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Abstract  

Understanding adoption of new technology by its consumers 
helps us deal with the challenges it faces in any new market. 
Moreover, the impact it creates on society in terms of the 
environment, health, and justice is significantly based on the 
extent of adoption. Alternative fuel vehicles (AFVs) is such 
an area that faces challenges in terms of consumers’ diverse 
social status and resistance to change. In order to achieve a 
cleaner transportation sector, we need to address these 
challenges. In this paper, we conduct a study via machine 
learning techniques to correlate the adoption of AFVs across 
various regions, their socioeconomic ranking, and their 
impact on the air quality index (AQI); and furthermore to 
predict the AQI as per the region’s AFV adoption. This is an 
empirical study with predictive modeling based on a regional 
panel data analysis where we use real US census data, air 
quality data, and data on the number of AFVs purchased per 
region. Research in this area can help to promote appropriate 
policies for AFV adoption in the future with due justice to 
different population groups. This work exemplifies a modest 
utilization of AI techniques to enhance social good. More 
specifically, it makes a considerable impact on energy, 
climate, transportation, and environmental sustainability. 

 Introduction1    

Transportation is as the largest source of greenhouse gas 
emissions in the United States as mentioned by the 
Environmental Protection Agency in the literature (EPA 
2022). Consequently, both federal and state governments 
are acting to combat climate change impacts in the country 
(Bipartisan Infrastructure Law 2021). Analogous to many 
other states, New Jersey is propagating the use of alternative 
fuel vehicles (AFVs) including electric vehicles (EVs) to 
achieve the state’s greenhouse gasses (GHG) target 
reduction and meet its clean energy goals (NJ GWRA, 
2020). As of December 2021, there are only 64,307 electric 
vehicles registered in NJ, hence it is going to be an uphill 
task to achieve these targets (NJDEP). Innovative methods 
need to be adopted for decarbonization of transportation 
(Milovanoff 2020). Previous studies have highlighted the 
importance of effective policies and socioeconomic factors 
for AFV adoption (Xue et al. 2021). A few studies on Air 
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Quality Index (AQI) and AFV sales have been conducted 
(Guo et al. 2020). This motivates our research constituting 
pilot study in this paper. We define our objectives as 
exploring AI-based solutions with the following goals. 

1. Analyze the link between regional AFV growth 
and socioeconomic ranking 

2. Estimate the correlation between AFV adoption 
and ambient air quality per region 

3. Build a model to predict air quality using data on 
AFV adoption and socioeconomic census data 

Our study is aimed at supporting faster adoption of AFVs 
and assisting the policymakers' decision-making. 
 Understanding the link between social ranking and AFV 
adoption can guide us to address different needs of the 
population as well as policy selection for a specific 
transportation mode. Further, the use of AFVs lowers GHG 
emissions locally and has a direct and immediate impact on 
the ambient air quality. Our research in this paper on 
predictive modeling for air quality based on the AFV 
adoption and socioeconomic census data for specific regions 
is novel and can guide policymakers to better decisions. The 
inclusion of five air pollutants (SO2, O3, NO2, PM2.5, and 
CO) also makes it novel, as previous research has mostly 
focused on PM2.5.  Our present study is focused on the 
counties in NJ, based upon which our further work shall 
involve adding more states to make our model more robust. 
It is also pertinent to note that air quality is not just affected 
by transportation but by various other factors such as 
industrial markets / processes and energy generation 
methods used for a given region. Other challenges in this 
initiative relate to the limited availability of data for 
analysis, because the use of AFVs has not reached its full 
potential. All the results are based on the assumption that 
there are no big changes in the concerned factors to have any 
additional impact on air quality apart from increased AFV 
usage. Incorporating all the different sources of pollution, 
and their data collection is a related challenge. Furthermore, 
AFV vehicle adoption is hampered by the lack of adequate 
consumer awareness as well as the high cost of AFVs 
compared to conventional vehicles fueled by gasoline and 

 
 



diesel. The question that most vehicle users would ask is: 
Why should I pay more? The answer to that question lies in 
the fundamental theme of social good. It is important to 
convey to the masses that their additional costs will yield 
significantly higher benefits with respect to cleaner air, 
better environmental conditions, and consequently a much 
healthier life (which will also save medical costs).  
 This is precisely where our pilot study in this area aims to 
make a modest contribution. We investigate the role of AI 
techniques in order to draw correlations between AFV usage 
and AQI, and predict AQI based on AFV and related factors, 
so as to highlight the AFV impact on the masses. We hope 
this work contributes the 2 cents to AI for social good.  

