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Figure 1: LEAP performs 3D modeling from sparse views without camera pose information. We show the
capability of LEAP on real-world cases with three unposed image inputs. We show one of the inputs.

ABSTRACT

Are camera poses necessary for multi-view 3D modeling? Existing approaches
predominantly assume access to accurate camera poses. While this assumption
might hold for dense views, accurately estimating camera poses for sparse views
is often elusive. Our analysis reveals that noisy estimated poses lead to degraded
performance for existing sparse-view 3D modeling methods. To address this issue,
we present LEAP, a novel pose-free approach, therefore challenging the prevailing
notion that camera poses are indispensable. LEAP discards pose-based operations
and learns geometric knowledge from data. LEAP is equipped with a neural
volume, which is shared across scenes and is parameterized to encode geometry
and texture priors. For each incoming scene, we update the neural volume by
aggregating 2D image features in a feature-similarity-driven manner. The updated
neural volume is decoded into the radiance field, enabling novel view synthesis
from any viewpoint. On both object-centric and bounded scene-level datasets,
we show that LEAP significantly outperforms prior methods when they employ
predicted poses from state-of-the-art pose estimators. Notably, LEAP performs on
par with prior approaches that use ground-truth poses while running 400× faster
than PixelNeRF. We show LEAP generalizes to novel object categories and scenes,
and learns knowledge closely resembles epipolar geometry.

1 INTRODUCTION

In 3D vision, camera poses offer powerful explicit geometric priors to connect 3D points and
2D pixels (Zisserman, 2001). Its effectiveness has been verified across a spectrum of 3D vision
tasks (Goesele et al., 2006; Geiger et al., 2011), enabling high-quality 3D modeling (Mildenhall et al.,
2020; Wang et al., 2021a). However, accurate camera poses are not always available in the real world,
and inaccurate poses lead to degraded performance (Lin et al., 2021). To obtain accurate camera poses,
one solution is capturing dense views and applying structure-from-motion techniques (Schönberger
& Frahm, 2016). Nevertheless, in real-world scenarios, like product images in online stores, we
usually observe sparse images captured by wide-baseline cameras. For sparse views, estimating
accurate camera poses is still challenging (Zhang et al., 2022a). Then a question arises: is using noisy
estimated camera poses still the best choice for 3D modeling from sparse and unposed views?

In this paper, we present LEAP, which champions a pose-free paradigm. Instead of pursuing a
more accurate camera pose estimator, LEAP challenges the prevailing notion that camera poses are
indispensable for 3D modeling. LEAP abandons any operations that explicitly use camera poses, e.g.
projection, and learns the pose-related geometric knowledge/representations from data. Thus, LEAP
is entirely liberated from camera pose errors during inference, leading to better performance.
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LEAP specifically represents each scene as a neural radiance field, which is predicted in a single
feed-forward step. To initialize the radiance field, we introduce a neural volume, which is shared
across all scenes. Each voxel grid of the volume is parameterized to learn the geometry and texture
priors from data. For any incoming scene, the neural volume queries input 2D image features and gets
updated through aggregation. Instead of using camera poses to identify source 2D pixels to aggregate
(Yu et al., 2021), LEAP leverages attention to aggregate all 2D image features with adaptive weights.
Subsequently, LEAP performs spatial-aware attention on the updated neural volume to capture
long-range geometry dependency. We iterate the process of aggregating and 3D reasoning, resulting
in a refined neural volume. The refined neural volume is then decoded into the radiance field.

An important issue is which reference 3D coordinate frame we should use to define the neural volume.
A good choice of this 3D coordinate frame can significantly stabilize and enhance learning (Qi
et al., 2017; Deng et al., 2021). As the world coordinate frame for an unposed image set is not
well-defined, we instead use a local coordinate frame. Specifically, we choose an arbitrary input
image as the canonical view, and the neural volume is defined in its corresponding local camera
coordinate. The camera pose of the canonical view is fixed, e.g. as an identity pose, in the local
camera coordinate frame. To enable the model aware of the choice of canonical view, we find the key
is making 2D image features of non-canonical views consistent with the canonical view. Thus, we
design a multi-view encoder to improve the consistency by capturing cross-view 2D correlations.

During training, the canonical view is randomized among all input views. We train LEAP with 2D
rendering loss of the input views, using ground-truth camera poses to render them. Note that these
ground-truth camera poses are only used during training to learn the mapping from input images to
the neural volume. During inference, LEAP predicts the radiance field without reliance on any poses.

We perform a thorough evaluation of LEAP on a diverse array of object-centric (Wu et al., 2023; Jiang
et al., 2022; Deitke et al., 2022) and scene-level (Jensen et al., 2014) datasets. This assessment spans
multiple data scales and incorporates both synthetic and real images. Experimental results highlight
LEAP’s four interesting properties: i) Superior performance. LEAP consistently synthesizes novel
views from 2 ∼ 5 unposed images. It surpasses prior generalizable NeRFs when they use camera
poses predicted by SOTA pose estimators. It performs on par with methods using ground-truth
camera poses. ii) Fast inference speed. LEAP constructs the radiance field in a feed-forward manner
without optimization, running within one second on a single consumer-grade GPU. iii) Strong
generalization capability. LEAP models novel-category objects accurately. The model learned on
large object-centric datasets transfer well to the scene-level DTU dataset. iv) Interpretable learned
priors. While LEAP does not explicitly use camera poses by design, it acquires priors consistent
with epipolar geometry. We are committed to releasing code for reproducibility and future research.

