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Abstract

Numerous online services are data-driven: the be-
havior of users affects the system’s parameters,
and the system’s parameters affect the users’ expe-
rience of the service, which in turn affects the way
users may interact with the system. For example,
people may choose to use a service only for tasks
that already works well, or they may choose to
switch to a different service. These adaptations
influence the ability of a system to learn about
a population of users and tasks in order to im-
prove its performance broadly. In this work, we
analyze a class of such dynamics—where users
allocate their participation amongst services to
reduce the individual risk they experience, and
services update their model parameters to reduce
the service’s risk on their current user popula-
tion. We refer to these dynamics as risk-reducing,
which cover a broad class of common model up-
dates including gradient descent and multiplica-
tive weights. For this general class of dynamics,
we show that asymptotically stable equilibria are
always segmented, with sub-populations allocated
to a single learner. Under mild assumptions, the
utilitarian social optimum is a stable equilibrium.
In contrast to previous work, which shows that
repeated risk minimization can result in represen-
tation disparity and high overall loss with a sin-
gle learner (Hashimoto et al., 2018; Miller et al.,
2021), we find that repeated myopic updates with
multiple learners lead to better outcomes. We il-
lustrate the phenomena via a simulated example
initialized from real data.
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1 INTRODUCTION

Many online platforms, including social media networks,
personalized recommendation engines, and advertising auc-
tion systems, collect user data and make incremental adjust-
ments to the models they use to personalize content. These
continuous updates are motivated by many factors, though
large amongst them is the fact that the systems operate in
non-stationary environments, where the preferences of their
users change as the system operates. Changes in user pref-
erences might occur exogeneously of service settings (e.g.,
global events might spur interest in new topics) or endoge-
neously (e.g., increasing the ranking of certain content on a
platform might lead the content to “go viral”). The fact that
user behavior might depend on service settings can take on
many forms: people may learn to ignore or avoid clicking
on advertisements; they may choose to use the service only
for tasks at which it already works well; or they may choose
to switch to a different service if they have a better experi-
ence with the second service. The latter two examples of
adaptation, where users might opt for services that already
suit their needs, affect the system’s capacity to learn about
its user base and improve its overall performance.

In this work, we study a particular form of endogenously
shifting distributions over multiple rounds, in contexts
where individuals prefer to use services whose predictions
are more accurate for them. Much of the existing work
on endogeneous distribution shift focuses on users who
modify their features to achieve desired outcomes, as in
strategic classification (Hardt et al., 2016) and related prob-
lems (Perdomo et al., 2020; Miller et al., 2021). While
important, this model of data manipulation does not cap-
ture the most straightforward way that individuals express
their preferences in a market: by choosing amongst alter-
native providers. In fact, recent work has shown that in the
presence of a choice of participation between competing
providers, individuals do not have an incentive to perform
costly data manipulations (Hardt et al., 2022).

Consider as an example a social media platform. If the plat-
form recommends content that does not appeal to the tastes
of younger generations, these users will spend a smaller frac-
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tion of their time on that platform. This results in positive
(i.e., self-reinforcing) feedback loop, where a services’s poor
performance on young customers dissuades them from us-
ing the service, leading to less data and diminishing weight
placed on making better predictions for young customers in
the future. Within a single service, these effects may lead to
representation disparity (Hashimoto et al., 2018).

However, in a broader ecosystem, individuals can choose
amongst services. If a new social media platform can pre-
dict the tastes of younger users more accurately, the younger
users may spend more of their time on the new service,
and correspondingly less on an existing platform. The new
platform will then receive more data and improve its per-
formance on young customers, while the old platform’s
predictions may deteriorate, reinforcing their exit. Similarly,
in the context of Large Language Models (LLM), if one
LLM performs particularly well on creative tasks and an-
other on answering homework questions, the distribution
of prompts each receives may shift towards their existing
expertise. Such feedback loops can also arise in settings
such as music recommendation or healthcare, where demo-
graphic and socio-economic factors explain some of the
emerging specialization (see examples in Appendix A).

In this paper, we study the dynamics of populations ap-
portioning themselves amongst services, and services that
choose predictors based on their observed user population.
Our first contribution is to introduce and formalize this
general setting. In Section 3 we introduce risk reducing
populations and services who choose their actions myopi-
cally, incrementally improving their utility based on current
conditions. Our second contribution is to present a complete
characterization of stable fixed points for this general class
of dynamics in Section 4. By drawing a connection between
the dynamics and the total risk, our third contribution is to
characterize the implications of this dynamic in terms of a
utilitarian notion of social welfare, and argue that increasing
the number of available services leads to better outcomes in
terms of accurate predictions and user experience. In Sec-
tion 5 we illustrate our theory with simulated experiments
and conclude with a discussion of future work in Section 6.

2 RELATED WORK

The study of equilibria in the presence of utility optimizing
agents has classical roots in game theory, and optimization
over decision-dependent probabilities is classically studied
by stochastic optimization and control (e.g., the review ar-
ticle by Hellemo et al. (2018)); we narrow our focus to
the most relevant literature on this as it arises in machine
learning systems.

Endogenous Distribution Shifts. In the study of machine
learning systems, a large body of literature studies exoge-
nous distribution shifts such as covariate, label, or concept
drift (Quiñonero-Candela et al., 2008). A more recent trend

is to study shifts in the underlying data distribution due to
endogenous reactions, for example due to strategic behavior
exhibited by a user population. The work of Perdomo et al.
(2020) introduces performative prediction as a model cap-
turing user reaction via endogenous distribution shifts. This
work models a single decision-maker facing a risk minimiza-
tion problem subject to an underlying decision-dependent
data distribution. Following its introduction, several relevant
solution concepts have been explored and algorithms for
achieving them proposed (Izzo et al., 2021; Drusvyatskiy
and Xiao, 2020; Mendler-Dünner et al., 2020; Miller et al.,
2021). A variant of the single decision-maker performative
prediction problem studies time-dependent dynamics of the
data distribution, with both exogenous (Wood et al., 2021;
Cutler et al., 2021) and endogenous (Ray et al., 2022; Brown
et al., 2022) sources. These works primarily consider strate-
gic covariate shifts in a single distribution. In contrast, we
consider a mixture of distributions: sub-populations of users
whose participation choices result in attrition and retention
dynamics which are not studied in the aforementioned dis-
tribution shift literature.

Multiple Decision-Makers. Endogenous distribution shift
has also been studied in settings with multiple decision-
makers as a continuous game. For instance, the multi-player
performative prediction problem extends the original prob-
lem by allowing for multiple competing decision-makers
(Narang et al., 2022; Piliouras and Yu, 2022; Wood and
Dall’Anese, 2022). This line of work differs from ours in
that the population is modeled as homogeneous and state-
less. These works focus on characterizing the existence
and uniqueness of different types of competitive equilibria
for the game, and analyze learning dynamics that lead to
different equilibrium concepts. In contrast, in our paper the
focus is on asymptotically stable points (equilibrium) for
the combined dynamical system resulting from myopic op-
timization by non-anticipating decision-makers and stateful
user participation updates.

Retention. User retention in machine learning systems is
closely related to the population participation dynamics we
consider (Hashimoto et al., 2018; Zhang et al., 2019). In
settings with multiple sub-populations of users of different
types, the question of retention has been explored in parallel
with the issue of fairness. Hashimoto et al. (2018) coined the
term representation disparity for the phenomenon in which
the traditional approach of minimizing average performance
leads to high overall accuracy coupled with low accuracy
on minority groups, causing an exodus of said groups. For
single learners, systems which instead perform robust risk
minimization avoid such disparity.

Our work generalizes the single-learner retention setting
and analyzes the fixed points of dynamics between multiple
systems and populations without modifying risk functions
to be robust. Ginart et al. (2021) also consider user choice
between multiple learning systems, with an empirical inves-
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tigation and theoretical results in restricted settings focused
on finite sample effects. In contrast, we propose a general
class of risk reducing dynamics and develop a comprehen-
sive theoretical understanding.

3 FRAMEWORK AND SETTING

We consider a setting where the population of individuals is
composed of n subpopulations spreading their participation
amongst m learners (service providers or decision-makers).
Figure 1 illustrates a simple example. Each subpopulation
i → {1, . . . , n} =: [n] has features and labels distributed
according to a fixed distribution (x, y) =: z ↑ Di and
makes up ωi proportion of the total population, so that)︄n

i=1 ωi = 1. An εij proportion of subpopulation i is
associated to each learner j → [m], normalized so that)︄m

j=1 εij = 1. The subpopulations therefore redistribute
their participation among the various learners. Further, to
model the ability of subpopulations to opt-out, one can in-
clude a static “null learner”.

Figure 1: n = 3 subpopulations (↭, !, ↓) select among
m = 2 learners (red, blue) based on classification ac-
curacy with respect to label (solid, hollow). Parameters
! = (ϑ1, ϑ2) (decision lines) update in response to subpop-
ulations participation εi,j . At the current state, the circle
subpopulation will shift participation towards blue learner.

A subpopulation can be as broad as a demographic or affinity
group and as granular as a single individual. The allocation
of a subpopulation can represent several things: the fraction
of a subpopulation which uses a given service, or the frac-
tion of time users from that subpopulation choose to spend
using learners’ systems. Accordingly, the relative size ωi of
the population can represent the proportion of individuals or
the total time individuals spend. This framework also allows
for a subpopulation to represent types of tasks or activities a
user wishes to accomplish, allocating these tasks to learners
based upon which systems perform best on which tasks. The
only assumption we make about any subpopulation is that
individual samples comprising it are i.i.d.

Throughout, we assume that there are fewer learners than
subpopulations, m ↔ n. Each learner j observes data from
the subpopulations who participate in it. Formally it ob-
serves features and labels drawn from the mixture distri-
bution determined by the participation and subpopulation
sizes:

(x, y)j = zj ↑

)︄n
i=1 εijωiDi)︄n
i=1 εijωi

Learners make predictions or decisions according to a pa-
rameter ϑj → Rd. Beyond the information encoded in the
features and labels, the learners are unaware of which sub-
population individual data points are.

The quality of predictions made by parameter ϑj → Rd for an
individual instance zj is quantified by the loss ϖ(ϑj ; zj). The
quality of ϑj for a subpopulation is quantified by the average
loss, i.e. the risk Ri(ϑj) = Ez→Di [ϖ(ϑj ; z)]. Throughout,
we will make the additional assumption that the risk function
for each subpopulation Ri(ϑ) is convex and differentiable.
Figure 2 illustrates an example of the risk functions arising
in linear regression.

