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A B S T R A C T

We develop an algorithm capable of imaging a three-dimensional object given a collection of two-dimensional images of that object that are significantly influenced
by the curvature of the Ewald sphere. These two-dimensional images cannot be approximated as projections of the object. Such an algorithm is useful in cryo-
electron microscopy where larger samples, higher resolution, or lower energy electron beams are desired, all of which contribute to the significance of Ewald
curvature.
1. Introduction

In this paper we propose an iterative projection algorithm to recon-
struct a 3-dimensional (3D) object from 2-dimensional (2D) real-space
images in the case where the depth-of-field is less than the thickness of
the sample, so that these 2D images are not projections of the sample
scattering density. This is also referred to as the ‘‘Ewald sphere curva-
ture problem’’ in the context of cryo-electron microscopy (cryo-EM) [1–
4] and it becomes important for resolutions and incident wavelengths
where the thickness of the sample exceeds the depth-of-focus of the lens
system [5]. In that case, bright-field transmission electron microscope
(TEM) images no longer represent valid 2D projections of the object, so
that conventional cryo-EM software (based, for example, on the method
of filtered back-projection) cannot be used to merge the 2D images
into a 3D reconstruction without losses in resolution. Unlike some of
the previous approaches discussed below, our method does not rely on
application of a corrected transfer function, but builds in the relevant
scattering theory from the outset, and inverts this from all the data
using the technique of iterative projection algorithms (IPAs). A solution
to the Ewald curvature problem would allow 3D reconstructions from
lower beam energies, higher resolutions, and with thicker samples, all
factors of which contribute to the severity of the Ewald curvature.

For a scattering vector 𝒒 = 𝒌 − 𝒌0, the Ewald sphere is defined as
the spherical surface traced out by 𝒌 under elastic scattering conditions,
so that negligible energy is transferred to the sample. Here 𝒌0 is the
incoming wavevector of the electron beam, while 𝒌 is the scattered
wavevector. The Ewald curvature problem arises when images are
formed from a range of 𝒒-vectors over which the Ewald sphere cannot
be well-approximated as a plane. In that case, the Fourier-projection
theorem, relating planes in reciprocal space to projections of the object
in real space, as assumed in many current reconstruction and data
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merging algorithms, cannot be used. For a crystal (where 𝒒 extends
to a reciprocal lattice point, defining a Bragg condition), a curved
sphere means that beams scattered at equal angles to the direct beam
on opposite sides of the diffraction pattern are no longer Friedel pairs
represented by conjugate complex structure factors. The two different
complex structure factors (four real numbers) are combined by the lens
to form one set of interference fringes (defined by just two quantities)
contributing to the image. In previous work by Wolf et al. [1], Russo
and Henderson [3], a correction algorithm was described that relies
on the fact that (for a crystal), Bragg beams (whose width is limited to
that of a small particle) separate laterally as they progress downstream.
This is seen in far-out-of-focus shadow images of small crystals, which
separate into one shadow image for each Bragg beam. At resolution 𝑑,
the separation due to defocus, 𝐷𝑓 , alone is 2𝐷𝑓𝜆∕𝑑 (other aberrations
may also contribute) [6]. This allows the interferences contributed by
one side of the diffraction pattern to be separated from those due
to the other. Russo and Henderson [3] then generalize their method
to non-periodic samples with continuous scattering, and apply their
corrections using an elegant segmented transfer function divided into
wedges. By comparison, our method does not require the use of images
recorded at large defocus or additional images which may introduce
radiation damage. However our method proposed here is much more
computationally intensive, and may be well suited to images formed
with the use of a Zernike phase plate.

The conventional formulation of bright-field, weak-phase object,
high-resolution transmission electron microscopy imaging assumes ei-
ther a sample transmission function for a phase object (based on an
eikonal approximation) using a projected potential [5], or uses the first
Born approximation for electron scattering. The phase shift introduced
by the sample is assumed to be less than ninety degrees. However, a
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new formulation is needed for the case of a curved sphere, since the
image is then formed from scattering on the Ewald sphere rather than
onto a plane in reciprocal space, and a projected potential cannot be
used. As detailed in Section 2, we use the standard Born approximation
for the wave function, but we do not make a far-field approximation.
Therefore our method gives the correct relationship between the phase
of the direct and scattered radiation [7]. As for the case of optical mi-
croscopy where the Ewald sphere curvature causes the depth-of-field to
be smaller than the sample thickness (as used for the optical sectioning
technique), it is then necessary to compute wavefields on successive
planes normal to the beam within the sample, and to propagate these
onward to an area detector, or to the ‘‘exit face’’ plane across the down-
stream face of the sample. Focus adjustment then makes it possible
to ‘‘look inside’’ a semi-transparent object albeit with limited depth-
of-focus and artifacts caused by the other planes of the sample. For
modern aberration-corrected transmission electron microscopes, this
depth-of-field can be as small as a few nanometers. The validity domain
of the approximations used in this paper therefore limit our method
to weakly scattering objects for which multiple scattering is negligible
but Ewald sphere curvature is significant. As discussed elsewhere in the
context of the inversion of multiple scattering [8], multiple scattering
may also occur with a flat Ewald sphere for samples consisting of heavy
elements.

Recently, Gureyev et al. [9,10] gave a comprehensive treatment of
the Ewald curvature problem and proposed a solution method they
call ‘‘pattern matching tomography.’’ In a separate work, Ren et al.
[11] proposed an iterative strategy based on finding a 3D potential
that best fits the measured intensities with regularization, for inorganic
non-periodic samples. They also incorporate the multislice algorithm,
allowing their technique to account for multiple scattering. The algo-
rithm we propose here is similar in nature to the method developed
by Ren et al. [11], with the difference being that we use ‘‘projection
operators’’ (operations that make the minimum change to an input) to
seek out a 3D potential that fits the measured intensities, as opposed
to cost function minimization by calculating gradients. Iterative proce-
dures similar in spirit of our work have been proposed previously for
example by Allen et al. [12] where they reconstruct 2D objects (exit
wave functions) from a through-focus series of 2D images.

This paper is structured as follows: Section 2 introduces the mathe-
atical model that we will use to describe the imaging process and our
riterion for the Ewald curvature to become significant. Section 3 out-
ines our proposed algorithm. Section 4 shows the results of simulations
ith implementation details, before drawing conclusions in Section 5.

