
Published as a conference paper at ICLR 2024

GENCORRES: CONSISTENT SHAPE MATCHING VIA
COUPLED IMPLICIT-EXPLICIT SHAPE GENERATIVE
MODELS

Haitao Yang†, Xiangru Huang‡, Bo Sun†, Chandrajit Bajaj †, Qixing Huang†
†The University of Texas at Austin ‡MIT CSAIL

ABSTRACT

This paper introduces GenCorres, a novel unsupervised joint shape matching
(JSM) approach. Our key idea is to learn a mesh generator to fit an unorganized
deformable shape collection while constraining deformations between adjacent
synthetic shapes to preserve geometric structures such as local rigidity and local
conformality. GenCorres presents three appealing advantages over existing JSM
techniques. First, GenCorres performs JSM among a synthetic shape collection
whose size is much bigger than the input shapes and fully leverages the data-
driven power of JSM. Second, GenCorres unifies consistent shape matching and
pairwise matching (i.e., by enforcing deformation priors between adjacent synthetic
shapes). Third, the generator provides a concise encoding of consistent shape
correspondences. However, learning a mesh generator from an unorganized shape
collection is challenging, requiring a good initialization. GenCorres addresses
this issue by learning an implicit generator from the input shapes, which provides
intermediate shapes between two arbitrary shapes. We introduce a novel approach
for computing correspondences between adjacent implicit surfaces, which we use
to regularize the implicit generator. Synthetic shapes of the implicit generator then
guide initial fittings (i.e., via template-based deformation) for learning the mesh
generator. Experimental results show that GenCorres considerably outperforms
state-of-the-art JSM techniques. The synthetic shapes of GenCorres also achieve
salient performance gains against state-of-the-art deformable shape generators.

1 INTRODUCTION

Shape matching is a long-standing problem with rich applications in texture transfer (Schreiner et al.,
2004), compatible remeshing (Kraevoy & Sheffer, 2004), shape morphing (Eisenberger et al., 2021),
deformation transfer (Sumner & Popović, 2004), to name just a few. It also provides foundations for
analyzing and processing shape collections (Kim et al., 2012; Huang et al., 2014; 2019a). As the sizes
and variations of geometric shape collections continue to grow, there are fundamental challenges in
formulating and solving the shape matching problems. Pairwise approaches work for similar shape
pairs and become less effective on less similar shapes. The real difficulties lie in developing suitable
matching potentials (that factor out usually unknown inter-shape variations) and non-convexity in the
induced non-convex optimization problems.

In contrast to pairwise matching, joint shape matching (JSM) simultaneously optimizes consistent
correspondences among a shape collection (Nguyen et al., 2011; Huang et al., 2012; Kim et al.,
2012; Huang & Guibas, 2013; Wang & Singer, 2013; Huang et al., 2014; 2019b; 2020b;a). These
techniques bypass the difficulty of matching two different shapes through paths of similar shape
pairs. Despite significant advances on this topic, existing approaches present three challenges. The
first is to obtain a sufficiently large dataset so that each shape has neighboring shapes where shape
matching succeeds. The second is that pairwise inputs are usually detached from joint matching.
Third, encoding consistent dense correspondences is costly for large shape collections.

This paper presents GenCorres for solving the JSM problem. GenCorres takes motivations from
recent advances in neural shape generators. Given a collection of shapes with no inter-shape
correspondences, GenCorres seeks to learn a mesh generator to fit the input shapes while constraining
deformations between adjacent synthetic shapes to preserve geometric structures such as local rigidity
and conformality (See Figure 1). Interestingly, this simple framework addresses all the challenges
of JSM. GenCorres performs JSM among synthetic shapes, whose size is much larger than the
number of input shapes. Second, shape matching is done among neighboring shapes through the local

1



Published as a conference paper at ICLR 2024

rigidity and local conformality potentials, bypassing the difficulty of crafting a non-linear objective
function between less similar shapes. In addition, GenCorres unifies pairwise matching (i.e., through
deformation priors between adjacent shapes) and consistent matching (i.e., through the generator).
Furthermore, the mesh generator provides an efficient encoding of shape correspondences.

w/ Regu.

w/o Regu.

Implicit Generator Explicit Generator

Figure 1: GenCorres performs consistent shape match-
ing by learning a coupled implicit and mesh (explicit)
generator to fit a shape collection without pre-defined
correspondences. (Left) Interpolation between a pair
of shape in the shape space. Constraining deformations
between adjacent synthetic shapes with the regulariza-
tion loss improves the shape space. (Right) The mesh
generator provides consistent correspondences between
pairs of shapes.

However, learning the mesh generator directly
from the input shapes is challenging as it requires
good initializations. Moreover, optimization pro-
cedures, e.g., that minimize the earth-mover dis-
tances between synthetic shapes and training
shapes (Fan et al., 2017; Achlioptas et al., 2018),
can easily get trapped into local minimums. Gen-
Corres addresses this issue by learning an im-
plicit shape generator from the input shapes. The
formulation builds on a novel approach for estab-
lishing dense correspondences between adjacent
implicit surfaces defined by the shape genera-
tor. GenCorres enforces these correspondences
to preserve local rigidity and conformality be-
tween pairs of adjacent shapes and satisfy the cy-
cle consistency constraint among adjacent shape
triplets. These constraints are modeled as regu-
larization terms for learning the implicit shape
generator. GenCorres then converts the learned
implicit generator into an explicit mesh generator.
The implicit generator offers initial consistent
correspondences by guiding template-based reg-
istration.

