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Abstract. We propose ViC-MAE, a model that combines both Masked
AutoEncoders (MAE) and contrastive learning. ViC-MAE is trained using
a global representation obtained by pooling the local features learned
under an MAE reconstruction loss and using this representation under a
contrastive objective across images and video frames. We show that visual
representations learned under ViC-MAE generalize well to video and image
classification tasks. Particularly, ViC-MAE obtains state-of-the-art transfer
learning performance from video to images on Imagenet-1k compared to
the recently proposed OmniMAE by achieving a top-1 accuracy of 86%
(+1.3% absolute improvement) when trained on the same data and 87.1%
(+2.4% absolute improvement) when training on extra data. At the same
time, ViC-MAE outperforms most other methods on video benchmarks by
obtaining 75.9% top-1 accuracy on the challenging Something something-
v2 video benchmark. When training on videos and images from diverse
datasets, our method maintains a balanced transfer-learning performance
between video and image classification benchmarks, coming only as a
close second to the best-supervised method.

1 Introduction

Recent advances in self-supervised visual representation learning have markedly
improved performance on image and video benchmarks [11,15,34,35]. This success
has been mainly driven by two approaches: Joint-embedding methods, which
encourage invariance to specific transformations—either contrastive [11,15,35]
or negative-free [6, 18], and masked image modeling which works by randomly
masking out parts of the input and forcing a model to predict the masked parts
with a reconstruction loss [4,26,34,81]. These ideas have been successfully applied
to both images and video.

Self-supervised techniques for video representation learning have resulted in
considerable success, yielding powerful features that perform well across various
downstream tasks [26,27,64,81]. Leveraging image-based models to enhance video
feature representations has gained widespread adoption, evidenced by significant
advancements in robust video representations [2, 47,50]. The reverse—video-to-
image transfer learning—has not been as successful. This imbalance underscores
a nuanced challenge within multimodal learning, and it is not clear how to

https://github.com/jeffhernandez1995/ViC-MAE


2 Hernandez, Villegas and Ordonez

!"#$%&'()#'*$%

+''(,#' +''(,#'
!"-".

!"#$%&'()$

*+('$,- *+('$,.
!"$/,- !"$/,.

Fig. 1:  operates over video frames and images using masked image modeling
at the image and frame level and contrastive learning at the temporal level for videos
and under image transformations for images. Our model represents a strong backbone
for both image and video tasks.

integrate different modalities. Furthermore, attempts to combine these modalities
often result in diminished performance, necessitating tailored adjustments to
the underlying architectures or converting one modality (images) into another
(repeating images to simulate a video). Learning from video should also yield good
image representations since videos naturally contain complex changes in pose,
viewpoint, and deformations, among others. These variations can not be simulated
through the standard image augmentations used in joint-embedding methods or
masked image modeling methods. In this work, we propose a Visual Contrastive
Masked AutoEncoder (), a model that learns from both images and
video through self-supervision, instead treating short videos as the different views
of the same representation, diverging from previous works [29,30]. On transfer
experiments, our model also improves video-to-image transfer performance while
maintaining performance on video representation learning.

Prior work has successfully leveraged self-supervision for video or images
separately using either contrastive learning (i.e. Gordon et al . [31]), or masked
image modeling (i.e. Feichtenhofer et al . [26]).  seeks to leverage the
strength of contrastive learning and masked image modeling and seamlessly
incorporate images. While trivially this has been done by repeating the image to
simulate a still video,  achieves this in the opposite way, treating frames
sampled within short intervals (e.g . 1sec) as an additional form of temporal data
augmentation. Our method uses contrastive learning to align representations
across both time-shifted frames and augmented views, and masked image modeling
for single video frames or images to encourage learning local features. Diverging
from methods that only use a [CLS] token as a global feature, our model aggregates
local features using a global pooling layer followed by a contrastive loss to enhance
the representation further. This structure is built upon the foundation of the
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Vision Transformer (ViT) architecture [23], which has become a standard for
masked image modeling methods.
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Fig. 2:  inputs two distant frames from a video or two different views of an
image within the same batch using a siamese backbone (shared weights), and randomly
masks them, before passing them through a ViT model which learns a representation
of local features using masked image modeling. A global representation of the video
is then constructed by global pooling of the local features learned by the ViT model
trained to reconstruct individual patches using an �2 loss. A standard predictor and a
target encoder are used with a contrastive loss. Our use of an aggregation layer before
the predictor network aids in avoiding the collapse of the learned global representations.