. The model

The objective of our work is to reconstruct a 3D image of an
bject given a collection of 2D images formed with the object in
ifferent orientations and located at different distances from the focal
lane. Assuming no multiple scattering (the first-order Born approxi-
ation), ideal plane-wave illumination, and an ideal imaging system,
he measurement from the experiment can be calculated as follows.
Starting with the Schrödinger equation as detailed in Appendix A,

t can be shown that the scattered wavefront 𝜓(𝒓) from an incoming
lane wave incident upon an object described by a potential energy
istribution 𝑉 (𝒓) under the Born approximation is given by

(𝑥, 𝑦, 𝑧) = 𝑒𝑖𝑘0𝑧
[

1 − 𝑖 𝜋
𝐸𝜆 ∫ 𝑑3𝑟′ ∫

𝑑𝑘𝑥
2𝜋 ∫

𝑑𝑘𝑦
2𝜋

𝑒𝑖𝑘𝑥(𝑥−𝑥
′)

× 𝑒𝑖𝑘𝑦(𝑦−𝑦
′)𝑒𝑖

(√

𝑘20−𝑘
2
𝑥−𝑘2𝑦−𝑘0

)

(𝑧−𝑧′)𝑉 (𝒓′)
]

, (1)

where 𝒓 = (𝑥, 𝑦, 𝑧), 𝑧 > 𝑧′, 𝑘𝑥 and 𝑘𝑦 are the spatial frequency
components along the transverse directions 𝑥 and 𝑦, 𝑘0 = 2𝜋∕𝜆, 𝐸 and 𝜆
2

are the energy and wavelength of the incident plane wave, respectively.
For 𝑧 < 𝑧′ a virtual image is produced. Introducing the scaled object
potential

𝑓 (𝒓) = 𝜋
𝐸𝜆

𝑉 (𝒓) (2)

and the wavevector transfer

𝒒 = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧)

= 𝒌 − 𝒌0
= (𝑘𝑥, 𝑘𝑦, 𝑘𝑧 − 𝑘0) , (3)

where 𝒌 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is the outgoing wavevector, 𝒌0 = (0, 0, 𝑘0) is
the incoming wavevector, 𝑘𝑧 =

√

𝑘20 − 𝑘
2
𝑥 − 𝑘2𝑦, and 𝑞𝑧 = 𝑘𝑧 − 𝑘0. The

cattering intensity, |𝜓(𝑥, 𝑦, 𝑧)|2, can be put into the form

|

|

|

𝜓(𝑥, 𝑦, 𝑧)||
|

2
=
|

|

|

|

|

1 − 𝑖∫ 𝑑𝑧′ ∫
𝑑𝑞𝑥
2𝜋 ∫

𝑑𝑞𝑦
2𝜋

𝑒𝑖(𝑞𝑥𝑥+𝑞𝑦𝑦)

× 𝑒𝑖𝑞𝑧(𝑧−𝑧
′)
∫ 𝑑𝑥′ ∫ 𝑑𝑦′𝑒−𝑖(𝑞𝑥𝑥

′+𝑞𝑦𝑦′)𝑓 (𝒓′)
|

|

|

|

2
. (4)

q. (4) can be written as

𝜓(𝑥, 𝑦, 𝑧)||
|

2
=
|

|

|

|

1 − 𝑖∫ 𝑑𝑧′−1
⟂ 𝑒𝑖𝑞𝑧(𝑧−𝑧

′)⟂𝑓 (𝒓′)
|

|

|

|

2
, (5)

here ⟂ and −1
⟂ are the 2D Fourier transform and the inverse 2D

ourier transform, respectively, in the transverse directions 𝑥 and 𝑦
o the propagation axis. In practice, for non-plane wave illuminations,
he coherent integration over 𝑧′ along the beam direction is justified
y the beam coherence length 𝜆𝐸∕(2𝛥𝐸) exceeding the sample thick-
ess, where 𝛥𝐸 is the fluctuation in the energy of the electron beam.
xpanding Eq. (5) gives

𝜓(𝑥, 𝑦, 𝑧)||
|

2
= 1 + 2 Im

(

∫ 𝑑𝑧′−1
⟂ 𝑒𝑖𝑞𝑧(𝑧−𝑧

′)⟂𝑓 (𝒓′)
)

+
|

|

|

|

∫ 𝑑𝑧′−1
⟂ 𝑒𝑖𝑞𝑧(𝑧−𝑧

′)⟂𝑓 (𝒓′)
|

|

|

|

2
. (6)

ince the Born approximation only keeps terms linear in the potential,
he quadratic term in the potential in Eq. (6) will be correct only at
oints where the cross term between the direct and scattered waves is
egligible. Because we are in the bright-field regime, we must either
rop the second order term or include the second Born approximation
n this cross term. In typical bright-field electron microscopy, the
econd order term in 𝑓 (𝒓) is much smaller than unity and thus we
hoose to ignore it here. We also drop the constant bright-field term
n Eq. (6) under the assumption that it can be removed at an early stage
n the data processing. Thus the 2D images obtained in a bright-field
lectron microscope in our model are proportional to

𝑧(𝑥, 𝑦) = Im
(

∫ 𝑑𝑧′−1
⟂ 𝑒𝑖𝑞𝑧(𝑧−𝑧

′)⟂𝑓 (𝒓′)
)

, (7)

here I𝑧(𝑥, 𝑦) is understood as the continuous 3D scattering intensity
valuated at a specific value of 𝑧. That value of 𝑧 is referred to here as
he ‘‘focal distance’’ that defines the focal plane of the image.
Eq. (7) is the governing equation that we use in this paper to de-

cribe the electron microscopy imaging process. We do not incorporate
he effect of the lens transfer function in this current work, however
e present a derivation of it now for context and completeness. Define
he scattering angle 𝜃 as the angle between 𝒌 and 𝒌0 (see Fig. 2). For 𝜃
mall, 𝑞𝑧 can be approximated as

𝑧 = 𝑘0(cos 𝜃 − 1) ≈ −2𝜋
𝜆
𝜃2

2
(8)

= 𝑘𝑧 − 𝑘0 ≈ − 𝜆
4𝜋

(

𝑞2𝑥 + 𝑞
2
𝑦

)

. (9)

With the inclusion of spherical aberration 𝐶𝑠, the scattering intensity
ecomes

𝑧(𝑥, 𝑦) = Im
(

𝑑𝑧′−1 exp
(

−𝑖𝜒(𝑞𝑥, 𝑞𝑦, 𝛥𝑓 )
)

⟂𝑓 (𝒓′)
)

, (10)
∫ ⟂
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Fig. 1. Two schematic examples of how views are calculated. Wavefronts emanating from sections of the object (dashed line) separated by 𝛥𝑧 and indexed by 𝑚 are propagated
to a common plane (thick solid line) a distance 𝑧𝑛 along the 𝑧 axis from a chosen origin and coherently summed. The imaginary part of the resultant 2D image, 𝐼𝑛(𝑥, 𝑦), is what
is referred to as a ‘‘view’’. Note the two examples have the object in different orientations (𝑅𝑛 and 𝑅𝑛+1) and different focal distances (𝑧𝑛 and 𝑧𝑛+1).
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here 𝛥𝑓 = 𝑧−𝑧′ is the deviation from Gaussian focus and 𝜒(𝑞𝑥, 𝑞𝑦, 𝛥𝑓 )
s the familiar lens transfer function

(𝑞𝑥, 𝑞𝑦, 𝛥𝑓 ) =
𝜆
4𝜋

(

𝑞2𝑥 + 𝑞
2
𝑦

)

𝛥𝑓 − 2𝐶𝑠
( 𝜆
4𝜋

)3 (
𝑞2𝑥 + 𝑞

2
𝑦

)2

= 2𝜋
𝜆

( 1
2
𝜃2𝛥𝑓 − 1

4
𝐶𝑠𝜃

4
)

. (11)

s mentioned above, our proof-of-principle work presented here in
his paper do not consider the lens transfer function and we work
ith Eq. (7) instead of (10).
In order to simulate Eq. (7) on a computer, we discretize 𝑓 (𝒓) into
total of 𝑀 2D sections along the direction of propagation, each
eparated by a distance 𝛥𝑧. Then we may write