2 RELATED WORK

NeRF from sparse views with ground-truth camera poses. NeRF variants that work on sparse
view inputs can be categorized into two genres. The first is scene-specific NeRFs. Following the
original NeRF setting, these methods optimize the radiance field for each scene from scratch. They
use additional information to regularize NeRF optimization, e.g., normalization flow (Niemeyer
et al., 2022) and frequency regularization (Yang et al., 2023). The second is generalizable NeRF
variants (Yu et al., 2021; Wang et al., 2021b; Chen et al., 2021a), which predict the radiance field
in a feed-forward manner. The key is making the radiance fields conditioned on the 2D image
features. Typically, these approaches project the 3D points on the input images using camera poses,
and information is aggregated from the image features at projected 2D locations. Thus, they are
generalizable and transferable to novel scenes by training on curated datasets. However, these
methods lack reasoning of correlations between 3D points and assume the access of ground-truth
camera poses. In contrast, LEAP has 3D reasoning ability, which works on images without poses.

Sparse-view camera pose estimation. Estimating the camera poses from sparse views presents
a significantly greater challenge than from dense views. The complexity arises from the minimal
or absent overlap between images, which hampers the formation of cross-view correspondence
cues, vital for accurate camera pose estimation (Zisserman, 2001). RelPose (Zhang et al., 2022a)
highlights the limitations of conventional dense-based camera pose estimation techniques, e.g.,
COLMAP (Schönberger & Frahm, 2016), in sparse view contexts. In response, it introduces an energy-
based model to handle multi-modal solutions indicative of potential camera poses. A subsequent
method (Lin et al., 2023) further develops this approach by harnessing multi-view information to
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Figure 2: Comparing LEAP with pose-based generalizable NeRFs (Yu et al., 2021). (a) For any 3D
point along the casting ray from a target view, pose-based methods project these 3D points onto input source
views and aggregate 2D image features at these projected locations. These methods are sensitive to slight pose
inaccuracies, as the errors cause misaligned 3D points and 2D pixels. (b) In contrast, LEAP offers a pose-free
method. It defines a parametrized 3D neural volume to encapsulate geometry and texture priors. For any scene,
each voxel grid aggregates information from all 2D image pixel, and their feature similarity determines the
fusion weight. Features for an inquired 3D point are interpolated from the neighboring voxel grids. This sidestep
of pose-dependent operations allows for direct inference on unposed images.

enhance pose estimation accuracy. Concurrently, SparsePose employs a pre-trained foundational
model, namely DINO (Caron et al., 2021), to iteratively refine the predictions of noisy camera poses.
Besides, researchers also have explored directional representation (Chen et al., 2021b), stronger image
matching techniques (Sun et al., 2021) or using image matching priors (Rockwell et al., 2022), and
co-visibility (Hutchcroft et al., 2022) to improve the performance. In contrast, our LEAP operates
without dedicated camera pose estimation modules.
NeRF with imperfect or no camera poses. Building NeRF from images without precise camera
poses is challenging, given that many NeRF variants rely on pose-based geometric operations.
To tackle this problem, scene-specific NeRFs (Lin et al., 2021; Wang et al., 2021c; Xia et al.,
2022; Bian et al., 2022; Zhang et al., 2022b; Meng et al., 2021) treat camera poses as modifiable
parameters, jointly optimizing them alongside the radiance field. Yet, these methods require dense
views, and they either require reasonably accurate initial poses or assume small-baseline cameras
to work. SPARF (Truong et al., 2022) leverages dense 2D image correspondences derived from
existing models to augment radiance field optimization. Nevertheless, its efficacy heavily hinges
on the precision of both dense correspondences and initial poses. For generalizable NeRF variants,
SRT (Sajjadi et al., 2022b) proposes a pose-free paradigm building a 2D latent scene representation,
but SRT is not 3D-aware, and its novel view synthesis quality is limited. RUST further deals with the
necessity of target camera pose by prompting the model with a partial target image (Sajjadi et al.,
2022a). FORGE (Jiang et al., 2022) jointly estimates camera poses and predicts the radiance field,
leveraging their synergy to improve the performance of both. However, the performance is sensitive
to pose estimation precision and training FORGE in multi-stages is non-trivial. In contrast, our
proposed LEAP benefits from the 3D-aware designs and leans into a feature-similarity-driven 2D-3D
information mapping. This approach eliminates reliance on camera poses during inference, yielding
results more closely aligned with using ground-truth poses.

3 OVERVIEW

We focus on novel view synthesis from sparse views of a scene without camera poses. Prior
approaches have adjusted NeRF for sparse views under the assumption of accurate camera poses (Yu
et al., 2021; Chen et al., 2021a; Niemeyer et al., 2022; Yang et al., 2023). Concurrently, enhanced
camera pose estimation methods for these sparse images have emerged (Zhang et al., 2022a). How-
ever, preliminary results for combining the efforts indicate a potential incompatibility; minor pose
estimation inaccuracies can significantly degrade the quality of synthesized views in NeRF (Truong
et al., 2022; Jiang et al., 2022; Sinha et al., 2022).

We first diagnose the limitations of existing approaches. As illustrated in Fig. 2, the existing
generalizable NeRF approaches (Yu et al., 2021; Wang et al., 2021b) rely on camera poses for
performing 2D-3D information mapping. Specifically, these methods project a 3D point to its single
corresponding 2D locations in each of the input images based on camera poses, and aggregate features
at these projected locations. Consequently, any pose inaccuracies distort this 3D-2D association,
leading to compromised 3D point features, which are used to predict the radiance.
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Figure 3: LEAP overview. LEAP extracts image features of all inputs using a ViT backbone. The first image
in the image set is selected as the canonical view. The neural volume is defined in the local camera coordinate
of the canonical view, which has learnable parameters to encode geometry and texture priors. To make LEAP
aware of the choice of canonical view, we use a Multi-View Encoder to propagate information from the canonical
view to the non-canonical views, making the 2D representations more coherent across views. Then the neural
volume is updated by querying the 2D image features of all images using a 2D-3D Information Mapping module.
We decode the neural volume into the radiance field and render novel views at inference time.

