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ABSTRACT

We investigate the problem of designing differentially private (DP), revenue-
maximizing single item auction. Specifically, we consider broadly applicable
settings in mechanism design where agents’ valuation distributions are indepen-
dent, non-identical, and can be either bounded or unbounded. Our goal is to design
such auctions with pure, i.e., (ω, 0) privacy in polynomial time.
In this paper, we propose two computationally efficient auction learning framework
that achieves pure privacy under bounded and unbounded distribution settings.
These frameworks reduces the problem of privately releasing a revenue-maximizing
auction to the private estimation of pre-specified quantiles. Our solutions increase
the running time by polylog factors compared to the non-private version. As an
application, we show how to extend our results to the multi-round online auction
setting with non-myopic bidders. To our best knowledge, this paper is the first to
efficiently deliver a Myerson auction with pure privacy and near-optimal revenue,
and the first to provide such auctions for unbounded distributions.

1 INTRODUCTION

Though prior-dependent auctions, which adjust parameters based on samples of value distributions,
often yield better revenue than prior-independent auctions, they risk leaking information about the
bids they were trained upon. To address this issue, differential privacy (DP) offers a promising
solution (Dwork, 2006; 2008; McSherry and Talwar, 2007; Pai and Roth, 2013), ensuring that a single
data point minimally affects the algorithm’s output, thus preventing inference of a specific data point.

We study the problem of learning a single-item auction with near-optimal revenue from samples of
independent and non-identical value distributions. In this context, the optimal auction (i.e., Myerson’s
auction (Myerson, 1979)), which relies on value distributions (i.e., prior-dependent), achieves optimal
revenue. However, releasing the learned Myerson’s auction raises privacy concerns, as the output
mechanism may inadvertently reveal sensitive information about the distributions. To provably
mitigate this risk, our goal is to integrate pure DP into the learning process of such auction.

Pure Differential Privacy. Given two datasets that differ in one data point, i.e., D, D→, we say an
algorithm A satisfies (ω, ε)-approximate DP if for any given output s: Pr[A(D) = s] → eω[A(D→) =
s] + ε. We say A satisfies pure DP if ε = 0. Pure DP allows no slack in privacy protection, and
hence is more challenging to achieve than approximate DP. Previous attempts (McSherry and Talwar,
2007; Nissim et al., 2012) to integrate DP with prior-dependent auctions have been computationally
inefficient or guaranteed approximate rather than pure DP. To our knowledge, no algorithm guarantees
pure DP for Myerson’s auction in polynomial time.

Efficiency. Incorporating DP into the mechanism often sacrifices efficiency, as achieving privacy
guarantees typically incurs additional computational overhead (e.g., random noise addition or extra
sampling procedure). This issue has been observed in similar contexts, such as online learning (Jain
et al., 2012), federated learning (Zhang et al., 2023) and deep learning (Abadi et al., 2016). In our
context, to achieve pure DP, implementing exponential mechanism (McSherry and Talwar, 2007) over
all possible mechanisms would incur exponential time (See Appendix D). To obtain pure DP more
efficiently, we apply recent advances (Durfee, 2023; Kaplan et al., 2022) in private quantile estimation.
Our algorithm’s running time increases by only polylog factors compared to the non-private version.
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Notations We use MA to denote the optimal mechanism of distribution A, and we use Rev(M,A)
to denote the revenue of deploying mechanism M to distribution A. We restricted ourselves to
single item auctions; hence, MA denotes the Myerson auction fitted on distribution A, and we denote
OPT(A) := Rev(MA, A) as the optimal revenue one could get from a distribution A. We use 1k to
denote a k-dimensional vector with all entries equal to 1. We use Õ and !̃ to hide polylog factors.

1.1 RESULTS

Formally, we define the problem of learning a near-optimal auction with a pure DP:

Problem 1.1 (Optimal Auction with (ωp, 0)-DP). Given n samples of k-dimensional distribution D,
the goal is to learn a single item auction M with (ωp, 0)-DP, whose expected revenue on D is close to
the optimal revenue, i.e., with prob. 1↑ ε1, |E[Rev(M,D)↑ OPT(D)]| → ω for some small ω.

Insight. To address this problem, we leverage the insight that, the expected optimal revenue from
value distribution is insensitive to small statistical shifts and discretization in the quantile and value
space. Additionally, we observe that the accuracy of the points returned by private quantile estimation
(QE), assuming the data points follow a distribution, directly correlates with the statistical distance
between the distribution formed by the returned points and the true distribution. Thus, we can reduce
private Myerson fitting from samples to private quantile estimation of pre-specified quantiles.

Achieving pure DP while maintaining meaningful revenue guarantees is challenging. A crucial aspect
is to ensure that the values (hence distribution) returned by DP Quantile Estimation (QE) possess
meaningful and provable accuracy guarantees. To obtain such accuracy, our algorithm (Alg. 1) first
additively discretize the empirical distribution in the value space to distribution D̂ω, then estimate the
pre-specificed quantiles with DPQE. We improved the accuracy bound of DPQE (DPQUANT,Kaplan
et al. (2022)) to accommodate cases with duplicate values. This improved bound allows us to upper
bound the statistical distance between the output distribution and D̂ω, thus upper bounding the revenue
loss incurred from fitting a Myerson on the output distribution.