We have evaluated GenCorres on various deformable shape collections, including humans and animals.
Experimental results show that GenCorres outperforms state-of-the-art JSM approaches and implicit
and point cloud shape generators, making GenCorres a universal framework for computing JSM and
learning deformable implicit shape generators. An ablation study justifies the importance of different
components of GenCorres.

2 RELATED WORK

We discuss relevant work under five topics, which are described below.

Pairwise shape matching. Pairwise shape matching has been studied extensively in the litera-
ture (Sahillioglu, 2020; van Kaick et al., 2010; Kim et al., 2011; Ovsjanikov et al., 2012; Aigerman
et al., 2014; Maron et al., 2016; Melzi et al., 2019; Bednarik et al., 2021). A recent line of papers
establishes a learning framework under the functional map representation (Litany et al., 2017; Halimi
et al., 2019; Donati et al., 2020; Sharma & Ovsjanikov, 2020; Cao et al., 2023). However, existing
techniques still do not work well for less similar shape pairs, where it is challenging to learn suitable
matching objective functions.

NeuroMorph (Eisenberger et al., 2021) combines a correspondence module with a shape interpolation
module. The network is trained in an unsupervised manner. Several other methods (Eisenberger et al.,
2019; Eisenberger & Cremers, 2020) also optimize interpolation paths to establish correspondences.
While GenCorres is relevant to these approaches, GenCorres is a data-driven approach that uses an
implicit generator with learned representations from all input shapes to drive pairwise matching.

Joint shape matching. The underlying principle of joint shape matching (JSM) techniques (Nguyen
et al., 2011; Huang et al., 2012; Kim et al., 2012; Huang & Guibas, 2013; Wang & Singer, 2013;
Huang et al., 2014; Chen et al., 2014; Huang et al., 2019b; 2020b;a) is cycle-consistency. State-of-
the-art JSM techniques use the equivalence between the cycle-consistency constraint and the data
matrix’s low-rank property, which encodes pairwise maps in blocks (c.f. (Huang & Guibas, 2013)).
This leads to constrained low-rank matrix recovery approaches (Huang & Guibas, 2013; Wang &
Singer, 2013; Chen et al., 2014; Huang et al., 2017; Bajaj et al., 2018; Huang et al., 2019b), which
possess strong theoretical guarantees.

GenCorres advances JSM in multiple ways. First, JSM’s performance improves when the input
collection size increases, as each shape can have more similar shapes for pairwise shape match-
ing (Nguyen et al., 2011; Huang et al., 2012; Kim et al., 2012; Huang & Guibas, 2013). The advantage
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of GenCorres is that it utilizes a large collection of synthetic shapes and fully leverages the data-driven
behavior of JSM. Second, in prior methods, joint matching and pairwise matching are typically decou-
pled. CZO (Huang et al., 2020a) is an exception, yet it still requires good initializations, e.g., (Kim
et al., 2011). In contrast, GenCorres unifies pairwise matching and joint matching under a simple
formulation. Cycle consistency is automatically enforced through the generator. Moreover, JSM
performs pairwise matching among neighboring shapes through simple geometric regularizations.
Finally, JSM still requires storing consistent matches across the input shape collection (Huang et al.,
2012; Kim et al., 2012; Huang et al., 2014). GenCorres addresses this issue using a shape generator
to compress consistent correspondences effectively.

Generative model based correspondences. Generative models under explicit representations
provide inter-shape correspondences, making them appealing for practical applications. However,
existing methods are sub-optimal for high-fidelity correspondence computation. Most mesh-based
generators (Tan et al., 2018; Verma et al., 2018; Litany et al., 2018; Tretschk et al., 2020; Rakotosaona
& Ovsjanikov, 2020; Muralikrishnan et al., 2022) require consistent dense correspondences as input.
In contrast to mesh-based generators, point-based generators (Fan et al., 2017; Achlioptas et al., 2018;
Yang et al., 2018; Li et al., 2019a;b) do not require inter-shape correspondences. The downside is that
a point cloud is permutation-invariant. Therefore, the point indices in a point cloud do not always
reflect meaningful correspondences. GenCorres addresses these limitations by performing shape
matching under implicit representations using shape-preserving potentials.

3D-CODED (Groueix et al., 2018) adopts an auto-encoder to deform a template shape for shape
matching. The training combines the Chamfer distance for shape alignment and regularizations
on Laplacian operators and edge lengths. As the regularizations of 3D-CODED are designed for
isometric deformations, and the Chamfer distance drives training, it mainly applies to minor inter-
shape variations. In contrast, GenCorres applies to shape collections under large deformations.

Matching under implicit surfaces. A fundamental problem for neural implicit shape representation
is defining inter-shape correspondences. The technical challenge is that there is only one constraint
along the normal direction at each surface point, c.f., (Stam & Schmidt, 2011). GenCorres solves
a constrained optimization problem to obtain inter-shape correspondences. A relevant formulation
has been studied in (Tao et al., 2016). Under the implicit representation, a popular way to regularize
local rigidity is the Killing vector field approach (Ben-Chen et al., 2010; Solomon et al., 2011; Tao
et al., 2016; Slavcheva et al., 2017), which is correspondence-free. In contrast, the correspondences
computed by GenCorres allow us to introduce the cycle-consistency regularization.

Neural implicit representations. Neural implicit representations have received significant interest
on modeling 3D shapes, including man-made objects (Park et al., 2019; Mescheder et al., 2019; Chen
& Zhang, 2019; Deng et al., 2021) and deformable objects (Saito et al., 2019; 2020; Alldieck et al.,
2021; Peng et al., 2021). Unlike developing novel implicit network architectures, GenCorres focuses
on regularization losses that enforce geometric priors for deformable objects.