3.1 Decision dynamics of learners and subpopulations

Subpopulations and learners react to each other; Updates
in subpopulation allocations lead to updates in learners pa-
rameters !t = (ϑt1, . . . , ϑ

t
m), and vice versa. We introduce

a broad class of update dynamics by way of a canonical
example. Suppose that each subpopulation i updates its
allocation by increasing the participation proportional to
the quality of various models; for example, by spending
more time on recommendation platforms that suggest more
engaging content. Recalling that the risk (i.e. average loss)
quantifies quality, this manifests as a multiplicative weights
update: εt+1

ij ↗ ε
t
ij ·exp(↘ϱRi(ϑj)) for j → [m] and some

parameter ϱ > 0. This is similar to the retention function
studied by Hashimoto et al. (2018) and has connections to
replicator dynamics, a foundational evolutionary dynamic
that can be interpreted as a process of information diffusion
and imitation (Sandholm, 2020).

Recall that each learner j observes data from the mixture dis-
tribution (

)︄n
i=1 εijωi)↑1

)︄n
i=1 εijωiDi for which we use

the shorthand D(ε:,j), where ε:,j → Rn denotes the vector
of allocations from all subpopulations to learner j. Suppose
the learners update their parameters using gradient descent
to reduce the average loss over this data (e.g. to improve the
prediction of user engagement). Setting aside finite sample
issues, for a step size ϱt the gradient update takes the form
ϑ
t+1
j = ϑ

t
j ↘ ϱt≃ω Ez→D(ε:,j)

[︄
ϖ(ϑtj ; z)

]︄
. This is an incre-

mental version of the repeated retraining dynamics which
have been studied in the single learner setting by Hashimoto
et al. (2018); Perdomo et al. (2020).

Despite the apparent simplicity of independent update rules,
the evolution of subpopulations and learners is highly cou-
pled. The sequential interaction between subpopulations
and learners leads to complex nonlinear dynamics: i.e. mul-
tiplicative weights over non-stationary risks (due to learner
updates) and gradient descent over non-stationary data dis-
tributions (due to subpopulation updates). To study this
complex behavior, we now formalize key properties.

The first observation is that updates are stateful, with
subpopulation allocations and learner parameters depend-
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Figure 2: An example arising from least-squares linear regression with n = 3 subpopulations and m = 2 learners. Left: The
distribution of z = (x, y), colored by subpopulation. Middle: The subpopulation risks Ri(ϑ) arising from least-squares
linear regression ϖ(ϑ; z) = (y↘ ϑx)2. Right: A visualization of the non-convex total risk as a function of learner parameters,
via the partial minimization over subpopulation allocation: minε

)︄3
i=1

)︄2
j=1 εijRi(ϑj) =

)︄3
i=1 min{Ri(ϑ1),Ri(ϑ2)}.

ing on previous values. This motivates a description of
the dynamics arising from interactions between n sub-
populations and m learners in terms of the overall state
ε → ”m ⇐ · · · ⇐ ”m =: ”n

m and ! → Rm↓d. We thus
define for each subpopulation i a general Markovian al-
location function ς

t
i : ”m ⇐ Rm↓d

⇒ ”m which de-
scribes the participation update ε

t+1
i,: = ς

t
i

⌊︄
ε
t
i,:,!

t
⌋︄

at
time t, where εi,: → ”m denotes the vector of allocations
from the subpopulation i to all learners. Similarly, define
µ
t
j : Rd

⇐ Rn
⇒ Rd so learner j updates their parameter

according to ϑ
t+1
j = µ

t
j(ϑ

t
j ,ε

t
:,j).

The second observation is that the basis for the updates is
the average loss, i.e. risk. This motivates the following
definition: given participation ε and parameters !, the
average risk experienced by each subpopulation i and each
learner j is:

R̄
subpop
i (εi,:,!) := E

j→εi,:

⌈︄
E

z→Di

[ϖ(ϑj ; z)]

⌉︄
,

R̄
learner
j (ε:,j , ϑj) := E

z→D(ε:,j)
[ϖ(ϑj ; z)] .

In the recommendation example, R̄subpop captures the dis-
satisfaction with content for a subpopulation and R̄

learner

corresponds to the average prediction error of the platform.
Intuitively, multiplicative weights reduces the average sub-
population risk while gradient descent reduces the average
learner risk.
Definition 3.1 (Reducing and Minimizing Dynamics). A
u update rule is P -reducing w.r.t. v if P (ut+1

, v
t) ↔

P (ut
, v

t) for all t and any sequence of v
t. It is further

P -minimizing in the limit if the inequality is strict when u
t

is not a minimizer and limt↔↗ P (ut
, v) = minu P (u, v).

We call a subpopulation i risk reducing (resp. minimizing)
when the allocation update on εi,: is R̄subpop

i -reducing (resp.
minimizing in the limit) with respect to !. Similarly, we call
a learner j risk reducing (resp. minimizing) when the pa-
rameter update on ϑj is R̄learner

j -reducing (resp. minimizing
in the limit) with respect to ε:,j .

We remark that the notion of risk minimizing in the limit is
reasonable for subpopulations because their average risk is
linear in εi,:. It is also reasonable for learners because their
average risk is convex in ϑj (due to the assumption that risks
Ri(ϑj) are convex). However, risk-reducing/minimizing is
only a property defined with respect to the participation ε or
parameter ! observed at a previous time step. Thus it does
not necessarily hold that R̄learner

j or R̄subpop
i decrease when

the state evolves (εt
,!t) ⇒ (εt+1

,!t+1) by sequential
updates of ςt and µ

t. Our experiments (Figure 4a) illustrate
the non-monotonicity of the coupled updates.
Example 3.2 (Semi-static participation). Suppose a popula-
tion has a constant allocation of 20% to one learner, while
the remaining 80% is allocated to the remaining learners in-
versely proportional to the learner’s risk on that population.
This is risk reducing but not risk minimizing in the limit.
Example 3.3 (Full risk minimization). Suppose that a
learner updates its parameter to minimize the average risk
function R̄

learner
j (εt

:,j , ·) at each timestep. This has been
studied as repeated retraining dynamics in the single learner
case by Hashimoto et al. (2018); Perdomo et al. (2020).

Proposition 3.4. A subpopulation i updating their partici-
pation with multiplicative weights is risk minimizing in the
limit if ϱ > 0 and ε

0
ij > 0 ⇑j. A learner updating its pa-

rameter with gradient descent is risk minimizing in the limit
when the risk functions Ri(ϑ) are L smooth and the step size
satisfies ϱt

<
2
L ,

)︄↗
t=0 ϱ

t = ⇓, and
)︄↗

t=1(ϱ
t)2 < ⇓.

We provide a proof and detail several other examples of risk
reducing dynamics in Appendix D.1.

3.2 Equilibria and stability

We focus on the equilibrium states resulting from risk-
reducing subpopulations and learners.
Definition 3.5 (Equilibrium). The state (εeq

,!eq) is an
equilibrium state if it is stationary under the dynamics up-
date {ς

t
i}, {µt

j}; i.e. that for all i → [n] and j → [m]:

ε
eq
i,: = ς

t
i (ε

eq
i,:,!

eq) and ϑ
eq
j = µ

t
j(ε

eq
:,j , ϑ

eq
j ) .
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If learners and subpopulations are in an equilibrium state,
they will remain that way indefinitely. However, some equi-
librium configurations may be unstable to perturbations.
Definition 3.6 (Stable Equilibrium). The state (εeq

,!eq) is
a stable equilibrium state if it is an equilibrium and for each
φε, φω > 0, there exist ↼ε, ↼ω > 0 such that

⇔ε
0
↘ ε

eq
⇔ < ↼ε,

⇔!0
↘!eq

⇔ < ↼ω
=↖

⇔ε
t
↘ ε

eq
⇔ ↔ φε,

⇔!t
↘!eq

⇔ ↔ φω
⇑ t ↙ 0.

It is further asymptotically stable if limt↔↗ ⇔ε
t
↘ε

eq
⇔ = 0

and limt↔↗ ⇔!t
↘!eq

⇔ = 0.

Stability analysis identifies qualitatively different equilib-
rium states. For the class of risk reducing dynamics that we
study, equilibria may be unstable, stable, or asymptotically
stable; Appendix D.2 presents examples. While a quantita-
tive understanding of convergence may also be of interest,
it would require stronger assumptions on the behavior of
subpopulations and learners; here we favor generality and
leave this to future work. Furthermore, characterizing stable
equilibria sets the foundation for understanding high prob-
ability behavior of systems under noisy updates which are
risk reducing only in expectation (Kushner, 1967). This sets
the stage for finite sample risk minimization or multi-agent
user models, a challenge which we leave to future work.

4 MAIN RESULTS

We study a large class of feedback dynamics between risk re-
ducing learners and subpopulations described by the sequen-
tial updates: εt+1 = ς

t(εt
,!t) and !t+1 = µ

t(εt+1
,!t).

Our analysis allows for learners and subpopulations who
exhibit a diverse range of behaviors. We do not require that
every learner or every subpopulation update their parameter
or allocation in the same manner or even at every timestep,
allowing for any number of round-robin schemes. Our only
assumption on learner and subpopulation updates is that
they are risk reducing or minimizing.

Figure 3 presents a summary of the equilibria characteriza-
tion that we present in this section. All omitted proofs can
be found in Appendix C.

4.1 Total Risk Reduction

Definition 4.1 (Total Risk). The total risk of all subpopula-
tions over all learners is the weighted sum

R
total(ε,!) :=

n{︄

i=1

m{︄

j=1

ωiεijRi(ϑj).

The total risk maps ”n
m ⇐ Rm↓d

⇒ R. While our assump-
tion that the loss is convex implies that the total risk is
convex in !, it is not jointly convex in (ε,!), illustrated in
the right panel of Figure 2.

!0 → argmin! Rtotal(ω0,!)?

!0 unique
minimizer?

ω0 segmented?

not an
equilibrium

no general classification
(Appendix D.2)

Strict preference?
(Eq. (1) in Thm. 4.6)

asymptotically
stable

unstable

Support is over
risk equivalent learners?

(Eq. (2) in Thm. 4.8)

Support is over
risk optimal learners?
(Eq. (2) in Thm. 4.8)

not an
equilibrium

unstablemay be stable
(balanced equilibrium)

yes no

yes no

yes no

yes no
yes no

yes no

Figure 3: A summary of our main results on equilibria clas-
sification for a given participation ε0 and model parameters
!0. These results hold for dynamics which are risk mini-
mizing in the limit and loss functions that are convex.

