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ABSTRACT

We study the interpolation capabilities of implicit neural
representations (INRs) of images. In principle, INRs promise
a number of advantages, such as continuous derivatives and
arbitrary sampling, being freed from the restrictions of a
raster grid. However, empirically, INRs have been observed
to poorly interpolate between the pixels of the fit image; in
other words, they do not inherently possess a suitable prior
for natural images. In this paper, we propose to address and
improve INRs’ interpolation capabilities by explicitly inte-
grating image prior information into the INR architecture via
deep decoder, a specific implementation of the deep image
prior (DIP). Our method, which we call TITAN, leverages a
residual connection from the input which enables integrat-
ing the principles of the grid-based DIP into the grid-free
INR. Through super-resolution and computed tomography
experiments, we demonstrate that our method significantly
improves upon classic INRs, thanks to the induced natural im-
age bias. We also find that by constraining the weights to be
sparse, image quality and sharpness are enhanced, increasing
the Lipschitz constant.

Index Terms— Implicit neural representations, deep im-
age prior, sparsity

1. INTRODUCTION

Implicit neural representations (INRs) aim to represent im-
ages with a differentiable (neural network) function instead
of the traditional discrete raster image of pixel point values in
a 2-dimensional grid. Concretely, an INR might learn a func-
tion mapping from an arbitrary location in 2D, represented by
(x, y), to the (r, g, b) values in the image:

I : R2 → R3, I(x, y) = (r, g, b) . (1)

Thanks to their desirable characteristics including being grid-
free, continuous, and differentiable, INRs have been an in-
creasingly popular and integral component for a wide range
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of computer graphics and vision applications such as super-
resolution [1, 2], 3D scene rendering [3–6], and image gener-
ation [7–10]. Among the most famous INRs is SIREN [11],
which consists of a feed-forward neural network with sinu-
soidal activation functions. Others have used wavelet activa-
tions instead of sinusoidal ones with significant success [12].

The most common class of INR models only use a sin-
gle datum and do not require a training data corpus. Models
trained with a collection of images may suffer from gener-
alization problems due to under-specialization. Interpolating
a single image without training makes it more suitable and
safer in high-stakes applications such as computed tomog-
raphy (CT) imaging, where images may vary significantly
from patient to patient due to their different anatomical struc-
tures [13]. Moreover, data-free INRs can be deployed to chal-
lenging imaging tasks in data-starved environments.

However, a notable drawback of INRs is that they are
often poor interpolators. Prior work [11, 14] has empiri-
cally demonstrated that INRs often fail to represent images
in finer scales; see Figure 1 for an illustration of the un-
satisfactory image representation performance of SIREN in
a super-resolution case study. This practical deficiency is
concerning because the continuous, grid-free nature of INRs
should enable image representation at arbitrary scale and
resolution.

In this paper, we consider INRs’ grid-free interpolation
capabilities without relying on other (neural) image models
which use discrete pixel representations. Instead, we take in-
spiration from the deep decoder [15] and design an INR archi-
tecture which is both grid-free and leverages the deep image
prior [16].

1.1. Contributions

We propose a new method to significantly improve INR inter-
polation capabilities. Our method is inspired by the deep im-
age prior (DIP) [16], an observation that certain architectural
choices in generative networks bias them towards natural im-
ages. We postulate that INRs suffer from poor interpolation
capabilities because they lack such architectural inductive bi-
ases.

To this end, we integrate DIP information into an INR
using deep decoder, a simplified implementation of DIP,
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Ground Truth Downsampled 4×

SIREN
19.6 dB PSNR, 0.75 SSIM

TITAN
21.7 dB PSNR, 0.83 SSIM

Fig. 1. Using TITAN we outperform SIREN on a 4× super-
resolution task. TITAN here has approximately the same pa-
rameters (≈ 112 k) as SIREN (≈ 133 k) due to the weights
being sparse.

which automatically enforces strong prior information for
a given image with a powerful but simple neural network.
We add residual connections from the input that enable us
to integrate the principles of deep decoder, which normally
operates in the pixel representation of images, into an INR,
which operates in the grid-free functional representation of
images. This yields an image representation with powerful
inductive biases. Through a series of experiments on image
super-resolution and CT recovery, we show that our method,
TITAN, outperforms the INR methods without image prior by
a large margin, demonstrating the importance and the promise
in leveraging image prior information in INRs to turn them
into powerful interpolators.

2. BACKGROUND

Our method fuses DIP techniques, specifically deep decoder,
with INRs that allow grid-free image inference.