Closely related to our work is the recently proposed OmniMAE [29] which also
aims to be a self-supervised model that can serve as a foundation for image and
video downstream tasks. While our experimental evaluations compare 
favorably especially when relying on the ViT-L architecture (86% top-1 accuracy
on Imagenet vs 84.7%, and 86.8% top-1 accuracy on Kinetics-400 vs 84%),
there are also some fundamental differences in the methodology. OmniMAE relies
exclusively on masked image modeling and treats images as videos, while 
samples frames more sparsely, treating videos within a short time span as the same
view. , leads to reduced training times than video-masked models, while
it demands more resources than a basic MAE (which processes 49 visual tokens at
a 75% masking rate), it is more efficient (handling 98 tokens at the same rate) than
heavier models like OmniMAE or ST-MAE (157 tokens at 90% rate). Surprisingly
with these simplications,  works and achieves high performance on video
and image tasks, learning effective temporal representations when finetuning
on video. Ultimately, we consider our contributions to be orthogonal and could
potentially be integrated to achieve further gains.

Our main empirical findings can be summarized as follows: (i) Treating
short videos as augmented views, and then finetuning on regular videos or
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images yields stronger performance than treating images as videos, while the
end models still retain temporal representations, (ii) training with large frame
gaps (approx 1.06 seconds) between sampled frames enhances classification
performance, providing the kind of strong augmentation that joint-embedding
methods typically require, (iii) including negative pairs in training outperforms
negative-free sample training,1 aligning with other methods that have been
successful in video-to-image evaluations, and (iv) training with strong image
transformations as augmentations is necessary for good performance on images.

Our contributions are as follows: (1) We introduce ViC-MAE, which combines
contrastive learning with masked image modeling that works on videos and images
by treating short videos as temporal augmentations, unlike previous works; (2)
When ViC-MAE is trained only on videos, we achieve state-of-the-art video-to-
image transfer learning performance on the ImageNet-1K benchmark and state-of-
the-art self-supervised performance for video classification on SSv2 [32]; and (3)
We demonstrate that ViC-MAE achieves superior transfer learning performance
across a wide spectrum of downstream image and video classification tasks,
outperforming baselines trained only with masked image modeling. Our source
code and model checkpoints are available here.

2 Related Work
Our work is related to various self-supervised learning strategies focusing on video
and image data, especially in enhancing image representation through video.
Self-supervised Video Learning. Self-supervised learning exploits temporal
information in videos to learn representations aiming to surpass those from
static images by designing pretext tasks that use intrinsic video properties
such as frame continuity [22, 51, 54, 69, 74, 75], alongside with object tracking
[1,62,79,80]. Contrastive learning approaches on video learn by distinguishing
training instances using video temporality [6, 18, 31, 61, 82, 84]. Recently, Masked
Image Modeling (MIM) has used video for pre-training either using the standard
design [34] or an asymmetrical siamese design that predicts future masked
frames conditioned on present unmasked frames [33]; aiding in transfer learning
for various tasks [26,72,81]. Our approach uniquely integrates contrastive learning
and masked image modeling into a single pre-training framework suitable for
image and video downstream applications.
Learning video-to-image representations. Several previous models trained
only on images have demonstrated remarkable image-to-video adaptation [2,47,50].
However, static images lack the dynamism inherent to videos, missing motion
cues and camera view changes. In principle, this undermines image-based models
for video applications. Recent work has leveraged video data to learn robust
image representations to mitigate this. For instance, VINCE [31] shows that
natural augmentations found in videos could outperform synthetic augmentations.
VFS [84] uses temporal relationships to improve results on static image tasks.

1See supplemental material for an evaluation of what we tried and did not work when
combining negative-free methods with masked image modeling

