2U...US, = D.
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Fig. 3. Runtime of ACE’s four stages (3.1: Data Partitioning, 3.2: Tuning Parameters
for HAPV, 3.3: Generating Labels, 3.4: Merging Labels) with varying partition sizes.
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Fig. 4. Automatic parameter tuning via HAPV: improving clustering outcome by ad-
justing MinPts value post-partitioning. MinPts=2 is chosen as it has the highest ARI.

size to the specific algorithm employed, note that a wide range of partition
sizes, 300-1,000, works well across all algorithms. Users can set a fixed partition
size (our experiments used 1,000 for all algorithms) or let ACE determine the
partition size automatically. Note that even if the chosen partition size is not
the optimal size for that algorithm, we are still within a constant factor of the
optimal; in contrast, the default implementation might not even run, or could
run orders of magnitude slower.

3.2 Parallel Auto-tuning of Parameters for Highest Accuracy

In this stage, ACE conducts a parallel search for parameter values with highest
accuracy, named HAPV. We introduce our new HAPV technique, rather than
relying on existing optimization strategies such as Grid Search, Random Search,
and Bayesian Optimization because they struggle in unsupervised learning sce-
narios, due to a lack of clear performance metrics and ground truth. Figure 4



illustrates the HAPV process on a DBSCAN parameter. Consider a dataset D,
with C7 being one of its clusters. As ACE runs DBSCAN on partition S;, one
of the hyperparameters it adjusts is MinPts, controlling the minimum neighbor-
hood size. Figures 4 (b)-(d) show the outcomes of using three different MinPts
values and their ARI with respect to the validator. ACE will select MinPts=2
for HAPV, as it yields the maximum ARI.

Algorithm 1 shows ACE’s HAPV pseudocode. First, ACE selects a pa-
rameter P; with h possible values and runs the algorithm C’s original imple-
mentation (OI) with different values of Py ([v11,v1.2,...,v1]) on h differ-
ent partitions [S7,Ss,..., S|, generates their output labels [l1 0,120, -, n 0],
and calculates the silhouette score. At the same time, ACE runs a walidator,
i.e., another clustering algorithm C} on the same partitions, with output labels
("1 ks l2ky - - -y Ink]). ACE then calculates the ARI of the two outputs and selects
the parameter value with maximum ARI (maz([ari(l1_0,l1%), ari(lao,lo k) - - -,
ari(lm_o,lnt)])) and has a silhouette score greater than 0, and sets it as the
final value for Pj. In parallel, ACE explores parameter P’s j possible values
on the next j partitions, i.e., [Shy1, Sht2, ..., Sht;], and selects the best value
for P,. ACE continues the same process for all the other parameters and even-
tually chooses parameter settings that maximize the accuracy for the dataset.
Currently, our HAPV algorithm does not account for coupling effects; we leave
automatic discovery of coupling effects to future work. By default, ACE uses
KMeans as validator Cy, based on a statistical analysis? though users can specify
a different clustering algorithm as validator.

Algorithm 1 Determining HAPV

1: Input:

2: Data Partitions S = {51, S2, ..., Sn}, Implementation OI, Validator Cj,
3: ParameterValues = r parameters, each with h values,

4: procedure TUNE_HAPV (S, OI, ParameterValues, Ck)

5: for all parameters P; where i = 1,...,r do

6: P;Values = {v;_1,vi2,...,0in}

7: for all v;_j in P;Values doinparallel

8: lgo = fit OI '= P;: Vi_j on Sa

9: lar = fit C; on Sy
10: arii_j = ARI(ld,o,ld,k)
11: silh;_j = silhouette_score(l4_0,54)
12: end for
13: Set the value P; in HAPV to v;_j with maximum ari;_; and silh; j > 0

14: end for
15: Return HAPV
16: end procedure

2 We used KMeans, AP, HAC, and DBSCAN as validators, and ran pairwise
two-means t-tests on their outcomes’ accuracy distributions. The p-values indicated
that KMeans, AP, and HAC achieve the same effectiveness as validators, with only
DBSCAN exhibiting inferior effectiveness.



3.3 Generating Models and Applying on Partitions

Figure 2 shows how ACE generates labels for each partition. In this step, ACE
applies the clustering algorithm Cusing the HAPV-determined parameter values
to each partition S;, and identifies clusters within them. This process is executed
concurrently, with clustering application on each partition being performed in
parallel. The output consists of n lists of clustering labels ([l1, 12, ...l,]), where
each list contains the clustering labels within its respective partition.