2.1. Deep image priors and deep decoder

Deep image prior [16] proposes an untrained network to cap-
ture image statistics prior for inverse problems, such as de-
noising, image inpainting, and super-resolution. DIP takes
a random vector as input and outputs the image prior us-
ing a UNet-like [17] network such as hourglass network or

encoder–decoder with skip connections. It surprisingly shows
that the simple structure of a deep convolution network is suf-
ficient to enforce reasonable image priors without the need
for extensive training on large datasets. Inspired by the work
of DIP, we propose our method TITAN to learn a high-quality
implicit representation from a single image.
Deep decoder. The deep decoder [15] is a raster-based (i.e.,
defined on a grid) implicit image representation that distills
the ideas behind the DIP to its essential components. It differs
from the DIP in that it has no skip connections and no convo-
lutional operations, but rather limits inter-pixel interactions to
only upsampling operations. Starting with a fixed n0×n0×k0
random “image” B0, the architecture layers proceed via the
following recursive relation:

Bi+1 = cn(relu(UiBiCi)). (2)

The nonlinearity is relu(t) = max{0, t}, and cn is a channel-
wise normalization, also called a one-dimensional batch nor-
malization [18], with optional learned parameters. For Bi+1

of shape ni × ni × ki, Ui is a fixed bilinear upsampling op-
erator that lifts each channel from ni × ni to ni+1 × ni+1,
where ni+1 = 2ni. The weights Ci ∈ Rki×ki+1 are learned
parameters which mix the ki channels to ki+1 channels. The
final result is an nd × nd × kd raster image I formed by

I = sigmoid(BdCd), (3)

where sigmoid(t) = 1/(1 + e−t). Training the weights Ci

via gradient descent results in a robust image prior.

3. METHOD

We would like to take advantage of the inductive biases of the
deep image prior and deep decoder in an INR, but the con-
volutional and upsampling operations that incorporate inter-
pixel interactions preclude a direct implementation. To ad-
dress this, we propose TITAN, which stands for Deep Implicit
Decoder Network,1 which implements a deep decoder archi-
tecture as an INR via a careful replacement of the upsampling
operator with spatial residual connections. A diagram of TI-
TAN is shown in Figure 2.

We seek an implicit representation Iθ : R2 → Rkd with
parameters θ ∈ Rp of an image such that given a coordi-
nate x ∈ R2, Iθ(x) returns the pixel values at that coordinate
across the kd channels. We start the same as the deep decoder
with n0 = 1: we let B0 ∈ Rk0 be a vector representing a
constant image of k0 channels. We wish to implement the
next layer of the deep decoder, which according to equation 2
should look something like

Bi+1(x) = cn(relu(Ci[(UiBi)(x)])). (4)

1We prefer the nearly phonetically identical TITAN to DIDN because it
is both beautiful and good.
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Fig. 2. A diagram of the TITAN architecture. The input coordinate x passes through the residual blocks R̂i as a substitute for
upsampling but otherwise the output pixel value follows the deep decoder architecture.

However, in order to have a one-to-one implementation of
deep decoder as an INR, we would need (UiBi)(x) to be the
upsampled version of the image Bi : R2 → Rki evaluated at
x. Upsampling does not really have meaning for non-raster
images; for raster images, however, it is the inverse opera-
tion of downsampling, which is analogous to blurring. Thus,
Bi(x) should be similar to (UiBi)(x), but with less detail.
We can therefore define the upsampling residual

Ri(x) ≜ (UiBi)(x)−Bi(x). (5)

What we do in TITAN is explicitly approximate Ri(x) via a
simple nonlinear function, like a small SIREN network:

R̂i(x) = g(αi(Wix+ vi))/d, (6)

where g is an element-wise nonlinearity that captures spatial
frequency information—we use g(t) = sin(t); αi is a fixed
frequency scaling parameter; and dividing by d ensures that
the total contribution of the residuals is fixed. We then have
the TITAN layer update function

Bi+1(x) = cn(relu(CiBi(x) + R̂i(x))), (7)

with final output

Iθ(x) = sigmoid(CdBd(x)). (8)

In our experiments, we are not concerned with ensuring the
differentiability of our TITANs, so we use the relu nonlinear-
ity even though it is non-differentiable. If differentiability is
necessary, the nonlinearity can be replaced by a differentiable
alternative such as the softplus function.

4. EXPERIMENTS

For all experiments, we set the frequency scaling parameters
of TITAN to αi = 4(i+1) so that higher frequencies are cap-
tured in deeper layers, and we let k0 = k1 = . . . kd−1 = 100.
Weight initializations for TITAN are the default PyTorch ini-
tialization. We use the Adam [19] optimizer with learning rate
10−3 for SIREN and TITAN and learning rate 10−2 for DIP
unless otherwise specified. Code can be found at https:
//github.com/dlej/titan-implicit-prior

4.1. TITAN for super-resolution

We perform 4× super-resolution of a 256× 256 image down-
sampled to 64 × 64 and show the result in Figure 1. For TI-
TAN, we use depth d = 10, and for SIREN we use d = 2. We
use the AdaBreg [20] optimizer for sparsity.