𝑧(𝑥, 𝑦) ≃ Im

(𝑀−1
∑

𝑚=0
−1
⟂ 𝑒𝑖𝑞𝑧(𝑧−𝑚𝛥𝑧)⟂𝑓 (𝑥, 𝑦, 𝑚𝛥𝑧)

)

(12)

p to a proportionality constant 𝛥𝑧. Since in an electron microscopy
xperiment, many images with the sample in different orientations
nd different distances from the focal plane are typically measured,
e write the 𝑛th measured data image, 𝐼𝑛(𝑥, 𝑦), referred to here as a
‘view’’, as

𝑛(𝑥, 𝑦) = Im

(𝑀−1
∑

𝑚=0
−1
⟂ 𝑒𝑖𝑞𝑧(𝑧𝑛−𝑚𝛥𝑧)⟂𝑓𝑛(𝑥, 𝑦, 𝑚𝛥𝑧)

)

, (13)

here 𝑧𝑛 is the focal distance for the 𝑛th view and

𝑛(𝒓) = 𝑛𝑓 (𝒓) (14)

s the scaled object potential rotated by a 3D rotation operator 𝑛 that
otates a 3D function to the 𝑛th orientation. If we define the free-space
ropagator as

(𝜁 ) ≡ −1
⟂ 𝑒𝑖𝑞𝑧𝜁⟂ , (15)

here 𝜁 is the propagation distance, we may simplify Eq. (13) to

𝐼𝑛(𝑥, 𝑦) = Im

(𝑀−1
∑

𝑚=0
(𝑧𝑛 − 𝑚𝛥𝑧)𝑓𝑛(𝑥, 𝑦, 𝑚𝛥𝑧)

)

. (16)

The above expressions show that each view can be understood as the
3

imaginary part of a coherent superposition of the scattering amplitudes
from a series of thin 2D sections that are all propagated to a common
plane. This process is depicted schematically in Fig. 1 for two example
views. The objective of our work can then be stated as follows: recon-
struct the 3D scaled object potential 𝑓 (𝒓) given a set of 𝑁 2D views,
{𝐼𝑛(𝑥, 𝑦)}.

2.1. Criterion for significant Ewald curvature

The effect of Ewald curvature is contained in the term 𝑞𝑧𝑚𝛥𝑧 in the
exponential of Eq. (13). In terms of more useful quantities, this effect of
the Ewald curvature depends on three factors: (1) the wavelength of the
incoming plane wave, 𝜆, (2) the desired resolution, 𝑑, and (3) the size
of the sample itself, 𝐿. For single-particle cryo-EM we assume a roughly
spherical particle, where 𝐿 becomes the propagation distance along the
beam path. For a slab-shaped sample, 𝐿 is the particle thickness. The
relationship between the three factors, 𝜆, 𝑑 and 𝐿 is derived in this
section and has been shown previously by DeRosier [13], Spence [5],
Downing and Glaeser [14].

Consider an object of uniform density with thickness 𝐿 in the 𝑧
direction. Such an object has the Fourier transform in the 𝑞𝑧 direction
proportional to

𝐹 (𝑞𝑧) = ∫

𝐿∕2

−𝐿∕2
𝑑𝑧 𝑒𝑖𝑞𝑧𝑧

= 𝐿
sin

(

𝑞𝑧𝐿∕2
)

𝑞𝑧𝐿∕2
. (17)

microscope lens collects elastic scattering amplitudes that are propor-
ional to this Fourier transform. For a given view, the amplitudes are
onstrained to lie on the Ewald sphere, and are limited by the maximum
cattering angle that the lens can collect. The values sampled by the
wald sphere are indistinguishable from the values sampled on a planar
lice through the origin in Fourier space within regions where 𝐹 (𝑞𝑧) is
elatively constant. The first zero of 𝐹 (𝑞𝑧), in this case a sinc function,
ccurs at 𝑞𝑧𝐿∕2 = 𝜋, so the effect of Ewald curvature is definitely
ignificant when

≥ 2𝜋 . (18)
𝑧 𝐿
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Fig. 2. Reciprocal space construction for determining the condition for Ewald curvature
to become significant. The circle shows the Ewald sphere. The dashed line indicates
the position of the first zero of the sinc function described in the main text. 𝑂 is the
rigin in Fourier space.

riting 𝒒 in terms of spherical coordinates gives,

𝒒 = 𝑘0 (sin 𝜃 cos𝜙 𝑥̂ + sin 𝜃 sin𝜙 𝑦̂ + cos 𝜃𝑧̂ − 𝑧̂)

= 2𝑘0 sin(𝜃∕2)
[

cos(𝜃∕2) cos𝜙𝑥̂ + cos(𝜃∕2) sin𝜙𝑦̂ − sin(𝜃∕2)𝑧̂
] (19)

o that Eq. (18) becomes

≥ 𝜆
2 sin2(𝜃∕2)

. (20)

ith

= |𝒒| = 2𝑘0 sin(𝜃∕2) =
4𝜋 sin(𝜃∕2)

𝜆
, (21)

the resolution 𝑑 defined so that 𝑞𝑑 = 2𝜋 is

𝑑 = 𝜆
2 sin(𝜃∕2)

. (22)

Relating the resolution from Eq. (22) to (20) then yields1

𝐿 ≥ 2𝑑2
𝜆

(23)

s the condition for the effect of the Ewald sphere to be significant.
q. (23) is equivalent to the requirement that the Fresnel number 𝐹 =
2∕(𝐿𝜆) exceeds 0.5 for the effect of the Ewald sphere to be ignored, in
greement with [14]. If 𝐿 is interpreted as a propagation distance along
he beam direction, and 𝑑 the resolution limit imposed by a lens, then
𝑑2∕𝜆 is the depth-of-field, i.e., the range of planes considered to be in
ocus at resolution 𝑑, referred to the object space. Eq. (23) therefore
expresses the condition that the depth-of-field is less than the sample
thickness, so that ‘‘optical sectioning’’ (with resolution 2𝑑2∕𝜆 reckoned
along 𝑧) is possible for 3D imaging by recording images for many values
of 𝑧 in Eq. (7). For a defocus value of 2𝑑2∕𝜆, 𝑑 also gives the width of
the first Fresnel edge fringe, or the width of zones in a Fresnel zone
plate with focal length 2𝑑2∕𝜆.

Eq. (23) written in another way becomes

𝜀 = 2𝑑2
𝜆𝐿

≤ 1, (24)

1 The phase factor in the Fresnel propagator gives 𝐿 = 𝑑2∕(4𝜋𝜆) which
s equivalent to requiring 𝑞𝑧𝐿 ≥ 1∕4 instead of 𝑞𝑧𝐿 ≥ 2𝜋, as is used in the
derivation here for Ewald curvature to become significant.
4

f

where we have defined the dimensionless number 𝜀, which is the ratio
of the depth-of-field to the object thickness, and is equal to twice the
Fresnel number. Eq. (24) says: if 𝜀 is less than or equal to one, the effect
f Ewald curvature is significant. Fig. 2 shows how the parameters 𝜆, 𝑑
and 𝐿 can be related in Fourier space at the condition where the effect
of the Ewald sphere becomes significant under our criterion. Fig. 3
shows geometrically the effect on the region where the Ewald sphere is
considered ‘‘flat’’ when one of those three parameters is altered while
the other two remain fixed.