In contrast, LEAP proposes a novel pose-free paradigm, eliminating the influence of any pose
inaccuracies. At its core, LEAP establishes the 3D-2D association based on feature similarities,
enabling a 3D point to aggregate information from all pixels, rather than its 2D projection only. For
each 3D voxel grid, the pose-free aggregation will learn to adaptively assign larger weights to its
corresponding 2D pixels. We introduce the details of LEAP architecture in the following section.

4 METHOD

We present the task formulation and the overview of LEAP. Given a set of k 2D image observations
of a scene, represented as {Ii|i = 1, ..., k}, LEAP predicts a neural radiance field (Mildenhall et al.,
2020), which enables synthesizing a 2D image from an arbitrary target viewpoint. Note that in our
setup of sparse source views captured by wide-baseline cameras, the number k is typically less than
5. Moreover, these views are presented without any associated camera pose information at inference.

4.1 MODEL ARCHITECTURE

As illustrated in Fig. 3, LEAP initiates by extracting 2D image features from all views. We use
a DINOv2-initialized ViT (Oquab et al., 2023; Dosovitskiy et al., 2020) as the feature extractor
since it demonstrates strong capability in modeling cross-view correlations (Zhang et al., 2023). We
denote the image features of Ii as fi ∈ Rh×w×c, and the resulting features set for all input views
as {fi|i = 1, ..., k}. Due to the unawareness of the world coordinate frame on unposed images, we
perform 3D modeling in a local camera coordinate frame. Specifically, we designate one image as
the canonical view, where the neural volume and radiance field are defined in its local coordinate
frame. During training, we randomly select a canonical view and denote it as I1 for notation clarity.

To make LEAP aware of the choice of the canonical view, we find the key is to make the features of
the non-canonical views consistent with the canonical view. We propose a multi-view image encoder
to improve the feature consistency. Then, LEAP introduces a learnable neural volume, which is
shared across scenes, to encode the geometric and textural prior. The neural volume serves as the
initial 3D representation for all scenes. For each incoming scene, by querying the multi-view features,
LEAP maps the 2D information to the 3D domain, represented by an updated neural volume. Finally,
LEAP predicts the radiance field from the updated neural volume. We describe each step as follows.

Multi-view Image Encoder makes LEAP aware of the choice of the canonical view, by performing
multi-view information reasoning. It takes in image features of all views and refines them by capturing
cross-view correlations. It consists of ne blocks, and each block has two layers: a Non-canonical
View Update (NVU) layer and a Global Consensus Reasoning (GCR) layer. The NVU layer updates
each of the non-canonical view features by aggregating the canonical view features. It is denoted as
f̄j = NVU(fj , f1), where j ̸= 1 and f̄ denotes the updated features. The GCR layer performs joint
reasoning on all views for a global consensus, which leverages the correlation between all views.

We implemented the two layers with Transformer layers (Vaswani et al., 2017). Specifically, the
NVU layer is modeled as a Transformer layer with cross-attention, where the non-canonical view
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features are queries, and the canonical view features are keys/values. It is formulated as[
f̄2, ..., f̄k

]
= FFN(CrossAttention([f2, ..., fk] , f1)), (1)

where FFN is a feed-forward network, and [·] denotes the concatenating operation over tokenized
image features. For clarity,

[
f̄2, ..., f̄k

]
is in R(k−1)hw×c and f1 is flattened into Rhw×c.

Similarly, the GCR layer is instantiated by a Transformer layer with self-attention, where the query,
key, and value are the 2D image features of all views. It is formulated as[

f̃1, ..., f̃k

]
= FFN(SelfAttention(

[
f1, f̄2, ..., f̄k

]
)). (2)

Specifically,
[
f̃1, ..., f̃k

]
is in Rkhw×c. For simplicity, we denote the final output

[
f̃1, ..., f̃k

]
as F.

2D-3D Information Mapping. LEAP introduces a 3D latent neural volume V ∈ RH×W×D×c to
encode the geometry and texture priors, where H , W , D are the spatial resolution of the volume. It
is defined in the local camera coordinate of the canonical view. The neural volume is shared across
different scenes and gets updated by mapping the 2D image information to the 3D domain.

To perform the 2D-3D information mapping, we use nm Transformer Decoder blocks (Vaswani
et al., 2017), each of which consists of a cross-attention layer and a self-attention layer. In the cross-
attention layer, we use the 3D latent volume V as the query and use F as the key/value. The updated
3D neural volume V̄ is defined as V̄ = FFN(CrossAttention(V,F)). Intuitively, for each 3D point
belonging to the neural volume, we compute its feature similarity with all 2D image features and use
the similarity to get the weighted average of 2D image features. Subsequently, the self-attention layer
performs refinement on the 3D volume features, capturing long-range geometry correlation. With
multiple 2D-3D information lifting blocks, LEAP learns to update the latent volume with a fixed
resolution in a coarse-to-fine manner. We denote the updated neural volume as Ṽ ∈ RH×W×D×c.

Neural Rendering. With the updated neural volume Ṽ, LEAP predicts a volume-based neural
radiance field (Yu et al., 2022; Jiang et al., 2022). The radiance field is denoted as R := (Rσ,Rf ),
where Rσ and Rf are the density and features of the radiance field. Rσ ∈ RH′×W ′×D′

and
Rf ∈ RH′×W ′×D′×C , where H ′, W ′, and D′ are spatial resolutions. Both Rσ and Rf are predicted
from Ṽ using 3D convolution layers. We read out the rendered image Î and object mask σ̂ using
volumetric rendering techniques (Mildenhall et al., 2020). In detail, we first render a feature map and
predict the rendered image using 2D convolutions. Formally, (Î , σ̂) = Π(R,Φ), where Π denotes
the volumetric rendering process, and Φ is the target camera pose.