Developing regularization losses for training implicit neural networks has also been studied re-
cently (Gropp et al., 2020; Atzmon et al., 2021). GenCorres is most relevant to (Atzmon et al.,
2021), which uses an as-killing-as-possible regularization loss to preserve global rigidity. In contrast,
GenCorres focuses on maintaining local rigidity and conformality.

GenCorres is also relevant to ARAPReg (Huang et al., 2021). However, defining a suitable loss
under the implicit representation has to address the fundamental challenge of determining inter-shape
correspondences. GenCorres also enforces the cycle-consistency constraint among induced shape
correspondences to enhance the implicit generator.

3 PROBLEM STATEMENT AND APPROACH OVERVIEW

Problem statement. The input to GenCorres is a shape collection S = {S1, · · · , Sn} ⊂ S , where S
is the underlying shape space. Each shape Si can be a raw mesh or a raw point cloud.

GenCorres seeks to learn a mesh generator mθ : Z → S, where θ are the network parameters,
Z := Rd is the latent space. Our goal is to align each input shape Si with the corresponding synthetic
shape mθ(zi) where zi ∈ Rd is the latent code of Si. The mesh generator then provides consistent
inter-shape correspondences.

Approach overview. As illustrated in Fig. 2, GenCorres proceeds in three stages. The first two stages
provide initializations for the third stage, which learns the mesh generator. Specifically, the first
stage adopts variational auto-encoder (VAE) to learn an implicit generator fϕ : R3 ×Z → R and an
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Figure 2: GenCorres has three stages. The first stage learns an implicit shape generator to fit the input shapes.
The training loss regularizes the induced correspondences between adjacent implicit shapes of the generator.
The second stage uses the implicit generator to initialize a mesh generator through latent space interpolation and
template matching. The third stage then refines the mesh generator with ACAP energy.

encoder hψ from the input shapes:

min
ϕ,ψ

lVAE
(
fϕ, hψ

)
+ λgeorgeo(f

ϕ) + λcycrcyc(f
ϕ) (1)

where ϕ and ψ are the network parameters, lVAE is a VAE loss on the training shapes, λgeo and λcyc

are the weights of the regularization terms. rgeo(f
ϕ) and rcyc(f

ϕ), which are key contributions of this
paper, build on induced correspondences between adjacent implicit shapes defined by fϕ. Specifically,
rgeo(f

ϕ) enforces that the induced correspondences preserve local geometric structures. rcyc(f
ϕ)

enforces that the induced correspondences are cycle-consistent. In other words, rgeo(f
ϕ) and rcyc(f

ϕ)
perform pairwise matching and consistent matching, respectively. The second stage of GenCorres fits
a template mesh to all input shapes along paths of interpolated shapes provided by the implicit shape
generator. The resulting correspondences are used to learn an initial mesh generator mθ. The third
stage of GenCorres refines the mesh generator by solving another optimization problem:

min
θ
dexp

(
mθ,S

)
+ λdrd(m

θ) (2)

where dexp
(
mθ,S

)
aligns the explicit generator with the input shape collection; rd(m

θ) enforces
as-conformal-as-possible deformation prior among adjacent shapes; λd is the weight of rd(m

θ).

4 STAGE I: IMPLICIT SHAPE GENERATOR

This section introduces how to learn the implicit shape generator fϕ. We begin with a novel approach
for computing dense correspondences between adjacent implicit surfaces in Section 4.1. Based on the
induced correspondences, we introduce two regularization terms rgeo(f

ϕ) and rcyc(f
ϕ) in Section 4.2

and Section 4.3, respectively. Finally, Section 4.4 elaborates on the implementation details.

4.1 INDUCED SHAPE CORRESPONDENCES

Our goal is to compute the dense correspondences between the implicit surface fϕ(x, z) = 0 and an
adjacent implicit surface fϕ(x, z+ ϵv) = 0, where x ∈ R3, v ∈ Rd is a direction in the unit ball Bd
and ϵ is an infinitesimal value. The computation is nontrivial because of the difficulties in representing
correspondences for the implicit surfaces. To this end, we first discretize fϕ(x, z) = 0 using a mesh
with n vertices gϕ(z) ∈ R3n, e.g., via Marching cube (Lorensen & Cline, 1987). We then formulate
the corresponding vertices of gϕ(z) on fϕ(x, z+ ϵv) = 0 as gϕ(z+ ϵv) := gϕ(z) +dv(z) ∈ R3n.
With this formulation, computing correspondences between two implicit surfaces is reduced to the
computation of dv(z). As discussed in (Stam & Schmidt, 2011; Tao et al., 2016), for each vertex
gϕi (z) ∈ R3, the implicit representation offers one constraint on its corresponding dv

i (z) ∈ R3 along
the normal direction:

∂fϕ

∂x
(gϕi (z), z)

Tdv
i (z) + ϵ

∂fϕ

∂z
(gϕi (z), z)

Tv = 0. (3)

To introduce extra constraints on dv(z), we enforce that the displacements of the 1-ring patch at
each vertex gϕi (z) are as-rigid-as possible (ARAP) (Alexa et al., 2000; Huang et al., 2009; 2021)
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Figure 3: (Left) Effects of the geometric deformation regularization loss rgeo(f
ϕ). We compute 30 interpolated

shapes between a source shape (a) and a target shape (b) via linear interpolation between their latent codes. All
the interpolated shapes are visualized in the same coordinate system. (c) Interpolation results without rgeo(f