As an example, for 100 keV electrons (𝜆 ≈ 0.037 Å) and an object of
thickness 𝐿 = 60 nm, the resolution at which Ewald curvature becomes
relevant is 𝑑 = 3.33 Å. Fig. 4 shows the resolution at which the effect
f Ewald curvature becomes significant for different object thicknesses
t four different beam energies. Fig. 5 shows example views of a virus
article calculated at three different incident beam energies and two
ifferent focal distances.

. Algorithm

Many problems can be posed in terms of the satisfaction of multiple
onstraints. The solution to the original problem requires that all of
he constraints be satisfied. The geometric interpretation of this is that
he solution is located at the intersection of all surfaces defined by the
onstraints in a high dimensional space. One way to arrive at the inter-
ection, and hence solve the original problem, is via algorithms called
terative projection algorithms (IPAs). Operations to ‘‘project’’ onto
ndividual constraint surfaces, referred to as ‘‘projection operators’’, are
onstructed where they make the minimum possible change to an iter-
te, denoted here by 𝐟 , such that a specific constraint is satisfied. The
oldface indicates that 𝐟 is the vectorized representation of a discrete
unction, but can also be the vectorized representation of a collection
f functions in general, as is the case for our proposed algorithm.
he projection operators can be combined to form deterministic rules
hat update 𝐟 in such a way as to progressively satisfy all constraints.
ee Gerchberg and Saxton [15], Fienup [16], Bauschke et al. [17], Elser
18], Luke [19], Elser et al. [20], Marchesini [21], Millane and Lo
22] and references therein for more in-depth discussions on IPAs and
onstraint-satisfaction problems.
Typically the update rule for the IPA is formulated such that the

ext iterate is generated from a combination of two projection oper-
tors, denoted here by 𝑃𝑆 and 𝑃𝑀 , acting on the current iterate at
he 𝑗th iteration, 𝐟 (𝑗). The simplest IPA is the Error Reduction (ER)
lgorithm [15,16] where the 𝑗th iterate is updated according to the
ule:
(𝑗+1) = 𝑃𝑆𝑃𝑀 𝐟 (𝑗) . (25)

he ER algorithm moves the iterate steadily towards a fixed-point but
s unable to escape and explore other regions of the multi-dimensional
pace should that fixed-point turn out not to be a solution. Such
utcomes are common when the constraints involved are non-convex
n the defined space. A more effective update rule is the Relaxed-
veraged-Alternating Reflections (RAAR) algorithm [19] in which the
th iterate is evolved according to the rule:
(𝑗+1) = 𝛽𝐟 (𝑗) − 𝛽𝑃𝑆 𝐟 (𝑗) + (1 − 2𝛽)𝑃𝑀 𝐟 (𝑗) + 2𝛽𝑃𝑆𝑃𝑀 𝐟 (𝑗) , (26)

here 𝛽 is a real-valued parameter of the algorithm.
The above formulation deals naturally with two constraints. When

here are more than two constraints, an effective strategy was proposed
y Gravel and Elser [23] in an approach they have coined ‘‘divide-and-
oncur’’. In this approach the iterate 𝐟 contains as many copies of the
iscrete function 𝑓 as there are constraints: this is the so-called ‘‘divide’’
tep of the algorithm. In one of the projection operators each copy of
is made to satisfy a single individual constraint (hence the reason

or having one 𝑓 for each constraint), the other projection operator
eplaces the set of all 𝑓 with the average 𝑓 , calculated by 1

𝑁
∑𝑁
𝑛=1 𝑓𝑛

or 𝑁 equally weighted constraints: this is the so-called ‘‘concurrence’’
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Fig. 3. The effect of the curvature of the Ewald sphere can be ignored by choosing (a) low enough resolution 𝑑, (b) small enough wavelength 𝜆, or (c) small enough object size
𝐿. The thick solid curve shows the region in Fourier space where the Ewald curvature is considered to be not significant. The dashed line indicates the position of the first zero
of the sinc function described in the main text. 𝑂 is the origin in Fourier space.
Fig. 4. Object size 𝐿 versus resolution 𝑑 at which Ewald curvature is considered to be significant according to Eq. (24) for electrons at four different kinetic energies.
tep, which enforces the requirement that all copies of 𝑓 must describe
he same discrete function. We shall identify the iterate in the case
f 𝑁 constraints with curly brackets 𝐟 = {𝑓𝑛} where this notation is
nderstood to mean the iterate 𝐟 contains the set of all 𝑁 𝑓𝑛, and more
recisely, 𝐟 is the concatenated vectorization of all 𝑁 discrete functions
𝑛.

.1. Our problem

In our problem we have 𝑁 constraints where each of the constraints
orresponds to a single view, 𝐼𝑛(𝑥, 𝑦), recorded by the microscope.
herefore, following the divide-and-concur recipe, the iterate 𝐟 consists
f a set of 𝑁 volumes {𝑓𝑛(𝑥, 𝑦, 𝑧)}. The projections 𝑃𝑆 and 𝑃𝑀 for our
roblem then require operators that map a single volume to a set of
volumes, and the corresponding inverse operators that take the set

f 𝑁 volumes and map them back to a single common volume. These
perators are defined as follows. The forward and inverse propagation
perators, as introduced in Section 2, are

(𝑧) = −1𝑒𝑖𝑞𝑧𝑧 (27)
5

⟂ ⟂
−1(𝑧) = −1
⟂ 𝑒−𝑖𝑞𝑧𝑧⟂ = (−𝑧) . (28)

Define

𝑚𝑛 = (𝑧𝑛 − 𝑚𝛥𝑧) (29)

−1
𝑚𝑛 = −1(𝑧𝑛 − 𝑚𝛥𝑧), (30)

so that we may write

𝜌𝑚𝑛(𝑥, 𝑦) = 𝑚𝑛 𝑓𝑛(𝑥, 𝑦, 𝑚𝛥𝑧) (31)

𝑓𝑛(𝑥, 𝑦, 𝑚𝛥𝑧) = −1
𝑚𝑛 𝜌𝑚𝑛(𝑥, 𝑦) , (32)

where 𝜌𝑚𝑛(𝑥, 𝑦) is the 𝑚th 2D section from 𝑓 (𝑥, 𝑦, 𝑧) rotated by 𝑛 and
propagated to focal distance 𝑧𝑛. We further define the operators  and
−1 such that

𝑓 (𝑥, 𝑦, 𝑧) =
{

𝑛𝑓 (𝑥, 𝑦, 𝑧)
}

=
{

𝑓𝑛(𝑥, 𝑦, 𝑧)
}

= 𝐟 (33)

−1𝐟 = −1
{

𝑓𝑛(𝑥, 𝑦, 𝑧)
}

= 1
𝑁

𝑁
∑

𝑛=1
−1
𝑛 𝑓𝑛(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧) . (34)

The operator  takes 𝑓 (𝑥, 𝑦, 𝑧) and makes 𝑁 copies of it with each copy
rotated by  to form the set {𝑓 (𝑥, 𝑦, 𝑧)}. The operator −1 takes the
𝑛 𝑛
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Fig. 5. Example views of a virus particle at three different electron kinetic energies and two different focal distances. The virus in this simulation is 29 nm across. The grayscales
are set to the same maximum and minimum values in all subfigures.
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Fig. 6. The action of the operator  and its inverse. The 3D arrays each represent
n individual 𝑓 (𝑥, 𝑦, 𝑧). The square brackets denote the set {𝑓𝑛(𝑥, 𝑦, 𝑧)}, which is the
iterate 𝐟 in our iterative projection algorithm.

