

000 001 DIFFERENTIALLY PRIVATE MECHANISM DESIGN VIA 002 QUANTILE ESTIMATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 We investigate the problem of designing differentially private (DP), revenue-
012 maximizing single item auction. Specifically, we consider broadly applicable
013 settings in mechanism design where agents' valuation distributions are *independ-
014 ent, non-identical*, and can be either *bounded* or *unbounded*. Our goal is to design
015 such auctions with *pure*, i.e., $(\epsilon, 0)$ privacy in polynomial time.

016 In this paper, we propose two computationally efficient auction learning framework
017 that achieves *pure* privacy under bounded and unbounded distribution settings.
018 These frameworks reduces the problem of privately releasing a revenue-maximizing
019 auction to the private estimation of pre-specified quantiles. Our solutions increase
020 the running time by polylog factors compared to the non-private version. As an
021 application, we show how to extend our results to the multi-round online auction
022 setting with non-myopic bidders. To our best knowledge, this paper is the first to
023 efficiently deliver a Myerson auction with *pure* privacy and near-optimal revenue,
024 and the first to provide such auctions for *unbounded* distributions.

025 026 1 INTRODUCTION 027

028 Though prior-dependent auctions, which adjust parameters based on samples of value distributions,
029 often yield better revenue than prior-independent auctions, they risk leaking information about the
030 bids they were trained upon. To address this issue, differential privacy (DP) offers a promising
031 solution (Dwork, 2006; 2008; McSherry and Talwar, 2007; Pai and Roth, 2013), ensuring that a single
032 data point minimally affects the algorithm's output, thus preventing inference of a specific data point.

033 We study the problem of learning a single-item auction with near-optimal revenue from samples of
034 independent and non-identical value distributions. In this context, the optimal auction (i.e., Myerson's
035 auction (Myerson, 1979)), which relies on value distributions (i.e., prior-dependent), achieves optimal
036 revenue. However, releasing the learned Myerson's auction raises privacy concerns, as the output
037 mechanism may inadvertently reveal sensitive information about the distributions. To provably
038 mitigate this risk, our goal is to integrate *pure* DP into the learning process of such auction.

039 **Pure Differential Privacy.** Given two datasets that differ in one data point, i.e., D, D' , we say an
040 algorithm \mathcal{A} satisfies (ϵ, δ) -*approximate* DP if for any given output s : $\Pr[\mathcal{A}(D) = s] \leq e^\epsilon[\mathcal{A}(D')] =$
041 $s + \delta$. We say \mathcal{A} satisfies *pure* DP if $\delta = 0$. Pure DP allows no slack in privacy protection, and
042 hence is more challenging to achieve than approximate DP. Previous attempts (McSherry and Talwar,
043 2007; Nissim et al., 2012) to integrate DP with prior-dependent auctions have been computationally
044 inefficient or guaranteed approximate rather than pure DP. To our knowledge, *no algorithm guarantees*
045 *pure DP for Myerson's auction in polynomial time*.

046 **Efficiency.** Incorporating DP into the mechanism often sacrifices efficiency, as achieving privacy
047 guarantees typically incurs additional computational overhead (e.g., random noise addition or extra
048 sampling procedure). This issue has been observed in similar contexts, such as online learning (Jain
049 et al., 2012), federated learning (Zhang et al., 2023) and deep learning (Abadi et al., 2016). In our
050 context, to achieve pure DP, implementing exponential mechanism (McSherry and Talwar, 2007) over
051 all possible mechanisms would incur *exponential* time (See Appendix D). To obtain pure DP more
052 efficiently, we apply recent advances (Durfee, 2023; Kaplan et al., 2022) in private quantile estimation.
053 Our algorithm's running time increases by only *polylog* factors compared to the non-private version.

054 **Notations** We use M_A to denote the optimal mechanism of distribution A , and we use $\text{Rev}(M, A)$
 055 to denote the revenue of deploying mechanism M to distribution A . We restricted ourselves to
 056 single item auctions; hence, M_A denotes the Myerson auction fitted on distribution A , and we denote
 057 $\text{OPT}(A) := \text{Rev}(M_A, A)$ as the optimal revenue one could get from a distribution A . We use $\mathbf{1}_k$ to
 058 denote a k -dimensional vector with all entries equal to 1. We use \tilde{O} and $\tilde{\Theta}$ to hide polylog factors.
 059

060 **1.1 RESULTS**

062 Formally, we define the problem of learning a near-optimal auction with a pure DP:
 063

064 **Problem 1.1** (Optimal Auction with $(\epsilon_p, 0)$ -DP). Given n samples of k -dimensional distribution \mathbf{D} ,
 065 the goal is to learn a single item auction M with $(\epsilon_p, 0)$ -DP, whose expected revenue on \mathbf{D} is close to
 066 the optimal revenue, i.e., with prob. $1 - \delta$ ¹ $|\mathbb{E}[\text{Rev}(M, \mathbf{D}) - \text{OPT}(\mathbf{D})]| \leq \epsilon$ for some small ϵ .
 067

068 **Insight.** To address this problem, we leverage the insight that, the expected optimal revenue from
 069 value distribution is *insensitive* to small statistical shifts and discretization in the quantile and value
 070 space. Additionally, we observe that the accuracy of the points returned by private quantile estimation
 071 (QE), assuming the data points follow a distribution, directly correlates with the statistical distance
 072 between the distribution formed by the returned points and the true distribution. Thus, we can reduce
 073 private Myerson fitting from samples to *private quantile estimation of pre-specified quantiles*.

074 Achieving pure DP while maintaining meaningful revenue guarantees is challenging. A crucial aspect
 075 is to ensure that the values (hence distribution) returned by DP Quantile Estimation (QE) possess
 076 meaningful and provable accuracy guarantees. To obtain such accuracy, our algorithm (Alg. 1) first
 077 additively discretize the empirical distribution in the value space to distribution \hat{D}^ϵ , then estimate the
 078 pre-specified quantiles with DPQE. We improved the accuracy bound of DPQE (DPQUANT, Kaplan
 079 et al. (2022)) to accommodate cases with duplicate values. This improved bound allows us to upper
 080 bound the statistical distance between the output distribution and \hat{D}^ϵ , thus upper bounding the revenue
 081 loss incurred from fitting a Myerson on the output distribution.

082 Theorem 1.2 briefly presents the near-optimal revenue of our proposed mechanism. The final privacy
 083 parameter has a dependency on k since the output of mechanism M is of dimension $2k$. We present
 084 complete details in Section 3 and the complete theorem statement in Theorems 3.2 and 3.3.

085 **Theorem 1.2** (Revenue Guarantee of Private Myerson, Bounded). *Given $n = \tilde{\Theta}(\epsilon^{-2})$ samples \hat{V} of
 086 the joint distribution $\mathbf{D} \in [0, h]^k$, there exist a mechanism M that is $2k\epsilon_p$ differentially private with
 087 running time $\tilde{\Theta}(kn)$ and takes $\tilde{\Theta}(1)$ pass of the distribution. With probability $1 - \delta$, this mechanism
 088 M satisfies: $|\mathbb{E}[\text{Rev}(M, \mathbf{D}) - \text{OPT}(\mathbf{D})]| \leq \tilde{O}((\epsilon + \epsilon^2/\epsilon_p)kh)$.*

091 The prior algorithm does not work for *unbounded* distributions. Our second algorithm (Alg. 9)
 092 addresses the case for η -*strongly regular* value distributions by efficiently truncating them to bounded
 093 distributions with small expected revenue loss. This approach enables the application of our previous
 094 mechanism (Alg. 1) designed for the bounded distribution case. Since the truncation point is a
 095 function of the optimal revenue, we develop Alg. 7 to approximate this point by achieving a $\tilde{\Theta}(k)$ -
 096 approximation of the optimal revenue, where k denotes the dimension of the product distribution.

