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Abstract. Threshold signatures are one of the most important crypto-
graphic primitives in distributed systems. A popular choice of threshold
signature scheme is the BLS threshold signature introduced by Boldyreva
(PKC’03). Some attractive properties of Boldyreva’s threshold signa-
ture are that the signatures are unique and short, the signing process is
non-interactive, and the verification process is identical to that of non-
threshold BLS. These properties have resulted in its practical adoption
in several decentralized systems. However, despite its popularity and
wide adoption, up until recently, the Boldyreva scheme has been proven
secure only against a static adversary. Very recently, Bacho and Loss
(CCS’22) presented the first proof of adaptive security for the Boldyreva
scheme, but they have to rely on strong and non-standard assumptions
such as the hardness of one-more discrete log (OMDL) and the Alge-
braic Group Model (AGM). In this paper, we present the first adap-
tively secure threshold BLS signature scheme that relies on the hard-
ness of DDH and co-CDH in asymmetric pairing groups in the Random
Oracle Model (ROM). Our signature scheme also has non-interactive
signing, compatibility with non-threshold BLS verification, and practi-
cal efficiency like Boldyreva’s scheme. These properties make our proto-
col a suitable candidate for practical adoption with the added benefit of
provable adaptive security.

1 Introduction

Threshold signatures schemes [32,33,42] protect the signing key by sharing it
among a group of signers so that an adversary must corrupt a threshold number
of signers to be able to forge signatures. The increasing demand for decentralized
applications has resulted in large-scale adoptions of threshold signature schemes.
Many state-of-the-art Byzantine fault tolerant protocols utilize threshold signa-
tures to lower communication costs [6,40,43,55,57,71]. Efforts to standardize
threshold cryptosystems are already underway [19].

A popular choice of threshold signature is the BLS signature, introduced by
Boldyreva [15] building on the work of Boneh-Lynn-Shacham [16]. Boldyreva’s
BLS threshold signature scheme is popular because its verification is identical to
standard non-threshold BLS signature, its signing process is non-interactive, the
signatures are unique and small (a single elliptic curve group element), and the
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scheme is very efficient in terms of both computation and communication. These
properties have resulted in practical adoptions of Boldyreva’s BLS threshold
signature for applications in the decentralized setting [1–4].

Static vs. Adaptive Security. However, despite its popularity and wide adop-
tion, until recently, Boldyreva’s scheme has been proven secure only against a
static adversary. A static adversary must decide the set of signers to corrupt at
the start of the protocol. In contrast, an adaptive adversary can decide which
signers to corrupt during the execution of the protocol based on its view of the
execution. Clearly, an adaptive adversary is a safer and more realistic assumption
for the decentralized setting.

Designing an adaptively secure threshold signature scheme (BLS or other-
wise) is challenging, let alone keeping it compatible with a non-threshold signa-
ture scheme. The generic approach to transforming a statically secure protocol
into an adaptive one by guessing the set of parties an adaptive adversary may
corrupt incurs an unacceptable exponential (in the number of parties) security
loss. Existing adaptively secure threshold signature schemes in the literature
have to make major sacrifices such as relying on parties to erase their internal
states [23,54], inefficient cryptographic primitives like non-committing encryp-
tions [46,56], or strong and non-standard assumptions such as one more discrete
logarithm (OMDL) in the algebraic group model (AGM) [8,28]. To make matters
worse, for Boldyreva’s variant of BLS signatures in particular, the recent work
of Bacho-Loss [8] proves that a strong assumption such as OMDL is necessary.

Our Results. We present an adaptively secure BLS threshold signature scheme.
Our scheme retains the attractive properties of Boldyreva’s scheme: signing is
non-interactive, verification is identical to non-threshold BLS, and the scheme
is simple and efficient.

The adaptive security proof of our signature scheme assumes the hardness of
the decisional Diffie-Hellman (DDH) problem in a source group and the hard-
ness of the co-computational Diffie-Hellman (co-CDH) problem in asymmetric
pairing groups in the random oracle model (ROM). To put things into perspec-
tive, note that the standard non-threshold BLS signature assumes hardness of
computational Diffie-Hellman (CDH) in pairing groups1 in the ROM. Thus, our
scheme only relies on DDH besides what standard non-threshold BLS signature
already relies on. Moreover, if one is content with proving our scheme statically
secure, we only need CDH in the ROM, as in the standard BLS signature.

In terms of efficiency, our scheme is only slightly more expensive than the
Boldyreva scheme [15]. The signing key of each signer consists of three field
elements compared to one in Boldyreva. The threshold public keys consist of
n group elements in total, identical to Boldyreva. Here n is the total number
of signers. Our per-signer signing cost and partial signature verification cost of
the aggregator are also small. We implement our scheme in Go and compare its
performance with Boldyreva’s scheme. Our evaluation confirms that our scheme
adds very small overheads.