We have introduced an additional sub-step for incremental clustering algo-
rithms, e.g., AP, KMeans, Gaussian Mixture Model (GMM). This involves uti-
lizing the knowledge gained from clustering in one partition to assist in refining
the clustering of another partition. Each partition S; generates a model M;.
These trained models ([My, Ms,...M,]) are then applied to all partitions. For
example, applying model M; on partition S; will produce labels lg, ar,. Apply-
ing all n models on Sy will yield n sets of labels ([ls, a5 ls, My» -5 sy _at,])- Note
that these sets of labels represent various labels assigned to the same partition.
These labels are consolidated by selecting, for each data point, the clustering
label that appears most frequently across all labels assigned to that data point.
This process creates a unified set of labels, denoted as [;.

3.4 Merging Labels

The steps described so far generate n sets of labels for n partitions. We now
discuss how ACE merges the label sets to produce the final output L. This
is a crucial step: in contrast to the original algorithms, which have a “global”
view, ACE needs to merge the local results into a global clustering. Merging
multiple sets of labels is not as trivial as, say, concatenating them, because local
clusterings may have labeled clusters differently. For example, let the labels of
partition Sy be [r1 : Cq, 12 : Cq, 73 : Cp] and partition Sa’s be [ry : Cy, 15 : Ch, 76
(], where r; are the points and the two clusters are C, and Cj. If we simply
aggregated the two outputs, we would place r1,ro, 74 in one cluster and r3, 5,76
in another cluster. However, this would be incorrect, as cluster C, of S; might
be closer to Cp of Sy than C,. Figure 5(a) illustrates this problem, where cluster
C, of S; is closer to C of Sy than C,. To determine the correct correlation
between the two outputs we devised two merging techniques, described next.
ACE supports both algorithms that require users to specify & (the number
of clusters), and those that automatically determine k, as explained next.
Constant-k-Merge. We employ this technique for algorithms such as SC
and HAC that require users to specify k, the number of clusters. First, we calcu-
late the centers of all the clusters ([Ciy, Clia, ..., Cix]) in each partition S;. Next,
we merge two partitions by calculating pairwise k * k distances between their
clusters and assigning the same label to the closest cluster. We keep merging
two partitions of same size until we merge all the partitions to one output. Fig-
ure 5(a) illustrates the formation of four clusters from the two partitions. Using
Constant-k-Merge with k=2 will create two clusters from the four existing ones.
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Fig. 6. Merging two clusters C; and C3 using Merge-Inliers method.

The distances between the centers of these four clusters are computed, and the
two clusters with the shortest distances are merged, as illustrated in Figure 5(b).

Merge-Inliers. Algorithms such as AP and DBSCAN do not require users to
provide k; instead they determine the number of clusters based on the structure
of the dataset. As a result, each partition creates a different number of clusters,
and merging them using Constant-k-Merge is not possible.

We address this by applying anomaly detection [8] to determine the boundary
of a cluster as_; (the output of a partition S;). This gives us a model M, _; ;. Next,
we apply the model on the points of a cluster b,_; of another partition S;, and if
a majority (>50%) of the samples are normal, i.e., not anomalies, we conclude
that cluster as; of S; and cluster b,_; of S; belong to the same cluster in the
new merged partition S;;. We create a new cluster in S;; for a cluster in \S; if we
do not find any clusters in S; where the number of anomalies is less than 50%.

Figure 6 illustrates this method on four clusters, C1, Cs, C3, and Cy, origi-
nating from different partitions. Following the generation of a model trained on
cluster C to identify the boundary of its inliers, we assess whether any points
from other partitions lie within this region. Notably, two out of three points,
i.e., more than 50% of the data points within Cy, fall within this inlier region,
prompting the decision to merge clusters C; and Cs.

4 Experiments

We evaluated ACE on four algorithms: AP, DBSCAN, HAC, and SC. AP’s im-
plementation requires multiple O(n?) arrays, which are updated in multiple it-



Table 2. Severe memory limitations with default implementations: dataset limits and
number datasets, out of 164, that failed to run.

System Size limit (#points) Failed to run (#datasets)

AP HAC SC AP|DBSCAN HAC SC
Sysl 84,000| 179,000 79,000 139 15 134 139
Sys2 80,000 157,000 75,000 139 6 136 139
Sys3 169,000 297,000| 158,000 136 2 134 136
Sys4 110,000 223,000| 103,000 137 3 134 137

erations; systems that do not have the physical memory for the arrays will either
produce an error or take orders of magnitude longer due to swapping. DBSCAN
lacks parallel execution support, leading to long runtimes and memory issues,
especially on large datasets; for neighborhood computations, the implementa-
tion uses either kd-tree or brute-force, which affects complexity. HAC, similar
to AP, faces challenges with memory demands. However, the execution time is
much faster than AP. SC is the most time- and space-consuming algorithm, even
when adjusting the eig_tol hyperparameter that controls the precision of eigen
decomposition. ACE addressed these inefficiencies, markedly reducing runtime
and memory usage, and allowing substantial datasets to be clustered.