Our first result shows that the total risk R
total(εt

,!t) is
non-increasing over time.

Proposition 4.2. For any risk-reducing subpopulation
and learner dynamics, the total risk is non-increasing:
R

total(εt+1
,!t+1) ↔ R

total(εt
,!t), ⇑t. If subpopulations

and learners are risk minimizing in the limit, then the total
risk is strictly decreasing unless (εt

,!t) is a local mini-
mizer of Rtotal.

Proof Sketch. First note that the total risk can be decom-
posed into either a weighted sum of average subpopulation
risk or average learner risk. Thus the fact that learner and
subpopulation dynamics are risk reducing ensures that the
total risk is decreasing after the sequential updates.

Thus, the total risk acts like a potential function for the
feedback dynamics of learners and subpopulations. When
the subpopulation and learner dynamics are risk minimizing
in the limit, there is a strong connection between properties
of the total risk function and equilibria of the dynamics.

Theorem 4.3. For any learners and subpopulations who
are risk minimizing in the limit, an equilibrium (εeq

,!eq)
is asymptotically stable if it is an isolated local minimizer
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of the total risk R
total. If it is not a local minimizer of the

total risk, then it is not stable.

Proof Sketch. By Proposition 4.2 the function V (ε,!) :=
R

total(ε,!)↘R
total(εeq

,!eq) is potential function for the
autonomous dynamical system (εt

,!t) ⇒ (εt+1
,!t+1).

The stability result follow from Lyapunov arguments.

The connection between stability and the total risk function
is significant in at least two ways: first, it means that under
general classes of myopic and self-interested behaviors on
the part of subpopulations and learners, the total risk is
driven to at least a local minimum. Second, it is a technically
useful connection that will enable us to characterize and
classify the stable equilibria for dynamics which are risk
minimizing in the limit. We remark that Theorem 4.3 leaves
open the question of stability for equilibria which are non-
isolated minima of the total risk function. In Appendix D.2,
we provide examples which show that such points may
be asymptotically stable, stable, or unstable depending on
the particular instantiation of dynamics. The following
existence result further motivates our focus dynamics which
are risk minimizing, rather than just reducing.

Corollary 4.4. Equilibria exist when learners and subpop-
ulations are risk minimizing in the limit and the total risk
function has isolated local minima. They may not exist
otherwise.

Example of dynamics without equilibria. Consider subpop-
ulations with risk functions minimized at the same value
ϑ
↘. If learners use full risk minimization, the setting lacks

isolated minima because the total risk is uniform across
all allocations ε. Assuming that risk-minimizing subpop-
ulations randomly choose among equivalent learners, no
equilibrium exists as allocations randomly switch between
learners once the learners converge to the optimum ϑ

↘.

4.2 Segmented and Balanced Equilibria

Definition 4.5 (Segmented allocation). An allocation is
segmented if εij → {0, 1} for all i, j.

In a segmented allocation, each subpopulation is associated
with a single learner, and thus the population is partitioned
across learners. For allocation dynamics like multiplica-
tive weights, such configurations are clearly equilibria for
any parameter choice ! on the part of the learners. We
thus consider the set of possible segmented equilibria and
characterize which are asymptotically stable.

Theorem 4.6. Suppose learners and subpopulations are
risk minimizing in the limit, ε

eq is segmented, and
R

total(εeq
,!) has a unique minimizer !eq. Define a map-

ping ϱ : [n] ⇒ [m] such that ϱ(i) = j is the learner with
nonzero mass in ε

eq
i,:. If every subpopulation strictly prefers

their current learner:

Ri(ϑ
eq
ϑ(i)) < Ri(ϑ

eq
j ) , (1)

for all i and learners j ∝= ϱ(i), then (εeq
,!eq) is an asymp-

totically stable equilibrium. If there is a subpopulation who
would strictly prefer to switch learners, then (εeq

,!eq) is
not stable.

When risks are strongly convex, there is always such a
unique minimizer !eq. In particular, in a segmented alloca-
tion, each ϑ

eq
j minimizes the average loss over the group of

subpopulations assigned to them.
Corollary 4.7. Suppose that risk functions satisfy Ri(ϑ) <
Ri(ϑ≃) ′↖ ⇔ϑ ↘ ↽i⇔ < ⇔ϑ

≃
↘ ↽i⇔ for ↽i the subpopula-

tion optimal parameter. Then in an asymptotically stable
segmented equilibrium, the convex hulls of the grouped sub-
populations optimal parameters {↽i} are non-intersecting.

Proof Sketch. Consider a partition where the convex hulls
intersect for some pair of learners. Then there exists at least
one subpopulation who would be better off switching to the
other learner, and thus the risk condition in Theorem 4.6
cannot hold.

Applying the Corollary to the example in Figure 2, we see
that a segmented equilibrium with subpopulation 1 and 3
participating in the same learner cannot be stable.

Theorem 4.6 leaves open the question of stability in the
case that the risks in Equation (1) are equal. Under such
risk equivalence, is it natural to consider equilibria where a
subpopulation has support over multiple learners.
Theorem 4.8. Consider dynamics which are risk mini-
mizing in the limit and an ε

eq with any subpopulation
i having nonzero support on set of two or more learn-
ers j → J . Assume risks are strongly convex and define
!eq = argminRtotal(εeq

,!). Then (εeq
,!eq) cannot be

stable unless it is “balanced” in the sense that learners in J

are risk equivalent and optimal for i, i.e. for all j, j≃ → J ,

Ri(ϑ
eq
j ) = Ri(ϑ

eq
j→ ) and ≃Ri(ϑ

eq
j ) = 0 . (2)

If it is balanced, so are all allocations for subpopulation i

with support over J . Finally, all stable equilibria must be
either balanced or segmented.

This result characterizes a set of possibly stable equilibria. It
demonstrates that risk optimality, in addition to equivalence,
is necessary. Guaranteeing the stability of such balanced
equilibria requires further information about the dynamics,
and it is not possible to make a general statement. Examples
in Appendix D.2 demonstrate that such balanced equilibria
may be asymptotically stable, stable, or unstable. Further-
more, the balance condition is fragile in the sense that it
would not hold under small perturbations to the underly-
ing risk functions. While the number of possible balanced
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equilibria is combinatorial in the number of learners and
subpopulations, risk functions are continuous, so it is pos-
sible to find arbitrarily small perturbations to any the risk
functions that would destabilize all balanced equilibria.

Proof Sketch of Theorems 4.6 and 4.8. By Theorem 4.3,
characterizing the stable equilibria is equivalent to char-
acterizing isolated and non-isolated local minima of the
total risk. We show that it suffices to characterize local min-
ima of the partial minimization F (ε) = min! R

total(ε,!)
over the simplex product ”n

m = ”m ⇐ · · ·⇐”m. Since F
is concave, all minima occur on the boundary, i.e. a face or
a vertex. Since F is still concave when restricted to a face
of the simplex, the same argument shows the minima are on
the boundary, hence vertices, except for the degenerate case
where F takes a constant value over the face.

Thus, the isolated local minima occur at vertices of the
simplex product, which correspond to segmented allocation.
Further analysis of F yields the conditions presented in
Theorem 4.6. The local minima in the degenerate case
are characterized by the balanced equilibria conditions in
Theorem 4.8.

4.3 Social Welfare for Segmented Populations

Definition 4.9. The social welfare of a state (ε,!) is
strictly decreasing in the total risk R

total(ε,!).

This definition of social welfare is utilitarian in the sense
that it depends on the cumulative quality of individuals’
experiences. Maximizing the social welfare corresponds
to minimizing the total risk, which can be posed as the
following optimization problem

(εϖ
,!ϖ) → argmin

ε,!
R

total(ε,!)

s.t. εi,: → ”m ⇑ i = {1, . . . n} .
(3)

Here, (εϖ
,!ϖ) is the social welfare maximizer.

Our discussion of stable equilibria has so far focused on
only local minimizers of the total risk. In fact, global min-
imization of this objective (and therefore maximization of
social welfare) is a hard problem. The total risk objective
can be viewed as an instance of the k-means clustering
problem with k = m. In the language of this literature
(e.g., Selim and Ismail (1984)), each subpopulation is a
data point and the parameter selected by each learner is a
cluster center. The allocations described by ε correspond
to (fuzzy) cluster assignment and each risk function Ri(ϑj)
corresponds to a measure of “dissimilarity” between data
points (subpopulations) and cluster centers (learners).

The connection to k-means clustering elucidates the diffi-
culty of minimizing the total risk. The “minimum sum-of-
squares clustering” problem (i.e., squared Euclidean norm

dissimilarity) is NP hard with general dimension even when
k = 2 (Aloise et al., 2009). When the number of clusters
and dimension are fixed, Inaba et al. (1994) present an algo-
rithm for solving the minimum sum-of-squares clustering
problem which is polynomial in the number of datapoints.
Translated to our setting, its complexity is O(nmd). It is
therefore unrealistic to hope that a myopic dynamic might
generally lead to social welfare maximization. However,
due to the connections with total risk, risk reducing dynam-
ics are at least well-behaved with regards to social welfare.

Proposition 4.10. For risk reducing subpopulations and
learners, social welfare is non-decreasing over time. If
the dynamics are furthermore risk minimizing in the limit,
social welfare is strictly increasing and stable equilibria
correspond to local social welfare maxima.

Local maximization is not a panacea: Example 4.11 shows
a local maximum of the social welfare can be much worse
than the global one.

Example 4.11 (Arbitrarily high total risk at local optimum).
Consider three subpopulations with

R1(ϑ) = ϑ
2
, R2(ϑ) = (ϑ ↘ 1)2, R2(ϑ) = (ϑ ↘ ↽)2

for some ↽ > 2. Suppose that subpopulation sizes are ω1 =
ω2 = ω and ω3 = 1 ↘ 2ω for some 0 < ω < 1/2. Further
suppose that there are two learners. Up to permutation, the
social welfare optimum is ϑ1 = 1/2 and ϑ2 = ↽, with total
risk ω/2. However, as long as ↽ <

1↑ϱ
1↑2ϱ , there is another

stable equilibrium. Let ↽ = 1↑ϱ
1↑2ϱ ↘φ. Then the following is

a stable equilibrium: ϑ1 = 0 and ϑ2 = 1↘ φ. The total risk
is ω+ (ϱ↑ς)2

1↑2ϱ . For ω close to 1/2, this risk can be arbitrarily
larger than the social optimum.