https://github.com/jeffhernandez1995/ViC-MAE
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CRW [82] employs cycle consistency for inter-video image mapping, allowing for
learning frame correspondences. ST-MAE [26] shows that video-oriented masked
image modeling can benefit image-centric tasks. VITO [61] develops a technique
for video dataset curation to bridge the domain gap between video and images.
Learning general representations from video and images. Research has
progressed in learning from video and images, adopting supervised or unsuper-
vised approaches. The recently proposed TubeViT [63] uses sparse video tubes
for creating visual tokens across images and video. OMNIVORE [30] employs
a universal encoder for multiple modalities with specific heads for each task.
PolyViT [48] additionally trains with audio data, using balanced task-training
schedules. Expanding on the data modalities, ImageBind [28] incorporates audio,
text, and various sensor data, with tailored loss functions and input sequences to
leverage available paired data effectively. In self-supervised learning, BEVT [77]
adopts a BERT-like approach for video, finding benefits in joint pre-training
with images. OmniMAE [29] proposes masked autoencoding for joint training
with video and images. OmniVec [70] extends the datasets using in OMNIVORE,
creates new task training policies, and adds masked autoencoding as an aux-
iliary task to learn from multiple modalities. ViC-MAE learns from video and
image datasets without supervision by combining masked image modeling and
contrastive learning.
Combining contrastive methods with masked image modeling. Con-
trastive learning combined with masked image modeling has been recently inves-
tigated. MSN [3] combines masking and augmentations for efficient contrastive
learning, using entropy maximization instead of pixel reconstruction to avoid
representational collapse, achieving notable few-shot classification performance on
ImageNet-1k. CAN [55] uses a framework that combines contrastive and masked
modeling, employing a contrastive task on the representations from unmasked
patches and a reconstruction plus denoising task on visible patches. C-MAE [39]
uses a Siamese network design comprising an online encoder for masked inputs and
a momentum encoder for full views, enhancing the discrimination power of masked
autoencoders which usually lag in linear or KNN evaluations. C-MAE-V [52]
adapts C-MAE to video, showing improvements on Kinetics-400 and Something
Something-v2. MAE-CT [43] leverages a two-step approach with an initial masked
modeling phase followed by contrastive tuning on the top layers, improving linear
classification on masked image modeling-trained models. Our ViC-MAE sets itself
apart by effectively learning from images and videos within a unified training
approach, avoiding the representational collapse seen in C-MAE through a novel
pooling layer and utilizing dual image crops from data augmentations or different
video frames to improve modality learning performance.

3 Method

We propose ViC-MAE for feature learning on video and images, which works using
contrastive learning at the temporal level (or augmentations on images) and
masked image modeling at the image level.
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3.1 Background

We provide below some background terminology and review of closely related
methods that we build upon.
Masked image modeling. This approach provides a way to learn visual
representations in a self supervised manner. These methods learn representations
by first masking out parts of the input and then training a model to fill in the
blanks using a simple reconstruction loss. To do this, these methods rely on an
encoder fθ that takes the non-masked input and learns a representation x, such
that a decoder dϕ can reconstruct the masked part of the input. More formally,
let x be the representation learned by the encoder for masked image I with mask
M such that fθ(I ⊙M). A decoder d is then applied to obtain the first loss over
masked and unmasked tokens dϕ(x). This defines the following reconstruction
loss which is only computed over masked tokens:

LMASK
I = ∥dϕ(fθ(I ⊙M))⊙ (1−M)− I ⊙ (1−M)∥2 . (1)

Contrastive learning. In common image-level contrastive methods, learning
with negatives is achieved by pushing the representation of the positive pairs
(different augmented views of the same image) to be close to each other while
pulling the representation of negative pairs further apart. More formally, let I and
I ′ be two augmented views of the same image. Contrastive learning uses a siamese
network with a prediction encoder P and a target encoder T [15,84]. The output
of these networks are ℓ2-normalized: p = P(I)/∥P(I)∥2, and z = T (I ′)/∥T (I ′)∥2.
Given a positive pair from a minibatch of size N , the other 2(N − 1) examples
are treated as negative examples. The objective then is to minimize the Info-
NCE loss [58]. When learning with negatives, P and T typically share the same
architecture and model parameters.

3.2 ViC-MAE

We propose a novel approach for learning representations by applying masking
image modeling at the individual image level, paired with image-level similarity
using either sampled frames or augmented images. Unlike previous methods that
inefficiently replicate images to mimic video input, thereby utilizing more compu-
tational resources, our methodology treats short video segments as augmented
instances of a single view. This perspective not only enhances the efficiency of the
learned representations but also significantly broadens the applicability of our
model. ViC-MAE offers a versatile "plug and play" solution for image-based tasks.
Furthermore, our model can easily be fine-tuned for video tasks and adapted
to videos of varying sizes, unlike the traditional 16 frames. Figure 2 shows an
overview of our model.

Given a video with T frames {I1, I2, · · · , IT }, we sample two frames Ii, Ij as
a positive pair input during one training step. We augment single images when
they appear in a batch. Notice that our model sees a batch comprising frames and
images. After an input image tokenizer layer, we obtain a set of patch-level token
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representations of Xi and Xj for each frame. Then, we apply token masking
by generating a different random mask Mi and Mj and apply them to both of
the corresponding input frames to obtain a subset of input visible tokens X

(v)
i

and X
(v)
j . These visible token sets are then forwarded to a ViT encoder, which

computes a set of representations fθ(X
(v)
i ) and fθ(X

(v)
j ) respectively. Finally,

for the first image, we compute Îi = dϕ(fθ(X
(v)
i + fm)) where we have added a

mask token fm to let the decoder know which patches were masked and allows to
predict patch-shaped outputs through Îi. These output patches are then trained
to minimize the ℓ2 loss with the true patches in the input image:

LMASK
i = ∥Îi − Ii∥22. (2)

To apply contrastive pre-training we use a separate prediction branch in the
network by applying a global pooling operator Ω over the output representations
fθ(X

(v)
i ) from the main branch and fθ(X

(v)
j ) from the siamese copy of the

network. This step simplifies the formulation of our method and avoids using
additional losses or the gradient-stop operator as in SimSiam [18] to avoid
feature representation collapse since the pooled features can not default to the
zero vector as they also are being trained to reconstruct patches. We experiment
using various aggregation methods, including mean pooling, max pooling, and
generalized mean (GeM) pooling [65].

