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Abstract

Understanding adoption of new technology by its consumers
helps us deal with the challenges it faces in any new market.
Moreover, the impact it creates on society in terms of the
environment, health, and justice is significantly based on the
extent of adoption. Alternative fuel vehicles (AFVs) is such
an area that faces challenges in terms of consumers’ diverse
social status and resistance to change. In order to achieve a
cleaner transportation sector, we need to address these
challenges. In this paper, we conduct a study via machine
learning techniques to correlate the adoption of AFVs across
various regions, their socioeconomic ranking, and their
impact on the air quality index (AQI); and furthermore to
predict the AQI as per the region’s AFV adoption. This is an
empirical study with predictive modeling based on a regional
panel data analysis where we use real US census data, air
quality data, and data on the number of AFVs purchased per
region. Research in this area can help to promote appropriate
policies for AFV adoption in the future with due justice to
different population groups. This work exemplifies a modest
utilization of Al techniques to enhance social good. More
specifically, it makes a considerable impact on energy,
climate, transportation, and environmental sustainability.

Introduction?

Transportation is as the largest source of greenhouse gas
emissions in the United States as mentioned by the
Environmental Protection Agency in the literature (EPA
2022). Consequently, both federal and state governments
are acting to combat climate change impacts in the country
(Bipartisan Infrastructure Law 2021). Analogous to many
other states, New Jersey is propagating the use of alternative
fuel vehicles (AFVs) including electric vehicles (EVs) to
achieve the state’s greenhouse gasses (GHG) target
reduction and meet its clean energy goals (NJ GWRA,
2020). As of December 2021, there are only 64,307 electric
vehicles registered in NJ, hence it is going to be an uphill
task to achieve these targets (NJDEP). Innovative methods
need to be adopted for decarbonization of transportation
(Milovanoff 2020). Previous studies have highlighted the
importance of effective policies and socioeconomic factors
for AFV adoption (Xue et al. 2021). A few studies on Air
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Quality Index (AQI) and AFV sales have been conducted
(Guo et al. 2020). This motivates our research constituting
pilot study in this paper. We define our objectives as
exploring Al-based solutions with the following goals.
1. Analyze the link between regional AFV growth
and socioeconomic ranking
2. Estimate the correlation between AFV adoption
and ambient air quality per region
3. Build a model to predict air quality using data on
AFV adoption and socioeconomic census data

Our study is aimed at supporting faster adoption of AFVs
and assisting the policymakers' decision-making.

Understanding the link between social ranking and AFV
adoption can guide us to address different needs of the
population as well as policy selection for a specific
transportation mode. Further, the use of AFV's lowers GHG
emissions locally and has a direct and immediate impact on
the ambient air quality. Our research in this paper on
predictive modeling for air quality based on the AFV
adoption and socioeconomic census data for specific regions
is novel and can guide policymakers to better decisions. The
inclusion of five air pollutants (SO2, O3, NO2, PM2.5, and
CO) also makes it novel, as previous research has mostly
focused on PM2.5. Our present study is focused on the
counties in NJ, based upon which our further work shall
involve adding more states to make our model more robust.
It is also pertinent to note that air quality is not just affected
by transportation but by various other factors such as
industrial markets / processes and energy generation
methods used for a given region. Other challenges in this
initiative relate to the limited availability of data for
analysis, because the use of AFVs has not reached its full
potential. All the results are based on the assumption that
there are no big changes in the concerned factors to have any
additional impact on air quality apart from increased AFV
usage. Incorporating all the different sources of pollution,
and their data collection is a related challenge. Furthermore,
AFV vehicle adoption is hampered by the lack of adequate
consumer awareness as well as the high cost of AFVs
compared to conventional vehicles fueled by gasoline and



diesel. The question that most vehicle users would ask is:
Why should I pay more? The answer to that question lies in
the fundamental theme of social good. It is important to
convey to the masses that their additional costs will yield
significantly higher benefits with respect to cleaner air,
better environmental conditions, and consequently a much
healthier life (which will also save medical costs).

This is precisely where our pilot study in this area aims to
make a modest contribution. We investigate the role of Al
techniques in order to draw correlations between AFV usage
and AQI, and predict AQI based on AFV and related factors,
so as to highlight the AFV impact on the masses. We hope
this work contributes the 2 cents to Al for social good.