Related Work 

For equitable and efficient transportation, policymakers 
need to identify areas for improvement and actions that can 
be taken to improve the current system, e.g. encouraging EV 
Access and affordability through an understanding of the 
social structure (Fleming 2018). A study to understand the 
relationship between the market share of electric vehicles 
and the presence of government incentives, and other 
influential socioeconomic factors for the US, concluded that 
electricity prices were negatively associated with EV use 
while urban roads and government incentives were 
positively correlated with states’ electric vehicle market 
share (Soltani-Sobh et. al. 2017).  
 EV studies on the equity aspects have focused on 
disproportional EV adoption and cost of failing to provide 
equal access, ranging from disparities in local pollution 
(Holland et. al. 2019; Ju et. al. 2020), to unfair distribution 
of public subsidies (Borenstein and Davis 2016), and 
disparate changes in neighborhood desirability (Henderson 
2020, Rice et. al. 2020). Demographic variables, such as 
income, gender, age, education, and household size have 
previously been analyzed (Sovacool et. al. 2018; Soltani-
Sobh et. al. 2017; Gallagher and Muehlegger 2011; 
Langbroek et. al. 2016). Research on the adoption of EVs in 
India included a SWOC (strength weakness opportunity and 
challenges) analysis and concluded the need for more 
support from the central government both for research and 
businesses (Singh et. al. 2021). The proportion of cleaner 
transport options in the overall market also decides the 
amount of their impact, in one related study in China it was 
found that new energy vehicles cannot be considered as an 
efficient measure to mitigate air pollution since their 
numbers are not yet significant, rather focus on cleaner 
energy production method is needed (Su et. al. 2021). 
Another piece of research in Barcelona and Madrid shared 
similar results where 40% EV introduction was needed to 
improve air quality, especially NO2 and CO; the sources of 
power generation for the region and other emission sources 
played important roles in the impacts on air quality 
improvement (Soret et. al. 2014). Inferences on these lines 
were observed in research using the Community Multi-scale 

Air Quality model and Weather Research and Forecasting 
model in Taiwan Li et.al. 2016) and another one using 
Lagrangian dispersion model used for pollution prediction 
for scenario analysis of EV introduction for a highway in 
Milan, Italy (Ferrero et. al. 2016). Various techniques in data 
mining and machine learning are adapted for predicting 
environmental parameters, e.g. air quality vis-à-vis health 
(Varde et. al. 2022), energy demand in the residential sector 
(Prasad et.al. 2021) and decision support for green data 
centers (Pawlish et al. 2012). Such techniques along with 
NLP methods are deployed to assess human interactions / 
public sentiments on matters pertaining to air quality, public 
policy and related aspects (McNamee et. al. 2022, Du et.al. 
2020, Field et al, 2022, Du et. al. 2016, Kommu et al. 2022). 
Interesting multidisciplinary approaches are proposed in 
such works, with opportunities to analyze the diverse data 
available and utilize it in urban planning for social good.    

Other related research (Das et al. 2018), (Puri et al. 2018) 
(Babicheva et al. 2016), (Radakovic et al. 2022), (Eisner et 
al. 2011), (Varde et al. 2004), (Zhang et al. 2022) is 
noteworthy. Yet, the goals of our study have not been 
achieved in earlier work in a comprehensive manner: 
analysis of AFV adoption, socioeconomic census, and air 
quality data together. This constitutes its novelty.  