In this example, a large gap between a stable local optimum
and the global optimum arises in part due to a large dif-
ference in subpopulations’ sizes. We further remark that
minority groups can be under-served particularly when con-
sidering worst-case risk over subpopulations (Hashimoto
et al., 2018). Even at a social welfare maximizer (εϖ

,!ϖ),
the worst-case subpopulation risk can be arbitrarily bad. It
is straightforward to construct such examples even in the sin-
gle learner case: consider a minority group with vanishingly
small population proportion and arbitrarily high risk at the
optimal parameter for the majority group (Example D.10).

Despite these inherent difficulties, we find that the situation
improves as the number of learners increases. It is straight-
forward to see that the maximal social welfare will increase:
any point which is optimal for m learners can be trivially
transformed into a feasible point for m+ 1 learners which
achieves the same social welfare, by allocating no subpopu-
lations to the new learner. There is more nuance involved
when considering any possible stable equilibria. Instead, we
make a statement about a particular learner growth process
which corresponds to existing learner m “splitting in half”.
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(a) Risk dynamics (b) Impact of competition on social welfare

Figure 4: Synthetic settings: Figure (a) illustrates a setting with 3 subpopulations and 2 learners. The dsolid lines correspond
to the risk trajectory for the unstable balanced equilibrium at initialization. Dotted and dashed lines illustrate risk trajectories
under three different slight perturbations from the initialization. In Figure (b), the left plot illustrates the reduction in total
risk over time. The dashed blue lines indicate when a new learner joins. The right plot shows the equilibrium-risk for a
subset of the subpopulations as the number of learners increases.

Proposition 4.12. Suppose that risks are strongly convex,
there are m learners, (εeq

,!eq) is an equilibrium, and
at least one subpopulation i allocated to learner m does
not have optimal subpopulation risk, so ≃Ri(ϑeqm) ∝= 0.
The state is amended to add an additional learner: !̃

eq
=

[!eq
, ϑ

eq
m ] and

ε̃
eq
:,j =

}︄
ε
eq
:,j j ↔ m

1
2ε

eq
:,m j → {m,m+ 1}

Under dynamics which are risk minimizing in the limit, the
equilibrium (ε̃eq

, !̃
eq
) is not stable, so a small perturbation

will send the system to a state with strictly lower total risk
(higher social welfare).

5 SIMULATIONS

We illustrate the salient properties of the decision dynamics
in simulation1. We consider both a synthetic setting as well
as one instantiated from a prediction task on census data.

Synthetic In Figure 4a we consider a simple scenario with
n = 3 subpopulations of equal sizes ωi = 1/3, quadratic
risk functions Ri = ⇔↽i↘ϑ⇔

2+1 with distinct risk minimiz-
ing decisions ↽i and m = 2 learners. The learners minimize
their risk according to full risk minimization (Example 3.3)
and the subpopulations update their participation via multi-
plicative weights update (Section 3.1). When ε

0
i,j = 1/2 for

all i, j the risk equality condition from Theorem 4.8 is satis-
fied with ϑ

eq
j = (↽1 + ↽2 + ↽3)/3, however the optimality

condition is not. We therefore observe that this equilibrium
is not stable, and slightly perturbing the initial conditions
leads to split-market equilibria. Figure 4a illustrates trajecto-
ries from three different perturbations. It demonstrates that
the total risk is non-increasing whereas the average risks for
both learners and subpopulations are not monotonic. Each

1Implementation details and reproduction instructions at:
https://github.com/mcurmei627/MultiLearnerRiskReduction

of the perturbations has different risk trajectories and equi-
librates at a different split-market equilibrium. We repeat
these experiments with noisy dynamics, we consider both
exogenous noise that independently perturbs the decisions
of the learners and/or populations as well as intrinsic noise
due to making updates with finite sample estimates rather
than at population level. We find that the key properties
of the dynamics hold when the updates are noisy, detailed
experiments are presented in Appendix E.

Another set of experiments in Figure 4b illustrates how a
larger number of learners lead to better outcomes in terms of
total risk. We consider a set of m = 2 learners and n = 50
subpopulations. We simulate the dynamics until the market
has reached equilibrium, at which point a randomly chosen
learner breaks up into two identical learners with half the
user base. From this unstable equilibrium (Proposition 4.12)
we slightly perturb the parameters of the two learners and
allow the system to reach a new equilibrium state. The pro-
cedure repeats until the number of learners reaches number
of subpopulations. These simulations illustrate that more
competition improves social welfare, however the improve-
ments are not uniform for all subpopulations with some
groups seeing their risk at equilibrium increase with the
addition of new learners.

Census data We consider a semi-synthetic setting where
subpopulations and their risk functions are instantiated by
a prediction task on real data. Using folktables (Ding
et al., 2021) we consider a modified version of ACSTrav-
elTime prediction problem derived from the 2018 Cali-
fornia Census data. We consider 6 subpopulations corre-
sponding to racial groups with relative size ranging from
1.2% to 61%. We define the least-squares risk functions
as Ri(ϑ) = 1

Ni
⇔Xiϑ ↘ yi⇔

2 where Xi → RNi↓d are the
features (containing demographics, educational attainment,
income levels, and modes of transportation) and yi → RNi

are the labels (log transform of the daily commute time in
minutes) for individuals within subpopulation i. We sim-

https://github.com/mcurmei627/MultiLearnerRiskReduction
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(a) Risk dynamics

(b) Allocation trajectories

Figure 5: Empirical subpopulations from Census data:

Figure (a) displays the relative risk with respect to the best
achievable risk for the subpopulation over time. Figure (b)
illustrates how allocations initialized near (1/3, 1/3, 1/3)
converge to a split market equilibrium.

ulate risk reducing dynamics from a perturbed balanced
equilibrium over 3 learners. As in the synthetic example,
the risks of learners and subpopulations are not all mono-
tone (Figure 5a), but the total risk function is. Finally Figure
5b illustrates the convergence of allocation dynamics to a
segmented equilibrium.

6 DISCUSSION

In this paper, we study the feedback dynamics of user re-
tention for loss minimizing learners, where subpopulations
choose between providers. We introduce a formal notion
of risk reducing and minimzing to capture this feedback,
and show that there is a close connection between such dy-
namics and the total risk summed over subpopulations and
learners. We provide a comprehensive characterization of
stable equilibria and investigate the implications in terms
of a utilitarian social welfare. This work relates to ques-
tions of fairness and minority representation in several ways.
First, our results imply that risk-minimizing dynamics in
multi-learner settings can result in higher welfare for small
subpopulations compared with single-learner settings, as
studied by (Hashimoto et al., 2018; Zhang et al., 2019).

This resonates with recent work showing that monopolies
have higher performative power and lead to lower individual
utility (Hardt et al., 2022).

The dynamics that we study often lead to segmentation
of subpopulations across learners as an emergent phe-
nomenon2. This segmentation can lead to pointwise lower
risks for subpopulations, especially when subpopulations
have considerably different risk profiles. In some contexts,
the benefits of the reduced risk among subpopulations may
outweigh possible harms from segregation. In others, where
proportional representation of groups across learners, mod-
els, or clusters (Kleindessner et al., 2019a,b) is important,
our work implies that independent risk minimization can
lead to undesirable outcomes. In short, this work analyzes
natural dynamics with consequences for the distribution of
subpopulations amongst independent learners; whether or
not the consequences are desirable depend on the specific
application considered.

We highlight several directions for future work. Our results
lay the groundwork for an investigation of the stochastic
dynamics that occur for finite sample approximations to the
risk or participation driven by decisions of individuals. Such
behaviors are risk reducing in expectation, so we expect the
noisy trajectories to converge with high probability to sets
around the asymptotically stable equilbria we characterize.
There are many interesting and relevant questions in the fi-
nite sample setting: What is the effect of sample size on the
ability of new learners to enter a market and minority sub-
populations to be adequately represented? Can we model
heterogeneous learners who differ in which features they
measure and with how much noise? Are there trade-offs be-
tween the expressivity of models and the practical difficulty
of minimizing risk from finite samples in high dimensions?

It would also be interesting to consider extensions or alter-
native dynamics models for the learner and subpopulation
decisions. One could investigate competitive learners who
explicitly strategize to capture subpopulations (Ben-Porat
and Tennenholtz, 2019; Aridor et al., 2020); this setting
is related to facility location and Hotelling games (Owen
and Daskin, 1998; Hotelling, 1929). One might imagine
that subpopulations do not act uniformly and may not even
be entirely independent of each other—the participation
update may depend on some underlying social network.
The connections between total risk reduction and k-means
clustering algorithms suggest interventions such as subpop-
ulationaware initialization (Bose et al., 2023) that could
improve social welfare. Results on “ground truth recovery”
may yield insight into particular population structures that
lead to simpler dynamics or restricted sets of equilibria.

2This connects to economic literature on “rational” discrimina-
tion, where competitors have no inherent preference to discriminate
and yet equilibria are segregated, e.g. Foster and Vohra (1992)
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J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and
N. D. Lawrence, editors. Dataset shift in machine learn-
ing. Mit Press, 2008.

M. Ray, D. Drusvyatskiy, M. Fazel, and L. J. Ratliff.
Decision-dependent risk minimization in geometrically
decaying dynamic environments. In Proceedings of the
Association for the Advancement of Artificial Intelligence
Conference on AI (AAAI), 2022.

W. H. Sandholm. Evolutionary game theory. Complex Social
and Behavioral Systems: Game Theory and Agent-Based
Models, pages 573–608, 2020.

S. Z. Selim and M. A. Ismail. K-means-type algorithms: A
generalized convergence theorem and characterization of
local optimality. IEEE Transactions on pattern analysis
and machine intelligence, (1):81–87, 1984.

K. Wood and E. Dall’Anese. Stochastic saddle point
problems with decision-dependent distributions. arXiv
preprint arXiv:2201.02313, 2022.

K. Wood, G. Bianchin, and E. Dall’Anese. Online projected
gradient descent for stochastic optimization with decision-
dependent distributions. IEEE Control Systems Letters,
2021.

X. Zhang, M. Khaliligarekani, C. Tekin, and M. Liu. Group
retention when using machine learning in sequential de-
cision making: the interplay between user dynamics and
fairness. Advances in Neural Information Processing
Systems, 32, 2019.

Checklist

1. For all models and algorithms presented, check if you
include:

(a) A clear description of the mathematical setting,
assumptions, algorithm, and/or model. [Yes] As-
sumptions are stated in Section 3 and in theoreti-
cal statements.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm. [Not
Applicable] We do no propose an algorithm.