097 Theorem 1.3 outlines the accuracy of our proposed mechanism for certain parameter settings. Since
 098 this truncation point depends adaptively on the desired accuracy, the revenue gap exceeds that for the
 099 bounded case, and the tradeoff between privacy and revenue are more pronounced. We present more
 100 details in Section 4, and the complete theorem statement is in Theorems 4.1 and 4.3.

101 **Theorem 1.3** (Revenue Guarantee of Private Myerson, Unbounded). *Given $n = \tilde{\Theta}(\epsilon^{-2})$ samples \hat{V} of
 102 η -strongly regular joint distribution $\mathbf{D} \in \mathbb{R}^k$, there exist a mechanism M for unbounded distribution
 103 that is $2k\epsilon_p$ differentially private with running time $\tilde{\Theta}(kn)$ and takes $O(n)$ passes. With probability
 104 $1 - \delta$, this mechanism M satisfies: $|\mathbb{E}[\text{Rev}(M, \mathbf{D}) - \text{Rev}(M_{\mathbf{D}}, \mathbf{D})]| \leq \tilde{O}(k^2\sqrt{\epsilon} + k^2\epsilon^{1.5}/\epsilon_p)$.*

106
 107 ¹This failure probability δ is inevitable due to the inherent uncertainty in learning from a finite sample set,
 see Chapter 1 Kearns and Vazirani (1994).

108 **Application: Online auction with nonmyopic bidders.** We now describe how our mechanisms
 109 incentivize truthful bidding from nonmyopic bidders under practical online auction settings.² In the
 110 online setting, auctions are deployed iteratively and later auctions are informed by previous bids.
 111 Since future auctions can be affected by earlier bids, *nonmyopic* bidders may strategically bid in
 112 earlier rounds to increase winning chances and/or secure lower prices, increasing their utility.

113 To prevent from strategic bidding, we integrate our previous solutions (Alg. 1, Alg. 9) with a
 114 commitment mechanism. Our DP Myerson naturally upper bound the utility gain (of future rounds)
 115 by definition, in that the change of one bid affect the outcome’s probability by privacy parameter
 116 ϵ_p . Our algorithm operates in two stages. In the first stage, it employs a commitment mechanism
 117 that penalizes strategic bids. In the second stage, the algorithm fits a DP Myerson auction from the
 118 collected bids and generates revenue in the remaining rounds. This approach ensures that strategic
 119 bids only lies in a small neighbor of the true value; otherwise, the bidder’s utility becomes negative.

120 We present the *regret* (i.e., the time-averaged revenue of the proposed mechanism compared to the
 121 optimal one) of our proposed mechanism (Alg. 3) in Theorem 1.4, which shows the accuracy of our
 122 algorithm in terms of regret. We defer readers to Section 5 and Theorem 5.4 for further details.

123 **Theorem 1.4** (Revenue Guarantee of Online Mechanism). *Given $\epsilon \in [0, 1/4]$, under the online
 124 auction setting described in Section 5.1, there exists an algorithm (Alg. 3) run with parameter $T =$
 125 $\tilde{\Theta}(\epsilon^{-2})$ that, with probability $1 - \delta$, achieves diminishing regret, i.e., $\text{REGRET} = \tilde{\mathcal{O}}[(\epsilon + \sqrt{\eta\epsilon})kh]$,
 126 where η is a constant specific to bidders’ utility model.*

128 1.2 PRIOR WORK

130 **DP Mechanism Design.** Emerging from [McSherry and Talwar (2007)], there has been interest in
 131 delivering mechanisms with DP guarantees (Nissim et al., 2012; Huang et al., 2018a; Zhang and
 132 Zhong, 2022; Huh and Kandasamy, 2024). These mechanism are either *no longer optimal* in our
 133 setting, or doen’t generalize to unbounded distribution setting.

134 **Online Learning in Repeated Auction.** Regarding the single item online auction setting, [Kanoria
 135 and Nazerzadeh (2014); Huang et al. (2018a)] established near-optimal solutions when bidders’ utility
 136 is discounted and valuations are i.i.d. [Deng et al. (2020); Abernethy et al. (2019)] introduced specific
 137 incentive metrics to quantify bidders’ willingness to bid other than their true values and developed
 138 mechanisms that minimize incentives for strategic bidding under these metrics in large markets.

139 For a detailed, complete list of related work topics, please see Appendix C

141 1.3 CONTRIBUTIONS

143 **Revenue Maximizing Auctions with Pure Privacy Guarantee.** Our work is the first to develop a
 144 mechanism with *pure* DP that obtains near optimal revenue for single item auction with independent
 145 and non-identical bidders, and for both *bounded* and *unbounded* η -strongly regular distributions. For
 146 bounded distributions, our mechanism achieves optimal time complexity within polylog factors.

147 **Application to Online Auction Setting.** We apply our mechanism into the online auction setting
 148 with nonmyopic, independent and non-identical bidders. Combined with our designed commitment
 149 strategy, the integrated solution restricts the bids to a small neighbor around the corresponding value.
 150 Consequently, these approximately truthful bids enables our solution to generate revenue guarantee
 151 that converges to the optimal revenue over time, for time-discounted, or large market bidders. We
 152 generalize the i.i.d bidder setting in [Huang et al. (2018a)] and solve the open problem they proposed.

153 **Extended Analysis of Private Quantile Algorithm.** We extend the analysis of the quantile estimation
 154 oracles employed in this paper. For quantile estimation on bounded datasets [Kaplan et al. (2022)], the
 155 paper assumes that all data points are *distinct* and derive accuracy bounds dependent on the dataset’s
 156 range. We generalize their analysis to accommodate cases where multiple data points may share
 157 *identical* values. Additionally, for quantile estimation of unbounded distributions [Durfee, 2023], we
 158 provide theoretical accuracy guarantees, complementing the paper’s focus on empirical performance.

159
 160 ²In practice, recognizable non-i.i.d. value distributions are common, e.g., Meta Ad platform (met) requires
 161 that each advertiser selects one of six objectives, corresponding to different distributions based on the industry or
 advertisement topic.

162 **2 PRELIMINARIES**

164 In this section, we outline the preliminaries on mechanism design, differential privacy, and quantile
 165 estimation. Additional information can be found in Appendix [E](#)

167 **2.1 MECHANISM DESIGN BASICS**

169 We now formally define the allocation rule and payment rule of a single item auction.

170 **Definition 2.1** (Allocation Rule and Payment Rule). Given k bidders with bid $\mathbf{b} := (b_1, \dots, b_k)$, a
 171 single-item auction M consists of an allocation rule as $\mathbf{x}(\mathbf{b}) := (x_1(\mathbf{b}), \dots, x_k(\mathbf{b})) \in [0, 1]^k$ and
 172 a payment rule as $\mathbf{p}(\mathbf{b}) := (p_1(\mathbf{b}), \dots, p_k(\mathbf{b})) \in [0, 1]^k$, where x_j denotes the probability that the
 173 j -th bidder gets the item, and p_j denotes her payment.

174 Under truthful sample access, the Myerson's auction maximizes the expected revenue.

175 **Definition 2.2** (Myerson's Single Item Auction ([Myerson, 1981](#))). For a discrete product distribution
 176 $\mathbf{D} = \mathcal{D}_1 \times \dots \times \mathcal{D}_k$ ([Elkind, 2007](#)), the *virtual value* for \mathcal{D}_j at value v_i^j with support $\mathcal{V}_j =$
 177 $\{v_1^j, \dots, v_n^j\}$ is $\phi_j(v_i^j) = v_i^j - (v_{i+1}^j - v_i^j) \frac{1 - F_j(v_i^j)}{f_j(v_i^j)}$, where v_i^j 's are ordered in increasing order of i ,
 178 $f_j(v_i^j) = \mathbb{P}[v^j = v_i^j]$, and $F_j(v_i^j) = \sum_{k=1}^i f(v_k^j)$.