Hypothesis, Data and Methods 

In this study, we emphasize a simple hypothesis: regions 
with higher AFV adoption will have better air quality and 
lower pollution levels. In line with this hypothesis, we aim 
to find understandable and explainable correlations between 
AQI and AFV adoption, as per specific regions, which we 
can use for predictive modeling of AQI based on future 
increases in AFV numbers. This helps to gain more insights 
into the relationships between alternative fuel vehicles and 
the corresponding air quality, at present and in the future. 
Via this study, we hope to make positive impacts thriving 
on the theme of AI for social good, via its relevance to clean 
air, sustainable environment, and enhanced transportation, 
all of which imply good health for the masses.  
 The regions of focus in this work are various counties in 
NJ. The datasets used in this study are: NJ Alternate Fuel 
Vehicle historical county-based report with the types of 
alternative fuel vehicles sold; socioeconomic census data for 
NJ counties on population count, education, unemployment, 
poverty rate, and median household income, as well as air 
quality data from monitoring stations in NJ. These datasets 
are for the years 2016-2022. The datasets are correlated with 
the AFV used in each county, based on the type of the AFV. 
The number of vehicles is used to calculate the AFV ranking 
for each county. In terms of air quality data, we focus on 5 
major pollutants: SO2, O3, NO2, PM2.5, and CO. For the 
purpose of this study, the AFVs considered are: Battery 
Electric Vehicles (BEV), Plug-in Hybrid Electric Vehicles 



(PHEV), Neighborhood Electric Vehicles (NEV), and 
Hybrid Electric Vehicles (HEV). Their definitions are 
annexed to this paper in the Appendix.   

 
Figure 1: Data Processing Outline 

 Data preprocessing conducted in this study is illustrated 
in Figure 1. The NJ Electric Vehicles Registrations dataset 
is used to obtain county-wise summarized AFV data which 
includes: semi-annual AFV adoption rate, PEV, non-PEV, 
and Public Road Mileage and Vehicle Miles Traveled 
(VMT). In order to prepare the final dataset we compile 
concatenated AFV data along with socioeconomic data 
comprising population, poverty rate, and household income. 
Additionally, we preprocess AQI data by implementing 
PCA (Principal Components Analysis) on SO2, O3, PM2.5, 
and CO for dimensionality reduction. Thereafter, we build a 
predictive model using linear regression to predict AQI 
using covariates (AFV and socioeconomic data).  
 We harness Pearson Correlation Coefficient to relate the 
major variables in socioeconomic data (population, poverty 
rate, household income, education level) with the extent of 
AFV adoption. Dimensionality reduction is performed on 
raw AQI data. Further, the relationship between the AQI 
scores and these variables is defined by Equation 1. 

Yi = ∑ βi  𝑋𝑖   +  ε              (1)
𝑛

𝑖=1

 

Here i is the index, Yi denotes the AQI of the county 𝑖, each 

Xi denotes a value while each βi depicts its slope coefficient 
respectively such that ε is an approximate error term 
associated with the equation. We apply this for poverty 
level, median household income, population of the county 
and vehicle count in this pilot study. While building our 
predictive model for AQI, dimensionality reduction is used 
to avoid overfitting and multi-collinearity. In order to 
enhance extraction and visualization of relevant data, we 
perform PCA on the 5 aforementioned pollutants to 

calculate the AQI for each county. The target variable for 
prediction is the AQI score.      
     Linear regression is conducted to predict the AQI via the 
AFV count and the socioeconomic (SE) factors including 
median household income, poverty, income, and population. 
Regression is thereby deployed to capture the relationships 
between the dependent variable AQI score and independent 
variables from AFV and socioeconomic data, in order to 
predict the future values of the target, i.e. AQI. The reason 
for choosing linear regression in our study is that it provides 
more understandable and explainable mappings between the 
input and the output (as opposed to typical deep learning 
models based on neural networks) that offer black-box 
approaches, often lacking explainability. In this work it is 
crucial to fathom how certain factors lead to a given output 
(and hence make decisions), e.g. how median household 
income can affect AFV usage and thus AQI.  
  