Theorem 1.2 briefly presents the near-optimal revenue of our proposed mechanism. The final privacy
parameter has a dependency on k since the output of mechanism M is of dimension 2k. We present
complete details in Section 3 and the complete theorem statement in Theorems 3.2 and 3.3.

Theorem 1.2 (Revenue Guarantee of Private Myerson, Bounded). Given n = !̃(ω↑2) samples V̂ of
the joint distribution D ↓ [0, h]k, there exist a mechanism M that is 2kωp differentially private with
running time !̃(kn) and takes !̃(1) pass of the distribution. With probability 1↑ ε, this mechanism
M satisfies:|E[Rev(M,D)↑ OPT(D))]| → Õ((ω+ ω2/ωp)kh).

The prior algorithm does not work for unbounded distributions. Our second algorithm (Alg. 9)
addresses the case for ϑ-strongly regular value distributions by efficiently truncating them to bounded
distributions with small expected revenue loss. This approach enables the application of our previous
mechanism (Alg. 1) designed for the bounded distribution case. Since the truncation point is a
function of the optimal revenue, we develop Alg. 7 to approximate this point by achieving a !̃(k)-
approximation of the optimal revenue, where k denotes the dimension of the product distribution.

Theorem 1.3 outlines the accuracy of our proposed mechanism for certain parameter settings. Since
this truncation point depends adaptively on the desired accuracy, the revenue gap exceeds that for the
bounded case, and the tradeoff between privacy and revenue are more pronounced. We present more
details in Section 4, and the complete theorem statement is in Theorems 4.1 and I.13.

Theorem 1.3 (Revenue Guarantee of Private Myerson, Unbounded). Given n = !̃(ω↑2) samples V̂ of
ϑ-strongly regular joint distribution D ↓ Rk, there exist a mechanism M for unbounded distribution
that is 2kωp differentially private with running time !̃(kn) and takes O(n) passes. With probability
1↑ ε, this mechanism M satisfies: |E[Rev(M,D)↑ Rev(MD,D)]| → Õ(k2

↔
ω+ k2ω1.5/ωp).

1This failure probability ω is inevitable due to the inherent uncertainty in learning from a finite sample set,
see Chapter 1 Kearns and Vazirani (1994)
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Application: Online auction with nonmyopic bidders. We now describe how our mechanisms
incentivize truthful bidding from nonmyopic bidders under practical online auction settings.2 In the
online setting, auctions are deployed iteratively and later auctions are informed by previous bids.
Since future auctions can be affected by earlier bids, nonmyopic bidders may strategically bid in
earlier rounds to increase winning chances and/or secure lower prices, increasing their utility.

To prevent from strategic bidding, we integrate our previous solutions (Alg. 1, Alg. 9) with a
commitment mechanism. Our DP Myerson naturally upper bound the utility gain (of future rounds)
by definition, in that the change of one bid affect the outcome’s probability by privacy parameter
ωp. Our algorithm operates in two stages. In the first stage, it employs a commitment mechanism
that penalizes strategic bids. In the second stage, the algorithm fits a DP Myerson auction from the
collected bids and generates revenue in the remaining rounds. This approach ensures that strategic
bids only lies in a small neighbor of the true value; otherwise, the bidder’s utility becomes negative.

We present the regret (i.e., the time-averaged revenue of the proposed mechanism compared to the
optimal one) of our proposed mechanism (Alg. 3) in Theorem 1.4, which shows the accuracy of our
algorithm in terms of regret. We defer readers to Section 5 and Theorem 5.4 for further details.
Theorem 1.4 (Revenue Guarantee of Online Mechanism). Given ω ↓ [0, 1/4], under the online
auction setting described in Section 5.1), there exists an algorithm (Alg. 3) run with parameter T =
!̃(ω↑2) that, with probability 1↑ ε, achieves diminishing regret, i.e., REGRET = Õ[(ω+

↔
ϑω)kh],

where ϑ is a constant specific to bidders’ utility model.

1.2 PRIOR WORK

DP Mechanism Design. Emerging from McSherry and Talwar (2007), there has been interest in
delivering mechanisms with DP guarantees (Nissim et al., 2012; Huang et al., 2018a; Zhang and
Zhong, 2022; Huh and Kandasamy, 2024). These mechanism are either no longer optimal in our
setting, or doen’t generalize to unbounded distribution setting.

Online Learning in Repeated Auction. Regarding the single item online auction setting, Kanoria
and Nazerzadeh (2014); Huang et al. (2018a) established near-optimal solutions when bidders’ utility
is discounted and valuations are i.i.d.. Deng et al. (2020); Abernethy et al. (2019) introduced specific
incentive metrics to quantify bidders’ willingness to bid other than their true values and developed
mechanisms that minimize incentives for strategic bidding under these metrics in large markets.

For a detailed, complete list of related work topics, please see Appendix C.