179 We say the product distribution \mathbf{D} is η -strongly regular if for all j , $\phi_j(v_i) - \phi_j(v_j) \geq \eta(v_i - v_j)$ for
 180 every $v_i > v_j \in \mathcal{V}$ and $\eta > 0$.

181 For these distributions \mathcal{D} with nondecreasing virtual value, *Myerson's allocation rule* $x_i(v_i) =$
 182 $\mathbb{1}\{\phi_i(v_i) \geq \max(0, \max_{j \neq i} \phi_j(v_j))\}$, where $\mathbb{1}\{\cdot\}$ denotes the indicator function. The *payment rule*
 183 $p_i(v_i) = \mathbb{1}\{\phi_i(v_i) \geq \max(0, \max_{j \neq i} \phi_j(v_j))\} \phi_i^{-1}(\max(0, \max_{j \neq i} \phi_j(v_j)))$.³

187 **2.2 DIFFERENTIAL PRIVACY BASICS**

189 We present the definition of pure DP and approximate DP below.

190 **Definition 2.3** (Differential privacy). An algorithm $\mathcal{A} : \mathbb{R}_+^n \rightarrow \mathbb{R}$ is (ϵ, δ) -approximate DP if for
 191 neighboring dataset $V, V' \in \mathbb{R}_+^n$ that differs in only one data point, and any possible output O , we
 192 have: $\Pr[\mathcal{A}(V) = O] \leq \exp(\epsilon) \Pr[\mathcal{A}(V') = O] + \delta$. We say it satisfies *pure* DP for $\delta = 0$.

193 A key property we leverage from differential privacy is its immunity to post-processing. Post-
 194 processing refers to any computation or transformation applied to the output of a DP algorithm after
 195 the data has been privatized. In our context, Myerson's auction can be seen as a post-processing step.
 196 Therefore, applying Myerson's auction to a differentially private release of the empirical distribution
 197 preserves the original privacy guarantees of the input distribution.

198 **Lemma 2.4** (Immunity to Post-Processing). *Let $\mathcal{A} : \mathbb{R}_+^n \rightarrow \mathbb{R}$ be an (ϵ, δ) -DP algorithm, and let*
 199 *$f : \mathbb{R} \rightarrow \mathbb{R}$ be a random function. Then, $f \circ \mathcal{A} : \mathbb{R}_+^n \rightarrow \mathbb{R}$ is also (ϵ, δ) -DP.*

201 **2.3 QUANTILE ESTIMATION**

203 Quantile estimation (QE) is used for estimating a value of specified quantiles from samples. Given
 204 samples from a distribution, an accurate QE from samples directly translates to an accurate CDF
 205 estimation of the underlying distribution. Below, we formally introduce the definition of QE.

206 **Definition 2.5** (Quantile Estimation). Given a range of the data as H , a dataset $X \subseteq H^n$ containing
 207 n points from range H , and a set of m quantiles $0 \leq q_1, \dots, q_m < 1$, identify quantile estimations
 208 v_1, \dots, v_m such that for every $j \in [m]$, $|\{x \in X | x \leq v_j\}| \approx q_j \cdot n$.⁴

209 We now present the definition of *statistical dominance* and *KS-distance* below.

210 **Definition 2.6** (Stochastic Dominance and KS-Distance). Given distribution \mathcal{D} and \mathcal{D}' , we denote
 211 the CDF of them as $F_{\mathcal{D}}, F_{\mathcal{D}'}$, respectively. Distribution \mathcal{D} stochastically dominates distribution \mathcal{D}'
 212 (denoted as $\mathcal{D} \succeq \mathcal{D}'$) if: (1) For any outcome x , $F_{\mathcal{D}(x)} \leq F_{\mathcal{D}'(x)}$. (2) For some x , $F_{\mathcal{D}(x)} < F_{\mathcal{D}'(x)}$.

213 The KS distance between \mathcal{D} and \mathcal{D}' is $d_{\text{KS}}(\mathcal{D}, \mathcal{D}') = \sup_{x \in \mathbb{R}} |F_{\mathcal{D}(x)} - F_{\mathcal{D}'(x)}|$.

214 ³We define the virtual value inverse $\phi_i^{-1}(\phi)$ as $\arg \min_{v \in \mathcal{V}} \phi_i(v) \geq \phi$.

215 ⁴More formally, $v_j \in X$ is the minimum value such that this quantity exceeds $q_j n$.

216

3 PRIVATE MYERSON’S AUCTION FOR BOUNDED DISTRIBUTIONS

217

218 In this section, we introduce the algorithm for fitting a Myerson’s auction with a pure privacy
219 guarantee. To ensure pure privacy, since DP is immune to postprocessing, it is sufficient to input
220 a private distribution estimated from samples to the Myerson. The challenge lies in finding such
221 distributions that still yield near-optimal revenue.

222 Our approach leverages private quantile estimation (QE) over samples to achieve the desired guarantee.
223 However, the standard guarantees of DPQE collapse when the dataset contains points that are
224 extremely close. This is a critical issue in our setting, as increasing the sample size n from continuous
225 value distributions inherently causes the minimum distance between samples to approach zero. To
226 address this, we introduce additional discretization steps to prevent non-identical points from being
227 too close together, and we develop new DPQE guarantees specifically tailored to handle samples with
228 identical values.

229

3.1 PRIVATE MYERSON FOR BOUNDED DISTRIBUTIONS

230

231 Next, we present DPMYER algorithm (Alg. 1). The algorithm first value-discretize the samples of the
232 distribution additively by ϵ_a , then quantile-discretize these samples by ϵ_q with pure privacy guarantee.
233 Specifically, the quantile discretization estimates the values of the quantile set $[\epsilon_q, 2\epsilon_q, \dots, 1]$ with
234 pure privacy. Next, DPMYER use the estimated quantile values and the quantile set to construct a
235 distribution, then perturb it to a final distribution that is stochastically dominated by the ground truth.
236 Finally, the final distribution is then used to implement Myerson’s mechanism.

237

238 **Algorithm 1** DP Myerson, Bounded Distribution DPMYER($V, \epsilon_q, \epsilon_a, h, \epsilon_p$)

239

240 **Input:** n samples $V \in R_+^{k \times n}$, discretization parameter ϵ_q, ϵ_a , upper bound h , privacy parameter ϵ_p
241 1: Discretize all values into multiples of ϵ_a ; let the resulting samples be \widehat{V} .
242 2: Prepare the quantile to be estimated: $Q \leftarrow \{\epsilon_q, 2\epsilon_q, \dots, \lfloor (1/\epsilon_q) \rfloor \cdot \epsilon_q, 1\}$.
243 3: For each dimension $i \in [k]$, decide the prices $\widehat{S}_{[i,:]} \leftarrow \text{QESTIMATE}(Q, V_{[i,:]}, \epsilon_p)$.
244 4: \triangleright Estimate the quantiles by DPQUANT (Alg. 4)
245 5: Construct distribution \widetilde{D} based on \widehat{S} , treating the valuations in \widehat{S} as if each has probability ϵ_q .
246 6: For each $i \in [k]$, shift the top ϵ_q quantile of \widetilde{D}_i to the bottom, fit Myerson on this distribution.

247

248

3.2 REVENUE OPTIMALITY AND RUNNING TIME

249

250 Next, we show the revenue optimality and the efficiency of our algorithm. To upper bound the revenue
251 loss, we derive the revenue shift theorem, which upper bounds the revenue difference between two
252 distributions by a linear function of their statistical distance.

253 **Theorem 3.1** (Revenue Shift Theorem). *Given two product distribution $\mathbf{D} \succeq \mathbf{D}'$ whose valuations
254 are bounded by h , with $d_{\text{KS}}(\mathbf{D}_i, \mathbf{D}'_i) \leq \alpha_i$ for any bidder i , the optimal revenue of these distribution
255 satisfies: $0 \leq \mathbb{E}[\text{Rev}(M_{\mathbf{D}}, \mathbf{D}) - \text{Rev}(M_{\mathbf{D}'}, \mathbf{D}')] \leq (\sum_{i \in [k]} \alpha_i)h$.*

256 We apply this theorem to upper bound the revenue loss between 1) the quantile-discretized distribution
257 and its pre-quantized counterpart, and 2) the distribution obtained from private quantile estimation
258 and that from the groundtruth quantile estimation. The first one is evident, while the second arises
259 from DPQUANTILE’s ability to control the KS-distance between the estimation and the ground truth.