Algorithm 1: Predictive model for AQI via SE and AFV 
Input: D=[σ, α] where σ: SE, AFV variables, α:actual AQI 
Parameter: weights ω, learning rate 𝜆, maximum number 
of iterations η, error threshold τ 
Output: predicted AQI scores α` 
1: Let i = 1, Δ = 100 
2: while (i <= η) or (Δ < τ) do 
3:  α` = inner product of σ and ω 
4:  Δ = α` – α 
5:       γ = 2 dot (σ `, Δ) 
6:       ω - = 𝜆 * γ 
7: end while 
8: return α` 
 

Algorithm 1 provides the pseudocode for building our AQI 
predictive model based on learning from existing SE, AFV 
and AQI data. The experiments are discussed next. 

Experimental Results and Discussion 

Experiments are conducted using Python’s Scikit Learn. In 
the results shown here, 80% of the data is used to train the 
predictive model and 20% of the data is used for testing. 
Figure 2 plots the semiannual AFV growth by vehicle type. 
 

 
Figure 2: Semiannual AFV growth by type (NJ 2016-2022) 



We observe an increase in all types of AFVs across all 
counties from 2016 to 2020, with a higher increase in the 
number of Battery Electric Vehicles (BEV) of 15% from 
2016 to 2022. The number of Plug-in Hybrid Electric 
Vehicles (PHEV) increases by 5.8%, Neighborhood Electric 
Vehicles (NEV) by 3.8%, and Hybrid Electric Vehicles 
(HEV) by 1.8%. In total, there are more HEVs, followed by 
BEVs, PHEVs, and NEVs. The increase in BEVs seems 
more explainable with the advancements in technology as 
well as Federal and State subsidies and grants to consumers 
to uplift their purchase.  
 
Table 1: AFV rank & socioeconomic rank in NJ Counties  

SE Rank County 
Name 

Population Total  
AFV 

AFV 
Rank 

1 Bergen 953819 28304 1 
2 Middlesex 860807 25674 2 
6 Monmouth 645354 19800 3 
3 Essex 854917 19138 4 

10 Morris 510981 16782 5 
12 Mercer 385898 16063 6 
8 Camden 523771 13398 7 

11 Burlington 464269 12862 8 
13 Somerset 345647 12722 9 
5 Ocean 648998 12530 10 
7 Union 572114 11995 11 
4 Hudson 702463 11193 12 
9 Passaic 518117 8755 13 

14 Gloucester 304477 6331 14 
15 Atlantic 274966 6236 15 
18 Hunterdon 129924 5362 16 
17 Sussex 145543 3625 17 
20 Cape May 95661 2888 18 
19 Warren 110731 2814 19 
16 Cumberland 153627 2302 20 
21 Salem 65046 1148 21 

 
We observe that there is a direct correlation between SE 
ranking and AFV ranking.  Table 1 presents a synopsis of 
these rankings. However, there are some deviations as well. 
Bergen County has the highest number of AFVs and is 
ranked the highest in terms of socioeconomic ranking as 
well, followed by Middlesex County and Essex County, 
which showed similar patterns. Salem is the county with the 
lowest number of AFVs and it also has the lowest 
socioeconomic ranking. As the socioeconomic status 
increases, the number of AFVs in the county also increases. 
Outliers observed here are NJ counties such as Hudson, 
Monmouth, and Cumberland, where this trend is not found. 
According to Pearson Correlation Coefficient, the vehicle 
count, population count, education level, and median 

household income are found to be significantly correlated 
with the AFV adoption rate. This further shows that 
socioeconomic ranking, which accounts for higher median 
household income, education levels, and population count 
of the county is found to be directly correlated with AFVs 
ranking. The highlighted rows show counties with almost 
the same socio-economic and AFV ranking.  

 
Figure 3: Pearson Correlation Coefficients of 
socioeconomic census data with AFV ranking 

 
Results of analysis based on Pearson Correlation show 
observations where socioeconomic factors are positively 
correlated to AQI. Figure 3 illustrates Pearson Correlation 
Coefficients linking socioeconomic census data with AFV 
ranking. Here the variables included are vehicle count, 
education percentage, population count, population change, 
percent of population in poverty, the lower and upper bound 
(gives 90% confidence interval of the poverty percentage), 
unemployment rate and median household income. The 
education percentage is highly linked to median household 
income, and vehicle count is linked with population count.  