4.2 TRAINING AND INFERENCE OF LEAP
Training. LEAP is trained with the photo-metric loss between the rendering results and the inputs
without any 3D supervision. We first define the loss LI applied on the RGB images, where LI =

ΣiLmse(Îi, Ii) + ΣiλpLp(Îi, Ii). The Lmse is the MSE loss, Ii and Îi are the original and rendered
input images, λp is a hyper-parameter used for balancing losses, and Lp is the perceptual loss (Johnson
et al., 2016). We then define the loss LM applied on the density masks, as LM = ΣiLmse(σ̂i, σi),
where σ̂i and σi are original and rendered density masks. The final loss is defined as L = LI+λmLM ,
where λm is the weight balancing hyperparameter. We only use LI if the masks are not available.
We use ground-truth camera poses of training scenes to render the predicted inputs.

Inference and Evaluation. During inference, LEAP predicts the radiance field without reliance on
any poses. To evaluate the novel view synthesis quality, we use the testing camera poses to render the
radiance field under specific viewpoints. We use the relative pose system for novel view synthesis.

5 EXPERIMENT

We introduce our evaluation results on diverse and large-scale datasets, including both object-centric
and scene-level datasets, for comparison with prior arts.

Implementation Details. We consider the number of views to be k = 5, with image resolution 224.
We set λp = 0.1 and λm = 5.0. We set the peak learning rate as 2e− 5 (for the backbone) and 2e− 4
(for other components) with a warmup for 500 iterations using AdamW optimizer (Loshchilov &
Hutter, 2017). We train the model for 150k iterations and use a linear learning rate scheduler, where
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Figure 4: Visualization of LEAP results on the object-centric Omniobject3D dataset. For each instance, we
include one out of five (denoted as “1/5“) input views and two novel views. See more results in the supplementary.

the batch size is 32. LEAP has ne = 2 multi-view encoder blocks and nm = 4 2D-3D mapping
blocks. The resolution of the 3D neural volume and the volume-based radiance fields are 163 and
643, respectively. We sample 64 points on each ray for rendering.

Datasets. We train LEAP on each of the following datasets and test its capability to model the 3D
object/scenes on each dataset that has different properties. We note that these datasets are captured by
wide-baseline cameras, with randomly sampled or fixed camera poses that are far from each other.

• OmniObject3D (Wu et al., 2023) contains daily objects from 217 categories. We use a subset
with 4800 instances for training and 498 instances for testing. OmniObject3D contains objects with
complicated and realistic textures.

• Kubric-ShapeNet (Jiang et al., 2022) is a synthetic dataset generated using Kubric (Greff et al.,
2022). Its training set has 1000 instances for each of 13 ShapeNet (Chang et al., 2015) categories,
resulting in 13000 training samples. Its test set is composed of two parts: i) 1300 object instances
from training categories; ii) 1000 object instances from 10 novel object categories. The two subsets
are used to test the reconstruction quality and generalization ability of models. This dataset contains
objects with complicated geometry but simple textures.

• Objaverse (Deitke et al., 2022) is one of the largest object-centric datasets. We use a subset of
200k and 2k instances for training and testing, used to validate LEAP on large-scale data.

• DTU dataset (Jensen et al., 2014) is a real scene-level dataset. DTU is on a small scale,
containing only 88 scenes for training, which tests the ability of LEAP to fit small-scale data.

Metrics. Following previous works, we use standard novel view synthesis metrics, including PSNR
(in dB), SSIM (Wang et al., 2004) and LPIPS (Zhang et al., 2018).

Baselines. We compare LEAP with the following baselines. We note that we train each baseline
model (except zero123) on each of the datasets using the same setting with LEAP for fair comparisons.
We use official or officially verified implementations of all baselines.

• PixelNeRF (Yu et al., 2021) is a generalizable NeRF variant, using camera poses to correlate
3D points and 2D pixels. We experiment with both ground-truth poses and predicted poses (with
ground-truth translations) from a state-of-the-art pose estimator RelPose (Zhang et al., 2022a).

• FORGE (Jiang et al., 2022) is a generalizable NeRF variant with test-time optimization, which
jointly predicts camera poses and the neural radiance field, and leverages their synergy to improve
the performance of both. We experiment with FORGE using ground-truth and its predicted poses.

• SPARF (Truong et al., 2022) is a scene-specific NeRF variant that jointly optimizes the camera
poses and the radiance field. It requires reasonable pose initialization and is dependent on dense
visual correspondences predicted from off-the-shelf methods.

• SRT (Sajjadi et al., 2022b) uses only 2D representation to perform novel view synthesis. It is
trained and tested on unposed image sets.

• Zero123 (Liu et al., 2023) is a novel view synthesis method using diffusion models. We note
that Zero123 takes a single image as input, which is different from LEAP and other baselines. We
test Zero123 to compare LEAP with large-scale 2D models.

5.1 COMPARISONS WITH STATE-OF-THE-ART

Object-centric Results. The results are shown in Table 1. On all four test sets, LEAP outperforms
all prior pose-free works and pose-based works (with estimated poses). The results demonstrate
the success of LEAP for modeling objects with different geometry and texture properties. In detail,
LEAP improves over the next-best baseline (FORGE) by about 3 dB PSNR and 50% LPIPS relatively
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Input (1/5) PixelNeRF FORGE SRT Zero123 Ours GT FORGE Ours

Figure 5: Comparison with prior arts. The performance of PixelNeRF degenerates dramatically with the state-
of-the-art pose estimator. FORGE benefits from its joint optimization of shape and pose, but the high-frequency
details are lost. SRT can only recover noisy results. Zero123 can synthesize high-quality images, while the
content is not consistent with the inputs. In contrast, LEAP reliably recovers the details and the novel views
match the ground-truth target view well. We also include zoom-in results on the right for a clearer comparison.