set {𝑓𝑛(𝑥, 𝑦, 𝑧)}, inverse rotates each 𝑓𝑛(𝑥, 𝑦, 𝑧) in that set and outputs
the average of those 𝑁 inverse rotated volumes. The action of  and
−1 is summarized graphically in Fig. 6. Using the defined operators,
the 𝑛th view from Eq. (16) can be written as

𝐼𝑛(𝑥, 𝑦) = Im

(𝑀−1
∑

𝑚=0
𝜌𝑚𝑛(𝑥, 𝑦)

)

= Im

(𝑀−1
∑

𝑚=0
𝑚𝑛𝑓𝑛(𝑥, 𝑦, 𝑚𝛥𝑧)

)

. (35)

Note that the information contained in the set of all 𝑀𝑁 𝜌𝑚𝑛(𝑥, 𝑦),
i.e., {𝜌𝑚𝑛(𝑥, 𝑦)}, is in principle exactly the same as that contained in
the set of all 𝑁 𝑓𝑛(𝑥, 𝑦, 𝑧), i.e., {𝑓𝑛(𝑥, 𝑦, 𝑧)}, due to the unitarity of
the forward and inverse propagation operators  and the rotation
operator . In practice however there will be some loss of information
going forward and coming back due to the interpolations required for
rotations onto a Cartesian computational grid.

3.2. Projection operators

Here we define the two projection operators, 𝑃𝑀 and 𝑃𝑆 , for our
roblem as follows. First, denote 𝜌𝑚𝑛(𝑥, 𝑦) at the 𝑗th iteration of the
lgorithm by 𝜌(𝑗)𝑚𝑛(𝑥, 𝑦). The iterate at the 𝑗th iteration can be written
imilarly as 𝐟 (𝑗) and the views given by that iterate as 𝐼 (𝑗)(𝑥, 𝑦). The
6

𝑛

views 𝐼 (𝑗)𝑛 (𝑥, 𝑦) will in general not be equal to the measured data views
𝐼 data
𝑛 (𝑥, 𝑦) and the projection operator 𝑃𝑀 seeks to make them equal
with the minimum amount of change to 𝜌(𝑗)𝑚𝑛(𝑥, 𝑦). The appropriate
operation can be shown to be (see Appendix B for more details)

𝑀𝑛 𝜌
(𝑗)
𝑚𝑛(𝑥, 𝑦) = 𝜌(𝑗)𝑚𝑛(𝑥, 𝑦) + 𝑖

1
𝑀

(

𝐼 data
𝑛 (𝑥, 𝑦) − 𝐼 (𝑗)𝑛 (𝑥, 𝑦)

)

, (36)

where 𝑃𝑀𝑛 operates on the 𝜌
(𝑗)
𝑚𝑛(𝑥, 𝑦) derived from 𝑓𝑛(𝑥, 𝑦, 𝑧), and

𝑃𝑀 𝐟 (𝑗) =
{

𝑃𝑀𝑛 𝜌
(𝑗)
𝑚𝑛(𝑥, 𝑦)

}

(37)

is the result of operating on all 𝑁 𝑓𝑛(𝑥, 𝑦, 𝑧). Eq. (37) will make the
east amount of change to the set {𝜌(𝑗)𝑚𝑛(𝑥, 𝑦)} in the Euclidean sense
uch that the views calculated from the output of 𝑃𝑀 will equal the
easured views 𝐼 data

𝑛 (𝑥, 𝑦) for all 𝑛 given any input 𝜌(𝑗)𝑚𝑛(𝑥, 𝑦). 𝑃𝑀 may be
nderstood as a ‘‘data satisfaction’’ projection operator that generates
D models that agree with the measured 2D views (one model for
ach view). This kind of problem is analogous to the situation studied
y Chen et al. [24] where an object is reconstructed from the averaged
iffracted intensities from a number of object ‘‘clusters’’. The ‘‘clusters’’
n this case are the individual sections in each 3D volume. The data
atisfaction projection operator 𝑃𝑀 results in a set of inconsistent
odels that need to be addressed by an additional projection operator,
hich we describe next.
The second projection operator, 𝑃𝑆 , consists of the following steps:

1) Inverse propagate each 𝜌(𝑗)𝑚𝑛(𝑥, 𝑦) from the set {𝜌(𝑗)𝑚𝑛(𝑥, 𝑦)} with the
perator −1

𝑚𝑛. (2) Form 𝑁 3D volumes from the set of all 𝑀𝑁 inverse
ropagated sections. (3) Inverse rotate each volume to a common orien-
ation by −1

𝑛 . (4) Average the 𝑁 volumes together (the concur step).
5) Apply any other constraints such as support, reality or positivity
hat may be available, collectively denoted here by the operator .
6) Rotate each volume such that their orientation corresponds to
heir respective views by 𝑛, and then finally, (7) forward propagate
he result with the forward propagation operator 𝑚𝑛 and redistribute
he propagated sections to form an updated set of {𝜌(𝑗)𝑚𝑛(𝑥, 𝑦)}. The
rojection operator 𝑃𝑆 as described by these steps can be written
oncisely as

𝑆 𝐟 (𝑗) =   −1𝐟 (𝑗) (38)
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Fig. 7. Flow diagram of the proposed algorithm with the iterative projection algorithm chosen to be in the error reduction (ER) configuration for ease of illustration. Each outer
green box contains a separate iterative projection algorithm, running on a separate ‘‘group’’ of data. The 𝑛th 2D data view is denoted 𝐼data𝑛 . The variable 𝐴 is the number of data
views assigned to the first 𝑁 − 1 groups. 𝐺 is the total number of groups. 𝑗 and 𝑘 are the inner and outer loop indices, respectively. The blue 𝑃𝑆 and red 𝑃𝑀 boxes contain the
projection operators, with 𝑃𝑀𝑛 as defined in Eq. (36) in the main text. The iterate consists of the set of 3D arrays shown enclosed in the square brackets. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this article.).
3.3. Our algorithm

The number of views, 𝑁 , is typically large in practice, thus the
computer memory required to store the iterate 𝐟 can become an issue.
We have therefore structured our algorithm in a way such that the IPA
is done in groups. The set of all data views {𝐼 (data)𝑛 (𝑥, 𝑦)} is split into
𝐺 groups, each worked on by a separate IPA. The results from each
group are averaged together after some number of IPA iterations and
that averaged volume becomes the new input to each IPA in the next
iteration. This procedure is repeated some number of times. The result
of this restructuring is that only approximately 𝑁∕𝐺 + 1 volumes need
to be stored in memory at any given time (the +1 is for the accumulator
volume). Thus the memory demand of our algorithm can be controlled
by selecting the number of groups 𝐺. We refer to the iterations where
the output of the groups are averaged as the ‘‘outer loop’’, indexed by
𝑘, and the iterations of the IPA itself as the ‘‘inner loop’’, indexed as
before by 𝑗. We denote the total number of iterations in each of these
7

loops by 𝐾 and 𝐽 , respectively. A flow chart of our overall algorithm
is shown in Fig. 7.