(c) (Optional) Anonymized source code, with spec-
ification of all dependencies, including external
libraries. [Yes] A link is provided in section 5.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes] Assumptions are stated
in Section 3 and in theoretical statements.

(b) Complete proofs of all theoretical results. [Yes]
Proofs are presented in the appendix.

(c) Clear explanations of any assumptions. [Yes] As-
sumptions are discussed in Section 3.

3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to repro-
duce the main experimental results (either in the
supplemental material or as a URL). [Yes] A link
is provided in section 5.

(b) All the training details (e.g., data splits, hyper-
parameters, how they were chosen). [Yes] The
details are available in the code.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to the
random seed after running experiments multiple
times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets. [Yes]

(b) The license information of the assets, if applicable.
[Not Applicable] The census data we use is in the
public domain.

(c) New assets either in the supplemental material or
as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable] The
census data we use is in the public domain.

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

(a) The full text of instructions given to participants
and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant compen-
sation. [Not Applicable]



Emergent specialization from participation dynamics and multi-learner retraining

Supplementary Materials: Emergent segmentation from participation dynamics

and multi-learner retraining

A Motivating Examples

We discuss several real-world examples which exhibit degrees of market segmentation across characteristics such as
nationality, age, and race. In these examples, market conditions are certainly affected by more complex phenomena, from
network effects to explicit competition between firms. While we do not claim that the dynamics we study are necessarily the
main contributing factor, our simple model isolates the potential contribution of learning dynamics: namely, to reinforce
such segmentation. This perspective highlights the potential effects of efforts to incorporate data or improve personalization.

A.1 Social Media

Figure 6: Social media usage across leading social media platforms. Left: Age distribution. Right: Gender distribution

Usage of various social media sites in the US varies across genders3 and age groups4. For example, the users of Facebook
and LinkedIn skew older while Snapchat, Tiktok, Tumblr, and Twitch are more heavily used by the younger population.
Similarly users of Pinterest strongly skew female while users of Twitch are more likely to be male. Figure 6 shows the
disparities along gender and age for leading social media platforms. These disparities across platforms are reinforced by
user behaviors: imaging the experience of a 45 year old logging onto Twitch for the first time compared with a 14 year
old; or instead imagine a 14 year old logging into Facebook. Because the usage patterns determine the data available to the
platforms, the disparities are also reinforced by the behavior of the platforms themselves. Similarly, Pinterest algorithms are
more likely to be tailored to the tastes of an female demographic, while Twitch’s to a demographic more representative of
males.

3https://www.statista.com/statistics/1337563/us-distribution-leading-social-media-platforms-by-gender/
4https://www.statista.com/statistics/1337525/us-distribution-leading-social-media-platforms-by-age-group/

https://www.statista.com/statistics/1337563/us-distribution-leading-social-media-platforms-by-gender/
https://www.statista.com/statistics/1337525/us-distribution-leading-social-media-platforms-by-age-group/
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A.2 Music Streaming

Worldwide market share of music streaming services is split between several companies (see Figure 7). However, the
distribution of music streaming by country shows clear patterns: most users in China use Tencent, most users in Mexico use
Spotify, and most users in the Middle East and Northern Africa (MENA) use Anghami. On the other hand, the markets
United States, Russia, and India are not dominated by a single service. However, the handful of most used services in these
regions have a small market outside of their main market. Due to this segmented market, only certain platforms collect large
scale data about music preferences in certain regions. If many users from western cultures make playlists containing both
Arabic and Indian music, Spotify may learn to associate those genres in a way that is undesirable or even offensive to users
from those cultures. This leads to a self-reinforcing effect: services who make bad predictions for users from certain cultures
are unlikely to correct this bias as those users choose instead to use services that more accurately reflect their tastes.

(a) Worldwide usage (b) Usage by country

Figure 7: Usage of music streaming services in different markets5. Left: Worldwide marked share. Right: Market share in
USA, China, India, Mexico, Russia, Middle East and Northern Africa (MENA).

A.3 Personalized health

The growing popularity of direct-to-consumer genetic testing is driven by the growth of two market leaders: AncestryDNA
and 23andMe6. These tests are used both for determining ancestry as well as receiving polygenic risk scores for various
medical conditions. The accuracy of the tests varies across ethnic groups; with Latino, Middle Eastern and, African ancestry
being most under-represented. This issue is self re-inforcing; for instance people of African descent are less likely to use a
large service like 23andMe and more likely to use a specialized service such as AfricanAncestry7.

5All statistics recorded from Statista:
Worldwide:https://www.statista.com/statistics/653926/music-streaming-service-subscriber-share,
United States: https://www.statista.com/statistics/1351506/streaming-services-music-podcasts-united-states/,
China: https://www.statista.com/statistics/711295/china-leading-mobile-music-platforms-by-active-user-number/,
India: https://www.statista.com/statistics/922400/india-music-app-market-share/,
Mexico: https://www.statista.com/statistics/1018370/over-the-top-audio-platforms-mexico-by-market-share,
Russia: https://www.statista.com/statistics/1347035/most-popular-music-streaming-platforms-in-russia/,
Middle East and North America:
https://www.statista.com/statistics/1295716/mena-share-of-paying-music-streaming-subscribers-by-platform/.

6https://www.statista.com/chart/17023/commercial-genetic-testing/
7https://africanancestry.com/

https://www.statista.com/statistics/653926/music-streaming-service-subscriber-share
https://www.statista.com/statistics/1351506/streaming-services-music-podcasts-united-states/
https://www.statista.com/statistics/711295/china-leading-mobile-music-platforms-by-active-user-number/
https://www.statista.com/statistics/922400/india-music-app-market-share/
https://www.statista.com/statistics/1018370/over-the-top-audio-platforms-mexico-by-market-share
https://www.statista.com/statistics/1347035/most-popular-music-streaming-platforms-in-russia/
https://www.statista.com/statistics/1295716/mena-share-of-paying-music-streaming-subscribers-by-platform/
https://www.statista.com/chart/17023/commercial-genetic-testing/
https://africanancestry.com/
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B Preliminaries

B.1 Notation

We introduce a compact notation. The simplex product is defined as

”n
m =

⟨︄
⟩︄

/︄A → Rn↓m
|

m{︄

j=1

Aij = 1

\︄
/︂

\︂

so that the rows sum to 1. Then the state space of subpopulation allocations and learner parameters is X = ”n
m ⇐ Rm↓d.

For a square matrix A, we use the notation diag(A) to represent the vector containing the diagonal entries of A. For a vector
a, Diag(a) is a diagonal matrix with a along the diagonal. Furthermore we will say a ↔ b for vectors a, b if the inequality
holds elementwise.

Define a matrix valued risk function R : Rm↓d
⇒ Rn↓m so that Rij(!) = Ri(ϑj). Recall that in Section 3.1, the

subpopulation and learner risks played a key role. We therefore define vector valued functions R̄subpop
: X ⇒ Rn and

R̄
learner

: X ⇒ Rm as follows:

R̄
subpop

(ε,!) = diag(εR(!)⇐), R̄
learner

(ε,!) = diag
⌊︄
Diag(ε⇐

ω)↑1
ε
⇐Diag(ω)R(!)

⌋︄
.

Then the definition of risk reducing dynamics for subpopulations and learners can be written as

R̄
subpop

(εt+1
,!) ↔ R̄

subpop
(εt

,!) and R̄
learner

(ε,!t+1) ↔ R̄
learner

(ε,!t) .

Risk minimizing in the limit is defined similarly, where the inequality is strict for at least one entry of the vectors unless the
state is at a local minimum.

The total risk can be written as
R

total(ε,!) := tr(diag(ω)εR(!)⇐) .

Lemma B.1. Under the assumption that all loss functions are continuous, the risk function R is continuous w.r.t. to !, and
thus Rtotal is continuous w.r.t. ε and !.

The sequential dynamics updates described in Section 3.1 can be written as
⌈︄
ε
t+1

!t+1

⌉︄
=

⌈︄
ς(εt

,!t)
µ(εt+1

,!t)

⌉︄
=

⌈︄
ς(εt

,!t)
µ(ς(εt

,!t),!t)

⌉︄
=: f(εt

, !t) . (4)

Lemma B.2. As long as the subpopulation and learner updates described in Section 3.1 are locally Lipschitz, so is the
dynamics function f defined in (4).

B.2 Background

For completeness, we include important results and definitions that our proofs will make use of. First, we state two theorems
about Lyapunov theory for stability.

Theorem B.3 (Theorem 1.2 in Bof et al. (2018)). Let xeq → D be an equilibrium point for the autonomous systems
xt+1 = f(xt) where f : D ⇒ X is locally Lipschitz in D ∞ X . Suppose there exists a function V : D ⇒ R which is
continuous and such that

V (xeq) = 0 and V (x) > 0 ⇑ x → D ↘ {xeq}

V (f(x))↘ V (x) ↔ 0 (resp. < 0) ⇑ x → D

Then xeq is stable (resp. asymptotically stable).

Theorem B.4 (Theorem 1.5 in Bof et al. (2018)). Let xeq → D be an equilibrium point for the autonomous systems xt+1 =
f(xt) where f : D ⇒ X is locally Lipschitz in D ∞ X . Let V : D ⇒ R be a continuous function with V (xeq) = 0 and
V (x0) > 0 for some x0 arbitrarily close to xeq. Let r > 0 be such that Br(xeq) ∞ D and U = {x → Br(xeq) | V (x) > 0},
and suppose that V (f(x))↘ V (x) > 0 for all x → U . Then xeq is not stable.
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Next, we state the definition of a (isolated) local minimum.

Definition B.5. The point uϖ is a local minimum (resp. isolated local minimum) of a function h over a domain U if there is
a ↼ > 0 such that for any u → U with ⇔u↘ uϖ⇔ ↔ ↼, h(uϖ) ↔ h(u) (resp. h(uϖ) < h(u)).

Next, we state the implicit function theorem.

Theorem B.6 (Implicit Function Theorem). Let U ∞ Rn
, V ∞ Rm be open sets and f : U ⇐ V ⇒ R is Cr for some r ↙ 1.

For some x0 → U, y0 → V assume the partial derivative in the second argument D2f(x0, y0) : Rm
⇒ R is an isomorphism.

Then there are neighborhoods U0 of x0 and W0 of f(x0, y0) and a unique C
r map g : U0 ⇐W0 ⇒ V such that for all

(x,w) → U0 ⇐W0, f(x, g(x,w)) = w.