Table 1: Evaluation on four object-centric test sets. We include the inference time of each method. ✗ means
the method is pose-free. For experiments without using perfect poses, We highlight the best and second-best
results. For experiments with perfect poses, we also highlight the best GT pose result if it is better than ours.

Omniobject3D Kubric-ShapeNet-seen Kubric-ShapeNet-novel Objaverse
217 Ctg. / 498 Inst. 13 Ctg. / 1300 Inst. 10 Ctg. / 1000 Inst. Open-vocab. Ctg.

Model Pose Inf. Time PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PixelNeRF GT 2 min 26.97 0.888 0.123 29.25 0.893 0.127 29.37 0.906 0.122 26.21 0.871 0.133
Pred. 2 min 18.87 0.810 0.199 21.36 0.836 0.188 21.22 0.851 0.174 20.97 0.819 0.191

FORGE GT 0.05 sec 28.93 0.913 0.087 31.32 0.938 0.053 31.17 0.946 0.058 27.76 0.896 0.100
Pred. 15 min 26.56 0.889 0.108 26.61 0.896 0.106 25.57 0.898 0.107 23.67 0.856 0.226

SRT ✗ 0.4 sec 20.22 0.786 0.303 22.62 0.802 0.267 22.46 0.793 0.284 20.41 0.798 0.312
Zero123 ✗ 27 sec 16.77 0.812 0.147 14.42 0.803 0.174 15.51 0.837 0.152 19.59 0.862 0.110
LEAP ✗ 0.3 sec 29.10 0.919 0.057 29.86 0.929 0.067 28.22 0.924 0.070 26.77 0.887 0.103

on all datasets. Furthermore, without the need for any test-time refinement, the running speed of
LEAP is significantly faster than FORGE (0.3-second v.s. 15 min). Besides, LEAP demonstrates
strong generalization capability, as the model trained on the Kubric ShapeNet dataset of only 13
categories is able to work on novel ShapeNet categories with nearly no gap.

Interestingly, when compared with prior pose-based methods using ground-truth poses, LEAP
exhibits a comparable or even better performance. This result verifies our proposition that camera
poses may not be necessary for 3D modeling, at least in the sparse-view setting. We present a
visualization of our results in Fig. 4 and the comparison with prior works in Fig. 5.

Scene-level Results. The results are shown in Table 2. Since the DTU dataset is too small to
train a usable pose estimator, we follow SPARF to use different levels of noisy poses. Our method
outperforms PixelNeRF with noisy poses and achieves comparable results with SPARF. We note that
SPARF is a scene-specific NeRF variant that takes much longer time to optimize the radiance field
and requires additional inputs, i.e., accurate dense visual correspondences between input views. We
include a qualitative comparison in Fig. 6.

Besides, we also observe that a compelling phenomenon - a LEAP model pre-trained on the large-
scale object-centric datasets largely improves its performance on the scene-level evaluation. The
reason is that as a pose-free method with our geometric inductive bias, LEAP requires learning the
knowledge on larger data compared with pose-based works. Training from scratch on the small-scale
DTU dataset, which only contains 88 scenes for training, leads to unsatisfying performance. On
the other hand, the effectiveness of the pre-training demonstrates the capability of LEAP to learn
general-purpose 3D knowledge, which is generalizable and can be transferred to novel domains.

5.2 ABLATION STUDY AND INSIGHTS

We present an ablation study on each block of LEAP to study their impacts.
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Input (1/5)
Perfect Pose

PixelNeRF SPARF
Noisy Pose 𝜎＝0.15

PixelNeRF SPARF
Noisy Pose 𝜎＝0.05

PixelNeRF SPARF
No Pose

LEAP (ours) GT Target

Figure 6: Comparison with prior arts on DTU dataset. PixelNeRF collapses under noisy poses. SPARF
recovers high-frequency details well, but it degenerates when the correspondences are not accurate and demon-
strates strong artifacts (shown in red boxes). LEAP reliably recovers the geometry well but lacks texture details.
The result implies that LEAP, as a pose-free method, requires larger training datasets.

Table 2: Evaluation on the DTU dataset. LEAP performs on par with SPARF which requires slow per-scene
optimization and additional dense image correspondence inputs. Numbers with ∗ are after SPARF optimization.

Method Generalizable Image-only Pose Noise Rot Err. Trans Err. PSNR↑ SSIM↑ LPIPS↓ Inference Time

PixelNeRF ✓ ✓
GT – – 19.60 0.720 0.295

2 minσ=0.05 5.03 0.17 14.42 0.486 0.463
σ=0.15 14.31 0.42 10.78 0.432 0.538

SPARF ✗ ✗
GT – – 19.79 0.749 0.275

1 dayσ=0.05 1.31* 0.04* 18.57 0.682 0.336
σ=0.15 1.93* 0.06* 18.03 0.668 0.361

LEAP
✓ ✓ – – – 15.37 0.535 0.478

LEAP-pretrain 18.07 0.671 0.371
0.3 sec

Coordinate Frame. We study the importance of the local camera coordinate frame by using the
world coordinate frame instead. We use the category-level coordinate as the world coordinate, where
objects have aligned rotation and are zero-centered. As shown in Table 3 (a), the model demonstrates
better performance on the seen object categories (with 31.23 v.s. 29.10 PSNR) but generalizes worse
on novel categories. We conjecture the reason is that the aligned rotation/translation world coordinate
frame makes it easier to perform 2D-3D information mapping for training categories. However, it
also limits the performance of novel categories, as their category-level coordinate frames are not
learned by LEAP. This result matches our intuition of using the local camera coordinate frame to
define the neural volume, which enables LEAP to generalize to any objects/scenes.