A downside of this restructuring is that the operations no longer
consist of making the least amount of change to the iterate to satisfy the
set of all data views. The output of 𝑃𝑀 now satisfies the data views only
in their respective groups. Only in the limit of one group (𝐺 = 1), does
the algorithm revert back to the original algorithm composed solely of
proper projection operations. However this restructuring and grouping
is necessary when there could potentially be hundreds of thousands
of views. Such an algorithm structure is also extremely amenable to
parallelization, both for the individual groups of IPAs and also within
the 𝑃𝑀 projection operator itself where each 𝑃𝑀𝑛 operation can be
carried out in parallel across all 𝑛.

4. Simulations

We tested our algorithm on simulated 3D volumes. The particle
that was used for the simulations was the virus capsid of a tobacco
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Fig. 8. Example data views for the case of long wavelength at three different focal
distances 𝑧𝑛 and orientations 𝑛 with significant Ewald curvature (𝜀 = 0.5). The
grayscales are set to the same maximum and minimum values in all subfigures.

necrosis virus (protein data bank (PDB) identification: 1TNV) deter-
mined by x-ray crystallography [25]. The virus capsid at the center
of the unit cell was taken as the particle to be reconstructed with a
size of approximately 𝐿 = 29 nm. Since the PDB file only provided the
atomic coordinates of the capsid, the interior of the virus was filled
with the average electron density of the capsid for our simulations. The
Python software package ‘‘reborn’’ [26] was used to convert the PDB
file into a 3D array of real and positive values which we take as the
scaled object potential 𝑓 (𝒓). The views were calculated via Eq. (16) with
the freespace propagators, (27) and (28), implemented using the fast
Fourier transform (FFT) algorithm. Rotations of the 3D volume required
to compute the views, i.e., Eq. (14), was implemented via a series of 2D
rotations of the planar slices of the 3D volume. Each 2D rotation was in
turn performed by three shears as described by Unser et al. [27]. The
rotations were specified by three Euler angles, and the random rotations
that were needed to generate randomly oriented views were obtained
by sampling those Euler angles.

The IPA used for the reconstructions in this paper was the RAAR
algorithm. Reality and positivity constraints were applied, i.e., the
operator , introduced in Eq. (38), consists of setting the imaginary
parts and the negative real parts of 𝑓 (𝒓) to zero. No other additional
constraints were applied, in particular, the support constraint was not
used. The starting 3D volume as input to the algorithm was filled with
uniformly distributed random values between 0 and 1. The progress of
8

the reconstruction was monitored by calculating the errors

𝑒(𝑗,𝑘) =

√

√

√

√

√

√

1
𝐺

𝐺
∑

𝑔=1

∑

𝒓

(

𝑓 (𝑗,𝑘)
𝑔 (𝒓) − 𝑓 true(𝒓)

)2

∑

𝒓 (𝑓 true(𝒓))2
(39)

nd

(𝑗,𝑘) =

√

√

√

√

√

√

√

1
𝐺

𝐺
∑

𝑔=1

∑

𝑛
∑

𝑥,𝑦

(

𝐼 (𝑗,𝑘)𝑔𝑛 (𝑥, 𝑦) − 𝐼data𝑔𝑛 (𝑥, 𝑦)
)2

∑

𝑛
∑

𝑥,𝑦

(

𝐼data𝑔𝑛 (𝑥, 𝑦)
)2

, (40)

where 𝑒(𝑗,𝑘) is the root-mean-squared error between the reconstructed
irus at the 𝑗th and 𝑘th iterations of the inner and outer loop, and
he ground truth, 𝑓 true(𝒓), where the mean is taken over all groups 𝐺;
imilarly, 𝐸(𝑗,𝑘) is the root-mean-squared error between the set of all 𝑁
views generated by the iterate at the 𝑗th and 𝑘th iterations of the inner
and outer loop, calculated according to Eq. (35), and the set of all data
iews, {𝐼data𝑛 (𝑥, 𝑦)}, where again, the mean is taken over all groups. The
rrors are appended at the beginning of the next outer loop to the errors
rom the current outer loop to form the full error vectors, 𝑒 and 𝐸. The
ull error vectors can be written as

𝑒 = [𝑒(𝑗,1),… , 𝑒(𝑗,𝐾)] (41)

= [𝐸(𝑗,1),… , 𝐸(𝑗,𝐾)] . (42)

econstructions from two cases with data views that all have significant
wald curvature are shown in the next two subsections. The first
ase is when the Ewald curvature arises due to a large incident beam
avelength, and the second case is when a high resolution is desired.
wo reconstructions are carried out separately for each case, one uses
he forward and inverse propagation operators as defined in Eqs. (29)
and (30), while the other reconstruction has the forward and inverse
ropagation operators changed to

𝑚𝑛 = (𝑧𝑛) (43)
−1
𝑚𝑛 = −1(𝑧𝑛) , (44)

i.e., with the Ewald sphere assumed flat. The reason for doing this is to
allow a comparison between an algorithm which does not take Ewald
curvature into account with the proposed algorithm which does. The
quality of the two different reconstructions are gauged by the Fourier
shell correlation (FSC) metric [28,29], defined as

FSC(𝑞) =

|

|

|

|

|

|

|

|

∑

|𝐪|=𝑞 𝐹true(𝐪)𝐹 ∗
recon(𝐪)

√

∑

|𝐪|=𝑞 |𝐹true(𝐪)|
2
√

∑

|𝐪|=𝑞 |𝐹recon(𝐪)|
2

|

|

|

|

|

|

|

|

, (45)

where 𝐹true(𝐪) and 𝐹recon(𝐪) are the Fourier transforms of the ground
truth and the reconstructed volumes, respectively.

4.1. Long wavelength

For this first case, the virus was calculated to 𝑑 = 5 Å resolution
and the incident electrons have a wavelength 𝜆 = 0.34 Å, giving 𝜀 = 0.5
to one significant figure (a depth-of-field of 14.3 nm, with size of the
virus 𝐿 = 29 nm). The resultant virus is 68 × 68 × 68 voxels and the
computational volume is zero-padded to 93 × 93 × 93 voxels. A total
of 68 views were calculated from random rotations of the virus, with
randomly chosen focal distances ranging between a full length of the
virus, 𝐿, on either side of the virus. Three example data views for this
case of long wavelength are shown in Fig. 8. The reconstruction from
this dataset is shown in Fig. 9 with the number of groups 𝐺 = 3, an
outer loop of 𝐾 = 3 iterations, and an inner loop of 𝐽 = 40 iterations.
The RAAR algorithm parameter was set to 𝛽 = 0.7. The Fourier shell
correlation for the reconstructions is shown in Fig. 10.
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Fig. 9. Reconstruction results for the long wavelength case. Orthogonal central slices of the ground truth (Row 1); the reconstructed particle with the proposed algorithm (Row
2); the reconstructed particle with the proposed algorithm but ignoring Ewald curvature (Row 3). The two sets of reconstructions are scaled to have the same mean as the ground
truth. The grayscale of the two reconstructions are also set to be the same as that for the ground truth. (Bottom row) Errors as the algorithm progresses on a logarithmic scale.
The solid lines are the object error, 𝑒, and the dashed lines are the data error, 𝐸. The lower blue curves are for the proposed algorithm, the upper orange curves are for the
proposed algorithm but ignoring Ewald curvature. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
4.2. High resolution

For the second case, the virus density was calculated to 𝑑 = 2.2 Å
resolution and the incident electrons have a wavelength 𝜆 = 0.0037 nm
(100 keV electrons), giving 𝜀 = 0.9 to one significant figure (a depth-of-
field of 26 nm, with size of the virus 𝐿 = 29 nm). The resultant virus is
130 × 130 × 130 voxels and the computational volume is zero-padded
to 156 × 156 × 156 voxels. A total of 69 views were calculated from
random rotations of the virus, with randomly chosen focal distances
ranging between a full length of the virus, 𝐿, on either side of the virus.
Three example data views for this case of high resolution are shown in
Fig. 11. The reconstruction from this dataset is shown in Fig. 12 with
the number of groups 𝐺 = 2, an outer loop of 𝐾 = 5 iterations, and an
inner loop of 𝐽 = 80 iterations. The RAAR algorithm parameter was set
to 𝛽 = 0.9. The Fourier shell correlation is shown in Fig. 13.