Finally we prove a property of intersecting convex hulls.

Lemma B.7. Let x1, x2, · · ·xn and y1, y2, . . . , ym be some points in Rd. Define by Cx and Cy the convex hulls of {xi}
n
i=1

and {yi}
m
i=1 respectively. Then there do not exist points x̄ → Rd and ȳ → R

d such that the following inequalities are
satisfied:

⇔xi ↘ x̄⇔ < ⇔xi ↘ ȳ⇔ ⇑i = 1, 2, . . . , n

⇔yj ↘ ȳ⇔ < ⇔yj ↘ x̄⇔ ⇑j = 1, 2, . . . ,m

Proof. Assume by contradiction that the inequalities above hold. Define Hx := {z → R
d
| ⇔z ↘ x̄⇔ < ⇔z ↘ ȳ⇔} and

Hy := {z → R
d
| ⇔z ↘ ȳ⇔ < ⇔z ↘ x̄⇔}. The sets Hx and Hy are disjoint half-spaces (without boundary) then defined by

the hyperplane bisecting the segment connecting x̄ and ȳ. By assumption then we have that xi → Hx for all i and yj → Hy

for all j; since Hx and Hy are convex, it follows that Cx ∈ Hx and Cy ∈ Hy. Therefore Cx ∋ Cy = △, which leads to a
contradiction.

B.3 Properties of partial minimization

In this section, we state a handful of important results about the partial minimization of the total risk. This is somewhat
similar to the analysis presented by Selim and Ismail (1984) in the context of clustering algorithms.

Lemma B.8. Define the function F : Rm↓n
⇒ R as F (ε) = min! R

total(ε,!). This function is concave and a point
(ε0

,!0) is a local minimum of Rtotal over the domain X = Xε ⇐Rm↓d if ε0 is a local minimum of F over the domain Xε

and !0
→ argmin! R

total(ε0
,!). Furthermore, in the case that !0 is the unique minimizer of Rtotal(ε0

,!), then (ε0
,!0)

is a local minimum (resp. isolated local minimum) if and only ε
0 is a local minimum (resp. isolated local minimum).

Proof of Lemma B.8. F (ε) is well defined due to the convexity of the risk functions. Concavity follows from the observation
that F is the point-wise minimum of a family of functions which are linear in ε (since for every fixed !, the total risk is
linear in ε).

We break the proof of equivalence into two implications.

1. F minimized =↖ R
total minimized

There is a ↼ > 0 such that for any ε → Xε with ⇔ε
0
↘ ε⇔ ↔ ↼, F (ε0) ↔ F (ε), i.e.

R
total(ε0

,!0) ↔ R
total(ε,!↘(ε))

for any minimizing !↘(ε). For fixed allocation ε define R
total
ε (!) = R

total(ε,!) which is is convex and minimized at
!↘(ε) and hence:

R
total(ε,!↘(ε)) ↔ R

total(ε,!), ⇑ ! .

Combining the inequalities yields: Rtotal(ε0
,!0) ↔ R

total(ε,!), and thus (ε0
,!0) is a local minimum of Rtotal. The

implication for the isolated local minimum case follows by the same arguments with strict inequalities on the total risk,
noting that if !0 is a unique minimizer, it must also be isolated.

2. Rtotal minimized =↖ F minimized
Recall that Rtotal(ε,!) can be written as tr(diag(ω)εR(!)⇐). Then

R
total(ε0 +D,!0)↘R

total(ε0
,!0) = tr(diag(ω)DR(!0)⇐) ↙ 0
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where inequality holds for all D → Rn↓m such that ε0 + D → Xε by the fact that ε0 is a minimum. Recognizing the
gradient from Lemma B.9 and using the uniqueness of !0, the expression is equivalently ▽≃εF (ε0), D̸ ↙ 0. In other
words, the directional derivative in any feasible direction D is non-negative. Hence, ε0 is a local minimum of F . The
implication for the isolated local minimum case follows by the same arguments with strict inequalities on the total risk.

Lemma B.9. For F : Rn↓m
⇒ R defined as in Lemma B.8, suppose the minimizier !↘(ε) = argmin! R

total(ε,!) is
unique. The gradient is

≃εF (ε) = diag(ω)R (!↘(ε)) , i.e.
⇀F (ε)

⇀εij
= ωiRi(ϑ

↘
j (ε)) .

Further suppose that the risks are strongly convex. Then second partial derivatives are given by

⇀
2
F (ε)

⇀εkφ⇀εij
=

}︄
0 k ∝= j

↘ωi≃Ri(ϑϖj )
⇐ ⌊︄)︄

φ→ ωφ→εφ→j≃
2
Rφ→(ϑϖj )

⌋︄
≃Rφ(ϑϖj ) k = j

.

Proof. Computing the gradient:

≃εF (ε) = ≃εR
total(ε,!ϖ(ε)) +≃!↘(ε)≃ωR

total(ε,!ϖ(ε)) = diag(ω)R(!) .

The first equality follows by product rule. The second equality follows because 1) the total risk is linear in ε and 2) the
second term is zero due to the optimality of !↘(ε).

Now notice that
⇀

⇀εkφ
Ri(ϑ

ϖ
j (ε)) =

⎛
⇀ϑ

ϖ
j (ε)

⇀εkφ
,≃ωRi(ϑ

ϖ
j (ε))

⎞

To compute the derivatives of ϑϖj (ε) we use the implicit function theorem and the assumption that the risks are strongly
convex. We apply the implicit function theorem to the first order optimality condition

ϑ
ϖ
j (ε) → argmin

ωj
R̄

learner
j (ε:,j , ϑj)

The Hessian ≃
2
ωR̄

learner
j (ε,!)) is non-degenerate due to strong convexity of the subpopulation risks. There exists a neighbor-

hood U0 of ε and a unique (sufficiently smooth) map ϑ
↘
j (·) such that for all ε → U0, we have that ≃ωR̄

learner
j (ε, ϑ↘(ε)) = 0.

Then by implicit function theorem we obtain

≃ϑ
ϖ
j (ε) = ↘≃

2
ωR̄

learner
j ↦ ≃εωR̄

learner
j (ε:,j , ϑ

ϖ
j (ε))

by taking the derivative of the first order condition differentiating through ϑ
ϖ
j (·) and setting it to zero. We have that

≃
2
ωR̄

learner
j =

{︄

φ→

ωφ→εφ→j≃
2
Rφ→(ϑ

ϖ
j ),

⇀

⇀εkφ
≃ωR̄

learner
j =

}︄
0 k ∝= j

≃Rφ(ϑ
eq
j ) k = j

.

The result follows by combining the expressions.

C Full Proofs of Main Results

In this section, we present proofs of the main results.

C.1 Connections between dynamics and total risk

Proposition 4.2. For any risk-reducing subpopulation and learner dynamics, the total risk is non-increasing:
R

total(εt+1
,!t+1) ↔ R

total(εt
,!t), ⇑t. If subpopulations and learners are risk minimizing in the limit, then the to-

tal risk is strictly decreasing unless (εt
,!t) is a local minimizer of Rtotal.
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Proof of Proposition 4.2. The key to seeing that the total risk acts like a potential for the market dynamics is to note two
equivalent decompositions of the total risk:

R
total(ε,!) = ω

⇐
R̄

subpop
(ε,!) = ω

⇐
εR̄

learner
(ε,!) .

Being risk-reducing learners’ updates satisfy:

R̄
learner

(εt
,!t+1) ↔ R̄

learner
(εt

,!t) =↖ R
total(εt

,!t+1) ↔ R
total(εt

,!t) .

Similarly risk reducing subpopulations satisfy:

R̄
subpop

(εt+1
,!t+1) ↔ R̄

subpop
(εt

,!t+1) =↖ R
total(εt+1

,!t+1) ↔ R
total(εt

,!t+1) .

Finally, combining the two updates yields the desired inequality.

In the case that learners and subpopulations are risk minimizing in the limit, the same argument holds with strict inequality,
unless (εt+1

,!t+1) is a local minimum.

Theorem 4.3. For any learners and subpopulations who are risk minimizing in the limit, an equilibrium (εeq
,!eq) is

asymptotically stable if it is an isolated local minimizer of the total risk R
total. If it is not a local minimizer of the total risk,

then it is not stable.

Proof of Theorem 4.3. We break this proof into two implications.

1. Isolated local min =↖ Asymptotic stability
Define V (ε,!) = R

total(ε,!)↘R
total(εeq

,!eq). The dynamics f are Lipschitz by Lemma B.2 and this V satisfies the
conditions of Theorem B.3 with strict inequality, thus we conclude that (εeq

,!eq) is an asymptotically stable equilibrium.

2. Not local min =↖ Not stable
Define V (ε,!) = R

total(εeq
,!eq)↘R

total(ε,!) which will increase along trajectories. Since we are not at a local min,
there must be some arbitrarily close ε

0
,!0 such that V (ε,!) > 0. Then we apply Theorem B.4 which guarantees that the

equilibrium is not stable.

Corollary 4.4. Equilibria exist when learners and subpopulations are risk minimizing in the limit and the total risk function
has isolated local minima. They may not exist otherwise.

Proof of Corollary 4.3. We first argue that if the dynamics are risk minimizing, then an isolated local minimum of the total
risk must be an equilibria. Let (ε0

,!0) denote the isolated local minima of the total risk. It must be that ε0 is an isolated,
and thus unique, minimizer of Rtotal(ε,!0) since the function is linear in ε. We can thus conclude that ς(ε0

,!0) = ε
0. It

also must be that !0 is a unique minimizer of Rtotal(ε0
,!) since the function is convex in !. We can thus conclude that

µ(ε0
,!0) = !0. Therefore (ε0

,!0) is equilibrium of the dynamics.

We next show that equilibria may not exist when the dynamics are not risk minimizing in the limit. To show that they may not
exist otherwise, consider the following example. Let all learners be static and identical so !t+1 = !t and ! = (ϑ, ϑ, . . . , ϑ).
Let the subpopulation update break ties among equivalent learners randomly. Then the subpopulations will randomly switch
between learners. Though these dynamics satisfy the definition of risk reducing (at equality), they will not converge to an
equilibrium.

We lastly show that equilibria may not exist when the total risk function does not have an isolated local minima. Suppose
that learners update with full risk minimization and all subpopulations have risk uniquely minimized at the same value ϑ.
Finally suppose that subpopulations will break ties among equivalent learners randomly (and are otherwise risk minimizing).
As in the previous example, the subpopulations will randomly switch between learners and no equilibrium exists.