4.1 Memory

The memory complexity of AP/HAC/SC is O(n?), where n is the number of
points in a dataset. Each algorithm creates multiple floatss (8 bytes) arrays of
size nxn. For instance AP creates (among other variables) four 2D arrays of size
n * n, i.e., similarity matriz s, availability matriz A, responsibility matriz R, and
an intermediate results matrix tmp. Therefore, running AP on a dataset with 1
million points requires (1,000,000%)x8x4 = 3.2x1013 bytes, i.e., 32TB of memory.
Similarly, HAC and SC create two and four large nxn arrays, respectively (among
other variables) hence their minimum memory requirements on a 1M dataset are
16TB and 32TB, respectively. The system thus limits the set size (number of
points) that default implementations can process to relatively small datasets.
While DBSCAN imposes no bounds on the number of points, we encountered
memory issues with large sparse datasets. The space complexity of DBSCAN in
default settings is O(n) for brute-force and O(n * logn) for kd-tree; out of 164
datasets, the implementation selected kd-tree for 32 datasets.

Table 2 shows the results of running the original implementations of the algo-
rithms on our systems. Columns 2-4 show the maximum dataset size (#points):
depending on the system for the three algorithms, this limit was 80,000-169,000
points for AP, 179,000-315,000 for HAC, and 75,000-158,000 points for SC, re-
spectively. Columns 5-8 show the number of datasets, out of 164, that could not
be run with the original implementations: 2-139 sets, depending on the system
and algorithm. Notably, the original implementations of AP, HAC and SC failed
to cluster more than 80% of datasets, due to memory requirements.

10
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In contrast, ACE ran all four algorithms successfully, on the 16/ datasets,
on all four systems.

4.2 Runtime

Scalability. In addition to memory constraints, the time required for clustering
can be prohibitive. In the worst case, the time complexities of AP and HAC are
O(n? * maz_iter) and O(n?), respectively. DBSCAN’s time complexity can be
O(n?) or O(n x logn) depending on the distance measure. For SC, while termi-
nation depends on reaching convergence, an O(n?) time complexity lower bound
is imposed by calculating the Laplacian matrix. While the number of dimen-
sions d is typically omitted from complexity calculations, we have noticed that
in practice d is an important linear factor that should be considered. ACE’s time
complexity was observed to be linear with respect to n * d. In Figure 7 we show
ACE’s clustering time on Sysl (other systems’ time followed the same trends),
for each of the 164 datasets and each algorithm: each blue dot corresponds to a
dataset. The regression line, shown in red, indicates ACE’s linear scalability.

Table 3. Average Runtime [Rap, Rpps, Ruac, Rsc: computed across those datasets
that fit into memory and completed execution within 2 hours.]

Default ACE
gs Timeout Mean Time Mean Time
(5 (# Datasets) (seconds) seconds (speedup)
Sl 3 o o &3 o 8 g ¥ o
Sl f | F e & & & &
Sysl| 2| 0| 0|14| 564| 159| 45/1,139] 8(70x)| 106(1.5x)| 7(6.4x)| 16(71x)
Sys2| 3| 0| o|14| 1,874| 149[111| 873|31(60x)| 132(1.13x)| 19(5.8x)| 60(15x)
Sys3| 3| o] o|17] 1,637 228| 77| 751[17(96x)| 128(1.8x)| 13(5.9x)| 46(16x)
Sys4| 5| 0| 0|16| 1,947| 4,146 91| 773|31(63x)| 114(36x)| 16(5.7x)| 54(14x)

Acceleration. We now present the results of our acceleration experiments,
that compare Default vs. ACE for those datasets that default implementations
can cluster. We set a two-hour time limit and introduce a subset of datasets
denoted Rap, Rpps, Ryac and Rgc, representing datasets that successfully
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Table 4. Average Accuracy [Rap, Rpps, Ruac, Rsc: computed across those datasets
that fit into memory and completed execution within 2 hours.]

Method Accuracy (ARI) vs Ground Truth
Rapr Rpps Ruac Rsc
Default 0.014 -0.006 0.025| -0.0004
ACE 0.070 0.024 0.016 0.005
p-value 0.048 2.46e-7 0.544 0.049

completed execution within the limit under default implementation settings.
Table 3’s “Timeout” grouped columns show the number of datasets that fit into
memory but failed to complete due to the timeout. The “Mean Time” columns
juxtapose the mean runtime of default implementation and ACE, when applied
to Rap ... Rgc datasets. We encountered timeouts with AP and SC algorithms
but not with DBSCAN and HAC. Notably, with SC, we encountered the most
timeouts, 14-17 datasets. In contrast, ACE successfully and efficiently completed
the clustering for all 164 datasets, typically within 15 minutes.