1 The standard non-threshold BLS signature scheme can also work with symmetric
pairing groups and hence the CDH assumption instead of co-CDH.
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We also describe a distributed key generation (DKG) protocol to secret share
the signing key of our scheme. Our DKG adds minimal overhead compared to
existing DKG schemes.

All of the above properties combined make our scheme a suitable candi-
date for a drop-in replacement for BLS signature in deployment systems, and
a worthwhile trade-off for the added benefit of provable adaptive security at
modest performance cost.

Paper Organization. We discuss the related work in §2 and present a technical
overview of our scheme in §3. In §4, we describe the required preliminaries.
We then describe our threshold signature scheme assuming a trusted party for
generating signing keys in §5, and prove its adaptive security in §6. Next, in §7,
we describe a DKG protocol that parties can use to generate signing keys in a
distributed manner and briefly discuss how we prove the adaptive security with
DKG. We analyze the properties of the DKG protocol, and prove the adaptive
security of our threshold signature scheme with the DKG in the full version. We
discuss the implementation and evaluation details in §8, and conclude with a
discussion in §9.

2 Related Works

Threshold signature schemes were first introduced by Desmedt [32]. Since then,
numerous threshold signature schemes with various properties have been pro-
posed. Most of the natural and popular threshold signature schemes are proven
secure only against a static adversary [10,12,15,22,26,27,32,41,42,45,51,62,65–
67]. The difficulty in proving adaptive security usually lies in the reduction algo-
rithm’s inability to generate consistent internal states for all parties. As a result,
the reduction algorithm needs to know which parties will be corrupt, making
the adversary static [10]. We will next review threshold signatures with adaptive
security. We classify them into interactive and non-interactive schemes.

Interactive Threshold Signatures. In an interactive threshold signature,
signers interact with each other to compute the signature on a given message.
The first adaptively secure threshold signatures were independently described
by Canetti et al. [23] and Frankel et al. [36,37]. They prove adaptive security of
their threshold signature scheme by introducing the “single inconsistent player”
(SIP) technique. In the SIP approach, there exists only one signer whose inter-
nal state cannot be consistently revealed to the adversary. Since this inconsistent
signer is chosen at random, it is only corrupt with probability less than 1/2 for
n > 2t. These schemes also rely on secure erasure.

Lysyanskaya-Peikert [56] and Abe and Fehr [5] use the SIP technique along
with expensive cryptographic primitives such as threshold homomorphic encryp-
tions and non-committing encryptions, respectively, to design adaptively secure
threshold signatures without relying on erasures. Later works [7,69] extend the
SIP technique to Rabin’s threshold RSA signature [61] and the Waters [70] sig-
natures. A major downside of all these works is the high signing cost. For every
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message, signers need to run a protocol similar to a DKG protocol. Concur-
rently and independently, [9] presents a three-round adaptively secure threshold
signature scheme assuming the hardness of DDH.

Non-interactive Threshold Signatures. A non-interactive threshold signa-
ture requires each signer to send a single message to sign. Practical, robust,
non-interactive threshold signatures were described by Shoup [65] under the
RSA assumption and by Katz and Yung [49] assuming the hardness of factor-
ing. Boldyreva [15] presented a non-interactive threshold BLS signature scheme.
Until recently, these schemes were proven secure against static adversaries only.

Bacho and Loss [8] recently proved adaptive security for Boldyreva’s scheme
based on the One More Discrete Logarithm (OMDL) assumption in the Ran-
dom Oracle Model (ROM) and Algebraic Group Model (AGM). Their method
addresses the challenge of revealing internal states of corrupt nodes to the adver-
sary by giving the reduction adversary limited access to discrete logarithm oracle.
(This approach has since been extended to the interactive threshold Schnorr sig-
nature [28].) Bacho-Loss [8] also proves that reliance on OMDL is necessary for
proving Boldyreva’s BLS signature adaptively secure. This implies that a new
protocol is needed to prove adaptive security under more standard assumptions.

Libert et al., [53] presented a pairing-based, non-interactive threshold signa-
ture scheme assuming the hardness of the double-pairing assumption. However,
their signature scheme is incompatible with standard BLS signature verification
and thus cannot be a drop-in replacement for BLS in deployment systems. The
signature size of their scheme is also twice as large as a BLS signature. Very
recently, [30,39] also present pairing-based non-interactive threshold signatures
with adaptive security. However, their signatures are also incompatible and more
than 5× larger than BLS signatures.