5. Discussion and conclusion

An algorithm for reconstructing an object from projection images
affected by Ewald sphere curvature in cryo-electron microscopy is
proposed. This algorithm was shown via simulations to be able to
9

reconstruct the correct 3D object from a set of 2D near-field intensities,
which we have called ‘‘views’’, that are affected by significant Ewald
curvature. A criterion for the Ewald curvature to become significant is
derived, relating together the three key parameters of (1) wavelength
of the incoming wave, (2) desired resolution, and (3) thickness of the
sample. Only the reality and positivity constraints are applied in our
reconstructions, i.e., the object is assumed to be real and positive. A
support constraint is not used.

The algorithm is based on the paradigm of iterative projection
algorithms (IPAs), and a projection operation that makes the minimum
change to a set of complex numbers such that the sum of their imag-
inary parts is equal to a desired value is derived. A restructuring of
the traditional IPA loop was proposed which alleviates the memory
requirement of the algorithm when the dataset contains many views.
An implication of this restructuring is that the operations no longer
consist of making the least amount of change to the iterate to satisfy the
set of all data views, because the output of the projection operator 𝑃𝑀
now satisfies the data views only in their respective groups. However
this is necessary for practical applications when there could potentially
be hundreds of thousands of views. Such an algorithm structure is
extremely amenable to parallelization, both for the individual groups
of IPAs and also for the 𝑃 projection operation.
𝑀
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Fig. 10. Fourier shell correlations for the long wavelength case, comparing the ground
ruth virus density with the reconstruction from the proposed algorithm (blue open
quares) and the reconstruction with the proposed algorithm but ignoring Ewald
urvature (orange open circles). The 1∕2-bit threshold is shown as the black dashed
ine. (For interpretation of the references to color in this figure, the reader is referred
o the web version of this article.).

Fig. 11. Example data views for the case of high resolution at three different focal
distances 𝑧𝑛 and orientations 𝑛 with significant Ewald curvature (𝜀 = 0.9). The
grayscales are set to the same maximum and minimum values in all subfigures.
10
For this proof-of-concept work, we have not parallelized the algo-
rithm. The computational complexity of our algorithm in serial im-
plementation is 𝑂(𝑁4 log𝑁) where 𝑁 is the number of voxels in
each dimension of the 3D array. A factor 𝑁3 log(𝑁) is due to the
3D FFT, and the remaining factor of 𝑁 comes from the fact that the
number of 2D views needed for a unique reconstruction is propor-
tional to 𝑁 . For unoptimized Python code and working solely with
double-precision floating-point numbers, the reconstruction detailed
in Section 4.1, the long wavelength case, took around 19 hours. The
econstruction detailed in Section 4.2, the high resolution case, took
round 8.5 days. Both reconstructions were carried out with a single
ore on ASU’s Agave research computing system utilizing Intel Broad-
ell CPUs. Larger objects may require more iterations of the algorithm.
he compute time can likely be reduced if the initial starting iterate of
he algorithm was a preliminary reconstruction obtained by treating the
iews as projections, i.e., ignoring Ewald curvature. In terms of storage
equirement, our code stores the set of all 𝜌𝑚𝑛(𝑥, 𝑦) as the iterate 𝐟 . If
e switch to storing the set of all 𝑓𝑛(𝑥, 𝑦, 𝑧) then that would further
educe the amount of storage needed. The tradeoff is time, because
𝑚𝑛(𝑥, 𝑦) will have to be generated from 𝑓𝑛(𝑥, 𝑦, 𝑧) by zero-padding
nd Fourier transforming at every iteration. As mentioned before, the
reatest speed-up would come from parallelizing the algorithm, which
e are working towards.
In the limit where the Ewald sphere is flat, our algorithm becomes a

omographic reconstruction method, capable of recovering a 3D object
rom conventional tomographic data where each view is just a simple
rojection (sum of densities) through the object.
Our method assumes the use of a conventional through-focus series

or image reconstruction. In comparison with an alternative method
ased on the far-out-of-focus spatial separation of spatial frequen-
ies [3], while our approach lacks the benefits of masking in that
ethod, it may have particular advantages when used with a Zernike
hase plate [30]. Using in-focus images, this preserves low spatial
requencies in image formation, otherwise lost in bright-field out-of-
ocus images of a weak phase object. Phase plates thus avoid the need
or the very large defocus (with loss of high-resolution detail) required
o obtain visibility from the smallest particles, so that our method could
hen give access to these smaller biomolecules in this way. It may also
educe damage by reducing the number of image recordings needed.
ur approach is more computationally intensive, but should be simpler
o implement experimentally.
Our algorithm assumes we know the orientation and defocus of

he object in each view, both of which should be obtainable from
xisting cryo-EM software. For cryo-EM tomography, the resolution
imit imposed by radiation damage means that Ewald sphere curvature
s unlikely to be important, so that we have assumed that this method
ill be applied to single-particle data. Additional analysis to allow for
onformation variation may be considered in future developments of
his method. The contrast transfer function (CTF) is ignored here in
his work. In the event that the CTF is known, and is assumed to be
he same for all views, then it can be incorporated into the current
lgorithm and does not require change to the overall structure of the
ethod. If the CTF is unknown, then the lens aberration parameters
ay be recoverable in addition to the object potential, using a modified
ersion of the proposed algorithm, a line of inquiry we are currently
nvestigating. Further future work includes exploring the effect of
arying some of the parameters of the algorithm, such as the number
f groups, 𝐺, the max inner iteration, 𝐽 , and the max outer iteration,
, and extending the algorithm to deal with multiple scattering.
The code for the simulations carried out in this paper can be found

t: https://gitlab.com/jpchen1/em-reconstruction-with-ewald.

https://gitlab.com/jpchen1/em-reconstruction-with-ewald
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Fig. 12. Reconstruction results for the high resolution case. Orthogonal central slices of the ground truth (Row 1); the reconstructed particle with the proposed algorithm (Row
); the reconstructed particle with the proposed algorithm but ignoring Ewald curvature (Row 3). The two sets of reconstructions are scaled to have the same mean as the ground
ruth. The grayscale of the two reconstructions are also set to be the same as that for the ground truth. (Bottom row) Errors as the algorithm progresses on a logarithmic scale.
he solid lines are the object error, 𝑒, and the dashed lines are the data error, 𝐸. The lower blue curves are for the proposed algorithm, the upper orange curves are for the
proposed algorithm but ignoring Ewald curvature. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
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Appendix A. Potential scattering