1.3 CONTRIBUTIONS

Revenue Maximizing Auctions with Pure Privacy Guarantee. Our work is the first to develop a
mechanism with pure DP that obtains near optimal revenue for single item auction with independent
and non-identical bidders, and for both bounded and unbounded ϑ-strongly regular distributions. For
bounded distributions, our mechanism achieves optimal time complexity within polylog factors.

Application to Online Auction Setting. We apply our mechanism into the online auction setting
with nonmyopic, independent and non-identical bidders. Combined with our designed commitment
strategy, the integrated solution restricts the bids to a small neighbor around the corresponding value.
Consequently, these approximately truthful bids enables our solution to generate revenue guarantee
that converges to the optimal revenue over time, for time-discounted, or large market bidders. We
generalize the i.i.d bidder setting in Huang et al. (2018a) and solve the open problem they proposed.

Extended Analysis of Private Quantile Algorithm. We extend the analysis of the quantile estimation
oracles employed in this paper. For quantile estimation on bounded datasets (Kaplan et al., 2022), the
paper assumes that all data points are distinct and derive accuracy bounds dependent on the dataset’s
range. We generalize their analysis to accommodate cases where multiple data points may share
identical values. Additionally, for quantile estimation of unbounded distributions (Durfee, 2023), we
provide theoretical accuracy guarantees, complementing the paper’s focus on empirical performance.

2In practice, recognizable non-i.i.d. value distributions are common, e.g., Meta Ad platform (met) requires
that each advertiser selects one of six objectives, corresponding to different distributions based on the industry or
advertisement topic.
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2 PRELIMINARIES

In this section, we outline the preliminaries on mechanism design, differential privacy, and quantile
estimation. Additional information can be found in Appendix E.

2.1 MECHANISM DESIGN BASICS

We now formally define the allocation rule and payment rule of a single item auction.
Definition 2.1 (Allocation Rule and Payment Rule). Given k bidders with bid b := (b1, . . . , bk), a
single-item auction M consists of an allocation rule as x(b) := (x1(b), . . . , xk(b)) ↓ [0, 1]k and
a payment rule as p(b) := (p1(b), . . . , pk(b)) ↓ [0, 1]k, where xj denotes the probability that the
j-th bidder gets the item, and pj denotes her payment.

Under truthful sample access, the Myerson’s auction maximizes the expected revenue.
Definition 2.2 (Myerson’s Single Item Auction (Myerson, 1981)). For a discrete product distribution
D = D1 ↗ . . . ↗ Dk (Elkind, 2007), the virtual value for Dj at value vji with support Vj =

{vj1, . . . , vjn} is ϖj(v
j
i ) = vji ↑ (vji+1 ↑ vji )

1↑Fj(v
j
i )

fj(v
j
i )

, where vji s are ordered in increasing order of i,

fj(v
j
i ) = P[vj = vji ], and Fj(v

j
i ) =

∑i
k=1 f(v

j
k).

We say the product distribution D is ϑ-strongly regular if for all j, ϖj(vi)↑ ϖj(vj) ↘ ϑ(vi ↑ vj) for
every vi > vj ↓ V and ϑ > 0.

For these distributions D with nondecreasing virtual value, Myerson’s allocation rule xi(vi) =
{ϖi(vi) ↘ max(0,maxj ↓=i ϖj(vj))}, where {·} denotes the indicator function. The payment rule

pi(vi) = {ϖi(vi) ↘ max(0,maxj ↓=i ϖj(vj))}ϖ↑1
i (max(0,maxj ↓=i ϖj(vj))). 3

2.2 DIFFERENTIAL PRIVACY BASICS

We present the definition of pure DP and approximate DP below.
Definition 2.3 (Differential privacy). An algorithm A : Rn

+ ≃ R is (ω, ε)-approximate DP if for
neighboring dataset V, V → ↓ Rn

+ that differs in only one data point, and any possible output O, we
have: Pr[A(V ) = O] → exp (ω) Pr[A(V →) = O] + ε. We say it satisfies pure DP for ε = 0.

A key property we leverage from differential privacy is its immunity to post-processing. Post-
processing refers to any computation or transformation applied to the output of a DP algorithm after
the data has been privatized. In our context, Myerson’s auction can be seen as a post-processing step.
Therefore, applying Myerson’s auction to a differentially private release of the empirical distribution
preserves the original privacy guarantees of the input distribution.
Lemma 2.4 (Immunity to Post-Processing). Let A : Rn

+ ≃ R be an (ω, ε)-DP algorithm, and let
f : R ≃ R be a random function. Then, f ⇐A : Rn

+ ≃ R is also (ω, ε)-DP.