Multi-view Encoder. We explore the impact of using the multi-view encoder to make LEAP aware
of the choice of the canonical view. We test the following alternatives: i) LEAP without the multi-
view encoder; ii) LEAP that only has the global consensus reasoning (GCR) layers; iii) LEAP that
only has the non-canonical view update (NVU) layers. As shown in Table 3 (b)-(d), without the
multi-view encoder, we observe a significant performance drop. The reason is that the inconsistent
features across views hamper the 2D-3D information mapping. Similarly, only with the GCR layers,
LEAP struggles to determine which view is the canonical view. When only using the NVU layers, it
achieves a slightly worse performance than the full model. The experiments show the effectiveness
of using the multi-view encoder to make the model aware of the choice of canonical view.

The 2D-3D Information Mapping Layer. As shown in Table 3 (e), using two mapping layers (the
default has four layers) slightly degenerates the performance, which shows its efficacy.

Interpreting LEAP. We perform visualization to understand what knowledge LEAP learns to
handle the absence of camera poses. As shown in Fig. 7, LEAP adaptively assigns weights to
reasonable 2D regions to perform 2D-2D reasoning and 2D-3D information mapping. The neural
volume is updated in a coarse-to-fine manner during the process. Moreover, we test how the learned
knowledge is related to explicit pose-based operations. As shown in Fig. 8, we input images of
a small dot. We find that LEAP lifts the 2D pixel of the dot into the 3D space as a line segment.
The location of the line segment projected in another view corresponds to its epipolar line. The
phenomenon reveals that LEAP lifts a 2D point as its reprojection ray, and it leverages multiview
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Canonical View Non-canonical Views
2D-2D Attention Weights Sliced Neural Volume (X/Y/Z-axis)

Initialization (Learned Embeddings)

After #1 Mapping Block 

After #3 Mapping Blocks 

3D-2D Attention Weights
On-surface Voxel - Index [3,3,3]

On-surface Voxel - Index [4,4,4]

Outside of Object Voxel - Index [0,0,15]

Figure 7: Visualization of LEAP working mechanism. (Left) We show the 2D-2D attention weights of
the multi-view encoder. For each query pixel (in red) in the canonical view, it assigns larger weights to the
corresponding regions in the Non-canonical views. The attention of query points in the background diffuses.
(Middle) We visualize the learned neural volume by using PCA and slicing along the three axes. As our
3D modeling happens in the local coordinate frame, which is not axis-aligned, the learned embeddings show
isotropic properties. The neural volume is refined in a coarse-to-fine manner, where the object boundary becomes
more compact after more mapping layers. (Right) We show the attention map between 3D-2D. As shown in the
top two rows, the neighbor on-surface voxels have similar attention patterns on a specific 2D object region. The
attention of an out-of-object voxel diffuses on the background 2D region. See more details in the supplementary.

Table 3: Ablation study on the
Kubric dataset. We ablate on a)
using category-level world canon-
ical space rather than the cam-
era space. b)-d) the multi-view
encoder designs for enabling the
model aware of canonical view
choice. And e) using less (#2/4)
mapping layers. See visualization
in supplementary.

ShapeNet-novel

PSNR↑ SSIM↑ LPIPS↓
LEAP (full) 28.22 0.924 0.072
a) use world frame 24.62 0.865 0.116

b) no multi-view enc. 21.68 0.710 0.431

c) only GCR layer 22.98 0.770 0.359

d) only NVU layer 27.62 0.907 0.085

e) two mapping layers 27.99 0.910 0.080

Input (1/5) View 1 Epipolar Line GT View 1 View 2 Epipolar Line GT View 2
Visualization of Neural Volume at Target Views

Figure 8: Interpret LEAP. Top: We input images of a small dot (in
orange boxes), and the visualization of the reconstructed neural volume
shows consistency with the epipolar lines of the small dot on target views.
This implies LEAP mapps a 2D point as its 3D reprojection ray segment
even though there are no reprojection operations. It leverages the multi-
view information to resolve the depth ambiguity of the ray. Bottom: The
performance with different numbers of inputs on Omniobject3D. Note
that we only train the model with 5 images and it is directly tested.

information to resolve the ambiguity of the ray to determine the depth of the 2D point. Besides,
we show LEAP performance with different numbers of input images. The results show that LEAP
reliably reconstructs the object with two to five images, and its performance drops slightly with fewer
inputs. However, we observe a big drop when we decrease the number of inputs from two images
to one image. These results validate the effectiveness of LEAP in using multi-view information to
perform the 3D modeling.

6 CONCLUSION

We propose LEAP, a pose-free approach for 3D modeling from a set of unposed sparse-view
images. By appropriately setting the 3D coordinate and aggregating 2D image features, LEAP
demonstrates satisfying novel view synthesis quality. In our experiments, spanning from both object-
centric to scene-level, from synthetic images to real images, and from small-scale to large-scale data,
LEAP consistently demonstrates better performance compared with prior pose-based works that use
estimated poses or noisy poses. LEAP also achieve comparable results with the versions of prior
works that use ground-truth poses. Besides, LEAP showcases a strong generalization capability, fast
inference speed, and interpretable learned knowledge.