 
Figure 4:  Pearson Correlation Coefficients of AQI and 

various socioeconomic factors 
 
Figure 4 portrays Pearson Correlation Coefficients linking 
AQI with socioeconomic factors. Variables observed are the 
year, population, unemployment, income, poverty rate, 



vehicle count, and AQI scores for the counties. We observe 
that AQI scores are linked positively with the income levels 
and negatively with the population, unemployment, and 
poverty in the counties.   
 
     In our predictive modeling using linear regression, the R2 
score is 0.69 and the Mean Squared Error (MSE) is 0.003 
over test data. This implies that AQI predictions can occur 
with high accuracy in order to estimate air quality based on 
the AFV adoption and socioeconomic factors.  
 

 
Figure 5: Predictive model for AQI scores indicating a 

close match between predicted and actual values 
  
Figure 5 plots the results of data tested for 3 NJ counties i.e. 
Atlantic, Camden, and Mercer over 6 years. These values 
are listed in Table 2 in the Appendix for a more detailed 
display. As we can see, the predicted AQI values are in line 
with the actual AQI for these counties for the years 2016, 
2017, 2018, and 2019; however, for the years 2020 and 2021 
the predicted values are somewhat higher than the actual 
monitored AQI values which could be due to the impacts of 
pandemic and decreased transportation activity overall. This 
brings our attention to incorporating more variables in future 
work that shall reflect such changes in transportation 
systems and their usage. On the whole, observing these 3 
years’ values, our predictive model seems convincing and 
can be further enhanced to study the impact that the AFV 
adoption can have on the air quality of any region.  
     Based on this entire study, we find that: there is a lower 
pollution and better air quality in the counties with a higher 
number of AFVs and with better socioeconomic ranking. 
This confirms our initial hypothesis that AQI scores and 
AFV counts are positively correlated, and furthermore helps 
establish the correlation between the socioeconomic ranking 
and AFVs. Our predictions of AQI are accurate based on the 
ground truth obtained from existing data, and hence can be 
used for further estimations on air quality as per AFV usage. 
Policy decisions for regions that have bad air quality can be 
undertaken only when the policymakers understand the 
impact such decisions can have for the given areas. With 
varied options of AFV and varied socioeconomic strata, our 

work can take a step towards bringing social equity by 
helping to choose the best AFVs and public transit options 
as needed based on regional needs, the respective AQI and 
related factors such as socioeconomic indicators. Since 
planning for clean transportation involves consideration of 
future years, our model to predict AQI score for areas with 
an estimate of AFV adoption can help governments reach 
their GHG targets along with social good locally, thus 
contributing to it initially on a small scale, and in helping to 
enhance AFV awareness on a larger scale, in the future.  

Conclusions and Roadmap 

In the race to mitigate negative effects of climate change, 
governments and people need to move towards clean energy 
and clean transportation methods. Clean technologies such 
as EVs and other AFVs are backbones for future sustainable 
living, their adoption however needs government support 
both for businesses and consumers owing to their higher 
prices as well as limited infrastructure availability. Hence, 
issues of social equity and social good come to the forefront 
and government support should not be limited to higher-
income consumers alone, considering that the low-income 
consumers often live in areas with poor air quality.  As 
found in our research study, counties with higher AFVs have 
better air quality and vice versa. Moreover, those are the 
counties with high socioeconomic ranking. Our research 
focusing on predicting the AQI for counties based on their 
socioeconomic status and AFV adoption is our initial effort 
to help policymakers’ decisions based on social good and to 
achieve sustainable development goals.   
 This is a pilot study focusing on the transportation sector 
and assuming no big changes in the other sectors affect 
ambient air quality in NJ. Lack of uniform air quality 
monitored data adds to some of the challenges in this study. 
Future research in this realm involves adding more data 
from other states and covering the USA. This study focuses 
on the use of AFVs which has not yet reached its full 
potential in NJ and the US. More intensive studies can be 
conducted on air quality as AFV adoption rises, and we have 
more data for analyses.  
 Based on our pilot study, here are a few important 
takeaways with the scope for future work.  