2.3 QUANTILE ESTIMATION

Quantile estimation (QE) is used for estimating a value of specified quantiles from samples. Given
samples from a distribution, an accurate QE from samples directly translates to an accurate CDF
estimation of the underlying distribution. Below, we formally introduce the definition of QE.
Definition 2.5 (Quantile Estimation). Given a range of the data as H , a dataset X ⇒ Hn containing
n points from range H , and a set of m quantiles 0 → q1, . . . , qm < 1, identify quantile estimations
v1, . . . vm such that for every j ↓ [m], |{x ↓ X|x → vj}| ⇑ qj · n. 4

We now present the definition of statistical dominance and KS-distance below.
Definition 2.6 (Stochastic Dominance and KS-Distance). Given distribution D and D→, we denote
the CDF of them as FD, FD→ , respectively. Distribution D stochastically dominates distribution D→

(denoted as D ⇓ D→) if: (1) For any outcome x, FD(x) → FD→(x). (2) For some x, FD(x) < FD→(x).
The KS distance between D and D→ is dks(D,D→) = supx↔R |FD(x) ↑ FD→(x)|.

3We define the virtual value inverse ε
→1
i (ε) as argminv↑V εi(v) → ε.

4More formally, vj ↑ X is the minimum value such that this quantity exceeds qjn.
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3 PRIVATE MYERSON’S AUCTION FOR BOUNDED DISTRIBUTIONS

In this section, we introduce the algorithm for fitting a Myerson’s auction with a pure privacy
guarantee. To ensure pure privacy, since DP is immune to postprocessing, it is sufficient to input
a private distribution estimated from samples to the Myerson. The challenge lies in finding such
distributions that still yield near-optimal revenue.

Our approach leverages private quantile estimation (QE) over samples to achieve the desired guarantee.
However, the standard guarantees of DPQE collapse when the dataset contains points that are
extremely close. This is a critical issue in our setting, as increasing the sample size n from continuous
value distributions inherently causes the minimum distance between samples to approach zero. To
address this, we introduce additional discretization steps to prevent non-identical points from being
too close together, and we develop new DPQE guarantees specifically tailored to handle samples with
identical values.

3.1 PRIVATE MYERSON FOR BOUNDED DISTRIBUTIONS

Next, we present DPMYER algorithm (Alg. 1). The algorithm first value-discretize the samples of the
distribution additively by ωa, then quantile-discretize these samples by ωq with pure privacy guarantee.
Specifically, the quantile discretization estimates the values of the quantile set [ωq, 2ωq, . . . , 1] with
pure privacy. Next, DPMYER use the estimated quantile values and the quantile set to construct a
distribution, then perturb it to a final distribution that is stochastically dominated by the ground truth.
Finally, the final distribution is then used to implement Myerson’s mechanism.

Algorithm 1 DP Myerson, Bounded Distribution DPMYER(V, ωq, ωa, h, ωp)

Input: n samples V ↓ Rk↗n
+ , discretization parameter ωq , ωa, upper bound h, privacy parameter ωp

1: Discretize all values into multiples of ωa; let the resulting samples be V̂ .
2: Prepare the quantile to be estimated: Q ⇔ {ωq, 2ωq, . . . , . . . , ↖(1/ωq)↙ · ωq, 1}.
3: For each dimension i ↓ [k], decide the prices Ŝ[i,:] ⇔ QESTIMATE(Q, V[i,:], ωp).
4: ϱ Estimate the quantiles by DPQUANT (Alg. 4)
5: Construct distribution D̃ based on Ŝ, treating the valuations in Ŝ as if each has probability ωq .
6: For each i ↓ [k], shift the top ωq quantile of D̃i to the bottom, fit Myerson on this distribution.

3.2 REVENUE OPTIMALITY AND RUNNING TIME

Next, we show the revenue optimality and the efficiency of our algorithm. To upper bound the reveue
loss, we derive the revenue shift theorem, which upper bounds the revenue difference between two
distributions by a linear function of their statistical distance.
Theorem 3.1 (Revenue Shift Theorem). Given two product distribution D ⇓ D→ whose valuations
are bounded by h, with dks(Di,D→

i) → ςi for any bidder i, the optimal revenue of these distribution
satisfies: 0 → E[Rev(MD,D)↑ Rev(MD→ ,D→)] → (

∑
i↔[k] ςi)h.

We apply this theorem to upper bound the revenue loss between 1) the quantile-discretized distribution
and its pre-quantized counterpart, and 2) the distribution obtained from private quantile estimation
and that from the groundtruth quantile estimation. The first one is evident, while the second arises
from DPQUANTILE’s ability to control the KS-distance between the estimation and the ground truth.

We now present the accuracy guarantee of the private Myerson algorithm. Provided the privacy
parameter is not too small (i.e, ωp = ”(ω↑1)), our guarantee implies that the optimal revenue of the
distribution does not exceed the revenue of our algorithm on its samples by more than !̃(ωkh).

Theorem 3.2 (Revenue Guarantee of Private Myerson (Alg. 1)). Given n samples V̂ ↓ [0, h]k↗n

of the joint distribution D, DPMYER (Alg. 1) is (2kωp, 0)-DP, and the expected revenue of this
mechanism is close to the optimal revenue of distribution D, i.e., with probability 1↑ ε:

|E[Rev(MDPMYER,D)↑ OPT(D)]| → Õ((ω+ ω2/ωp)kh).

under parameter ωa = ωq = ω and n = !̃(ω↑2), where we hide the polylog factors in !̃ and Õ .
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Proof Sketch. We begin by deriving the privacy guarantee of our algorithm. Next, we establish
an upper bound on the distance between the private distribution D̂p and the additively discretized
distribution D̂ω. This enables us to apply the revenue shift theorem (Thm.3.1) to upper bound the
revenue loss from private quantile estimation. By aggregating this loss with the revenue loss due to
value discretization, we arrive at the final result. In this proof sketch, we omit the polylog factors that
depends on k, n, ε, ωa, ωp, ωq for a clear presentation. Further details are provided in Appendix H.2.