Related Work

For equitable and efficient transportation, policymakers
need to identify areas for improvement and actions that can
be taken to improve the current system, e.g. encouraging EV
Access and affordability through an understanding of the
social structure (Fleming 2018). A study to understand the
relationship between the market share of electric vehicles
and the presence of government incentives, and other
influential socioeconomic factors for the US, concluded that
electricity prices were negatively associated with EV use
while urban roads and government incentives were
positively correlated with states’ electric vehicle market
share (Soltani-Sobh et. al. 2017).

EV studies on the equity aspects have focused on
disproportional EV adoption and cost of failing to provide
equal access, ranging from disparities in local pollution
(Holland et. al. 2019; Ju et. al. 2020), to unfair distribution
of public subsidies (Borenstein and Davis 2016), and
disparate changes in neighborhood desirability (Henderson
2020, Rice et. al. 2020). Demographic variables, such as
income, gender, age, education, and household size have
previously been analyzed (Sovacool et. al. 2018; Soltani-
Sobh et. al. 2017; Gallagher and Muehlegger 2011;
Langbroek et. al. 2016). Research on the adoption of EVs in
India included a SWOC (strength weakness opportunity and
challenges) analysis and concluded the need for more
support from the central government both for research and
businesses (Singh et. al. 2021). The proportion of cleaner
transport options in the overall market also decides the
amount of their impact, in one related study in China it was
found that new energy vehicles cannot be considered as an
efficient measure to mitigate air pollution since their
numbers are not yet significant, rather focus on cleaner
energy production method is needed (Su et. al. 2021).
Another piece of research in Barcelona and Madrid shared
similar results where 40% EV introduction was needed to
improve air quality, especially NO, and CO; the sources of
power generation for the region and other emission sources
played important roles in the impacts on air quality
improvement (Soret et. al. 2014). Inferences on these lines
were observed in research using the Community Multi-scale

Air Quality model and Weather Research and Forecasting
model in Taiwan Li et.al. 2016) and another one using
Lagrangian dispersion model used for pollution prediction
for scenario analysis of EV introduction for a highway in
Milan, Italy (Ferrero et. al. 2016). Various techniques in data
mining and machine learning are adapted for predicting
environmental parameters, e.g. air quality vis-a-vis health
(Varde et. al. 2022), energy demand in the residential sector
(Prasad et.al. 2021) and decision support for green data
centers (Pawlish et al. 2012). Such techniques along with
NLP methods are deployed to assess human interactions /
public sentiments on matters pertaining to air quality, public
policy and related aspects (McNamee et. al. 2022, Du et.al.
2020, Field et al, 2022, Du et. al. 2016, Kommu et al. 2022).
Interesting multidisciplinary approaches are proposed in
such works, with opportunities to analyze the diverse data
available and utilize it in urban planning for social good.

Other related research (Das et al. 2018), (Puri et al. 2018)
(Babicheva et al. 2016), (Radakovic et al. 2022), (Eisner et
al. 2011), (Varde et al. 2004), (Zhang et al. 2022) is
noteworthy. Yet, the goals of our study have not been
achieved in earlier work in a comprehensive manner:
analysis of AFV adoption, socioeconomic census, and air
quality data together. This constitutes its novelty.

Hypothesis, Data and Methods

In this study, we emphasize a simple hypothesis: regions
with higher AFV adoption will have better air quality and
lower pollution levels. In line with this hypothesis, we aim
to find understandable and explainable correlations between
AQI and AFV adoption, as per specific regions, which we
can use for predictive modeling of AQI based on future
increases in AFV numbers. This helps to gain more insights
into the relationships between alternative fuel vehicles and
the corresponding air quality, at present and in the future.
Via this study, we hope to make positive impacts thriving
on the theme of Al for social good, via its relevance to clean
air, sustainable environment, and enhanced transportation,
all of which imply good health for the masses.

The regions of focus in this work are various counties in
NJ. The datasets used in this study are: NJ Alternate Fuel
Vehicle historical county-based report with the types of
alternative fuel vehicles sold; socioeconomic census data for
NJ counties on population count, education, unemployment,
poverty rate, and median household income, as well as air
quality data from monitoring stations in NJ. These datasets
are for the years 2016-2022. The datasets are correlated with
the AFV used in each county, based on the type of the AFV.
The number of vehicles is used to calculate the AFV ranking
for each county. In terms of air quality data, we focus on 5
major pollutants: SO2, O3, NO2, PM2.5, and CO. For the
purpose of this study, the AFVs considered are: Battery
Electric Vehicles (BEV), Plug-in Hybrid Electric Vehicles



(PHEV), Neighborhood Electric Vehicles (NEV), and
Hybrid Electric Vehicles (HEV). Their definitions are
annexed to this paper in the Appendix.
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calculate the AQI for each county. The target variable for
prediction is the AQI score.