ϕ).
(d) With rgeo(f

ϕ). (Right) Effects of the cycle-consistency regularization loss rcyc(f
ϕ). We color-code errors of

propagated correspondences through a path of intermediate shapes between each source-target shape pair. The
error is visualized on the target mesh. (e) Without rcyc(f

ϕ). (f) With rcyc(f
ϕ).

and as-conformal-as possible (ACAP) (Yoshiyasu et al., 2014). In the infinitesimal regime, we can
approximate the latent rotation at gϕi (z) as I3 + ci×. This leads to an ARAP potential on dv(z) as

n∑
i=1

min
ci

∑
j∈Ni

∥ci ×
(
gϕi (z)− gϕj (z)

)
−

(
dv
i (z)− dv

j (z))
∥∥2 = dv(z)

T
L

arap
(gϕ(z))dv(z) (4)

where the expression of L
arap

(gϕ(z)) is in the supp. material.

Similarly, we can parameterize the latent similarity transformation at gϕi (z) as (1 + si)I3 + ci× and
define the ACAP potential as
n∑
i=1

min
si,ci

∑
j∈Ni

∥(siI3 + ci×)
(
gϕi (z)− gϕj (z)

)
−
(
dv
i (z)− dv

j (z))
∥∥2 = dv(z)

T
L

acap
(gϕ(z))dv(z)

(5)

where the expression of L
acap

(gϕ(z)) is in the supp. material.

Denote L
ϕ
(z) = αL

arap
(gϕ(z)) + L

acap
(gϕ(z)) where α is a tradeoff parameter (α = 10 in our

experiments). We compute dv(z) via linearly constrained quadratic programming:

dv(z) := lim
µ→0

argmin
d

dTL
ϕ
(z)d+ µ∥d∥2 s.t. Cϕ(z)d = −ϵFϕ(z)v (6)

where Cϕ(z)d = −ϵFϕ(z)v is the matrix representation of (3), Cϕ(z) ∈ Rn×3n is a block diagonal
sparse matrix, Fϕ(z) ∈ Rn×d, µ is used to avoid degenerate cases, e.g., a rotating sphere. The
expressions of Cϕ(z) and Fϕ(z) are in the supp. material. It is easy to check that

dv(z) = −ϵGϕ(z)v, Gϕ(z) := L
ϕ
(z)

+

Cϕ(z)T
(
Cϕ(z)L

ϕ
(z)

+

Cϕ(z)T
)+
Fϕ(z) (7)

where A+ denotes the Moore–Penrose inverse of A.

4.2 GEOMETRIC DEFORMATION REGULARIZATION LOSS

We proceed to introduce the first regularization loss rgeo(f
ϕ), which penalizes local rigidity and local

conformality distortions of the induced correspondences from fϕ(x, z) = 0 to fϕ(x, z + ϵv) = 0:

rgeo(z,v) := dv(z)
T
L
ϕ
(z)dv(z) = ϵ2vTEϕ(z)v (8)

Eϕ(z) := Fϕ(z)
T (
Cϕ(z)L

ϕ
(z)+Cϕ(z)

T )+
Fϕ(z)

Integrating v over the unit ball Bd in Rd (Huang et al., 2021) and omitting the constant ϵ2, we define

rgeo(f
ϕ) = Ez∼Nd

∫
v∈Bd

vTEϕ(z)vdv = Ez∼Nd

Vol(Bd)
d

Tr(Eϕ(z)) (9)

Figure 3 (Left) shows that rgeo(f
ϕ) can improve the quality of the implicit shape generator. The

interpolated shapes are smoother and more shape-preserving, leading to a better shape space .
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4.3 CYCLE-CONSISTENCY REGULARIZATION LOSS

The induced correspondences defined in (7) enable us to compute correspondences between two
shapes by composing induced correspondences along a path of intermediate shapes. An additional
regularization we can enforce is that the induced correspondences are cycle-consistent. To this end,
we constrain 3-cycle consistency (Huang & Guibas, 2013) among three neighboring synthetic shapes
fϕ(x, z) = 0, fϕ(x, z + ϵv) = 0, and fϕ(x, z + ϵv′) = 0, where v and v′ are two different
displacement vectors. Formally speaking, we model 3-cycle distortion as

rv,v
′
(z) := dv(z) + dv′−v(z + ϵv)− dv′

(z) ≈ −ϵ2
(
vT

∂Gϕ(z)

∂z

)
(v − v′). (10)

Based on (10), we define the cycle-consistency regularization term as

rcyc(f
ϕ) = Ez∼Nd

∫
v∈Bd

∥∂G
ϕ(z)

∂z
∥2F · dv (11)

where ∥ · ∥F is the tensor Frobienus norm. We use finite-difference to compute rcyc(f
ϕ). Specifically,

we compute 1
ϵ ∥G

ϕ(z + ϵcycei)−Gϕ(z)∥2F as an approximation of rcyc(f
ϕ), where ei is a random

standard basis in Rd. In Section 7, we quantitatively show that rcyc(f
ϕ) further enhances the shape

space.

4.4 IMPLEMENTATION DETAILS

We use the VAE network proposed in SALD (Atzmon & Lipman, 2021), where the encoder hψ

is a modified PointNet (Qi et al., 2017) and the decoder fϕ is an 8-layer MLP. The data loss lVAE
is the VAE loss of SALD. We set λgeo = 1e−3, λcyc = 1e−4, and ϵ = 1e−3. We use autograd in
PyTorch (Paszke et al., 2019) to compute Fϕ(z) and Cϕ(z). For other derivative computations, we
use finite-difference for approximation. More details are deferred to the supp. material.