Limitations. LEAP adopts the neural volume representation where the 3D voxel grids span uniformly
in the 3D space, and the physical size of the volume is bounded. Designing better 3D representation,
e.g. incorporating techniques from prior works to enable it to work on unbounded scenes, will further
benefit the application of LEAP.
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Appendices
In the supplementary, we first include a detailed analysis to understand the novel pose-free framework
of LEAP by visualizing the intermediate results. Then, we include more novel view synthesis
visualization results. Finally, we include the details of our model and the baselines, as well as the
evaluation details on each dataset.

A MODEL DETAILS

Novel View Synthesis Coordinate System. We use relative camera poses for both training and
inference. The relative camera pose specifies the rotation and translation of a target view with respect
to the canonical view (first image) Jiang et al. (2022); Lin et al. (2023). Thus, during testing, you can
control the target NVS viewpoints by specifying small or large relative camera transformations. This
definition of target NVS camera pose will not be influenced by the different definitions or absence
of “absolute” camera pose of input views, as the reconstructed radiance field is defined in the local
frame of canonical view.

Reconstruction Scale. We perform all experiments (both training and evaluation) with a normalized
scale. This is a common setting in RGB-based reconstruction methods Schönberger & Frahm (2016).
As scaling up/down the size of the scenes as well as the camera translations jointly will lead to the
same RGB observations at these camera viewpoints, it requires depth information to resolve the scale
ambiguity. It is an ill-posed problem to recover the scale when only RGB images are available (if
without any category-level prior, e.g. human category average height).

Improved Speed. The fast inference speed of LEAP originates from its ability to predict the radiance
field in a single feed-forward step during inference, without any test-time optimization. In contrast,
most prior works require some per-scene optimization at test time (SPARF, RelPose, and FORGE),
which are slow to converge.

B MORE ANALYSIS

In this section, we dive deep into the pose-free framework and visualize the intermediate layer results
and attention weights to understand the working mechanism of LEAP. Following the sequence of
modules of LEAP, we perform analyses on the Multi-view Encoder and the 2D-to-3D information
mapping module.

Multi-view Encoder. We first understand the Non-canonical View Update layers. We visualize the
cross-attention weights between the canonical views and the non-canonical views. The results are
shown in Fig. 9.

The Learned Neural Volume Embeddings. We then visualize the learned neural volume embeddings
and the updated neural volume through the 2D-to-3D information mapping layers. The results are
shown in Fig. 10.

The 2D-to-3D Information Mapping Module. We then dive deeper into the 2D-to-3D information
mapping module to understand how the neural volume aggregates information from the 2D image
features. The results are shown in Fig. 11.

C MORE RESULTS AND ABLATIONS

Working on more views. We further experiment with increasing the number of input views. As
shown in Fig. 8 (bottom), LEAP is able to work with fewer images (2-4 views) when the model is
trained with 5 views. We further evaluate the results using 7 and 10 images (as shown below), which
reach the upper bound of the number of views in prior sparse-view research Zhang et al. (2022a) As
shown in Table 4, LEAP demonstrates better performance compared with the best baseline method
FORGE. In detail, the performance of the best baseline FORGE drops with more than 7 views. We
conjecture that the reason is the compounding pose estimation error. In contrast, LEAP continually
demonstrates better performance with more inputs.
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(a) Attention Matrix between Canonical View and Non-canonical Views (for all pixels)

(b) Attention Matrix between Canonical View and Non-canonical Views (for query location)

Figure 9: Visualization of cross-attention weight in the Non-canonical View Update layer in the Multi-view
Encoder. (a) We show the attention matrix on the entire image, where the shape of the attention matrix is
Rhw×hw and h, w are the resolution of the image features. The visualization demonstrates clear patterns of
the correlation between canonical view and non-canonical view image features. (b) We further show detailed
attention weights for each query pixel in the canonical view. The visualization demonstrates that the attention
captures the cross-view correlations well. In detail, for a query pixel in the background, the corresponding
regions are also in the background of the non-canonical views. When the query pixel is located on the object, the
attention focuses on small corresponding regions in the non-canonical views. The results demonstrate that the
image features of the multi-view images are coherent.

Incremental Reconstruction. we provide a study on incremental reconstruction using 5 existing
views with 1 incoming view. Our solution is i) reconstructing the neural volume using the 5 existing
views as an initialization, ii) using the multiview encoder to propagate information between the
canonical view and the incoming view, and iii) refining the existing neural volume using the image
features of the incoming and canonical view by performing 2D-3D information mapping attentions.
Using the refined neural volume for predicting the radiance field demonstrates 0.37 PSNR novel view
synthesis improvement, compared with the results from the existing 5 views. For reference, direct
inference on 6 images observes a 0.45 PSNR improvement. The slight gap shows the feasibility of
the solution and the potential of LEAP in handling the incremental reconstruction problem.

More Cross-dataset Generalization. We study the cross-data transfer capability as shown in
Table 1 of the paper, where we train on 13 ShapeNet categories (Kubric-ShapeNet-seen) and test
its generalization on 10 novel categories (Kubric-ShapeNet-novel). LEAP demonstrates robust
generalization in this test with about 3 dB PSNR higher than the next-best method FORGE. To
further address your concern, we include another cross-domain evaluation, where the model is tested
on Google Scanned Objects (GSO) Downs et al. (2022), collected from another domain. LEAP
demonstrates better performance than FORGE in this setting (24.12 v.s. 22.78 PSNR).

Geometry Reconstruction Quality. We compare with FORGE on the Kubric-ShapeNet-dataset.
Our method LEAP decreases the depth rendering error significantly compared with the best baseline
method FORGE (0.11 v.s. 0.16).

LEAP for pose estimation. We experiment with using image features of LEAP for estimating poses
on Omniobject3D. As shown in Table 5, the fine-tuned DINO backbone of LEAP demonstrates better
performance than the original DINO. Moreover, the features after the multiview encoder demonstrate
even better performance, showing that LEAP learns cross-view correspondence cues. We use a
concatenation-regression pose estimator for this experiment.