These global representations are then forwarded to a predictor encoder P and
a target encoder T to obtain frame representations:

pi ≜ P(Ω(fθ(X
(v)
i )))/∥P(Ω(fθ(X

(v)
i ))))∥2,

and
zj ≜ T (Ω(fθ(X

(v)
j )))/∥T (Ω(fθ(X

(v)
j ))))∥2

respectively. The predictor network P and target network T are symmetrical and
we use standard blocks designed for contrastive learning [6, 15, 18]. These blocks
consist of a Linear → BatchNorm1d → ReLU block repeated 2 times. From these
representations, we apply the InfoNCE contrastive learning loss as follows:

LNEG
pi,zj = − log

exp(pi · zj/τ)∑2N
k=1 1[pi ̸= zk]exp(pi · zk/τ)

, (3)

where the denominator includes a set of negative pairs with representations zk
computed for frames from other videos, the same video but at a time longer than
the selected time shift and images in the same batch, 1[pi ̸= zk] ∈ {0, 1} is an
indicator function evaluating to 1 when pI ̸= zk and τ denotes a temperature
parameter.

The final loss is L = LMASK+λLNEG, where λ is a hyperparameter controlling
the relative influence of both losses. In practice, we use a schedule to gradually
introduce the contrastive loss and let the model learn good local features at the
beginning of training.
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Table 1: Transfer learning results from video and image pre-training to
various datasets using the ViT/L-16 backbone. The pre-training data is a video
dataset (MiT, K600, K700, or K400) and/or image dataset (IN1K). All self-supervised
methods are evaluated end-to-end with supervised finetuning on IN1K, Kinetics-400,
Places365, and SSv2. Best results are in bold. Results of MAE, ST-MAE, and VideoMAE
for out-of-domain data were taken from Girdhar et al . [29].

Method Arch. Pre-training Data
In-Domain Out-of-Domain

IN1K K400 Places-365 SSv2

Su
pe

rv
is

ed

ViT [23] ICML’20 ViT-B IN1K 82.3 68.5 57.0 61.8
ViT [23] ICML’20 ViT-L IN1K 82.6 78.6 58.9 66.2
COVeR [86] arXiv’21 TimeSFormer-SR JFT-3B+ K400+ MiT + IN1K 86.6 87.2 - 70.9
OMNIVORE [30] CVPR’22 ViT-B IN1K + K400 + SUN RGB-D 84.0 83.3 59.2 68.3
OMNIVORE [30] CVPR’22 ViT-L IN1K + K400 + SUN RGB-D 86.0 84.1 – –
TubeViT [63] CVPR’23 ViT-B K400 + IN1K 81.4 88.6 – –
TubeViT [63] CVPR’23 ViT-L K400 + IN1K – 90.2 – 76.1

Se
lf-

Su
pe

rv
is

ed

MAE [34] CVPR’22 ViT-B IN1K 83.4 – 57.9 59.6
MAE [34] CVPR’22 ViT-L IN1K 85.5 82.3 59.4 57.7
ST-MAE [26] NeurIPS’22 ViT-B K400 81.3 81.3 57.4 69.3
ST-MAE [26] NeurIPS’22 ViT-L K400 81.7 84.8 58.1 73.2
VideoMAE [72] NeurIPS’22 ViT-B K400 81.1 80.0 – 69.6
VideoMAE [72] NeurIPS’22 ViT-L K400 – 85.2 – 74.3
OmniMAE [29] CVPR’23 ViT-B K400 + IN1K 82.8 80.8 58.5 69.0
OmniMAE [29] CVPR’23 ViT-L K400 + IN1K 84.7 84.0 59.4 73.4

ViC-MAE ViT-L K400 85.0 85.1 59.5 73.7
ViC-MAE ViT-L MiT 85.3 84.9 59.7 73.8
ViC-MAE ViT-B K400 + IN1K 83.0 80.8 58.6 69.5
ViC-MAE ViT-L K400 + IN1K 86.0 86.8 60.0 75.0