Privacy Guarantee. We know that the quantile estimates from DPQE is (ωp, 0) private (Lem. H.2).
Since DP is immune to post-processing (Lem. E.4), and that the output of allocation and payment
combination is 2k dimensional, by composition theorem (Lem. E.5), our algorithm is (2kωp, 0)-DP.

Upper Bounding the Statistical Distance The distribution D̂p is obtained by changing from
distribution D through distribution D̂, the distribution D̂ω and D̂q (Figure 1). We upper bound the
statistical KS distance of these distributions: 1) By DKW inequality, we upper bound the KS-distance
between D̂ and D by !̃(1/

↔
n) for each coordinate i (with probability 1↑ ε/2). 2) By definition, we

upper bound the KS-distance between D̂ω and D̂q by kωq . 3) By developing and converting the bound
of the DP quantile algorithm (Lem. H.3) into a bound on the CDF, we upper bound the KS-distance
between D̂q and D̂p by kω̂ for ω̂ := !̃(1/(ωpn)) (with probability 1↑ ε/2).

Upper Bounding the Revenue Loss. We then upper bound optimal revenue loss from D to D̂p. This
upper bound can be obtained by combining the revenue loss from the aforementioned distributions
(by revenue shift theorem), with an additive ωa revenue loss from discretization (by Lem. F.1). The
revenue loss from statistical shift aggregates to !̃((1/

↔
n+ ωq + ω̂)kh) with probability 1↑ ε.

Putting it all together. Finally, condition on the DPQUANT proceeds successfully and the samples
are close to the underlying distribution (with probability 1↑ ε), we get that the expected revenue of
DPQUANT on the underlying distribution is at least the optimal revenue from this distribution minus
the revenue difference between D and D̂p by the following inequality:
0 ↘ E[Rev(MD̂p ,D)↑ OPT(D)] ↘ E[Rev(MD̂p ,D)↑ OPT(D̂p)]↑ |OPT(D̂p)↑ OPT(D)|

where the first inequality follows from the optimality of MD on D and the second inequality follows
from adding OPT(D̂p). By our construction of D̂p, this distribution is stochastically dominated by D,
thus from the strong revenue monotonicity (Lem. F.3), we get that E[Rev(MD̂p ,D)↑OPT(D̂p)] ↘ 0.
Thus, we concluded that the revenue gap is upper bounded by !̃((1/

↔
n+ ωq + ω̂)kh+ ωa). We set ε

in the statement as 1/k of the ε we used in this proof to generate the final revenue guarantee.

Dist. D Emp. D̂ Discrete D̂ω

line 1 in Alg. 1

Discrete D̂q

Private D̂p

line 4 in Alg. 1

large n

close CDF
small ωa
close Rev.

large n

close CDF

Figure 1: Distribution analyzed for DPMYER(Alg. 1). We establish connections between the
accuracy/revenue guarantee of the original distribution D with the empirical distribution D̂, the value-
discretized D̂ω, the quantile-discretized D̂q and the distribution D̂p returned by DPQUANT(Alg. 4).

Next, we demonstrate the efficiency of our algorithm, which is achieved through a organized im-
plementation of the DP Quantile algorithm. Intuitively, given m ordered quantiles, the algorithm
iteratively identifies and estimates the median (the m/2-th), followed by the m/4 and the 3m/4
quantiles, and so on. This hierarchical structure ensures that each data point is used in at most logm
quantile estimates (of a single quantile). For more details, we refer readers to Appendix H.1.
Theorem 3.3 (Time Complexity for Private Myerson, Bounded). Given the same parameters as
stated in Theorem 3.2, DPMYER (Alg.1) runs in !̃(kn) time and requires !̃(1) passes of the samples.

Proof Sketch. The time dominant step is quantile estimation, which requires log(↖1/ωq↙+ 1) passes
of the dataset. It takes O(k log(↖1/ωq↙ + 1)/(ωaωq)) = !̃(kn) time, since n = !̃(ω↑2). This step
calculates the utility of k↖h/ωa↙ over ↖1/ωq↙ quantiles for at most !̃(1) time. For full version of this
proof, please refer to Appendix H.3
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4 GENERALIZATION TO UNBOUNDED DISTRIBUTIONS

Generalizing the DP Myerson mechanism to unbounded distributions introduces new challenges.
The revenue loss upper bound produced by previously introduced quantile estimation algorithm and
revenue shift theorem both depends (positively) on the range of the distribution. Without a finite
range, these upper bound becomes infinite and fail to effectively control the revenue loss.