260 We now present the accuracy guarantee of the private Myerson algorithm. Provided the privacy
261 parameter is not too small (i.e. $\epsilon_p = \Omega(\epsilon^{-1})$), our guarantee implies that the optimal revenue of the
262 distribution does not exceed the revenue of our algorithm on its samples by more than $\tilde{\Theta}(\epsilon kh)$.

263 **Theorem 3.2** (Revenue Guarantee of Private Myerson (Alg. 1)). *Given n samples $\widehat{V} \in [0, h]^{k \times n}$
264 of the joint distribution \mathbf{D} , DPMYER (Alg. 1) is $(2k\epsilon_p, 0)$ -DP, and the expected revenue of this
265 mechanism is close to the optimal revenue of distribution \mathbf{D} , i.e., with probability $1 - \delta$:*

266
$$|\mathbb{E}[\text{Rev}(M_{\text{DPMYER}}, \mathbf{D}) - \text{OPT}(\mathbf{D})]| \leq \tilde{O}((\epsilon + \epsilon^2/\epsilon_p)kh).$$

267 *under parameter $\epsilon_a = \epsilon_q = \epsilon$ and $n = \tilde{\Theta}(\epsilon^{-2})$, where we hide the polylog factors in $\tilde{\Theta}$ and \tilde{O} .*

270 *Proof Sketch.* We begin by deriving the privacy guarantee of our algorithm. Next, we establish
 271 an upper bound on the distance between the private distribution \hat{D}^p and the additively discretized
 272 distribution \hat{D}^ϵ . This enables us to apply the revenue shift theorem (Thm. 3.1) to upper bound the
 273 revenue loss from private quantile estimation. By aggregating this loss with the revenue loss due to
 274 value discretization, we arrive at the final result. In this proof sketch, we omit the polylog factors that
 275 depends on $k, n, \delta, \epsilon_a, \epsilon_p, \epsilon_q$ for a clear presentation. Further details are provided in Appendix H.2.
 276

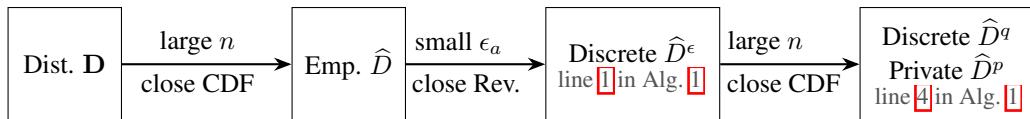
277 **Privacy Guarantee.** We know that the quantile estimates from DPQE is $(\epsilon_p, 0)$ private (Lem. H.2).
 278 Since DP is immune to post-processing (Lem. E.4), and that the output of allocation and payment
 279 combination is $2k$ dimensional, by composition theorem (Lem. E.5), our algorithm is $(2k\epsilon_p, 0)$ -DP.

280 **Upper Bounding the Statistical Distance** The distribution \hat{D}^p is obtained by changing from
 281 distribution \mathbf{D} through distribution \hat{D} , the distribution \hat{D}^ϵ and \hat{D}^q (Figure 1). We upper bound the
 282 statistical KS distance of these distributions: 1) By DKW inequality, we upper bound the KS-distance
 283 between \hat{D} and \mathbf{D} by $\tilde{\Theta}(1/\sqrt{n})$ for each coordinate i (with probability $1 - \delta/2$). 2) By definition, we
 284 upper bound the KS-distance between \hat{D}^ϵ and \hat{D}^q by $k\epsilon_q$. 3) By developing and converting the bound
 285 of the DP quantile algorithm (Lem. H.3) into a bound on the CDF, we upper bound the KS-distance
 286 between \hat{D}^q and \hat{D}^p by $k\hat{\epsilon}$ for $\hat{\epsilon} := \tilde{\Theta}(1/(\epsilon_p n))$ (with probability $1 - \delta/2$).
 287

288 **Upper Bounding the Revenue Loss.** We then upper bound optimal revenue loss from \mathbf{D} to \hat{D}^p . This
 289 upper bound can be obtained by combining the revenue loss from the aforementioned distributions
 290 (by revenue shift theorem), with an additive ϵ_a revenue loss from discretization (by Lem. F.1). The
 291 revenue loss from statistical shift aggregates to $\tilde{\Theta}((1/\sqrt{n} + \epsilon_q + \hat{\epsilon})kh)$ with probability $1 - \delta$.

292 **Putting it all together.** Finally, condition on the DPQUANT proceeds successfully and the samples
 293 are close to the underlying distribution (with probability $1 - \delta$), we get that the expected revenue of
 294 DPQUANT on the underlying distribution is at least the optimal revenue from this distribution minus
 295 the revenue difference between \mathbf{D} and \hat{D}^p by the following inequality:
 296

297 $0 \geq \mathbb{E}[\text{Rev}(M_{\hat{D}^p}, \mathbf{D}) - \text{OPT}(\mathbf{D})] \geq \mathbb{E}[\text{Rev}(M_{\hat{D}^p}, \mathbf{D}) - \text{OPT}(\hat{D}^p)] - |\text{OPT}(\hat{D}^p) - \text{OPT}(\mathbf{D})|$
 298 where the first inequality follows from the optimality of $M_{\mathbf{D}}$ on \mathbf{D} and the second inequality follows
 299 from adding $\text{OPT}(\hat{D}^p)$. By our construction of \hat{D}^p , this distribution is stochastically dominated by \mathbf{D} ,
 300 thus from the strong revenue monotonicity (Lem. F.3), we get that $\mathbb{E}[\text{Rev}(M_{\hat{D}^p}, \mathbf{D}) - \text{OPT}(\hat{D}^p)] \geq 0$.
 301 Thus, we concluded that the revenue gap is upper bounded by $\tilde{\Theta}((1/\sqrt{n} + \epsilon_q + \hat{\epsilon})kh + \epsilon_a)$. We set δ
 302 in the statement as $1/k$ of the δ we used in this proof to generate the final revenue guarantee. \square
 303



304
 305 Figure 1: **Distribution analyzed for DPMYER(Alg. 1).** We establish connections between the
 306 accuracy/revenue guarantee of the original distribution \mathbf{D} with the empirical distribution \hat{D} , the value-
 307 discretized \hat{D}^ϵ , the quantile-discretized \hat{D}^q and the distribution \hat{D}^p returned by DPQUANT(Alg. 4).
 308

309 Next, we demonstrate the efficiency of our algorithm, which is achieved through a organized im-
 310 plementation of the DP Quantile algorithm. Intuitively, given m ordered quantiles, the algorithm
 311 iteratively identifies and estimates the median (the $m/2$ -th), followed by the $m/4$ and the $3m/4$
 312 quantiles, and so on. This hierarchical structure ensures that each data point is used in at most $\log m$
 313 quantile estimates (of a single quantile). For more details, we refer readers to Appendix H.1.
 314

315 **Theorem 3.3** (Time Complexity for Private Myerson, Bounded). *Given the same parameters as
 316 stated in Theorem 3.2, DPMYER (Alg. 1) runs in $\tilde{\Theta}(kn)$ time and requires $\tilde{\Theta}(1)$ passes of the samples.*
 317