ViC-MAE ViT-B K710+ MiT + IN1K 83.8 80.9 59.1 69.8
ViC-MAE ViT-L K710 + MiT + IN1K 87.1 87.8 60.7 75.9

4 Experiment Settings

We perform experiments to demonstrate the fine-tuning performance of our
method on ImageNet-1k and other image recognition datasets. We also evaluate
our method on the Kinetics-400 dataset [40] and Something Something-v2 [32]
for action recognition to show that our model is able to maintain performance
on video benchmarks. Full details are in the supplemental material.
Architecture. We use the standard Vision Transformer (ViT) architecture [23]
and conduct experiments fairly across benchmarks and methods using the ViT-
B/16 and ViT-L/16 configurations. For masked image modeling, we use a small
decoder as proposed by He et al . [34]. Finetunig on images requires no changes
since this resembles the pre-training configuration. Finetuning on videos is as
follows: we initialize the temporal tokenizer by replicating the spatial tokens
along the temporal dimension scaled by the length of the video, similarly, we
initialize the MHA parameters by replicating them but skip the scaling for them.
We use the standard of finetuning on videos of 16 frames, skipping 4.
Pre-Training. We adopt Moments in Time [56], Kinetics-400 [40], and ImageNet-
1k [21] as our main datasets for self supervised pre-training. They consist of
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∼1000K and ∼300K videos of varied length respectively, and ∼1.2M images for
Imagenet-1k. We sample frames from these videos using distant sampling, which
consists of splitting the video into non-overlapping sections and sampling one
frame from each section. Frames are resized to a 224 pixel size, horizontal flipping,
and random cropping with a scale range of [0.5, 1], as the only data augmentation
transformations on video data. Random cropping (with flip and resize), color
distortions, and Gaussian blurring are used for the image modality. For our largest
training run, we combine the training sets of Kinetics-400 [40], Kinetics-600 [12],
and Kinetics-700 [13], with duplicates removed based on YouTube IDs. We also
exclude K400 videos used for evaluation from training to avoid leakage. This
process results in a unique, diverse dataset of ∼665K samples, which we label
K710, following [76].
Settings. We follow previously used configurations for pre-training [26,34]. We
use the AdamW optimizer with a batch size of 512 per device. We evaluate the
pre-training quality by end-to-end finetuning. When evaluating on video datasets
we follow the common practice of multi-view testing: taking K temporal clips
(K = 7 on Kinetics) and for each clip taking 3 spatial views to cover the spatial
axis (this is denoted as K × 3). The final prediction is the average of all views.

5 Results and Ablations

We first perform experiments to analyze the different elements of the ViC-MAE
framework. All the experiments are under the learning with negative pairs setting
using mean pooling over the ViT features. Linear evaluation and end-to-end
finetuning runs are done over 100 epochs for ImageNet-1k, see supplemental
material for more details. For our ablations, we restrict ourselves to the ViT-B/16
architecture pre-trained over 400 epochs unless specified otherwise.

5.1 Main result

Our main result evaluates ViC-MAE on two in-domain datasets that were used
during training for most experiments: ImageNet-1K (images) and Kinetics-400
(video), and two out-of-domain datasets that no methods used during training:
Places-365 [87] (images) and Something-something-v2 (video). Table 1 shows
our complete set of results including comparisons with the state-of-the-art on
both supervised representation learning (typically using classification losses), and
self-supervised representation learning (mostly using masked image modeling).
We consider mostly recent methods building on visual transformers as the most
recent TubeViT [63] which relies on this type of architecture.2

Our most advanced version of ViC-MAE trained on five datasets (Kinetics-
400, Kinetics-600, Kinetics-700, Moments in Time, and Imagenet-1k) using the
ViT-Large architecture performs the best across all metrics on all datasets
2Previous methods also use different backbones [31, 82, 84] i.e. ResNet-50. They obtain
54.5%, 33.8%, and 55.6% top-1 accuracies on linear evaluation on ImageNet-1k. Since
those works do not use the same setting, we do not include them here.



10 Hernandez, Villegas and Ordonez

Table 2: Comparison of transfer learning performance of our approach with
supervised baselines across 8 natural image classification datasets. All results correspond
to linear evaluation. Best results are shown in bold. ‡MAE trained on MiT and K400
randomly sample a frame from the video to compute a reconstruction loss; these models
are trained and evaluated by us. See supplemental material for more evaluation of
transfer learning performance.