5 STAGE II: MESH GENERATOR INITIALIZATION

The second stage initializes the mesh generator mθ using the implicit shape generator fϕ obtained
in the previous stage. GenCorres uses the same mesh generator as ARAPReg (Huang et al., 2021),
which maps the latent code z to displacement vectors associated with vertices of a template mesh
M. We use the learned encoder hψ to find the latent code ztemp of M. Let zi = hψ(Si) be the latent
code of the input shape Si. We generate T intermediate shapes gϕ(zji ), 1 ≤ j ≤ T (T = 10 in our
experiments) by linearly interpolating ztemp and zi: z

j
i = ztemp + j

zi−ztemp

T+1 . We then apply non-rigid
registration to align the template mesh M with each intermediate shape gϕ(zji ) in order, i.e., the
alignment of one intermediate shape provides the initialization for aligning the next intermediate
shape. Non-rigid alignment adopts an ARAP deformation energy, and the details are deferred to the
supp. material.

After propagating the correspondences along the interpolation path in the shape space, we obtain the
deformed template minit

i for each input shape Si. We then initialize the mesh generator mθ using the
standard regression loss:

θinit = argmin
θ

n∑
i=1

∥minit
i −mθ(zi)∥2. (12)

6 STAGE III: MESH GENERATOR REFINEMENT

The third stage refines the mesh generator mθ(z) by solving (2). To this end, we define the distance
between the mesh generator and the input shape collection as

dexp
(
mθ,S

)
:=

1

n

n∑
i=1

lCD
(
mθ(zi),Si), (13)

where mθ(zi) is the i-th generated mesh, lCD is the Chamfer loss. The loss can be optimized
robustly thanks to the good initialization of the mesh generator from the first two stages. As (13)
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(a) (b) (c) (a) (b) (c)
Figure 4: The mesh generator improves the inter-shape correspondences by learning better shape generation.
(a) the deformed template from stage II. (b) the shape generated by the mesh generator. (c) the input raw mesh.

only constrains that vertices of the mesh generator lie on the surface, merely minimizing it does not
avoid drifting. To address this issue, we define the regularization term rd(m

θ) to enforce that the
deformations between meshes with similar latent codes preserve geometric structures. We enforce the
deformations to be ACAP, which allows the mesh generator to capture large non-rigid deformations.
Based on (5), we define

rd(m
θ) = Ez∼Nd

∫
v∈Bd

vT
∂mθ(z)

∂z

T

Lacap(mθ(z))
∂mθ(z)

∂z
vdv. (14)

We then substitute (13) and (14) into (2) to refine the mesh generator. As shown in Figure 4, the mesh
generator can improve the shape quality from the implicit generator. Higher shape generation quality
implies better inter-shape correspondences since the mesh generator directly provides consistent
correspondences.

7 EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of GenCorres. We begin with the experimental
setup in Section 7.1. Section 7.2 evaluates the shape generation quality of GenCorres. We proceed
to compare GenCorres with state-of-the-art JSM approaches in Section 7.3. Section 7.4 evaluate
GenCorres on FAUST (Bogo et al., 2014; Ren et al., 2018). Section 7.5 presents an ablation study.

7.1 EXPERIMENTAL SETUP

Datasets. We evaluate GenCorres on two categories of deformable shape collections, i.e., Human and
Animal. The Human category considers DFAUST (Bogo et al., 2017) and FAUST (Bogo et al., 2014).
We use the registered SMPL model from the original DFAUST dataset. Since there is low variety
between the adjacent shapes, we subsample 2000 meshes from the original dataset. For FAUST, we
use the re-meshed version (Ren et al., 2018). Animal category has one dataset of 383 shapes (Huang
et al., 2021), which is generated from SMAL (Zuffi et al., 2017). Due to space constraints, we defer
the details of dataset processing to the supp. material.

Evaluation protocols. We evaluate the quality of shape generation by measuring the reconstruction
errors of testing shapes, i.e., using the Chamfer distance between the reconstructed mesh and the
original testing shape. For correspondence evaluation, we report the mean and median geodesic errors
of the predicted correspondences between involved shape pairs.

7.2 EVALUATION ON SHAPE GENERATION QUALITY

We compare with the state-of-the-art shape generation approaches that do not rely on pre-defined
ground-truth correspondences. Those include implicit shape generators DeepSDF (Park et al., 2019)
and SALD (Atzmon & Lipman, 2021), point-based generators, such as LGF (Cai et al., 2020) and
DPM (Luo & Hu, 2021). For Human category, we train the shape generator from 1000 shapes and
evaluate them on the remaining 1000 shapes. For the Animal category, we use 289 shapes for training
and 94 shapes for testing .

Table 1 provides quantitative comparisons between GenCorres and baseline shape generators. Figure 5
shows the qualitative results. More comparisons are in the supp. material. GenCorres is superior to
all baselines in terms of both reconstruction errors and plausibility of synthetic shapes. Quantitatively,
the reductions in mean/median reconstruction errors are 2.7%/10.6%, 2.3%/7.0% on DFAUST and
SMAL, respectively. Qualitatively, GenCorres provides much better interpolation results compared
to SALD, especially in preserving the rigidity of arms and legs of the humans. These performance
gains mainly come from the geometric deformation regularization loss employed by GenCorres.
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(a) (b) (c) (d) (a) (b) (c) (d)
Figure 5: The comparison of shape interpolation between SALD (Atzmon & Lipman, 2021) and our method on
the DFAUST dataset. (a) source shape. (b) target shape. (c) interpolation results of SALD. (d) our results.