Linear regression is conducted to predict the AQI via the
AFV count and the socioeconomic (SE) factors including
median household income, poverty, income, and population.
Regression is thereby deployed to capture the relationships
between the dependent variable AQI score and independent
variables from AFV and socioeconomic data, in order to
predict the future values of the target, i.e. AQI. The reason
for choosing linear regression in our study is that it provides
more understandable and explainable mappings between the
input and the output (as opposed to typical deep learning
models based on neural networks) that offer black-box
approaches, often lacking explainability. In this work it is
crucial to fathom how certain factors lead to a given output
(and hence make decisions), e.g. how median household
income can affect AFV usage and thus AQL
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Figure 1: Data Processing Outline

Data preprocessing conducted in this study is illustrated
in Figure 1. The NJ Electric Vehicles Registrations dataset
is used to obtain county-wise summarized AFV data which
includes: semi-annual AFV adoption rate, PEV, non-PEV,
and Public Road Mileage and Vehicle Miles Traveled
(VMT). In order to prepare the final dataset we compile
concatenated AFV data along with socioeconomic data
comprising population, poverty rate, and household income.
Additionally, we preprocess AQI data by implementing
PCA (Principal Components Analysis) on SO2, O3, PM2.5,
and CO for dimensionality reduction. Thereafter, we build a
predictive model using linear regression to predict AQI
using covariates (AFV and socioeconomic data).

We harness Pearson Correlation Coefficient to relate the
major variables in socioeconomic data (population, poverty
rate, household income, education level) with the extent of
AFV adoption. Dimensionality reduction is performed on
raw AQI data. Further, the relationship between the AQI
scores and these variables is defined by Equation 1.

Yi=Zn:BiXi+€ (1

Here i is the index, Y; denotes the AQI of the county i, each
X; denotes a value while each B; depicts its slope coefficient
respectively such that €is an approximate error term
associated with the equation. We apply this for poverty
level, median household income, population of the county
and vehicle count in this pilot study. While building our
predictive model for AQI, dimensionality reduction is used
to avoid overfitting and multi-collinearity. In order to
enhance extraction and visualization of relevant data, we
perform PCA on the 5 aforementioned pollutants to

Algorithm 1: Predictive model for AQI via SE and AFV

Input: D=[c, a] where o: SE, AFV variables, a:actual AQI
Parameter: weights w, learning rate 1, maximum number
of iterations m, error threshold t
Output: predicted AQI scores o
Leti=1,A=100
: while (i <=1) or (A <T) do
o' = inner product of o and w
A=ao —a
y=2dot(c ", A)
w-=1%y
end while
return o’

A A ol ey

Algorithm 1 provides the pseudocode for building our AQI
predictive model based on learning from existing SE, AFV
and AQI data. The experiments are discussed next.

Experimental Results and Discussion

Experiments are conducted using Python’s Scikit Learn. In
the results shown here, 80% of the data is used to train the
predictive model and 20% of the data is used for testing.
Figure 2 plots the semiannual AFV growth by vehicle type.
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Figure 2: Semiannual AFV growth by type (NJ 2016-2022)



We observe an increase in all types of AFVs across all
counties from 2016 to 2020, with a higher increase in the
number of Battery Electric Vehicles (BEV) of 15% from
2016 to 2022. The number of Plug-in Hybrid Electric
Vehicles (PHEV) increases by 5.8%, Neighborhood Electric
Vehicles (NEV) by 3.8%, and Hybrid Electric Vehicles
(HEV) by 1.8%. In total, there are more HEVs, followed by
BEVs, PHEVs, and NEVs. The increase in BEVs seems
more explainable with the advancements in technology as
well as Federal and State subsidies and grants to consumers
to uplift their purchase.

Table 1: AFV rank & socioeconomic rank in NJ Counties

SE Rank | County Population Total AFV
Name AFV Rank
1 Bergen 953819 28304 1
2 Middlesex 860807 25674 2
6 Monmouth 645354 19800 3
3 Essex 854917 19138 4
10 Morris 510981 16782 5
12 Mercer 385898 16063 6
8 Camden 523771 13398 7
11 Burlington 464269 12862 8
13 Somerset 345647 12722 9
5 Ocean 648998 12530 10
Union 572114 11995 11
4 Hudson 702463 11193 12
Passaic 518117 8755 13
14 Gloucester 304477 6331 14
15 Atlantic 274966 6236 15
18 Hunterdon 129924 5362 16
17 Sussex 145543 3625 17
20 Cape May 95661 2888 18
19 Warren 110731 2814 19
16 Cumberland 153627 2302 20
21 Salem 65046 1148 21