14



Published as a conference paper at ICLR 2024

Visualization of Neural Volume Initialization (Learned Embeddings)

Slice X-axis

Slice Y-axis

Slice Z-axis

With Input 
Images

Updated Neural Volume (After Lifting Layer #1)

Slice X-axis

Slice Y-axis

Slice Z-axis

Updated Neural Volume (After Lifting Layer #2)

Slice X-axis

Slice Y-axis

Slice Z-axis

Slice X-axis

Slice Y-axis

Slice Z-axis

Updated Neural Volume (After Lifting Layer #3)

Radiance Field (Novel Views)

Figure 10: Visualization of learned neural volume embeddings and the updated neural volume. We
visualize the neural volume by slicing it from the three axes. (Top) As our 3D modeling happens in the local
camera coordinate which is not axis-aligned, the learned embeddings show isotropic properties, i.e. like a sphere
which is able to model objects with different orientations. (Bottom) After lifting information from the images,
the neural volume is turned into the shape of the input object. With more 2D-to-3D information mapping layers,
the boundary of the object becomes more sharp.

More Results. We show more visualization of novel view synthesis on the evaluation datasets in
Fig. 12 (Omniobject3D) and Fig. 13 (Kurbic and Objaverse). To better understand the performance
of LEAP, we also include failure cases in Fig. 14.

Besides, we also include the results for ablation experiments, including the results without using the
multi-view encoder (Fig. 15) and using different numbers of inputs (Fig. 16). The results verify the
significance of the multi-view encoder and the strong capability of LEAP for modeling objects from
only two views.

15



Published as a conference paper at ICLR 2024

Updated Neural Volume (After Lifting Layer #3)

Outside of object Surface of object Inside of object

(a) On-surface voxel grid – index [3,3,3] (b) On-surface voxel grid – index [4,4,4]

(c) On-surface voxel grid – index [6,9,6] (d) Out-of-object voxel grid – index [0,0,15]

Figure 11: Visualization of cross-attention weights between the neural volume and the image features in
the 2D-to-3D information mapping layer. (Top) We specify the visualized color for voxel grids outside, on the
surface of, and inside the object. (Bottom) Due to the complexity of the 3D volume, we visualize the attention
weights for voxel grids on the diagonal of the volume to ensure the traversal of the object surface. The query
voxel grids are contained by the red bounding box. (a)-(b) The on-surface voxels attend 2D image features from
the same image regions across views. Moreover, the two neighbor voxel grids demonstrate similar attention
patterns, showing the smoothness of the learned mapping function. (c) Another example for an on-surface voxel
grid. (d) The attention diffuses for a non-surface voxel grid.

5 Views 7 Views 10 Views
FORGE 26.56 27.16 27.08
LEAP 29.10 29.75 30.11

Table 4: Comparison with FORGE on using more views as inputs.

DINOv2 DINOv2-LEAP LEAP-MV Encoder
rot. err. 16.53 14.17 9.85

Table 5: Evaluation on LEAP for estimating camera poses.
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Figure 12: Visualization of the Omniobject3D dataset. For each example, we include three images, where
the first is one out of five input views, and the last two are rendered novel views.
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Figure 13: Visualization of the Kubric (top 8 rows) and Objaverse (bottom 8 rows) dataset. For each
example, we include three images, where the first is one out of five input views, and the last two are rendered
novel views.
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Inputs Predictions Targets Inputs Predictions Targets Inputs Predictions Targets

Figure 14: Visualization of failure cases. We observe that the performance on objects with very fine-grained
geometry details is still limited.

(a) (b)

Inputs
Rendered

Inputs Targets
Rendered
Targets Targets

Rendered
Targets Targets

Rendered
Targets

Figure 15: Visualization of ablation experiments. (a) Without the multi-view encoder, LEAP can only
reconstruct noisy results. (b) With using the category-specific coordinate as the world coordinate, LEAP
degenerates on novel categories. We show two examples, where LEAP successfully maps the information in a
shared reconstruction space for the first example, but it fails in the second case.

D DETAILS

In this section, we introduce the details for training LEAP and baselines.

We note that as the neural volume is defined in the local camera coordinate of the canonical view, we
render novel views using the relative camera poses rather than the absolute camera poses for training
and testing LEAP. We keep the same setting for FORGE, SRT, and PixelNeRF. As the definition of
world coordinate will not influence the performance of other baseline methods, i.e. SPARF, we use
the absolute poses as performed in its official code. Besides, Zero123 does not have the concept of a
3D coordinate system. For FORGE, we perform 5,000-step optimization.
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Figure 16: Visualization of results with different number of input views. LEAP fails to model the object
with only one input view, while the performance with two views and five views is close enough.

The datasets have different numbers of views for each scene. The object-centric datasets have 100
(OmniObject3D dataset), 10 (Kubric dataset), and 12 views (Objaverse dataset). All views are
sampled randomly. During testing, we use the first 5 images of each scene (with index 0-4) as inputs,
and the other 5 images (with index 5-9) for evaluation. For the scene-level DTU dataset, we use
images with indexes of 5, 15, 25, 35, and 45 as inputs and use images with indexes of 0, 10, 20, 30,
and 40 for testing. This configuration ensures the coverage of the input and evaluation views. For
training, we use 5 randomly sampled image sets from each scene as the inputs as well as targets.
We keep the setting for training and testing all baseline methods the same as LEAP. During the
evaluation, we perform multiple time inference, by setting each input view as canonical. We select
the result having the largest PSNR on the input views. Note that the inference speed is calculated for
the whole process rather than a single canonical index inference.
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