Model Pre-train. Food CIFAR10 CIFAR100 Birdsnap SUN397 VOC2007 DTD Caltech101

V
iT

/B
-1

6 MAE [34] ‡ K400 74.54 94.86 79.49 46.51 64.33 83.07 78.01 93.28
MAE [34] ‡ MiT 76.23 94.47 79.50 47.98 65.32 83.46 78.21 93.08
ViC-MAE (ours) K400 76.56 93.64 78.80 47.56 64.75 83.74 78.53 92.27
ViC-MAE (ours) MiT 77.39 94.92 79.88 48.21 65.64 84.77 79.27 93.53

V
iT

/L
-1

6 MAE [34] IN1K 77.5 95.0 82.9 49.8 63.2 83.3 74.5 94.8
OmniMAE [29] SSv2+IN1K 76.2 94.2 82.2 50.1 62.6 82.7 73.9 94.4
ViC-MAE (ours) IN1K+K400 81.9 95.6 85.4 52.8 67.3 84.2 76.8 94.9
ViC-MAE (ours) K710+MiT+IN1K 82.9 96.8 86.5 53.5 68.1 85.3 77.8 96.1

compared to all previous self-supervised representation learning methods and
even outperforms the supervised base model OMNIVORE [30] on Imagenet-1k
with a top-1 accuracy of 87.1% vs 86%. As well as, COVeR [86] a model trained on
a similar data mix, except that it uses more images, COVeR gets 86.6% vs 87.1%
on Imagenet-1k. ViC-MAE also comes a close second to other supervised methods
and roughly matches the performance of TubeViT [63] which obtains 76.1% top-1
accuracy on Something something-v2 compared to our 75.9% top-1 accuracy.
When compared to the current self-supervised state-of-the-art OmniMAE using
the same ViT-Large architecture and the same datasets for pre-training (Kinetics-
400 and Imagenet-1k), ViC-MAE also outperforms OmniMAE in all benchmarks
(Imagenet: 86% vs. 84.7%, Kinetics-400: 86.8% vs. 84%, Places-365: 60% vs.
59.4% and SSv2: 75% vs 73.4%).

Another important result is video-to-image transfer, where the model is only
trained on video but its performance is tested on downstream image tasks. Table 1
shows that when ViC-MAE is trained on the Moments in Time dataset [56], it
achieves the best top-1 accuracy of 85.3% for any self-supervised backbone model
trained only on video. These results highlight the closing gap in building robust
representations that can work seamlessly across image and video tasks.

5.2 Comparison with other contrastive masked autoencoders.

Combining MAE with joint-embedding methods is non-trivial. In our first at-
tempts, we used the [CLS] token as the representation and applied negative
free methods such as VicReg [6], and SimSiam [18] with limited success (See
supplemental material). When combined with contrastive methods, we found it
best to use a pooling operation over the ViT features similar to CAN [55], as we
find worse performance when the [CLS] token is used, like in C-MAE [39]. The
original MAE [34] is known to have poor linear evaluation performance, obtain-
ing 68% in IN1K linear evaluation when pre-trained on IN1K [34, 43]. On the
contrary, SimCLR [16] a model trained only using contrastive learning on IN1K
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Table 3: ViC-MAE ablation experiments with ViT/B-16. We present linear evaluation
results on the ImageNet-1K dataset.

(a) Ablation on frame sepa-
ration. 0: sample same frame,
D: distant sampling, and > 0
continuous sampling.

Frame separation ImageNet-1K

Top-1 Top-5

0 63.25 83.34
2 64.47 84.31
4 65.25 84.64
8 65.89 84.91

D 67.66 86.22

(b) Ablation on pooling
type. The hyperparameter λ is
set to 0.025 and introduced us-
ing a schedule.

Pooling type Top-1 Top-5

GeM 66.92 85.50
max 67.01 85.59
mean 67.66 86.22

(c) Ablation on different
augmentations.We use a com-
bination of different color and
spatial augs.

Color
Augm.

Spatial
Augm.

ImageNet-1K

Top-1 Top-5

65.40 84.03
66.03 85.01
67.66 86.22

achieves 73.5%. Several works have tried to address this by combining contrastive
learning with masked image modeling to get the best of both worlds. CAN [55],
C-MAE [39] and MAE-CT [43] obtain linear evaluation accuracies of 74.0%, 73.9,
73.4%, respectively when trained on IN1K while ViC-MAE obtains 74.0% trained
only on IN1K using ViT/B-16 pre-trained for 800 epochs to make the comparison
fair. When using the K400 and IN1K datasets together for pre-training, we get
73.6%, but we highlight that ViC-MAE can now maintain good performance in
videos and images using the same pre-trained model.

5.3 Transfer Learning Experiments

In this section, we evaluate our pre-trained models from Table 1 for transfer
learning on downstream tasks.