We observe that there is a direct correlation between SE
ranking and AFV ranking. Table 1 presents a synopsis of
these rankings. However, there are some deviations as well.
Bergen County has the highest number of AFVs and is
ranked the highest in terms of socioeconomic ranking as
well, followed by Middlesex County and Essex County,
which showed similar patterns. Salem is the county with the
lowest number of AFVs and it also has the lowest
socioeconomic ranking. As the socioeconomic status
increases, the number of AFVs in the county also increases.
Outliers observed here are NJ counties such as Hudson,
Monmouth, and Cumberland, where this trend is not found.
According to Pearson Correlation Coefficient, the vehicle
count, population count, education level, and median

household income are found to be significantly correlated
with the AFV adoption rate. This further shows that
socioeconomic ranking, which accounts for higher median
household income, education levels, and population count
of the county is found to be directly correlated with AFVs
ranking. The highlighted rows show counties with almost
the same socio-economic and AFV ranking.
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Figure 3: Pearson Correlation Coefficients of
socioeconomic census data with AFV ranking

Results of analysis based on Pearson Correlation show
observations where socioeconomic factors are positively
correlated to AQI. Figure 3 illustrates Pearson Correlation
Coefficients linking socioeconomic census data with AFV
ranking. Here the variables included are vehicle count,
education percentage, population count, population change,
percent of population in poverty, the lower and upper bound
(gives 90% confidence interval of the poverty percentage),
unemployment rate and median household income. The
education percentage is highly linked to median household
income, and vehicle count is linked with population count.
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Figure 4: Pearson Correlation Coefficients of AQI and
various socioeconomic factors

Figure 4 portrays Pearson Correlation Coefficients linking
AQI with socioeconomic factors. Variables observed are the
year, population, unemployment, income, poverty rate,



vehicle count, and AQI scores for the counties. We observe
that AQI scores are linked positively with the income levels
and negatively with the population, unemployment, and
poverty in the counties.

In our predictive modeling using linear regression, the R?
score is 0.69 and the Mean Squared Error (MSE) is 0.003
over test data. This implies that AQI predictions can occur
with high accuracy in order to estimate air quality based on
the AFV adoption and socioeconomic factors.
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Figure 5: Predictive model for AQI scores indicating a
close match between predicted and actual values

Figure 5 plots the results of data tested for 3 NJ counties i.e.
Atlantic, Camden, and Mercer over 6 years. These values
are listed in Table 2 in the Appendix for a more detailed
display. As we can see, the predicted AQI values are in line
with the actual AQI for these counties for the years 2016,
2017,2018, and 2019; however, for the years 2020 and 2021
the predicted values are somewhat higher than the actual
monitored AQI values which could be due to the impacts of
pandemic and decreased transportation activity overall. This
brings our attention to incorporating more variables in future
work that shall reflect such changes in transportation
systems and their usage. On the whole, observing these 3
years’ values, our predictive model seems convincing and
can be further enhanced to study the impact that the AFV
adoption can have on the air quality of any region.

Based on this entire study, we find that: there is a lower
pollution and better air quality in the counties with a higher
number of AFVs and with better socioeconomic ranking.
This confirms our initial hypothesis that AQI scores and
AFV counts are positively correlated, and furthermore helps
establish the correlation between the socioeconomic ranking
and AFVs. Our predictions of AQI are accurate based on the
ground truth obtained from existing data, and hence can be
used for further estimations on air quality as per AFV usage.
Policy decisions for regions that have bad air quality can be
undertaken only when the policymakers understand the
impact such decisions can have for the given areas. With
varied options of AFV and varied socioeconomic strata, our

work can take a step towards bringing social equity by
helping to choose the best AFVs and public transit options
as needed based on regional needs, the respective AQI and
related factors such as socioeconomic indicators. Since
planning for clean transportation involves consideration of
future years, our model to predict AQI score for areas with
an estimate of AFV adoption can help governments reach
their GHG targets along with social good locally, thus
contributing to it initially on a small scale, and in helping to
enhance AFV awareness on a larger scale, in the future.