C.2 Stable equilibria

Theorem 4.6. Suppose learners and subpopulations are risk minimizing in the limit, εeq is segmented, and R
total(εeq

,!)
has a unique minimizer !eq. Define a mapping ϱ : [n] ⇒ [m] such that ϱ(i) = j is the learner with nonzero mass in ε

eq
i,:. If

every subpopulation strictly prefers their current learner:

Ri(ϑ
eq
ϑ(i)) < Ri(ϑ

eq
j ) , (1)
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for all i and learners j ∝= ϱ(i), then (εeq
,!eq) is an asymptotically stable equilibrium. If there is a subpopulation who

would strictly prefer to switch learners, then (εeq
,!eq) is not stable.

Proof of Theorem 4.6. First note that it must be that every learner is associated to at least one subpopulation. Otherwise, the
total risk would not have a unique minimizer over !.

We start with the first statement, and show that the stated conditions imply that (εeq
,!eq) is isolated local minimum of the

total risk. By Theorem 4.3, this implies asymptotic stability.

We specifically argue the conditions are sufficient for guaranteeing an isolated local minimum with respect to F (ε),
appealing to Lemma B.8. First notice that we have the unique !eq = argmin! R

total(εeq
,!) as required. Suppose by

contradiction that there is some perturbation to ε that causes F (ε) to decrease or remain the same. Equivalently, the
projection of the negative gradient onto the simplex points towards some other vertex, i.e. the component of the gradient in
the direction of learner j is less than or equal to that in the direction of ϱ(i) for some j ∝= ϱ(i). We can write this condition
as

⇀F (ε)

⇀εiϑ(i)
↙

⇀F (ε)

⇀εij
′↖ Ri(ϑ

eq
ϑ(i)) ↙ Ri(ϑ

eq
j )

where we use Lemma B.9. This violates the risk comparison condition (1), and therefore there must be no such perturbation,
and thus εeq is an isolated local minimum.

We turn our attention to the second statement. Theorem 4.3, it is equivalent to argue about minima of the total risk function.
Suppose that for some subpopulation, there is some learner for which Ri(ϑ

eq
ϑ(i)) > Ri(ϑ

eq
j ). Then any small perturbation of

that subpopulations’s allocation towards that learner will decrease the total risk, and thus the point is not a minimum.

In a segmented allocation, each ϑ
eq
j will minimize the average loss over the group of subpopulations assigned to them.

Denote the parameter which minimizes risk of subpopulation i as ↽i := argminω⇒Rd Ri(ϑ). Then each ϑ
eq
j is a convex

combination of ↽i for i in jth partition. Using this perspective, we provide an intuitive necessary (but not sufficient)
condition for a class of symmetric risk functions.

Corollary C.1. Suppose that risk functions satisfy Ri(ϑ) < Ri(ϑ≃) ′↖ ⇔ϑ ↘ ↽i⇔ < ⇔ϑ
≃
↘ ↽i⇔ for ↽i the subpopulation

optimal parameter. Then in an asymptotically stable segmented equilibrium, the convex hulls of the grouped subpopulations
optimal parameters {↽i} are non-intersecting.

Applying this Corollary to the example in Figure 2, we see that a segmented equilibrium with subpopulation 1 and 3
participating in the same learner cannot be stable.

Proof of Corollary C.1. Let ↽1,↽2, · · · ,↽k → Rd be the optimal decisions for the subpopulations allocated to the first
learner and ⇁1,⇁2, · · · ,⇁l → Rd be the optimal decisions for the subpopulations allocated to the second learner. Let ϑ1
and ϑ2 be the decisions of each learner. Assume that the convex hulls of {↽i}

k
i=1 and {⇁}

l
i=1 intersect. By Lemma B.7,

there exists i such that ⇔↽i ↘ ϑ2⇔ ↔ ⇔↽i ↘ ϑ1⇔. By the assumption about the risk runctions, this implies Ri(ϑ2) < Ri(ϑ1).
In other words, there exist a subpopulation that would prefer to switch learners. Thus by Theorem 4.6 these allocation of
subpopulations to learner is not stable and so the convex hulls must not intersect.

Theorem 4.8. Consider dynamics which are risk minimizing in the limit and an ε
eq with any subpopulation i having nonzero

support on set of two or more learners j → J . Assume risks are strongly convex and define !eq = argminRtotal(εeq
,!).

Then (εeq
,!eq) cannot be stable unless it is “balanced” in the sense that learners in J are risk equivalent and optimal for

i, i.e. for all j, j≃ → J ,
Ri(ϑ

eq
j ) = Ri(ϑ

eq
j→ ) and ≃Ri(ϑ

eq
j ) = 0 . (2)

If it is balanced, so are all allocations for subpopulation i with support over J . Finally, all stable equilibria must be either
balanced or segmented.

Proof of Theorem 4.8. Theorem 4.3 shows that an equilibrium cannot be stable if it is not a local minimum of the total risk.
We therefore develop conditions under which an equilibrium point will be a local minimum. By Lemma B.8, it is equivalent
to argue about the local minima of the concave function F (ε) over the simplex product ”n

m. All minima of the total risk
will occur on the boundary of the simplex product, i.e. a face or a vertex. Since F is still concave when restricted to a face
of the simplex, the same argument shows the minima are on the boundary, hence vertices, except for the degenerate case
where F takes a constant value over the face.
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We now characterize this degenerate case. F takes a constant value over the face if and only if 1) the gradient of F is
perpendicular to the face at ε and 2) remains perpendicular along the face. The face is described by a set of indices J ∞ [m].
Mathematically, we write the two conditions as: for all pairs j, j≃ → J , ϖ → [n], and k → [m],

⇀F (ε)

⇀εij
=

⇀F (ε)

⇀εij→
and

⇀

⇀εφk

⎡
⇀F (ε)

⇀εij
↘

⇀F (ε)

⇀εij→

⎤
= 0 (5)

Using Lemma B.8, the first expression simplifies to the risk equivalent condition that Ri(ϑ
eq
j ) = Ri(ϑ

eq
j→ ). Turning to the

second expression in (5), we first use Lemma B.9 to compute

⇀

⇀εφk

⇀F (ε)

⇀εij
=

}︄
0 k ∝= j

↘ωi≃Ri(ϑ
eq
j )⇐

⌊︄)︄
φ→ ωφ→εφ→j≃

2
Rφ→(ϑ

eq
j )

⌋︄
≃Rφ(ϑ

eq
j ) k = j

Thus, the condition trivially holds for k /→ {j, j
≃
}. Otherwise, when ϖ = i, the condition in (5) requires that

≃Ri(ϑ
eq
k )⇐

⎣
{︄

φ→

ωφ→εφ→k≃
2
Rφ→(ϑ

eq
k )

⎦
≃Ri(ϑ

eq
k ) = 0, k → {j, j

≃
}

Due to the strong convexity of the risks, the Hessian matrix is positive definite. Thus it must be that ≃Ri(ϑ
eq
j ) = 0 for

all j → J , i.e. the risk optimal condition. Risk optimality implies that the condition holds also when ϖ ∝= i and thus the
characterization is complete.

C.3 Social Welfare

Proof of Proposition 4.10. Social welfare is non-decreasing (or increasing) if and only if total risk is non-increasing (or
decreasing), as guaranteed by Proposition 4.2. Maxima of the social welfare are equivalent to minima of the total risk and
therefore the connections to stable equilibria follow by Theorem 4.3.

Proof of Proposition 4.12. By construction (ε̃eq
, !̃

eq
) is not segmented, and neither is it a stable balanced equilibrium (by

the non-optimality assumption). Therefore, it is not stable (Theorem 4.8), and thus not a local minimum of the total risk
(Theorem 4.3). A perturbation will thus send the system along a risk-reducing trajectory.

D Detailed Examples

D.1 Risk Reducing and Minimizing Dynamics

Proposition 3.4. A subpopulation i updating their participation with multiplicative weights is risk minimizing in the limit if
ϱ > 0 and ε

0
ij > 0 ⇑j. A learner updating its parameter with gradient descent is risk minimizing in the limit when the risk

functions Ri(ϑ) are L smooth and the step size satisfies ϱt
<

2
L ,

)︄↗
t=0 ϱ

t = ⇓, and
)︄↗

t=1(ϱ
t)2 < ⇓.

Proof. To see that the subpopulation is risk minimizing, first see that

R̄
subpop
i

⌊︄
ε
t+1
i,: ,!

⌋︄
=

m{︄

j=1

ε
t+1
ij Ri(ϑj)

=
m{︄

j=1

ε
t
ij · exp(↘ϱRi(ϑj)))︄m

j=1 ε
t
ij · exp(↘ϱRi(ϑj))

Ri(ϑj)

<

m{︄

j=1

ε
t
ijRi(ϑj) = R̄

subpop
i

⌊︄
ε
t
i,:,!

⌋︄

where the strict inequality holds as long as εt
ij is not on the boundary of the simplex. Second, observe that for a fixed !,

ε
t
ij ⇒ 1 if and only if Ri(ϑj) is minimal over all learners for which ε

0
ij > 0.

To see that the learner is risk minimizing, notice that the gradient update is equivalently

ϑ
t+1
j = ϑ

t
j ↘ ϱt≃ωR̄

learner
j (ε:,j , ϑj) .



Emergent specialization from participation dynamics and multi-learner retraining

Gradient descent on an L-smooth and convex function leads to strictly decreasing objective values when ϑ
t
j is not at a

minimum and the step size satisfies ϱt
<

2
L . It further converges to a minimum in the limit as long as the step size satisfies

the Robbins-Munroe condition (see, e.g. Liu and Yuan (2022); Orabona (2020)).

Example D.1 (Non-continuity of allocation updates). Suppose a population prefers one learner over others, and only shifts
participation away from the preferred learner if there is another with risk smaller by at least R0 > 0. This is risk reducing
but not minimizing in the limit.

Example D.2 (Shifting to lower-risk models). If a subpopulation’s allocation updates always shift allocation from learners
with high subpopulation risk to learners with lower subpopulation risk, then the allocation is risk reducing. It may or may
not be risk minimizing in the limit.

Example D.3 (Allocations determined by gradient descent). Consider an allocation determined by (projected) gradient
descent with respect to a subpopulation’s average risk. This is risk-reducing, and may be risk minimizing in the limit
depending on the step-size.