Assuming non-relativistic elastic scattering, we start with the time-
independent Schrödinger equation

−ℏ2
2𝑚

∇2𝜓(𝒓) − 𝑒𝑈 (𝒓)𝜓(𝒓) = 𝐸𝜓(𝒓) , (A.1)

where 𝑈 (𝒓) is the electric potential, 𝑒, 𝑚 and 𝐸 are the charge, mass
nd kinetic energy of the electron, respectively. Define 𝑘 =

√

2𝑚𝐸∕ℏ
11

0

and 𝑉 (𝒓) = −𝑒𝑈 (𝒓) we can write down the inhomogeneous Helmholtz’s
equation

(∇2 + 𝑘20)𝜓(𝒓) =
2𝑚
ℏ2
𝑉 (𝒓)𝜓(𝒓) . (A.2)

The integral form of Eq. (A.2) is the Lippmann–Schwinger equation,
which, assuming an incoming plane wave 𝑒𝑖𝑘0𝑧, can be written as

𝜓(𝒓) = 𝑒𝑖𝑘0𝑧 + 2𝑚
ℏ2 ∫ 𝑑3𝑟′𝐺(𝒓, 𝒓′)𝑉 (𝒓′)𝜓(𝒓′) , (A.3)

where 𝐺(𝒓, 𝒓′) is the Green’s function of the homogeneous Helmholtz’s
equation,

𝐺(𝒓, 𝒓′) = − 𝑒𝑖𝑘0|𝒓−𝒓′|

4𝜋|𝒓 − 𝒓′|
. (A.4)

aking the first Born approximation and factoring out the 𝑒𝑖𝑘0𝑧 term
n Eq. (A.3), gives the scattered wave

(𝒓) = 𝑒𝑖𝑘0𝑧
(

1 + 2𝑚
ℏ2 ∫ 𝑑3𝑟′𝐺(𝒓, 𝒓′)𝑉 (𝒓′)𝑒−𝑖𝑘0(𝑧−𝑧′)

)

(A.5)

as the solution to our scattering problem. To cast this solution into

the form of freespace propagators, first write the Helmholtz Green’s
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Fig. 13. Fourier shell correlations for the high resolution case, comparing the ground
truth virus density with the reconstruction from the proposed algorithm (blue open
squares) and the reconstruction with the proposed algorithm but ignoring Ewald
curvature (orange open circles). The 1∕2-bit threshold is shown as the black dashed
ine. (For interpretation of the references to color in this figure, the reader is referred
o the web version of this article.).

unction as

(𝒓, 𝒓′) = ∫
𝑑3𝑘
(2𝜋)3

𝑒𝑖𝒌⋅(𝒓−𝒓′)

𝑘20 − 𝑘
2 + 𝑖𝜂

, (A.6)

where 𝜂 is a positive infinitesimal. Evaluating the 𝑘𝑧 integral in
Eq. (A.6) gives,

𝐺(𝒓, 𝒓′) = −𝑖∫
𝑑𝑘𝑥
2𝜋 ∫

𝑑𝑘𝑦
2𝜋

𝑒𝑖𝑘𝑥(𝑥−𝑥
′)𝑒𝑖𝑘𝑦(𝑦−𝑦

′) 𝑒
𝑖
√

𝑘20−𝑘
2
𝑥−𝑘2𝑦|𝑧−𝑧′|

2
√

𝑘20 − 𝑘
2
𝑥 − 𝑘2𝑦

, (A.7)

where the square root is defined to give decaying exponentials if 𝑘2𝑥 +
𝑘2𝑦 > 𝑘20. Substituting Eq. (A.7) into Eq. (A.5), taking 𝑧 > 𝑧′, and
replacing the square root in the denominator by 𝑘0 due to the small
angle scattering geometry typical in electron microscopy experiments
gives our final result

𝜓(𝒓) = 𝑒𝑖𝑘0𝑧
[

1 − 𝑚𝑖
ℏ2𝑘0 ∫ 𝑑3𝑟′ ∫

𝑑𝑘𝑥
2𝜋 ∫

𝑑𝑘𝑦
2𝜋

𝑒𝑖𝑘𝑥(𝑥−𝑥
′)𝑒𝑖𝑘𝑦(𝑦−𝑦

′)

× 𝑒𝑖
(√

𝑘20−𝑘
2
𝑥−𝑘2𝑦−𝑘0

)

(𝑧−𝑧′)𝑉 (𝑥′, 𝑦′, 𝑧′)
]

. (A.8)

Writing 𝐸 =
ℏ2𝑘20
2𝑚 and 𝜆 = 2𝜋

𝑘0
, the prefactor of the integral can be

written as 𝑚𝑖
ℏ2𝑘0

= 𝑖 𝜋𝜆𝐸 .

ppendix B. Projection operator for constraining the sum of imag-
nary numbers

In this appendix we derive the operation that makes the minimum
hange to a set of complex numbers such that the sum of their imagi-
ary parts becomes equal to a desired value. Denote the desired value
y 𝐼data, and the original set of 𝑁 complex numbers by 𝑧𝑜𝑛 = 𝑥𝑜𝑛 + 𝑖𝑦

𝑜
𝑛.

he sum of all imaginary parts from the 𝑁 complex numbers is then

𝐼𝑜 =
𝑁
∑

𝑛=1
𝑦𝑜𝑛 . (B.1)

We would like the set of complex numbers after the projection opera-
tion, denoted by 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛, to have

∑𝑁
𝑛=1 𝑦𝑛 = 𝐼data.

The function we wish to minimize is the Euclidean distance

=
𝑁
∑

[

(𝑥𝑛 − 𝑥𝑜𝑛)
2 + (𝑦𝑛 − 𝑦𝑜𝑛)

2] . (B.2)
12

𝑛=1
The constraint equation is

𝑔 =
𝑁
∑

𝑛=1
𝑦𝑛 − 𝐼data . (B.3)

Applying the method of Lagrange multipliers leads us to write

𝐿 = 𝑓 + 𝜆𝑔 , (B.4)

where 𝜆 is the Lagrange multiplier. Taking the partial derivatives of 𝐿
with respect to 𝑥𝑛 and 𝑦𝑛 and setting them to zero gives

0 = 𝜕𝐿
𝜕𝑥𝑛

= 2(𝑥𝑛 − 𝑥𝑜𝑛) (B.5)

0 = 𝜕𝐿
𝜕𝑦𝑛

= 2(𝑦𝑛 − 𝑦𝑜𝑛) + 𝜆 , (B.6)

ielding

𝑛 = 𝑥𝑜𝑛 (B.7)

𝑦𝑛 = 𝑦𝑜𝑛 −
𝜆
2
. (B.8)

Summing over all 𝑛 in Eq. (B.8) and rearranging for 𝜆 gives

𝜆 = 2
𝑁

𝑁
∑

𝑛=1

(

𝑦𝑜𝑛 − 𝑦𝑛
)

. (B.9)

ubstituting Eq. (B.9) back into (B.8) and combining the real and
maginary parts using (B.7) finally yields

𝑛 = 𝑧𝑜𝑛 + 𝑖
1
𝑁

(

𝐼data − 𝐼𝑜
)

. (B.10)

Eq. (B.10) is the projection operation that makes the minimum change
to a set of complex numbers, measured by the Euclidean distance, such
that the sum of their imaginary parts is equal to 𝐼data.
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