Table 1: Evaluations of shape generation quality.
For each method, we report the mean and median
reconstruction errors (cm) of the testing shapes.
Baselines are described in Section 7.2.

DFAUST SMAL

mean median mean median

Point
LGF 4.62 2.30 9.13 8.15
DPM 3.80 2.00 8.07 7.44

Implicit DeepSDF 2.03 1.98 7.84 7.59
SALD 1.88 1.79 7.66 7.32

GenCorres 1.83 1.75 6.85 6.81

Table 2: Evaluations of JSM on DFAUST and SMAL
using geodesic errors of the predicted correspon-
dences (in cm). Baselines are described in Section 7.3.

DFAUST SMAL

mean median mean median

CZO 3.71 3.68 1.19 1.12
MIM 3.42 3.40 1.30 1.29

NeuroMorph 2.49 2.47 1.59 1.43

GenCorres 1.30 1.13 1.02 0.47
GenCorres-NoCycle 1.41 1.22 1.11 0.51
GenCorres-NoGeoReg 7.65 7.34 6.28 5.09
GenCorres-NoACAP 1.62 1.42 1.07 0.49
GenCorres-Imp 2.62 1.81 1.24 0.53

7.3 EVALUATION ON JOINT SHAPE MATCHING

Table 2 reports statistics of GenCorres for JSM on DFAUST and SMAL. For baseline comparison,
we choose consistent zoom out (CZO) (Huang et al., 2020a) and multiple isometric matching
(MIM) (Gao et al., 2021), which are two state-of-the-art JSM approaches. We evaluate the methods
by computing the correspondence error between a template shape to rest of the shapes. We also report
the performance of the top-performing pair-wise matching approach NeuroMorph (Eisenberger et al.,
2021) on these pairs. Note that NeuroMorph is originally not designed for JSM problem. Overall,
GenCorres outperforms both JSM baselines by large margins. Specifically, GenCorres reduces the
mean/median errors by 62.0%/66.8% and 14.3%/58.0% on DFAUST and SMAL, respectively. The
performance gains come from two aspects. First, enforcing ARAP and ACAP deformations in the
shape space locally is superior to applying sophisticated deformation models between pairs of shapes
directly. Second, GenCorres performs map synchronization on synthetic shapes of the generator
whose size is much larger than the input shape collection used by JSM baselines.

7.4 EVALUATION ON PAIR-WISE SHAPE MATCHING

Most of the shape matching approaches are evaluated on the pairwise benchmark FAUST (Bogo
et al., 2014) with 20 testing shapes. We apply JSM on these shapes using GenCorres. However,

Table 3: Evaluations of pair-wise matching on FAUST dataset (in cm). Baselines are described in Section 7.4.
Both NM and our method apply nonrigid registration as a post-processing step.

Axiomatic Spectral Learning Template Based

BCICP ZO S-Shells GeoFM AFmap D-Shells ULRSSM NM 3D-CODED IFS Ours

error 6.4 6.1 2.5 1.9 1.9 1.7 1.6 1.6 2.5 2.6 1.6
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directly applying it on 20 input shapes of FAUST does not offer satisfactory results since learning a
deformable shape space from few shapes is very difficult. To show the advantage of GenCorres, we
augment the input shapes with unorganized shapes from FAUST and DFAUST dataset, resulting in
1100 shapes in total. The inter-shape correspondences between two input shapes are given by the
correspondences induced from the template model.

Quantitative results are shown in Table 3. We mainly compare with state-of-the-art template based
approaches, including 3D-CODED (Groueix et al., 2018) and IFS (Sundararaman et al., 2022). For
completeness, we also provide the results of the axiomatic methods, including BCICP (Ren et al.,
2018), ZO (Melzi et al., 2019), and S-Shells (Eisenberger et al., 2020a); and the spectral learning
methods, including GeoFM (Donati et al., 2020), AFmap (Li et al., 2022), ULRSSM (Cao et al.,
2023), D-Shells (Eisenberger et al., 2020b) and NM (Eisenberger et al., 2021). Note that template
based methods do not utilize intrinsic features, thus they usually have worse performance compared to
spectral learning methods, especially in the region of self-intersection. GenCorres (Ours) outperforms
all template based methods. It also achieves comparable performances to spectral learning methods.
How to incorporate intrinsic features into our pipeline is left for future research.

7.5 ABLATION STUDY

This section presents an ablation study on different components of GenCorres. As the main purpose
of GenCorres is inter-shape correspondences, we focus on how the correspondence quality changes
when varying different components of GenCorres (See Table 2).

Without the cycle-consistency regularization. Dropping this term hurts the implicit generator.
Quantitatively, the correspondence errors increase by 8.4%/7.9% and 8.8%/8.5% in mean/median on
DFAUST and SMAL.

Without the geometric regularization. The performance of GenCorres drops considerably when
removing the geometric deformation regularization term. The mean/median geodesic errors increase
by 488%/549% and 515%/982% on DFAUST and SMAL. This shows that even the cycle-consistency
constraint is enforced on the correspondences computed from optimizing ARAP and ACAP losses,
constraining that these correspondences minimize ARAP and ACAP losses is critical.

ACAP versus ARAP. GenCorres-NoACAP replaces ACAP regularization with the ARAP regular-
ization. As shown in Table 2, the performance of GenCorres slightly decreases. In particular, on
DFAUST that exhibit large inter-shape deformations, i.e., thin versus fat and low versus tall, the
performance drops are noticeable. Such performance gaps show that the ACAP regularization loss is
important for modeling large non-isometric inter-shape deformations.