Video-to-image transfer learning performance. We evaluate transfer learn-
ing performance of ViC-MAE across a diverse array of 12 downstream image
classification tasks [7, 9, 19, 25, 41,42, 53, 57, 60,83]. (Due to space constraints, we
have shown the six most significant ones. See supplemental material for the full
table.) Table 2 shows the results of four models based on a ViT/B backbone. We
perform linear evaluation. We train two models using two video datasets. The
first model is a baseline MAE model pre-trained on randomly sampled frames
from videos on the Moments in Time and Kinetics-400 datasets. The second
model is our full ViC-MAE model pre-trained on each of the same two datasets.
Our model significantly outperforms the other baselines on 9 out of 12 datasets,
whereas the MAE trained on Kinetics is superior on only 3 (i.e. Cars, Aircraft,
and Pets). When scaling the size of our models, we see that ViC-MAE surpasses
all models, including OmniMAE [29] trained on SSv2+IN1K3

Object detection and segmentation. We finetune Mask R-CNN [36] end-
to-end on the COCO dataset. We adapted the ViT backbone to be used with
the FPN, following the recipe outlined in Li et al . [46]. We apply this approach
3These are the only publicly available checkpoints of OmniMAE
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Table 4: COCO object detection and segmentation using a ViT-B Mask R-CNN
baseline. All entries use data without labels.

Method pre-train data APBox APMask

MAE [34] IN1K 50.3 44.9
C-MAE [39] IN1K 52.4 46.5
ViC-MAE IN1K+K400 52.5 46.5
ViC-MAE IN1K+K710+MiT 53.2 46.9

to ViC-MAE and take the other results from their respective paper. See Table 4.
Compared with previous methods, ViC-MAE outperforms other approaches under
the same configurations. Specifically, when utilizing the combined IN1K+K400
dataset, ViC-MAE achieves a box AP of 52.5 and a mask AP of 46.5, slightly
improving over C-MAE, which stands at 52.4 for box AP and 46.5 for mask
AP. More notably, with the expanded dataset of IN1K+K710+MiT, ViC-MAE
significantly advances the state-of-the-art, achieving the highest reported scores
of 53.2 for box AP and 46.9 for mask AP.

5.4 Ablations

We investigate the effect of scaling the data used to train ViC-MAE, the effect
of the ratio of image to videos in pre-training, our choice of frame separation,
the choice of pooling operator, and the choice of data augmentations. An extra
ablation probing the temporal representation learning of our method can be
found in the supplemental material.
Influence of pre-training data. We perform an ablation study to the effect
of scaling the data points seen by the model. The pre-training data includes
Kinectis-400, ImageNet-1K, Kinectis-600 + Kinectis-700, and the Moments in
Time datasets added in that order. We pre-train a ViT/B-16 using ViC-MAE
for 400 epochs. As illustrated in Figure 3a, as we progressively increase the
dataset size, our ViC-MAE, shows a steady increase in IN1K top-1 accuracy. This
is remarkable when compared to CAN [55], pre-trained on the JFT-300M dataset
for 800 epochs that only reaches an accuracy of 84.4%. This shows that our
model, when supplied with only about 1.5% of the data that CAN was trained
on (4.25M vs. 300M), can achieve comparable accuracy levels.
Contrastive vs Masking-only pre-training We perform an ablation study to
the effect of varying the ratio of images to video in the dataset by replicating the
entire dataset; notice that the number of training updates changes when doing
this. The pre-training data includes Kinectis-400 and ImageNet-1K. We pre-train
a ViT/B-16 using ViC-MAE for 400 epochs. As illustrated in Figure 3b, as we
progressively increase the ratio of images to videos, our ViC-MAE, surpasses the
OmniMAE model [84], meaning that contrastive plus masking pre-training is
better able to use image and video data than masking-only pre-training.
Frame separation. We aim to explore the effect of frame separation on model
performance. We follow the two methods of sampling frames from Xu et.al [84].
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(a)  ViT/B-16 finetuned on IN1K for
100 epochs, compared with CAN pre-trained on
JFT-300M, C-MAE, and MAE-CT pre-trained
on ImageNet-1K. We increase the amount of data
points by adding more video datasets. We can
see that our model reaches similar accuracy with
≈ 4.25M data points compared to the 300M of
the JFT-300M dataset.

(b)  using the ViT/B-16 architecture fine-
tuned on IN1K for 100 epochs, compared with
OmniMAE. We vary the ratio of images vs video
in the dataset, from no images to only images.
We can see that  can better utilize the
videos and images on the dataset compared to
masking-only pre-training.

Fig. 3: Additional comparisons with the state-of-the-art and recently proposed methods.