318 *Proof Sketch.* The time dominant step is *quantile estimation*, which requires $\log(\lfloor 1/\epsilon_q \rfloor + 1)$ passes
 319 of the dataset. It takes $O(k \log(\lfloor 1/\epsilon_q \rfloor + 1) / (\epsilon_a \epsilon_q)) = \tilde{\Theta}(kn)$ time, since $n = \tilde{\Theta}(\epsilon^{-2})$. This step
 320 calculates the utility of $k \lfloor h/\epsilon_a \rfloor$ over $\lfloor 1/\epsilon_q \rfloor$ quantiles for at most $\tilde{\Theta}(1)$ time. For full version of this
 321 proof, please refer to Appendix H.3. \square

324 **4 GENERALIZATION TO UNBOUNDED DISTRIBUTIONS**
325326 Generalizing the DP Myerson mechanism to unbounded distributions introduces new challenges.
327 The revenue loss upper bound produced by previously introduced *quantile estimation* algorithm and
328 *revenue shift* theorem both depends (positively) on the range of the distribution. Without a finite
329 range, these upper bound becomes infinite and fail to effectively control the revenue loss.
330331 We consider the widely accepted η -strongly regular distributions, which decays at least as fast as
332 exponential distributions. A key element of our approach is appropriately truncating the distribution,
333 which enables us to extend the discretize-then-DP-quantile method to the unbounded setting.
334 Specifically, we apply the property of the regular distribution that (Devanur et al., 2016), truncating
335 the distribution by $\frac{1}{\epsilon} \text{OPT}(\mathbf{D})$ costs at most 2ϵ fraction of the optimal revenue (Lem. I.1). Hence,
336 for the truncation to work, it is essential to approximate the optimal revenue based on sample data.
337 Meanwhile, incorporating the truncation with pure DP introduces additional complexities.
338339 We are now ready to present our approach for a k -approximation of the optimal revenue with pure
340 DP for η -strongly regular product distributions. Our DPKOPT (Alg. 2) algorithm approximates the
341 optimal revenue by running a empirical reserve(ER) over *each* bidder's distribution truncated at the
342 top $\eta^{1/(1-\eta)}/4$ quantile.⁵ Summing up these estimates gives us a $\Theta(k)$ -approximation of the optimal
343 revenue, by the fact that $k\text{OPT}(\mathbf{D}) \geq \sum_{i \in [k]} \text{OPT}(\mathcal{D}_k) \geq \text{OPT}(\mathbf{D})$.
344345 **Algorithm 2** DP Estimation for Optimal Revenue DPKOPT($V, \epsilon_q, \epsilon_a, \epsilon_p, \eta$)
346347 **Input:** n samples $V = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, quantile discretization ϵ_q , additive discretization ϵ_a , privacy
348 parameter ϵ_p , regularity parameter η .
349350 1: **for** $d = 1 \rightarrow k$ **do**
351 2: $\hat{q} \leftarrow 1/4 \cdot \eta^{1/1-\eta}$
352 3: Let $ub_d \leftarrow \text{DPQUANTU}(V_{[d,:]}, 1 - \hat{q})$. ▷ Estimate the truncation point of D_d .
353 4: Truncate distribution D_d at ub_d as \hat{D}_d , and discretize \hat{D}_d by additive ϵ_a in the value space.
354 5: Prepare the quantile to be estimated, $Q \leftarrow \{1 - \hat{q}, 1 - \hat{q} - \epsilon_q, \dots, 1 - \hat{q} - \lfloor \frac{1-\hat{q}}{\epsilon_q} \rfloor \cdot \epsilon_q, 0\}$.
355 6: $\hat{S}_{[d,:]} \leftarrow \text{QESTIMATE}(Q, V_{[d,:]}, \epsilon_p)$ ▷ Apply DP quantile estimate (Alg. 4).
356 7: Let \hat{F}_d be the distribution generated by value profile $\hat{S}_{[d,:]}$ and quantile set Q .
357 8: $\text{SREV}_d \leftarrow \max_{r \in \hat{S}} r(1 - \hat{F}_d(r))$. ▷ Estimate the optimal revenue from \hat{F}_d (Alg. 6).
358 9: **end for**
359 10: $\text{KREV} \leftarrow \sum_{d \in [k]} \text{SREV}$
360 11: **return** KREV
361362 To guarantee pure privacy, our algorithm estimates the optimal revenue using a DP-estimated proxy
363 $\hat{F}_{[k]}$ derived from the sample data. This proxy is obtained from truncating the distribution by
364 DPQUANTU (Alg. 7) and quantile-discretizing the distribution by DPQUANT. During this process,
365 the truncation by DPQUANTU cost at most a constant fraction of the optimal revenue, and DPQUANT
366 cost at most an additional $\tilde{\Theta}(\frac{1}{\epsilon_p n} k + \epsilon_a)$. Aggregating these revenue loss concludes that the output is
367 a $\Theta(k)$ -approximation of the optimal revenue. See Appendix I.4 for more details.
368369 Our private Myerson algorithm for the unbounded distribution (Alg. 9) integrate DPKOPT and yields
370 the following accuracy bound. See Appendix I.5 for formal statements and more details.
371372 **Theorem 4.1** (Revenue Guarantee of Private Myerson, Unbounded). *Given $\epsilon \in [0, 1/4]$, n samples
373 \hat{V} of the joint distribution $\mathbf{D} \in [0, h]^k$, the output of Myerson fitted under DPMYERU (Alg. 9) is
374 $(2k\epsilon_p, 0)$ -DP, and under $\epsilon_a = \epsilon_q = \epsilon$, $n = \tilde{\Theta}(\epsilon^2)$, $n_1 = \tilde{\Theta}(\epsilon^2)$, $\epsilon_t = \sqrt{\epsilon}$, with probability $1 - \delta$,*
375

376
$$\mathbb{E}[\text{Rev}(M_{\text{DPMYERU}}, \mathbf{D}) - \text{Rev}(M_{\mathbf{D}}, \mathbf{D})] \leq \tilde{O}(k^2 \sqrt{\epsilon} + k^2 \epsilon^{1.5} / \epsilon_p)$$

377

378 ⁵Without privacy constraints, truncating at the top $\eta^{1/(1-\eta)}$ -suffices by Lem. I.4. Our algorithm adopt a
379 looser truncation since the DPQUANTU algorithm only return the value of given quantiles *approximately*.
380

378 **5 APPLICATION: ONLINE MECHANISM DESIGN FROM BIDS**
379380 We now study how to integrate our previous solutions into the online auction setting, such that, the
381 algorithm produces time-averaged revenue guarantee that converges to the optimal. The auction
382 now spans multiple rounds, where each auction is informed by the bids from previous rounds. We
383 consider the setting where bidders are non-myopic bidders, and have incentives to bid strategically in
384 the current round to increase their utilities over future auctions.
385386 **5.1 APPLICATION BACKGROUND**
387388 Before presenting our algorithm, we first provide the formal problem definition of the online auction
389 setting. We study online mechanism design over a time horizon of T , where an identical item is sold
390 at each iteration. Each bidder has a *publicly observable* attribute. Bidders with the same attribute
391 have the same valuation distribution.392 We are now ready to describe interactions between bidders and the auctioneer over time horizon T ,
393 as shown in Figure 2. We defer to Appendix J.2 for more details how bidder generates the samples.
394395 For each time $t \in [T]$:
396397

- The learner/auctioneer sells a fresh copy of the item.
- The learner collects the bids in the form of (b_j, a_j) , where b_j and a_j denote the bid
398 and the attribute of the $j \in [d_t]$ -th bidder, respectively.
- The learner decides the allocation rule \mathbf{x}_t and payment \mathbf{p}_t accordingly.