We consider the widely accepted ϑ-strongly regular distributions, which decays at least as fast as
exponential distributions. A key element of our approach is appropriately truncating the distribu-
tion, which enables us to extend the discretize-then-DP-quantile method to the unbounded setting.
Specifically, we apply the property of the regular distribution that (Devanur et al., 2016), truncating
the distribution by 1

ωOPT(D) costs at most 2ω fraction of the optimal revenue (Lem. I.1). Hence,
for the truncation to work, it is essential to approximate the optimal revenue based on sample data.
Meanwhile, incorporating the truncation with pure DP introduces additional complexities.

We are now ready to present our approach for a k-approximation of the optimal revenue with pure
DP for ϑ-strongly regular product distributions. Our DPKOPT (Alg. 2) algorithm approximates the
optimal revenue by running a empirical reserve(ER) over each bidder’s distribution truncated at the
top ϑ1/(1↑ε)/4 quantile.5 Summing up these estimates gives us a !(k)-approximation of the optimal
revenue, by the fact that kOPT(D) ↘

∑
i↔[k] OPT(Dk) ↘ OPT(D).

Algorithm 2 DP Estimation for Optimal Revenue DPKOPT(V, ωq, ωa, ωp, ϑ)

Input: n samples V = {v1, . . . ,vn}, quantile discretization ωq, additive discetization ωa, privacy
parameter ωp, regularity parameter ϑ.

1: for d = 1 ≃ k do
2: q̂ ⇔ 1/4 · ϑ1/1↑ε

3: Let ubd ⇔ DPQUANTU(V[d,:], 1↑ q̂). ϱ Estimate the truncation point of Dd.
4: Truncate distribution Dd at ubd as D̂d, and discretize D̂d by additive ωa in the value space.
5: Prepare the quantile to be estimated, Q ⇔ {1↑ q̂, 1↑ q̂ ↑ ωq, · · · , 1↑ q̂ ↑ ↖ 1↑q̂

ωq
↙ · ωq, 0}.

6: Ŝ[d,:] ⇔ QESTIMATE(Q, V[d,:], ωp) ϱ Apply DP quantile estimate (Alg. 4).
7: Let F̂d be the distribution generated by value profile Ŝ[d,:] and quantile set Q.
8: SREVd ⇔ maxr↔Ŝ r(1↑ F̂d(r)). ϱ Estimate the optimal revenue from F̂d (Alg. 6).
9: end for

10: KREV ⇔
∑

d↔[k] SREV
11: return KREV

To guarantee pure privacy, our algorithm estimates the optimal revenue using a DP-estimated proxy
F̂[k] derived from the sample data. This proxy is obtained from truncating the distribution by
DPQUANTU (Alg. 7) and quantile-discretizing the distribution by DPQUANT. During this process,
the truncation by DPQUANTU cost at most a constant fraction of the optimal revenue, and DPQUANT

cost at most an additional !̃( 1
ωpn

k + ωa). Aggregating these revenue loss concludes that the output is
a !(k)-approximation of the optimal revenue. See Appendix I.4 for more details.

Our private Myerson algorithm for the unbounded distribution (Alg. 9) integrate DPKOPT and yields
the following accuracy bound. See Appendix I.5 for formal statements and more details.
Theorem 4.1 (Revenue Guarantee of Private Myerson, Unbounded). Given ω ↓ [0, 1/4], n samples
V̂ of the joint distribution D ↓ [0, h]k, the output of Myerson fitted under DPMYERU (Alg. 9) is
(2kωp, 0)-DP, and under ωa = ωq = ω, n = !̃(ω2), n1 = !̃(ω2), ωt =

↔
ω, with probability 1↑ ε,

E[Rev(MDPMYERU,D)↑ Rev(MD,D)]| → Õ(k2
↔
ω+ k2ω1.5/ωp)

5Without privacy constraints, truncating at the top ϑ
1/(1→ω)-suffices by Lem. I.4. Our algorithm adopt a

looser truncation since the DPQUANTU algorithm only return the value of given quantiles approximately.
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5 APPLICATION: ONLINE MECHANISM DESIGN FROM BIDS

We now study how to integrate our previous solutions into the online auction setting, such that, the
algorithm produces time-averaged revenue guarantee that converges to the optimal. The auction
now spans multiple rounds, where each auction is informed by the bids from previous rounds. We
consider the setting where bidders are non-myopic bidders, and have incentives to bid strategically in
the current round to increase their utilities over future auctions.

5.1 APPLICATION BACKGROUND

Before presenting our algorithm, we first provide the formal problem definition of the online auction
setting. We study online mechanism design over a time horizon of T , where an identical item is sold
at each iteration. Each bidder has a publicly observable attribute. Bidders with the same attribute
have the same valuation distribution.

We are now ready to describe interactions between bidders and the auctioneer over time horizon T ,
as shown in Figure 2. We defer to Appendix J.2 for more details how bidder generates the samples.

For each time t ↓ [T ]:
• The learner/auctioneer sells a fresh copy of the item.
• The learner collects the bids in the form of (bj , aj), where bj and aj denote the bid

and the attribute of the j ↓ [dt]-th bidder, respectively.
• The learner decides the allocation rule xt and payment pt accordingly.