No explicit generator. Finally, we drop the explicit generator and use the implicit shape gener-
ator to propagate correspondences computed along linearly interpolated intermediate shapes, i.e.,
GenCorres-Imp. The correspondences of the explicit generator (GenCorres) are superior to prop-
agated correspondences of the implicit generator, i.e., 50.4%/37.6% and 17.7%/11.3% of error
reductions on DFAUST and SMAL, respectively. Such improvements are expected as propagated
correspondences between shapes that undergo large deformations may drift.

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

This paper shows that learning shape generators from a collection of shapes leads to consistent
inter-shape correspondences that considerably outperform state-of-the-art JSM approaches. The
key novelties of GenCorres are the idea of using a mesh generator to formulate JSM and two
regularization losses that enforce geometric structures are preserved and induced correspondences are
cycle-consistent. We present extensive experimental results to justify the effectiveness of these two
regularization terms. Besides high-quality inter-shape correspondences, GenCorres also outperforms
state-of-the-art deformable shape generators trained from unorganized shape collections.

One limitation of GenCorres is that it requires a reasonably large input shape collection to learn the
shape generator and does not work with few input shapes. In this latter regime, learning pairwise
matching has the advantage over GenCorres. This issue may be partially addressed by using a more
advanced implicit generator for deformable shapes, which is an area for future research.

There are ample future directions. So far, the regularization terms are based on discretizing implicit
surfaces into meshes. An interesting question is how to define them without mesh discretization.
Another direction is to explore regularization terms for man-made shapes, e.g., to enhance topological
generalization and promote physical stability.
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Appendices
The supplementary materials provide more details of implementing the regularization loss used in
the implicit shape generator in Section A and details of mesh generator initialization in Section B.
Section C gives more details on the dataset preprocessing. Section D and Section E show more results
on shape space learning and shape matching, respectively.

A DETAILS OF REGULARIZATION LOSS

A.1 EXPRESSION OF L
arap

(gϕ(z))

L
arap

(gϕ(z)) =2L⊗ I3 −Barap(gϕ(z))Darap(gϕ(z))Barap(gϕ(z))T ,
where L is the graph Laplacian of the mesh, and Barap

(
gϕ(z)

)
∈ R3n×3n is a sparse block matrix

defined as

Barap
ij

(
gϕ(z)

)
=


∑
k∈Ni

eϕik(z)× i = j

eϕij(z)× j ∈ Ni

0 else

where eϕij(z) = gϕi (z)− gϕj (z) and Darap
(
gϕ(z)

)
∈ R3n×3n is a diagonal block matrix defined as

Darap
ii

(
gϕ(z)

)
=

( ∑
j∈Ni

(
∥eϕij(z)∥

2I3 − eϕij(z)e
ϕ
ij(z)

T ))−1

A.2 EXPRESSION OF L
acap

(gϕ(z))

L
acap

(gϕ(z)) =2L⊗ I3 −Bacap(gϕ(z))Dacap(gϕ(z))Bacap(gϕ(z))T ,
where Bacap

(
gϕ(z)

)
∈ R3n×4n is a sparse block matrix defined as

Bacap
ij

(
gϕ(z)

)
=


∑
k∈Ni

(
−eϕik(z) eϕik(z)×

)
i = j(

−eϕij(z) eϕij(z)×
)

j ∈ Ni

0 else

and Dacap
(
gϕ(z)

)
∈ R4n×4n is a diagonal block matrix defined as

Dacap
ii

(
gϕ(z)

)
=

( ∑
j∈Ni

(
∥eϕij(z)∥

2I4 − diag(0, eϕij(z)e
ϕ
ij(z)

T ))−1

A.3 EXPRESSION OF Cϕ(z) AND Fϕ(z)

Considering all vertices, the matrix representation of

∂fϕ

∂x
(gϕi (z), z)

Tdv
i (z) + ϵ

∂fϕ

∂z
(gϕi (z), z)

Tv = 0.

can be written as Cϕ(z)d = −ϵFϕ(z)v, where

d =


dv
1 (z)

dv
2 (z)

...
dv
n(z)

 ∈ R3n,
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Cϕ(z) =


∂fϕ

∂x (gϕ1 (z), z)
T

∂fϕ

∂x (gϕ2 (z), z)
T

. . .
∂fϕ

∂x (gϕn(z), z)
T

 ∈ Rn×3n,

Fϕ(z) =


∂fϕ

∂z (gϕ1 (z), z)
T

∂fϕ

∂z (gϕ2 (z), z)
T

...
∂fϕ

∂z (gϕn(z), z)
T

 ∈ Rn×d,

A.4 IMPLEMENTATION DETAILS

Both the geometric deformation regularization rgeo(f
ϕ) and the cycle-consistency regularization

rcyc(f
ϕ) rely on the mesh with n vertices that is discretized from fϕ(x, z) = 0. We use Marching

Cube for discretization. For the human category, we use a voxel grid with size 64× 77× 64. For the
animal category, the size of the voxel grid is 82× 50× 71. The output mesh from the Marching Cube
algorithm typically contains more than 5000 vertices. To reduce the computation complexity, we
simplify the output mesh into 2000 faces (Garland & Heckbert, 1997) before computing rgeo(f

ϕ) and

rcyc(f
ϕ). The number of vertices n is around 1000, thus the size of L

ϕ
(z) is around 3000× 3000.