401402 Figure 2: Online Auction with k Attributes.
403404 Each item the auctioneer sells is identical, and each bidder has an additive (discounted) utility of the
405 items across rounds. We consider the bidders either have *discounted utility* or are in a *large market*.406 **Definition 5.1** (Bidder’s Utility). Each bidder j has a quasi-linear utility function at time t : $u_j^t =$
407 $x_j^t(v_j^t - p_j^t)$, where x_j^t, v_j^t, p_j^t are the allocation, value, price for bidder j at time t , respectively. We
408 consider two *nonmyopic* bidders’ utility models:
409410 *Discounted Utility*: For discount factor $\gamma \in [0, 1]$, the bidders seek to maximize the sum of utilities
411 discounted by γ . At the t -th iteration, the discounted utility is $\hat{u}_j^t = \sum_{r=t}^T u_j^r \gamma^{r-t}$.
412413 *Large Market*: (Anari et al., 2014; Jalaly Khalilabadi and Tardos, 2018; Chen et al., 2016): The bidder
414 only participates in a subset S_j of auctions, i.e., for each $u^{1:T} = \sum_{t \in S_j} u^t$, with subset $|S_j| < l$.
415416 Ideally, the learner’s objective is maximize time-averaged revenue with high probability. Our regret
417 compare this revenue against the optimal revenue of the (unobservable) value history.
418419 **Definition 5.2** (Learner’s Objective). Given δ , the learner’s objective is to decide an allocation $\mathbf{x}_{1:T}$
420 and a payment $\mathbf{p}_{1:T}$ that achieves sublinear regret, i.e., with probability $1 - \delta$,

421
$$\text{REGRET} := \frac{1}{T} \sum_{t \in [T]} \mathbb{E}[\text{Rev}(\mathbf{x}_t, \mathbf{p}_t, \mathbf{b}_t) - \mathbb{E}[\text{OPT}(\mathbf{v}_t)]] = o(1),$$

422

423 with the expectation taken over the value distribution.
424425 **5.2 TWO-STAGE MECHANISM FOR BOUNDED DISTRIBUTION**426 This two-stage algorithm (Alg. 3) consists of repeated auctions over T rounds, and the participating
427 bidders’ values in each round are upper bounded by a *known* constant h . The algorithm first collects
428 the samples for the first T_1 rounds, by running a commitment algorithm (Alg. 10) that punishes
429 nontruthful bids. Then, the algorithm deploys our previously developed DP Myerson’s Algorithm
430 (Alg. 1, Alg. 9) for the remaining rounds to obtain near optimal revenue. In addition to these two
431 steps, our algorithm includes a step where all samples are reduced by ν (line 4 of Alg. 3) and projected
onto nonnegative value spaces. This step is designed to offset the impact of strategic bidding.
432

432	Algorithm 3 Two-Stage Algorithm $\mathcal{A}_{\text{BOUNDED}}$	
433	Input: Rounds T , learning rounds T_1 , parameter $\epsilon_a, \epsilon_q, \epsilon_p, \nu$, upper bound h .	
434	1: for $t \leftarrow 1, \dots, T_1$ do	▷ Collection Stage
435	2: Receive bids \mathbf{b}^t , and attributes \mathbf{a}^t .	
436	3: Return $(\mathbf{x}^t, \mathbf{p}^t) \leftarrow \text{COMMIT}(\mathbf{b}^t)$.	▷ Commitment Algorithm(Alg. 10)
437	4: $\widehat{\mathbf{b}}^t \leftarrow \mathbb{P}_{[0,h]}[\mathbf{b}^t - \nu \mathbf{1}_k]$	
438	5: end for	
439	6: $(\tilde{\mathbf{x}}(\cdot), \tilde{\mathbf{p}}(\cdot)) \leftarrow \text{DPMYER}(\widehat{\mathbf{b}}^{1:T_1}, \mathbf{a}^{1:T_1}, \epsilon_q, \epsilon_a, h, \epsilon_p)$ ▷ Fit Myerson's auction (Alg. 1 or Alg. 9)	
440	7: for $t \leftarrow T_1 + 1, \dots, T$ do	▷ Revenue Stage
441	8: Receive bids \mathbf{b}^t , and attributes \mathbf{a}^t .	
442	9: $(\mathbf{x}^t, \mathbf{p}^t) \leftarrow \text{MYERSON}(\tilde{\mathbf{x}}(\cdot), \tilde{\mathbf{p}}(\cdot))$;	
443	10: end for	
444		

445
446 Specifically, the parameter ν is carefully calibrated to ensure that the bid distribution fed into the
447 private Myerson mechanism is stochastically dominated by the empirical distribution. Our algorithm
448 provides an incentive guarantee that bids lie within a small, controllable neighborhood of the true
449 values. The range of this neighborhood is determined by the privacy parameter ϵ_p (hence is controlled
450 by our algorithm), and the bidders' utility functions. By setting ν to match the range of this
451 neighborhood, the resulting distribution is dominated by the empirical distribution.

452 5.3 REVENUE GUARANTEE OF THE ALGORITHM

453 Before presenting the revenue guarantee of our main algorithm, we first introduce a lemma that upper
454 bounds how a bidder's bid deviates from its true value during the collection stage. Intuitively, by the
455 design of our commitment algorithm the bidder will incur a loss that scales (positively) with the bid
456 deviation, compared to truthful bidding. Furthermore, our private Myerson ensures that the bidder's
457 future utility gain is upper bounded (Lem. 5.5). Thus, bidders are incentivized to report bids within a
458 certain range of their true values to optimize their overall utility. More details in Appendix J.4.

459 **Lemma 5.3** (Bid Deviation). *For any $t \in [0, T_1]$, the bidder will bid only b_t such that $|b_t - v_t| \leq 2\alpha$,
460 where $\alpha = \sqrt{2(l-1)\epsilon_p}hk$ for bidders in a large market; and $\alpha = \sqrt{\frac{2\gamma\epsilon_p}{1-\gamma}}kh$ for discounting bidder.*

461 From this lemma, we get that selecting a small ϵ_p would incentivize bid distributions that are close
462 to the ground-truth. Let $\nu = 2\alpha$ in our algorithm (line 4, Alg. 3) would yield a distribution that
463 is stochastically dominated by, yet close in revenue guarantee to, the true distribution. Run our DP
464 Myerson algorithm on this distribution would give us sublinear regret, as stated below.

465 **Theorem 5.4** (Accuracy Guarantee of Two-stage Mechanism). *Given $\epsilon \in [0, 1/4]$, n samples of
466 the joint distribution $\mathbf{D} \in [0, h]^k$, and $T_1 = \Theta(\epsilon^{-2} \log(k/\delta))$, $T = \Omega(T_1)$, $\epsilon_a = \epsilon_q = \epsilon_p = \epsilon$, with
467 probability $1 - \delta$, Alg. 3 generates sublinear regret, i.e.,*

468 *Under a large market, the regret is upper bounded by $\tilde{\mathcal{O}}[(\epsilon + \sqrt{l\epsilon})kh]$, for $\nu = 2\sqrt{2(l-1)\epsilon_p}hk$.*

469 *Under discounting bidder, the regret is upper bounded by $\tilde{\mathcal{O}}[(\epsilon + \sqrt{\frac{\gamma\epsilon}{1-\gamma}})kh]$, for $\nu = 2\sqrt{\frac{2\gamma\epsilon_p}{1-\gamma}}kh$.*

470 *Proof Sketch.* We denote the empirical distribution as $\widehat{\mathbf{D}}$, the distribution after subtraction in line 4 of
471 Alg. 3 as $\tilde{\mathbf{D}}$, and the (final) output distribution as $\widehat{\mathbf{D}}^p$. Then these distribution satisfies $\widehat{\mathbf{D}} \succeq \tilde{\mathbf{D}} \succeq \widehat{\mathbf{D}}^p$.
472 By strong monotonicity(Lem. F.3), we know that $\mathbb{E}[\text{Rev}(M_{\widehat{\mathbf{D}}^p}, \mathbf{D})] \geq \mathbb{E}[\text{OPT}(\widehat{\mathbf{D}}^p)]$. Since $M_{\widehat{\mathbf{D}}^p}$
473 need not be optimal over \mathbf{D} , we have that:

$$\begin{aligned}
474 \quad 0 &\geq \mathbb{E}[\text{Rev}(M_{\widehat{\mathbf{D}}^p}, \mathbf{D}) - \text{OPT}(\mathbf{D})] \\
475 &\geq \mathbb{E}[\text{Rev}(M_{\widehat{\mathbf{D}}^p}, \mathbf{D}) - \text{OPT}(\widehat{\mathbf{D}}^p)] + \mathbb{E}[\text{OPT}(\widehat{\mathbf{D}}^p) - \text{Rev}(M_{\mathbf{D}}, \mathbf{D})] \\
476 &\geq \mathbb{E}[\text{OPT}(\widehat{\mathbf{D}}^p) - \text{OPT}(\widehat{\mathbf{D}})] - |\mathbb{E}[\text{OPT}(\widehat{\mathbf{D}}) - \text{OPT}(\mathbf{D})]| \geq -\tilde{\Theta}((\epsilon + \epsilon^2/\epsilon_p)kh + \nu).
\end{aligned}$$

477 where in the last inequality we apply revenue shift theorem (Thm. 3.1) to upper bound the first term
478 and apply Lemma J.9 to upper bound the second term. Please refer to Appendix J.3 for more details.