D.2 Stability

To illustrate the subtleties of determining stability when the total risk function has non-isolated local minima, we consider a
setting with n = m = 2 subpopulations and learners where R1(ϑ) = R2(ϑ) = ϑ

2. Then the total risk function is minimized
for any ε → ”n

m and ! = (0, 0). This continuum of minima can contain equilibria of risk minimizing dynamics, and those
equilibria may be stable, asymptotically stable, or unstable, which we illustrate with the following examples.

Example D.4 (Continuum of stable balanced markets). Suppose that subpopulations update their allocation via any Lipschitz
continuous risk minimizing update rule which is stationary whenever learners are risk equivalent (i.e. Ri(ϑ1) = Ri(ϑ2)).
Suppose that learners update via full risk minimization. Then equilibria will have the form (εeq

, (0, 0)) for any ε
eq

→ ”2
2.

Then starting from any (ε0
,!0) with a ↼ε, ↼ω ball of any equilibrium (εeq

,!eq),

ε
1 = ς(ε0

,!0), !1 = (0, 0)

at which point the system is in a new equilibrium, since any allocation ε is a fixed point when ! = (0, 0) so ε
t = ε

1 and
!t = !1 for all t. We have that ⇔!eq

↘!0⇔ = 0 and

⇔ε
eq
↘ ε

1
⇔ = ⇔ς(εeq

,!eq)↘ ς(ε0
,!0)⇔

By the assumption of Lipschitzness, this distance will scale linearly in ↼ε, ↼ω so the definition of stability is satisfied for ↼
chosen proportionally to φ depending on the Lipschitz constant of ς.

In this example, any perturbation converges to a new fixed point within one time step. The continuity of the update functions
ensures that the new fixed point is within a bounded distance of the original, satisfying the definition of stability. This
example is not asymptotically stable: the allocation does not convergence back to the original point.

Example D.5 (Asymptotically stable segmentation). Consider the subpopulation and learner update rules as in the prior
example, with one amendment. When Ri(ϑ1) = Ri(ϑ2), subpopulation 1 re-allocates half of its mass from learner 2 to
learner 1, and while subpopulation 2 re-allocates half its mass from learner 1 to learner 2. Thus the subpopulation update
can be written as

ε
t+1
1,: =

⟨︄
⎢⟩︄

⎢/︄

ς1(εt
1,:,!

t) R1(ϑ1) ∝= R1(ϑ2)⎥
1 1/2

0 1/2

⎧
ε
t
1,: R1(ϑ1) = R1(ϑ2)

, ε
t+1
2,: =

⟨︄
⎢⟩︄

⎢/︄

ς2(εt
2,:,!

t) R2(ϑ1) ∝= R2(ϑ2)⎥
0 1/2

1 1/2

⎧
ε
t+1
2,: R2(ϑ1) = R2(ϑ2)

The only equilibrium has εeq segmented with subpopulation i associated to learner i for i = 1, 2 and !eq = (0, 0). It is
straightforward to see that this is an asymptotically stable equilibrium, since for any a → ”2,

lim
t↔↗

⌈︄
1 1/2
0 1/2

⌉︄t
a =

⌈︄
1 1
0 0

⌉︄
a =

⌈︄
1
0

⌉︄
and lim

t↔↗

⌈︄
0 1/2
1 1/2

⌉︄t
a =

⌈︄
0 0
1 1

⌉︄
a =

⌈︄
0
1

⌉︄
.

Example D.6 (Asymptotically stable balanced market). Consider a setting similar to the previous example except that when
Ri(ϑ1) = Ri(ϑ2), subpopulation i moves half the mass from group 1 to group 2 and half the mass from group 2 to group 1
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for all i. Then the subpopulation update can be written as

ε
t+1
1,: =

⟨︄
⎢⟩︄

⎢/︄

ς1(εt
1,:,!

t) R1(ϑ1) ∝= R1(ϑ2)⎥
1/2 1/2

1/2 1/2

⎧
ε
t
1,: R1(ϑ1) = R1(ϑ2)

, ε
t+1
2,: =

⟨︄
⎢⟩︄

⎢/︄

ς2(εt
2,:,!

t) R2(ϑ1) ∝= R2(ϑ2)⎥
1/2 1/2

1/2 1/2

⎧
ε
t+1
2,: R2(ϑ1) = R2(ϑ2)

The only equilibrium has ε
eq
i,: = [1/2, 1/2] for i = 1, 2 and !eq = (0, 0). It is straightforward to see that this is an

asymptotically stable equilibrium, since for any a → ”2,

lim
t↔↗

⌈︄
1/2 1/2
1/2 1/2

⌉︄t
a =

⌈︄
1/2 1/2
1/2 1/2

⌉︄
a =

⌈︄
1/2
1/2

⌉︄
.

Example D.7 (Unstable balanced market). Suppose that subpopulation allocations follow a projected gradient descent
update for all i:

ε
t+1
i1 = Proj[0,1]

⌊︄
ε
t
i1 ↘ ϱ(Ri(ϑ1)↘Ri(ϑ2))

⌋︄

and εi2 = 1↘ εi1. Further suppose learners update with gradient descent:

ϑ
t+1
j = ϑ

t
j ↘

1

2
∀
t
≃R̄

learner
j (εt

:,j , ϑ
t
j) =

⎫
t

t+ 1
ϑ
t
j

Both rules are risk minimizing in the limit (note that ϑtj =
1⇑
t
ϑ
0
j ) and have a continuum of equilibria at any ε

eq
→ ”n

m and
!eq = (0, 0). However, we show that the equilibria are not stable. Consider the initial condition (εeq

, (↼ω, 0)). We have that

ε
t+1
i1 = Proj[0,1]

⎣
ε
0
i1 ↘ ϱ↼

2
ω

t{︄

k=1

1

k

⎦
⇒ 0 as t ⇒ ⇓.

No matter how small the perturbation ↼ω is, the summation increases with t and participation will converge all weight to
learner 2. A similar argument shows that perturbations exist that will send all participation to learner 1.

In this example, the learners update slowly. Despite eventual convergence to the minimizing parameter, the accumulating
error causes the participation allocation to shift completely to the unperturbed learner, precluding stability.

D.3 Social Welfare

We begin with a somewhat generic example with m = 2 and n = 3 that illustrates the difference between stable equilibria
and social welfare optima.

Example D.8 (Stability vs. optimality). Consider three subpopulations i → {1, 2, 3} with risks ⇔ϑ ↘ ↽i⇔
2
2, sizes ωi, and two

learners j → {1, 2}. Suppose that the ε
eq is such that the subpopulations are partitioned into {1} and {2, 3}. Then we have

that
ϑ
eq
1 = ↽1, ϑ

eq
2 =

ω2

ω2 + ω3
↽2 +

ω3

ω2 + ω3
↽3

By Theorem 4.6, this is stable if and only if

⇔↽2 ↘ ↽3⇔2 ↔ (ω2 + ω3)min

⎩
⇔↽2 ↘ ↽1⇔2

ω3
,
⇔↽3 ↘ ↽1⇔2

ω2

⎭
.

However, it is only social optimal if and only if ↽2 and ↽3 are relatively close to each other than to ↽1, i.e.

⇔↽2 ↘ ↽3⇔2 ↔ min {⇔↽2 ↘ ↽1⇔2, ⇔↽3 ↘ ↽1⇔2} .

The set of subpopulation optima {↽1,↽2,↽3} satisfying the optimality condition are a subset of those satisfying the stability
condition. As the difference between ω2 and ω3 becomes more extreme, the number of settings satisfying the stability but
not optimality condition increases.

We use this generic example to illustrate a scenario in which the total risk can be arbitrarily high at a stable equilibria.
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Example D.9. Suppose there are two learners and three subpopulations with sizes ω1 = ω2 = ω and ω3 = 1 ↘ 2ω for
some 0 < ω < 1/2. Consider the following: R1(ϑ) = ϑ

2, R2(ϑ) = (ϑ ↘ 1)2, R2(ϑ) = (ϑ ↘
1↑ϱ
1↑2ϱ + φ)2. The social

welfare optimizing decision !ϖ = (1/2, 1↑ϱ
1↑2ϱ ↘ φ) corresponds to total risk ω/2. However, there is a stable equilibrium at

!eq = (0, 1 + φ) with total risk ω + (ϱ↑ς)2

1↑2ϱ . For ω ⇒ 1/2, the gap becomes arbitrarily large.

Finally, we present an example which illustrates that even in the single learner setting, the risk of a subpopulation can be
arbitrarily worse than the total risk.

Example D.10 (Arbitrarily high risk for minority subpopulation). Consider two subpopulations with R1(ϑ) = ϑ
2 and

R2(ϑ) = (ϑ ↘ ↽)2 with ω1 = ω and ω2 = 1↘ ω and a single learner. The single equilibrium and total risk minimizer is
ϑ1 = (1↘ ω)↽ with total risk ω(1↘ ω)↽2 and R2(ϑϖ) = ω

2
↽
2. The difference between the two quantities can be arbitrarily

high as ω gets close to 1.

E Additional Experiments with Noisy Dynamics

Figure 8a replicates Fig. 4a from the main text. The magenta-highlighted trajectory starts precisely at the unstable
equilibrium, while the other three, initiated near this point, converge to the three possible split market equilibria, ordered
by hue intensity: {(1,2), (3)}, {(2,3), (1)}, and {(1,3), (2)}. In Figure 8b, while sub-population dynamics remain as in (a),
learner updates experience uncorrelated external perturbations, causing trajectories to be different from (a). Nevertheless,
the long term dynamics gravitate near stable split equilibria. Figure 8c depicts learners updating decisions based on sampled
empirical losses, with sub-populations adjusting participation based on aggregate empirical performance. The fact that each
learner uses different samples from each sub-population adds sufficient un-correlated noise to create trajectories similar to
when exogenous noise is added.

F Experimental Details

Full experimental details along with instructions for reproducing them can be found at https://github.com/mcurmei627/
MultiLearnerRiskReduction. The experiments used Python 3.10 on a MacBook Pro 2019.

https://github.com/mcurmei627/MultiLearnerRiskReduction
https://github.com/mcurmei627/MultiLearnerRiskReduction
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(a) Learner updates: noiseless one-step minimization of population loss. Sub-population updates: MWU w.r.t population loss

(b) Learner updates: noisy one-step minimization of population loss. Sub-population updates: MWU w.r.t population loss

(c) Learner updates: noiseless one-step minimization of empirical loss. Sub-population updates: MWU w.r.t empirical loss

Figure 8: Noisy dynamics
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