• Policymakers can offer programs in areas with 
high socioeconomic ranking to encourage more 
AFV adoption, as these communities can “afford to 
pay more” for the social good of reducing AQI to 
improve the environment and be healthier.  

• Areas with lower socioeconomic status need more 
attention because social equity is an important 
aspect of social good; incentives such as tax cuts, 
pricing of AFVs proportional to income etc. are 
needed to proliferate the use of AFVs in order to 
make them more accessible to low income areas.  

• More datasets on AFVs and AQI must be stored 
with open access to facilitate further AI-based 
studies; software should be built for the actual AQI 



prediction based on AFV adoption, to provide at-a-
glance information, encouraging more AFV usage.  

• Mobile applications (apps) can be developed that 
link AFVs and AQI, and predict daily AQI levels 
to make the masses more aware of air quality and 
environmental sustainability.  

• Further studies with explainable AI models and 
black-box models should be performed on AFV, 
SE and AQI data to explore relative merits of the 
models and use the results for recommendations. 

• Models can be introduced such that one of them 
takes only AFVs adoption into account, while 
another uses socioeconomic data as well, so as to 
compare results from a “social good” angle.  

In sum, we highlight the fact that AI plays various roles in 
promoting social good. In our modest study here, machine 
learning based analyses deploying linear regression and 
Pearson Correlation Coefficient shed more light on the 
linkage between AFV adoption, AQI and socioeconomic 
factors; opening the door to further research, and motivating 
the enactment of policies to promote more AFV usage. Our 
paper thus contributes the 2 cents to AI for social good.   
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Appendix 

Table 2: Predicted and actual AQI scores for NJ counties 
as obtained from experimental results 

 
County 

AQI 
Score 

Predicted 
AQI 

Atlantic,16 0.573 0.543 
Atlantic,17 0.565 0.592 
Atlantic,18 0.577 0.575 
Atlantic,19 0.577 0.607 
Atlantic,20 0.577 0.637 
Atlantic,21 0.576 0.626 
Camden,16 0.447 0.453 
Camden,17 0.444 0.447 
Camden,18 0.447 0.473 
Camden,19 0.447 0.539 
Camden,20 0.447 0.579 
Camden,21 0.447 0.577 
Mercer,16 0.707 0.694 
Mercer,17 0.707 0.710 
Mercer,18 0.707 0.723 
Mercer,19 0.707 0.721 
Mercer,20 0.707 0.768 
Mercer,21 0.706 0.789 

     
 

Acronyms and Definitions in AFV Terminology  

● AFV(Alternative Fuel Vehicle): Vehicle powered by 
fuels other than Gasoline and/or Diesel exclusively 

● HEV(Hybrid Electric Vehicle): typically non-plug-in 
Hybrid Electric Vehicles. Examples: Toyota Prius and 
many others 

● PHEV(Plug-in Hybrid Electric Vehicle): typically 
CARB Transitional Zero Emission Vehicle. Examples: 

Chevy Volt, Ford C-Max Energi, BMW i3 with range 
extender 

● BEV(Battery Electric Vehicle): Examples: Tesla (all 
models), BMW i3, Nissan Leaf, Chevy Bolt, Honda 
Clarity 

● PEV(Plug-in Electric Vehicles): includes both Battery 
Electric (BEV) and Plug-in Hybrid Vehicles (PHEV), 
as detailed above. 

● NEV (Neighborhood Electric Vehicle): otherwise 
known as Low Speed Vehicles; essentially street-legal 
golf carts limited to 25 MPH; a type of battery electric 
vehicle. Examples: ParCar, Columbia, Vantage, GEM 

● NG(Natural Gas): typically CNG, though may include 
LNG and propane vehicles (we are unable to 
differentiate from available data). Examples: Honda 
Civic, Ford Econoline 
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