As we can see, TITAN results in a much sharper image
than SIREN, which suffers from Gibbs-like ringing artifacts.
For this task, DIP achieves a PSNR of 23.9 and 0.89 SSIM,
so TITAN is a solid step in the direction of inductive image
biases for INRs.

4.2. TITAN for computed tomography

For the ground truth CT image Y ∈ RW×H in Figure 3, we
take noisy measurements of the following form:

B = RT(Y ,m) + S ∈ Rm×H (9)

Where RT(Y ,m) : RW×H → Rm×H is the Radon Trans-
form with m uniformly spaced samples from 0 to π and
Sij

i.i.d.∼ N (0, σ2) is random Gaussian noise with standard
deviation σ = 2. We optimize the following cost function

L(θ) = ∥RT(Iθ(x),m)−B∥2F (10)

using Adam with cosine annealing rate. Results of all meth-
ods for several numbers of measurements m are shown in Ta-
ble 1. TITAN provides a significantly better implicit repre-
sentation for solving this inverse problem than SIREN, nearly
matching or even surpassing the DIP at all measurement lev-
els.

4.3. The effect of sparsity

Partly motivated by the success of INRs in data compres-
sion [21], we propose to compensate for the larger pa-
rameter count of TITAN compared to SIREN via sparsity-
promoting INF optimization (c.f. equation 10). We achieve
this via an optimization approach [20] based on linearized
Bregman iterations [22]. Unlike pruning methods [23],
this Bregman learning method initializes the INR with a
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Ground Truth
DIP

30.5 dB PSNR, 0.92 SSIM

SIREN
28.5 dB PSNR, 0.81 SSIM

TITAN
29.9 dB PSNR, 0.89 SSIM

Fig. 3. For number of measurements m = 30, TITAN outper-
forms SIREN by leveraging the deep image prior’s inductive
bias. Thus, TITAN has all the benefits of being an implicit
representation network with only a small (≈ 0.6dB) cost to
performance. Also TITAN begin to outperform SIREN and
DIP for larger number of measurements.

few nonzero weights, successively adding limited nonzero
weights throughout optimization. We tune the final sparsity
factor of the weights via a hyperparameter, which controls the
initialization sparsity factor. Our empirical results for image
super-resolution and computed tomography demonstrate both
quantitative, measured via PSNR, and perceptual improve-
ment of the resulting images, specifically complementing the
inductive bias of TITAN towards attenuating of Gibbs ringing
artifacts typically observed when using SIREN. Surprisingly,
the Bregman learning algorithm was not able to sparsify the
weights of SIREN when initialized with the same sparsity
factor as TITAN.

4.4. The effect of sparsity on Lipschitz constants

We investigate whether the smoothness induced by the spar-
sity yields an implicit model which has a lower Lipschitz con-
stant than the non-sparse model. To do this, we focus on the
super-resolution problem and generate a fine grid of 256×256
pixel locations and their corresponding model outputs. We
follow this by calculating the largest singular value of the
Jacobian of our implicit model at each pixel, computed via
backpropagation. Finally, we take the largest of these values
to obtain the Lipschitz constant of our INR.

Method Metric m = 30 40 50 100

SIREN PSNR 28.5 29.9 31.3 33.2
SSIM 0.81 0.86 0.90 0.95

TITAN PSNR 29.9 31.5 32.5 36.1
SSIM 0.89 0.91 0.94 0.97

DIP PSNR 30.5 31.8 31.9 32.6
SSIM 0.92 0.94 0.95 0.96

Table 1. Results showing that TITAN outperforms SIREN
on computed tomography tasks with varying number of mea-
surements m.

Our findings are somewhat counter-intuitive: the Lips-
chitz constant decreases as we increase the number of non-
zero weights at the beginning of training as shown in Fig-
ure 4. This is especially counter-intuitive because lower Lip-
schitz constants are correlated with better generalization per-
formance [24], and we see the opposite here. However, this
happens because the largely smooth TITAN representation we
see has sharp edges, which induces a large Lipschitz constant.
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Fig. 4. As the number of non-zero weights of TITAN at ini-
tialization increases, the Lipschitz constant decreases; hence
more sparse solutions tend to have larger Lipschitz constants
since they are sharper. The sparsity of TITAN after training
does not change much for a given initialization, and so we
group them together and plot the average Lipschitz constant
with its standard error for n = 10 random seeds.

5. CONCLUSION

We have demonstrated that it is possible to incorporate the
inductive biases of the DIP into an INR, which we have
implemented via residual connections in the place of the up-
sampling operator of a deep decoder. Complemented with
sparsity-promoting optimization over weights, our proposed
approach mitigates common perceptual artifacts when de-
ploying INRs while maintaining a low parameter count. INRs
with robust inductive biases will enable their deployment to
solving hard imaging problems in resource-constrained set-
tings.
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