Conclusions and Roadmap

In the race to mitigate negative effects of climate change,
governments and people need to move towards clean energy
and clean transportation methods. Clean technologies such
as EVs and other AFVs are backbones for future sustainable
living, their adoption however needs government support
both for businesses and consumers owing to their higher
prices as well as limited infrastructure availability. Hence,
issues of social equity and social good come to the forefront
and government support should not be limited to higher-
income consumers alone, considering that the low-income
consumers often live in areas with poor air quality. As
found in our research study, counties with higher AFVs have
better air quality and vice versa. Moreover, those are the
counties with high socioeconomic ranking. Our research
focusing on predicting the AQI for counties based on their
socioeconomic status and AFV adoption is our initial effort
to help policymakers’ decisions based on social good and to
achieve sustainable development goals.

This is a pilot study focusing on the transportation sector
and assuming no big changes in the other sectors affect
ambient air quality in NJ. Lack of uniform air quality
monitored data adds to some of the challenges in this study.
Future research in this realm involves adding more data
from other states and covering the USA. This study focuses
on the use of AFVs which has not yet reached its full
potential in NJ and the US. More intensive studies can be
conducted on air quality as AFV adoption rises, and we have
more data for analyses.

Based on our pilot study, here are a few important

takeaways with the scope for future work.

e Policymakers can offer programs in areas with
high socioeconomic ranking to encourage more
AFV adoption, as these communities can “afford to
pay more” for the social good of reducing AQI to
improve the environment and be healthier.

e  Areas with lower socioeconomic status need more
attention because social equity is an important
aspect of social good; incentives such as tax cuts,
pricing of AFVs proportional to income etc. are
needed to proliferate the use of AFVs in order to
make them more accessible to low income areas.

e More datasets on AFVs and AQI must be stored
with open access to facilitate further Al-based
studies; software should be built for the actual AQI



prediction based on AFV adoption, to provide at-a-
glance information, encouraging more AFV usage.

e  Mobile applications (apps) can be developed that
link AFVs and AQI, and predict daily AQI levels
to make the masses more aware of air quality and
environmental sustainability.

e  Further studies with explainable Al models and
black-box models should be performed on AFV,
SE and AQI data to explore relative merits of the
models and use the results for recommendations.

e Models can be introduced such that one of them
takes only AFVs adoption into account, while
another uses socioeconomic data as well, so as to
compare results from a “social good” angle.

In sum, we highlight the fact that Al plays various roles in
promoting social good. In our modest study here, machine
learning based analyses deploying linear regression and
Pearson Correlation Coefficient shed more light on the
linkage between AFV adoption, AQI and socioeconomic
factors; opening the door to further research, and motivating
the enactment of policies to promote more AFV usage. Our
paper thus contributes the 2 cents to Al for social good.
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Table 2: Predicted and actual AQI scores for NJ counties

as obtained from experimental results

Appendix

AQI Predicted

County Score AQI
Atlantic,16 0.573 0.543
Atlantic,17 0.565 0.592
Atlantic,18 0.577 0.575
Atlantic,19 0.577 0.607
Atlantic,20 0.577 0.637
Atlantic,21 0.576 0.626
Camden,16 0.447 0.453
Camden, 17 0.444 0.447
Camden, 18 0.447 0.473
Camden, 19 0.447 0.539
Camden,20 0.447 0.579
Camden,21 0.447 0.577
Mercer,16 0.707 0.694
Mercer,17 0.707 0.710
Mercer, 18 0.707 0.723
Mercer,19 0.707 0.721
Mercer,20 0.707 0.768
Mercer,21 0.706 0.789

Acronyms and Definitions in AFV Terminology

o  AFV(Alternative Fuel Vehicle): Vehicle powered by
fuels other than Gasoline and/or Diesel exclusively

e  HEV(Hybrid Electric Vehicle): typically non-plug-in
Hybrid Electric Vehicles. Examples: Toyota Prius and

many others

e PHEV(Plug-in Hybrid Electric Vehicle): typically
CARB Transitional Zero Emission Vehicle. Examples:

Chevy Volt, Ford C-Max Energi, BMW i3 with range
extender

BEV(Battery Electric Vehicle): Examples: Tesla (all
models), BMW i3, Nissan Leaf, Chevy Bolt, Honda
Clarity

PEV(Plug-in Electric Vehicles): includes both Battery
Electric (BEV) and Plug-in Hybrid Vehicles (PHEV),
as detailed above.

NEV (Neighborhood Electric Vehicle): otherwise
known as Low Speed Vehicles; essentially street-legal
golf carts limited to 25 MPH,; a type of battery electric
vehicle. Examples: ParCar, Columbia, Vantage, GEM
NG(Natural Gas): typically CNG, though may include
LNG and propane vehicles (we are unable to
differentiate from available data). Examples: Honda
Civic, Ford Econoline


https://www.researchgate.net/publication/367046992