Figure 2: Online Auction with k Attributes.

Each item the auctioneer sells is identical, and each bidder has an additive (discounted) utility of the
items across rounds. We consider the bidders either have discounted utility or are in a large market.
Definition 5.1 (Bidder’s Utility). Each bidder j has a quasi-linear utility function at time t: ut

j =
xt
j(v

t
j ↑ ptj), where xt

j , v
t
j , p

t
j are the allocation, value, price for bidder j at time t, respectively. We

consider two nonmypoic bidders’ utility models:

Discounted Utility: For discount factor φ ↓ [0, 1], the bidders seek to maximize the sum of utilities
discounted by φ. At the t-th iteration, the discounted utility is ût

j =
∑T

r=t u
r
jφ

r↑t.

Large Market: (Anari et al., 2014; Jalaly Khalilabadi and Tardos, 2018; Chen et al., 2016): The bidder
only participates in a subset Sj of auctions, i.e., for each u1:T =

∑
t↔Sj

ut, with subset |Sj | < l.

Ideally, the learner’s objective is maximize time-averaged revenue with high probability. Our regret
compare this revenue against the optimal revenue of the (unobservable) value history.
Definition 5.2 (Learner’s Objective). Given ε, the learner’s objective is to decide an allocation x1:T

and a payment p1:T that achieves sublinear regret, i.e., with probability 1↑ ε,

REGRET :=
1

T

∑

t↔[T ]

E[Rev(xt,pt,bt)↑ E [OPT(vt)]] = o(1),

with the expectation taken over the value distribution.

5.2 TWO-STAGE MECHANISM FOR BOUNDED DISTRIBUTION

This two-stage algorithm (Alg. 3) consists of repeated auctions over T rounds, and the participating
bidders’ values in each round are upper bounded by a known constant h. The algorithm first collects
the samples for the first T1 rounds, by running a commitment algorithm (Alg. 10) that punishes
nontruthful bids. Then, the algorithm deploys our previously developed DP Myerson’s Algorithm
(Alg. 1, Alg. 9) for the remaining rounds to obtain near optimal revenue. In addition to these two
steps, our algorithm includes a step where all samples are reduced by ↼ (line 4 of Alg. 3) and projected
onto nonnegative value spaces. This step is designed to offset the impact of strategic bidding.
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Algorithm 3 Two-Stage Algorithm ABOUNDED

Input: Rounds T , learning rounds T1, parameter ωa, ωq , ωp, ↼, upper bound h.
1: for t ⇔ 1, . . . T1 do ϱ Collection Stage
2: Receive bids bt, and attributes at.
3: Return (xt,pt) ⇔ COMMIT(bt). ϱ Commitment Algorithm(Alg. 10)
4: b̂t ⇔ P[0,h][b

t ↑ ↼1k]
5: end for
6: (x̃(·), p̃(·)) ⇔ DPMYER(b̂1:T1 ,a1:T1 , ωq, ωa, h, ωp) ϱ Fit Myerson’s auction (Alg. 1, or Alg. 9)
7: for t ⇔ T1 + 1, . . . T do ϱ Revenue Stage
8: Receive bids bt, and attributes at.
9: (xt,pt) ⇔ MYERSON(x̃(·), p̃(·));

10: end for

Specifically, the parameter ↼ is carefully calibrated to ensure that the bid distribution fed into the
private Myerson mechanism is stochastically dominated by the empirical distribution. Our algorithm
provides an incentive guarantee that bids lie within a small, controllable neighborhood of the true
values. The range of this neighborhood is determined by the privacy parameter ωp (hence is controlled
by our algorithm), and the bidders’ utility functions. By setting ↼ to match the range of this
neighborhood, the resulting distribution is dominated by the empirical distribution.

5.3 REVENUE GUARANTEE OF THE ALGORITHM

Before presenting the revenue guarantee of our main algorithm, we first introduce a lemma that upper
bounds how a bidder’s bid deviates from its true value during the collection stage. Intuitively, by the
design of our commitment algorithm the bidder will incurs a loss that scales (positively) with the bid
deviation, compared to truthful bidding. Furthermore, our private Myerson ensures that the bidder’s
future utility gain is upper bounded (Lem. J.5). Thus, bidders are incentivized to report bids within a
certain range of their true values to optimize their overall utility. More details in Appendix J.4.
Lemma 5.3 (Bid Deviation). For any t ↓ [0, T1], the bidder will bid only bt such that |bt ↑ vt| → 2ς,

where ς =
√
2(l ↑ 1)ωphk for bidders in a large market; and ς =

√
2ϑωp
1↑ϑ kh for discounting bidder.