Results are shown in Table 3a. The first approach, Continuous sampling, involves
selecting a start index i and sampling a frame within (i, i+ δ], where δ represents
the frame separation, with a separation of 0 meaning identical frames for predictor
and target networks. The second, Distant sampling, divides the video into n equal
intervals, corresponding to the number of frames for contrastive learning, and
randomly selects one frame from each interval.

In our experiment, we observe that increasing the frame separation when
using continuous sampling increases model performance. We observe the best
performance using distant sampling with n = 2 (labeled D in Table 3a). We posit
that further increasing frame separation offers potentially stronger augmentations.
In the following experiments, we only use strong spatial augmentations combined
with distant frame sampling.
Pooling type. We test which operator Ω used to aggregate local features
performs best at producing global features. We report our results in Table 3b. We
try common types of pooling (mean, max ) as well as, generalized mean pooling.
We found mean to be more effective in creating a global representation for video,
and we use it for all other experiments.
Adding strong augmentations to video frames In our ablation study,
we investigated the necessity of strong color augmentations for video frames
during joint training with the target encoder, as commonly applied to images.
The findings, detailed in Table 3c, indicate a performance decrease of over
2% in linear evaluation on the Imagenet dataset when applying solely color
augmentations without spatial adjustments. Interestingly, employing color and
spatial augmentations does not outperform strong spatial augmentations alone.
This diverges from prior approaches that rely heavily on color augmentations for
effective contrastive learning, suggesting that the inherent temporal variations in
video frames may suffice. However, for image datasets, the combination of strong
color and spatial augmentations remains necessary.
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5.5 Limitations

Our proposed model is able to learn representations from video and image
data that transfer to several downstream tasks and surpasses previous models
on the same set-up. Given a similar setup, ViC-MAE matches prior results on
Kinetics-400, trailing only to supervised models such as TubeViT [63] by 7.1%
on ViT/B-16 and 2.4% on ViT/L-16, and MVT [85] slightly on ViT/B-16 but
surpasses it by 3.5% on ViT/L-16. It also exceeds MViTv1 [24], TimeSformer [8],
and ViViT [2] by margins up to 7.3% on ViT/L-16. Compared to self-supervised
models, ViC-MAE falls behind MaskFeat [81] by 0.7% on ViT/B-16 but excels on
ViT/L-16 by 3.5%. Our model surpasses V-JEPA [5] by margins up to 1.1% but
falls behind VideMAEV2 [76] by 0.8% on ViT/L-16. It is slightly outperformed
by DINO [11] and more substantially by models using extra text data or larger
image datasets, such as UMT [45], MVD [78], and UniFormerV2 [44], by up to
4.2% on ViT/B-16 and 2.8% on ViT/L-16. Future work could consider leveraging
additional weak supervision through other modalities such as text [10, 37, 66],
audio [67,71], 3D geometry [68] or automatically generated data [14,38].

When compared against state-of-the-art ImageNet-pretrained models with
comparable computational resources, video-based models, including ours, typi-
cally fall short. However, including image and video modalities shows promise
in boosting performance. Against models using masked image modeling and
contrastive learning, ViC-MAE modestly surpasses MAE [34] by 1.6%, Mask-
Feat [81] by 1.4% and iBOT [88] by 0.5% with the ViT/L-16 architecture. It
also edges out MoCov3 [17] and BeiT [4] by 3% and 1.9% respectively on the
same architecture. Yet, it lags behind DINOv2 [59] by 1.2% for ViT/L-16. When
compared to supervised models using additional image data, such as DeiT-III [73]
and SwinV2 [49] and the distilled ViTs’ from [20], our model shows a lag behind
of 0.8%, 1.2% and 2.5% respectively on ViT/L-16. These results show that the
gap from models pre-trained purely on video still exists, but we believe ViC-MAE
pre-trained on image and video data is a step forward in closing that gap.

6 Conclusion

In this work, we introduce ViC-MAE, a method that allows to use unlabeled videos
and images to learn useful representation for image recognition tasks. We achieve
this by randomly sampling frames from a video or creating two augmented views
of an image and using contrastive learning to pull together inputs from the same
video and push apart inputs from different videos, likewise, we also use masked
image modeling on each input to learn good local features of the scene presented
in each input. The main contribution of our work is showing that it is possible
to combine masked image modeling and contrastive learning by pooling the local
representations of the MAE prediction heads into a global representation used
for contrastive learning. The design choices that we have taken when designing
ViC-MAE show that our work is easily extensible in various ways. For example,
improvements in contrastive learning for images can be directly adapted into our
framework. Likewise, pixel reconstruction can be replaced by features important
for video representation such as object correspondences or optical flow.
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