485

□

486

6 EXPERIMENTS

488 In this section, we present the experimental results for the Differentially Private (DP) Myerson
 489 mechanism, comparing its performance against two standard mechanism design baselines: the
 490 *Myerson* (optimal) auction and the *Vickrey* (second-price) auction. The former is designed to achieve
 491 near-optimal revenue for a given value distribution, whereas the latter, while strategy-proof, offers no
 492 revenue guarantees in settings with independent and non identical value distributions.

493 Our experiments are conducted on normal and lognormal distributions truncated to positive domains.
 494 The lognormal distribution is widely considered a representative or “groundtruth” model in many
 495 auction settings, thanks to its capacity to capture a broad spectrum of value distributions commonly
 496 observed in economic and market contexts [\[Gorbenko and Malenko, 2014\]](#). A random variable V is
 497 said to be lognormal distributed with parameter (μ, σ) , if $\ln(V)$ follows normal distribution $\mathcal{N}(\mu, \sigma)$.
 498

499 For each value profile, we test various hyperparameters—additive discretization (ϵ_a), quantile dis-
 500 cretization (ϵ_q), and the privacy parameter (ϵ_p)—and select the configuration with the *best* perfor-
 501 mance. For details on DP Myerson’s sensitivity to hyperparameters, see Appendix [A](#)

Bidder Profile	DP Myerson	Second Price	Myerson	Ref.
Normal $\mathcal{N}(0.3, 0.5)$ Lognormal $(\mu, \sigma) = (-1.87, 1.15)$	0.25272	0.15154 (66.7 %)	0.32598	Table 2
Normal $\mathcal{N}(0.3, 0.5)$ Normal $\mathcal{N}(0.5, 0.7)$	0.37691	0.33741 (11.7 %)	0.50204	Table 3
Lognormal $(\mu, \sigma) = (-1.87, 1.15)$ Lognormal $(\mu, \sigma) = (-1.24, 1.04)$	0.13912	0.11578 (20.2 %)	0.21292	Table 4

511 Table 1: Empirical Revenue of DPMyerson (Alg. [1](#)) under 2-dimensional non-identical value distribu-
 512 tions. Each DPMyerson configuration is averaged over 50 draws, with revenue evaluated on 10,000
 513 samples. Percentages in parentheses represent the improvement over the second-price mechanism.
 514

515 In Table [1](#), under non i.i.d distribution settings where there is a significant revenue gap between the
 516 Vickrey auction and the Myerson auction, DPMyerson achieves a notable revenue increase (at least
 517 11%) over the second-price mechanism.

519

7 CONCLUSION

521 We investigate the problem of learning a single-item auction (i.e., Myerson) from samples with *pure*
 522 DP. We consider the broader setting where the agents’ valuations are *independent, non-identical*, and
 523 can either be *bounded* or *unbounded*. By recognizing that the optimal auction mechanism exhibits
 524 robustness to small statistical perturbations in the underlying distribution, we reduce the challenge
 525 of privately learning an optimal auction from sample data to the task of privately approximating
 526 pre-specified quantiles. Specifically, our approach ensures pure privacy while generating a distribution
 527 that is closely aligned with the underlying distribution in terms of expected revenue.

528 We then extend this framework to the online auction setting, where later auctions are fitted on bids
 529 from previous auctions. In this setting, non-myopic bidders reasons about their utility accross rounds,
 530 and can bid strategically under (one-shot) truthful auctions. By leveraging our private Myerson
 531 mechanisms with an extra commitment mechanism, we achieve near-optimal revenue outcomes over
 532 the bidders’ (unobservable) value samples, despite the strategic complexity introduced by non-myopic
 533 behavior (i.e., time discounting bidder and/or non-discounting bidders in a large market). This result
 534 highlights the robustness of our approach in both protecting privacy and maintaining near optimal
 535 expected revenue in dynamic, strategic environments.

540 REFERENCES
541

542 The ad auction explained. URL <https://www.facebook.com/business/ads/ad-auction>. (page 3)

543

544 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
545 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC
546 conference on computer and communications security*, pages 308–318, 2016. (page 1)

547

548 Jacob Abernethy, Chansoo Lee, Abhinav Sinha, and Ambuj Tewari. Online linear optimization via
549 smoothing. In *Conference on learning theory*, pages 807–823. PMLR, 2014. (page 18)

550

551 Jacob D Abernethy, Rachel Cummings, Bhuvesh Kumar, Sam Taggart, and Jamie Morgenstern.
552 Learning auctions with robust incentive guarantees. In *NeurIPS*, pages 11587–11597, 2019.
553 (page 3, 18)

554

555 Kareem Amin, Afshin Rostamizadeh, and Umar Syed. Learning prices for repeated auctions with
556 strategic buyers. *Advances in Neural Information Processing Systems*, 26, 2013. (page 19)

557

558 Nima Anari, Gagan Goel, and Afshin Nikzad. Mechanism design for crowdsourcing: An optimal
559 1-1/e competitive budget-feasible mechanism for large markets. In *2014 IEEE 55th Annual
560 Symposium on Foundations of Computer Science*, pages 266–275. IEEE, 2014. (page 8, 36)

561

562 M.-F. Balcan, A. Blum, J.D. Hartline, and Y. Mansour. Mechanism design via machine learning. In
563 *46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05)*, pages 605–614,
2005. doi: 10.1109/SFCS.2005.50. (page 18)

564

565 Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Item pricing for revenue maximization. In
566 *Proceedings of the 9th ACM Conference on Electronic Commerce*, pages 50–59, 2008. (page 18)

567

568 Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Estimating approximate incentive
569 compatibility. In *Proceedings of the 2019 ACM Conference on Economics and Computation*, pages
570 867–867, 2019. (page 18)

571

572 Maria-Florina F Balcan, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of automated
573 mechanism design. In *Advances in Neural Information Processing Systems*, pages 2083–2091,
2016. (page 18)

574

575 Santiago R Balseiro, Omar Besbes, and Francisco Castro. Mechanism design under approximate
576 incentive compatibility. *Operations Research*, 72(1):355–372, 2024. (page 18)

577

578 Sébastien Bubeck, Nikhil Devanur, Zhiyi Huang, and Rad Niazadeh. Multi-scale online learning:
579 Theory and applications to online auctions and pricing. *Journal of Machine Learning Research*,
2019. (page 18)

580

581 Yang Cai and Constantinos Daskalakis. Extreme-value theorems for optimal multidimensional
582 pricing. In *2011 IEEE 52nd Annual Symposium on Foundations of Computer Science*, pages
583 522–531. IEEE, 2011. (page 18)

584

585 Ning Chen, Xiaotie Deng, Bo Tang, and Hongyang Zhang. Incentives for strategic behavior in fisher
586 market games. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 30, 2016.
587 (page 8, 36)