From this lemma, we get that selecting a small ωp would incentivize bid distributions that are close
to the ground-truth. Let ↼ = 2ς in our algorithm (line 4, Alg. 3) would yield a distribution that
is stochatically dominated by, yet close in revenue guarantee to, the true distribution. Run our DP
Myerson algorithm on this distribution would give us sublinear regret, as stated below.
Theorem 5.4 (Accuracy Guarantee of Two-stage Mechanism). Given ω ↓ [0, 1/4], n samples of
the joint distribution D ↓ [0, h]k, and T1 = !(ω↑2 log(k/ε)), T = ”(T1), ωa = ωq = ωp = ω, with
probability 1↑ ε, Alg. 3 generates sublinear regret, i.e.,

Under a large market, the regret is upper bounded by Õ[(ω+
↔
lω)kh], for ↼ = 2

√
2(l ↑ 1)ωphk.

Under discounting bidder, the regret is upper bounded by Õ[(ω+
√

ϑω
1↑ϑ )kh], for ↼ = 2

√
2ϑωp
1↑ϑ kh.

Proof Sketch. We denote the empirical distribution as D̂, the distribution after subtraction in line 4 of
Alg. 3 as D̃, and the (final) output distribution as D̂p. Then these distribution satisfies D̂ ⇓ D̃ ⇓ D̂p.
By strong monotonicity(Lem. F.3), we know that E[Rev(MD̂p ,D)] ↘ E[OPT(D̂p)]. Since MD̂p

need not be optimal over D, we have that:

0 ↘ E[Rev(MD̂p ,D)↑ OPT(D)]

↘ E[Rev(MD̂p ,D)↑ OPT(D̂p)] + E[OPT(D̂p)↑ Rev(MD,D)]

↘ E[OPT(D̂p)↑ OPT(D̂)]↑ |E[OPT(D̂)↑ OPT(D)]| ↘ ↑!̃((ω+ ω2/ωp)kh+ ↼).

where in the last inequality we apply revenue shift theorem (Thm. 3.1) to upper bound the first term
and apply Lemma J.9 to upper bound the second term. Please refer to Appendix J.3 for more details.
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6 EXPERIMENTS

In this section, we present the experimental results for the Differentially Private (DP) Myerson
mechanism, comparing its performance against two standard mechanism design baselines: the
Myerson (optimal) auction and the Vickrey (second-price) auction. The former is designed to achieve
near-optimal revenue for a given value distribution, whereas the latter, while strategy-proof, offers no
revenue guarantees in settings with independent and non identical value distributions.

Our experiments are conducted on normal and lognormal distributions truncated to positive domains.
The lognormal distribution is widely considered a representative or “groundtruth” model in many
auction settings, thanks to its capacity to capture a broad spectrum of value distributions commonly
observed in economic and market contexts (Gorbenko and Malenko, 2014). A random variable V is
said to be lognormal distributed with parameter (µ,↽), if ln(V ) follows normal distribution N (µ,↽).

For each value profile, we test various hyperparameters—additive discretization (ωa), quantile dis-
cretization (ωq), and the privacy parameter (ωp)—and select the configuration with the best perfor-
mance. For details on DP Myerson’s sensitivity to hyperparameters, see Appendix A.

Bidder Profile DP Myerson Second Price Myerson Ref.

Normal N (0.3, 0.5) 0.25272 0.15154 (66.7 %) 0.32598 Table 2Lognormal (µ,↽) = (↑1.87, 1.15)

Normal N (0.3, 0.5) 0.37691 0.33741 (11.7 %) 0.50204 Table 3Normal N (0.5, 0.7)

Lognormal (µ,↽) = (↑1.87, 1.15) 0.13912 0.11578 (20.2 %) 0.21292 Table 4Lognormal (µ,↽) = (↑1.24, 1.04)

Table 1: Empirical Revenue of DPMyerson (Alg. 1) under 2-dimensional non-identical value distribu-
tions. Each DPMyerson configuration is averaged over 50 draws, with revenue evaluated on 10, 000
samples. Percentages in parentheses represent the improvement over the second-price mechanism.

In Table 1, under non i.i.d distribution settings where there is a significant revenue gap between the
Vickrey auction and the Myerson auction, DPMyerson achieves a notable revenue increase (at least
11% ) over the second-price mechanism.

7 CONCLUSION

We investigate the problem of learning a single-item auction (i.e., Myerson) from samples with pure
DP. We consider the broader setting where the agents’ valuations are independent, non-identical, and
can either be bounded or unbounded. By recognizing that the optimal auction mechanism exhibits
robustness to small statistical perturbations in the underlying distribution, we reduce the challenge
of privately learning an optimal auction from sample data to the task of privately approximating
pre-specified quantiles. Specifically, our approach ensures pure privacy while generating a distribution
that is closely aligned with the underlying distribution in terms of expected revenue.

We then extend this framework to the online auction setting, where later auctions are fitted on bids
from previous auctions. In this setting, non-myopic bidders reasons about their utility accross rounds,
and can bid strategically under (one-shot) truthful auctions. By leveraging our private Myerson
mechanisms with an extra commitment mechanism, we achieve near-optimal revenue outcomes over
the bidders’ (unobservable) value samples, despite the strategic complexity introduced by non-myopic
behavior (i.e., time discounting bidder and/or non-discounting bidders in a large market). This result
highlights the robustness of our approach in both protecting privacy and maintaining near optimal
expected revenue in dynamic, strategic environments.
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