Computing (L
ϕ
(z))+ only takes about 40ms in PyTorch (Paszke et al., 2019)

B DETAILS OF MESH GENERATOR INITIALIZATION

B.1 TEMPLATE-BASED REGISTRATION

In order to register the template mesh M to the input shape Si, we first generate T intermediate
shape gϕ(zji ), where zji = ztemp + j

zi−ztemp

T+1 , 1 ≤ j ≤ T . Instead of directly register M to Si, we
first register M to gϕ(z1

i ) with ARAP deformation energy (Sorkine & Alexa, 2007; Huang et al.,
2008). Since M and gϕ(z1

i ) are very close, we directly apply nearest neighbor search to compute the
correspondence for the data term. The registration gives the resulting deformed template M1. We
then register M1 to gϕ(z2

i ) and get the deformed template M2, register M2 to gϕ(z3
i ) and get the

deformed template M3, and so on and so forth. Finally we get the deformed template Mm, which is
well-aligned with Si.

The interpolation-guided registration typically works well but might fail when the template M is
too far from Si, i.e. the two shapes have very different poses. The reason is that the intermediate
shapes on the interpolation path might not have good quality. The make full use of the learned
shape space, we add shapes from the input shape collection to the interpolation path in these cases.
First, we compute the distance between each pair of shape Si and Sj using the distance of their
embedded latent codes ∥zi − zj∥. Based on this distance metric, we build a K-NN graph among the
input shape collection. We set K = 25 for the human dataset and K = 40 for the animal dataset.
We then perform interpolation-guided registration on each edge (i, j) of the graph and obtain the
correspondences between Si and Sj . We use the distortion of the mapped edges (Huang et al., 2008)
as the weights in the K-NN graph. Finally we compute the shortest path from the template to each
shape Si and get the correspondences by composing the correspondences along the shortest path.

B.2 MESH GENERATOR ARCHITECTURE

The network architecture of mθ follows from that in (Huang et al., 2021), which outputs displacements
of vertex positions of the template mesh M. We sample 4 resolutions of the mesh connections of the
template mesh. The network architecture stacks 4 blocks of convolution + up-sampling layers. The
convolution layer employs Chebyshev convolutional filters with 6 Chebyshev polynomials (Ranjan
et al., 2018). Similar to (Zhou et al., 2020), there is a fully connected layer between the latent code
and the input to the first convolution layer.
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Figure 6: We use FPS to further select a more diverse and challenging subset of 1000 shapes from
the training split (Atzmon & Lipman, 2021; 2020; Gropp et al., 2020). In this example, among
10× 10 = 100 shapes from the training split (Atzmon & Lipman, 2021; 2020; Gropp et al., 2020),
only the red shapes are selected because the gray shapes have similar poses.

C DETAILS OF DATASETS

There are approximately 41k shapes in the original DFAUST dataset. Since there is low variety
between the adjacent shapes, recent works (Atzmon & Lipman, 2021; 2020; Gropp et al., 2020) create
a new training/testing split by uniformly sample 20% shapes from the original dataset. However, we
notice that there are still many similar shapes in the splits. For example, almost all motion sequences
start from shapes with very similar rest pose. In order to make the dataset more challenging, we
further select 1000 shapes from the training split. Specifically, we first learn a VAE (Atzmon &
Lipman, 2021) to embed all the shapes from the training split into different latent vectors. We find
that the latent vectors of similar shapes are typically closer. Then we apply farthest point sampling
(FPS) to the latent vectors and select the first 1000 shapes. An example is shown in Figure 6. We
apply the same approach to the testing split and select another 1000 shapes for testing.

The original SMAL dataset from (Huang et al., 2021) contains 300 training shapes and 100 testing
shapes. We filter out the shapes that have unreasonable self-intersection, leading to 289 training
shapes and 94 testing shapes.

For both DFAUST and SMAL dataset, we evaluate the correspondences from a template shape to the
remaining shapes.

D MORE RESULTS OF SHAPE SPACE LEARNING

We show the shape interpolation results of the state-of-the-art implicit generator (Atzmon & Lipman,
2021) and our method in Figure 7 and Figure 8. We show 30 interpolated shapes. By adding the
proposed geometric deformation regularization loss and cycle-consistency regularization loss, our
generator gives more meaningful interpolation results, which are important to the interpolation-guided
registration.

E MORE RESULTS OF SHAPE MATCHING

We show the correspondence results of NeuroMorph (Eisenberger et al., 2021) and our method in
Figure 9 and Figure 10. Our method has lower errors compared to NeuroMorph.
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(a) (b) (c) (d) (a) (b) (c) (d)

Figure 7: The comparison of shape interpolation between SALD (Atzmon & Lipman, 2021) and
our method on the DFAUST dataset. (a) source shape. (b) target shape. (c) interpolation results of
SALD (Atzmon & Lipman, 2021). (d) our results.

(a) (b) (c) (d) (a) (b) (c) (d)

Figure 8: The comparison of shape interpolation between SALD (Atzmon & Lipman, 2021) and
our method on the SMAL dataset. (a) source shape. (b) target shape. (c) interpolation results of
SALD (Atzmon & Lipman, 2021). (d) our results.
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0

0.15

Figure 9: The comparison of the correspondences between our method and NeuroMorph (Eisenberger
et al., 2021) on the DFAUST dataset. We show the correspondence errors on the target shapes. For
each group of shapes, the left is from NeuroMorph, the right is our result.

0

0.15

Figure 10: The comparison of the correspondences between our method and NeuroMorph (Eisen-
berger et al., 2021) on the SMAL dataset. We show the correspondence errors on the target shapes.
For each group of shapes, the left is from NeuroMorph, the right is our result.
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