The table also demonstrates ACE’s runtime efficiency improvements. For
instance, on Sysl, the average runtime of default AP on Rsp datasets was 564
seconds; ACE reduced this to 8 seconds, a 70x acceleration. Similarly, Sys2,
Sys3, and Sys4 showcased significant improvements with ACE, reducing mean
runtimes from 1,874 to 31 seconds, 1637 to 17 seconds, and 1,947 to 31 seconds,
respectively, for Rap datasets (a 60x—96x acceleration).

With DBSCAN, we saw the least improvement in time on most systems,
with ACE only able to reduce time by 11-47%, with a notable exception on
Sys4, where ACE was able to reduce runtime from 4,145.9 to 114 seconds on
average. However, it is important to note that small datasets (generally less than
50,000 points) require increased runtime with ACE compared to default settings
on most systems. This is attributed to the additional steps involved in ACE,
introducing overhead for each dataset irrespective of size.

The HAC implementation was the fastest among all algorithms: the average
runtime across the four systems was 45-111 seconds for Ry ac. ACE was able
to accelerate this task by about 6x, requiring only 7-19 seconds on average.

As previously mentioned, SC was the slowest algorithm. Across the four
systems, only 11 datasets were clustered within the two-hour limit. By adjusting
the eigen tolerance parameter to 0.001, SC was able to process 28 datasets, with
runtimes ranging between 751-1,139 seconds. In contrast, with ACE, we could
process all datasets and achieved a speedup of 14x-71x.

5 Accuracy

ACE is designed to reduce runtime and memory without compromising accuracy.
We quantify ACE’s impact on accuracy as follows: for all the datasets that could
be processed with both default implementations and ACE, we computed the
clustering accuracy (ARI compared to ground truth). Next, we ran two-means
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t-tests between the default and ACE accuracy distributions. We present the
results in Table 4. The first two data rows show the mean accuracy for the
default and ACE, respectively (higher is better), while the last row shows the
statistical significance, expressed as p-value. Note that for three algorithms (AP,
DBSCAN and SC), ACE has achieved a statistically significant improvement
in accuracy (p-value < 0.05). For HAC, while there is a nominal decrease in
mean accuracy, this accuracy is not statistically significant (p-value = 0.544).
These accuracy improvements, along with substantial reductions in runtime and
memory, make ACE a preferable alternative to default implementations.

6 Related Work

Prior work on clustering acceleration has employed data/feature partitioning,
hardware acceleration, or algorithm-specific parallelization; these techniques lack
generality and require algorithm-specific manual source code changes.

Andrade et al. [5] developed G-DBSCAN, a GPU-accelerated DBSCAN,
which constructs a graph and uses BFS for cluster identification. They achieved
over >100z speedup on 5,000 to 700,000 point datasets. Bohm et al. [7] intro-
duced CUDA-DClust for GPU-accelerated clustering with the index structure
built on the CPU; Poudel et al. developed CUDA-DClust+ to construct the in-
dex directly on the GPU, reducing this overhead [18]. Li et al. [16] proposed a
GPU-accelerated version of K-Means; they created two separate techniques for
low and high dimensional datasets. Jin and JaJa [14] developed a heterogeneous
CPU-GPU SC algorithm by accelerating the major steps, i.e., constructing the
similarity matrix, eigenvector computation, and k-means clustering.

He et al. [12] introduced MR-DBSCAN, a scalable DBSCAN algorithm uti-
lizing MapReduce. They fully parallelized critical sub-procedures and introduced
a new data partitioning method, ensuring load balancing. MapReduce was also
applied to K-Means acceleration using FPGAs [17] and Hadoop [3].

Federated learning work has explored clustering, but not accelerated it [3,
15,11, 23]. While these methods could potentially be adapted to enhance clus-
tering efficiency in federated learning settings, it is important to note that these
techniques might not be compatible with all types of clustering algorithms, par-
ticularly those like DBSCAN or AP, which do not use gradient-based updates.

7 Conclusions

ACE addresses the critical roadblocks of runtime and memory for clustering
algorithms. Through black-box parallelization, ACE enables tasks with original
superlinear complexity to run efficiently, facilitating clustering of large datasets
on standard desktop/laptop/datacenter computers. In our comprehensive eval-
uation on 164 OpenML datasets and four popular algorithms, ACE has signif-
icantly reduced memory and accelerated computation, compared to default im-
plementations. By increasing clustering scalability across various domains, ACE
paves the way for more efficient data analysis and decision-making processes.
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