588

589 Richard Cole and Tim Roughgarden. The sample complexity of revenue maximization. In *Proceedings
590 of the forty-sixth annual ACM symposium on Theory of computing*, pages 243–252, 2014. (page 18,
30)

591

592 Xiaotie Deng, Ron Lavi, Tao Lin, Qi Qi, Wenwei Wang, and Xiang Yan. A game-theoretic analysis
593 of the empirical revenue maximization algorithm with endogenous sampling. *Advances in Neural
594 Information Processing Systems*, 33:5215–5226, 2020. (page 3, 18)

594 Yuan Deng, Sébastien Lahaie, Vahab Mirrokni, and Song Zuo. Revenue-incentive tradeoffs in
 595 dynamic reserve pricing. In *International Conference on Machine Learning*, pages 2601–2610.
 596 PMLR, 2021. (page 18)

597

598 Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample complexity of auctions
 599 with side information. In *Proceedings of the forty-eighth annual ACM symposium on Theory of
 600 Computing*, pages 426–439, 2016. (page 7, 18, 24, 30)

601 David Durfee. Unbounded differentially private quantile and maximum estimation. *Advances in
 602 Neural Information Processing Systems*, 36, 2023. (page 1, 3, 31, 35)

603

604 Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C Parkes, and Sai Srivatsa Ravindranath.
 605 Optimal auctions through deep learning: Advances in differentiable economics. *Journal of the
 606 ACM*, 71(1):1–53, 2024. (page 18)

607 Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample
 608 distribution function and of the classical multinomial estimator. *The Annals of Mathematical
 609 Statistics*, pages 642–669, 1956. (page 22)

610

611 Cynthia Dwork. Differential privacy. In *International colloquium on automata, languages, and
 612 programming*, pages 1–12. Springer, 2006. (page 1)

613 Cynthia Dwork. Differential privacy: A survey of results. In *International conference on theory and
 614 applications of models of computation*, pages 1–19. Springer, 2008. (page 1)

615

616 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
 617 ourselves: Privacy via distributed noise generation. In *Advances in Cryptology-EUROCRYPT
 618 2006: 24th Annual International Conference on the Theory and Applications of Cryptographic
 619 Techniques, St. Petersburg, Russia, May 28-June 1, 2006. Proceedings* 25, pages 486–503. Springer,
 620 2006. (page 22)

621 Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under
 622 continual observation. In *Proceedings of the forty-second ACM symposium on Theory of computing*,
 623 pages 715–724, 2010. (page 18)

624

625 Edith Elkind. Designing and learning optimal finite support auctions. 2007. (page 4, 18, 21)

626 European Commission. Regulation of the european parliament and of the council on the transparency
 627 and targeting of political advertising, 2024. URL <https://data.consilium.europa.eu/doc/document/PE-90-2023-INIT/en/pdf>. (page 17)

628

629 Alexander S Gorbenko and Andrey Malenko. Strategic and financial bidders in takeover auctions.
 630 *The Journal of Finance*, 69(6):2513–2555, 2014. (page 10)

632 Chenghao Guo, Zhiyi Huang, and Xinzhi Zhang. Settling the sample complexity of single-parameter
 633 revenue maximization. In *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
 634 Computing*, pages 662–673, 2019. (page 18)

635

636 Wenshuo Guo, Michael Jordan, and Emmanouil Zampetakis. Robust learning of optimal auctions. In
 637 *Thirty-Fifth Conference on Neural Information Processing Systems*, 2021. (page 25)

638 Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. Optimal marketing strategies over social
 639 networks. In *Proceedings of the 17th international conference on World Wide Web*, pages 189–198,
 640 2008. (page 30)

641

642 Jason D Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In *Proceedings of the
 643 10th ACM conference on Electronic commerce*, pages 225–234, 2009. (page 18, 22)

644 Zhiyi Huang, Jinyan Liu, and Xiangning Wang. Learning optimal reserve price against non-myopic
 645 bidders. In *Advances in Neural Information Processing Systems*, 2018a. (page 3, 18)

646

647 Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. Making the most of your samples. *SIAM
 Journal on Computing*, 47(3):651–674, 2018b. (page 18, 30)

648 Joon Suk Huh and Kirthevasan Kandasamy. Nash incentive-compatible online mechanism learning
 649 via weakly differentially private online learning. *ICML*, 2024. (page 3)

650

651 Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online learning. In
 652 *Conference on Learning Theory*, pages 24–1. JMLR Workshop and Conference Proceedings, 2012.
 653 (page 1)

654

655 Pooya Jalaly Khalilabadi and Éva Tardos. Simple and efficient budget feasible mechanisms for
 656 monotone submodular valuations. In *International Conference on Web and Internet Economics*,
 657 pages 246–263. Springer, 2018. (page 8, 36)

658

659 Yash Kanoria and Hamid Nazerzadeh. Dynamic reserve prices for repeated auctions: Learning from
 660 bids. In *Web and Internet Economics: 10th International Conference, WINE 2014, Beijing, China,
 December 14-17, 2014, Proceedings*, volume 8877, page 232. Springer, 2014. (page 3)

661

662 Yash Kanoria and Hamid Nazerzadeh. Incentive-compatible learning of reserve prices for repeated
 663 auctions. *Operations Research*, 69(2):509–524, 2021. (page 18)

664

665 Haim Kaplan, Shachar Schnapp, and Uri Stemmer. Differentially private approximate quantiles. In
 666 *International Conference on Machine Learning*, pages 10751–10761. PMLR, 2022. (page 1, 2, 3,
 26, 27)

667

668 Michael Kearns, Mallesh Pai, Aaron Roth, and Jonathan Ullman. Mechanism design in large games:
 669 Incentives and privacy. In *Proceedings of the 5th conference on Innovations in theoretical computer
 670 science*, pages 403–410, 2014. (page 17)

671

672 Michael J Kearns and Umesh Vazirani. *An introduction to computational learning theory*. MIT press,
 1994. (page 2)

673

674 Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In *48th Annual IEEE
 675 Symposium on Foundations of Computer Science (FOCS'07)*, pages 94–103. IEEE, 2007. (page 1,
 3, 18, 37)

676

677 Jamie H Morgenstern and Tim Roughgarden. On the pseudo-dimension of nearly optimal auctions.
 678 *Advances in Neural Information Processing Systems*, 28, 2015. (page 18)

679

680 Roger B Myerson. Incentive compatibility and the bargaining problem. *Econometrica: journal of the
 681 Econometric Society*, pages 61–73, 1979. (page 1, 18)

682

683 Roger B Myerson. Optimal auction design. *Mathematics of operations research*, 6(1):58–73, 1981.
 684 (page 4, 21)

685

686 Kobbi Nissim, Rann Smorodinsky, and Moshe Tennenholtz. Approximately optimal mechanism
 687 design via differential privacy. In *Proceedings of the 3rd innovations in theoretical computer
 688 science conference*, pages 203–213, 2012. (page 1, 3, 18)

689

690 Mallesh M Pai and Aaron Roth. Privacy and mechanism design. *ACM SIGecom Exchanges*, 12(1):
 8–29, 2013. (page 1)

691

692 Tim Roughgarden and Okke Schrijvers. Ironing in the dark. In *Proceedings of the 2016 ACM
 693 Conference on Economics and Computation*, pages 1–18, 2016. (page 18)

694

695 Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In *Proceedings
 696 of the forty-third annual ACM symposium on Theory of computing*, pages 813–822, 2011. (page 26)

697

Junhua Zhang and Caiming Zhong. Differential privacy-based double auction for data market in
 698 blockchain-enhanced internet of things. *Wireless Communications and Mobile Computing*, 2022
 699 (1):8038846, 2022. (page 3)

700

701 Xiaojin Zhang, Yan Kang, Kai Chen, Lixin Fan, and Qiang Yang. Trading off privacy, utility, and
 702 efficiency in federated learning. *ACM Transactions on Intelligent Systems and Technology*, 14(6):
 1–32, 2023. (page 1)