3 Technical Overview

We need to introduce several new ideas to design a new BLS threshold signa-
ture scheme and prove it adaptively secure. First, we introduce a new way of
embedding the co-CDH input into a simulation of our scheme. Since we want
our final signature to be a standard BLS signature, and BLS signatures are
deterministic, these changes are delicate. Moreover, we embed the co-CDH chal-
lenge in such a way that during simulation, it remains indistinguishable from
an honest execution of the protocol. This should hold, even if we use a DKG to
generate the signing keys. We address this as follows. In our security proof, the
reduction adversary can simulate the DKG and the threshold signature scheme
to the adversary by faithfully running the protocol on behalf of all but one
honest signer, i.e., we work with the single inconsistent party (SIP) technique.
Second, we use a new approach to program two random oracles in a correlated
way while ensuring that it remains indistinguishable from uniformly random to a
computationally bounded adversary. This step is crucial for the reduction adver-
sary to simulate signing queries.
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Boneh-Lynn-Sacham (BLS) Signature Scheme [16]. Before we describe
our techniques, we briefly recall the non-threshold BLS signature scheme. Let
(G, Ĝ, GT ) be a tuple of prime order pairing groups with scalar field F. Let M
be the finite message space of the signature scheme. Let g ∈ G be a uniformly
random generator of G and H : M → Ĝ be a hash function modeled as a random
oracle. The signing key sk = s ∈ F is a random field element, and pk = gs ∈ G

is the corresponding public verification key. The signature σ on a message m
is then H(m)sk ∈ Ĝ. Any verifier validates a signature σ′ on a message m by

checking that e(pk,H(m)) = e(g, σ′), where e : G × Ĝ → GT is the bilinear
pairing operation. The BLS signature is proven secure assuming the hardness of
CDH in the ROM [16].

Our Core Ideas. We will illustrate our core ideas using a simplified threshold
signature scheme, which we do not know how to prove adaptively secure. We
describe our final protocol and its adaptive security proof in §5 and §6, respec-
tively.

Let (G, Ĝ, GT ) be a tuple of prime order asymmetric pairing groups with
scalar field F. Let g, h ∈ G be two uniformly random generators of G and ĝ be
a generator of Ĝ. As in the non-threshold BLS signature scheme, let sk = s ∈ F

be the secret signing key and pk = gs ∈ G be the public verification key. To
get an (n, t) threshold signature scheme, the secret signing key s is then shared
among n signers using a degree t polynomial s(x). Additionally, signers also
receive a share on a uniformly random polynomial r(x) with the constraint that
r(0) = 0. Precisely, the signing key of signer i is ski = (s(i), r(i)) and the public
verification key of signer i is pki = gs(i)hr(i) ∈ G.

With this initial setup, signers sign any message m ∈ M, for a finite message
space M, as follows. Let H0,H1 be two random oracles where Hb : M → Ĝ

for b ∈ {0, 1}. The partial signature from signer i on a message m is then

σi = H0(m)s(i)H1(m)r(i) ∈ Ĝ. Upon receiving t+1 valid partial signatures from a
set of signers T , the aggregator computes the threshold signature by interpolating
them in the exponent, i.e., it computes the aggregated signature σ =

∏

i∈T σLi

i

for appropriate Lagrange coefficients Li. It is easy to see that since r(0) = 0, the
interpolation yields a standard BLS signature σ = H0(m)sH1(m)0 = H0(m)s.

An avid reader will note that the partial signatures are no longer verifiable
using a pairing check. Indeed, signers in our protocol instead use a Σ-protocol
to prove the correctness of their partial signatures.

Naturally, the important question is how this modified BLS threshold signa-
ture helps us prove adaptive security. (We reiterate that the goal of this section
is to give intuition, and we do not know how to prove this exact scheme adap-
tively secure.) At a very high level, the additional parameter h, the additional
polynomial r(x), and the additional random oracle H1(·) provide the reduction
adversary with extra avenues to embed the co-CDH input and extract a solution
to the co-CDH input from a signature forgery. We will elaborate on this next.

Let Aco-CDH be the reduction algorithm and A be the adversary that breaks
the unforgeability of our scheme. Aco-CDH will run our threshold signature
scheme with a rigged public key pk = gshr ∈ G with r �= 0. Concretely, we
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work with r = 1, i.e., pk = gsh, however, any non-zero value of r will also work.
Aco-CDH will carefully interact with A so that A does not realize that the public
key is rigged. Then, by definition, A will forge a BLS signature on some message
m, i.e., e(pk,H0(m)) = e(g, σ). Now given a co-CDH input tuple (g, ĝ, ga, ĝa, ĝb),
if we set h = ga and program the random oracle in a way such that H0(m) = ĝb,
then σ = ĝ(s+a)b. This implies that if s ∈ F is known, then we can efficiently
compute ĝab given σ.

Let s(x), r(x) be degree t polynomials for Shamir secret sharing of s = s(0)
and r(0) = 1. We will discuss in §6 how Aco-CDH interacts with A while ensuring
that Aco-CDH knows s(x) and r(x), and r(0) = 1. Furthermore, in the full version,
we will discuss how Aco-CDH achieves this even when we use a DKG key to
generate the signing keys while relying on just a single inconsistent party. This
implies that since Aco-CDH knows both s(x), r(x), it can reveal the internal
state of any party that A corrupts, except the inconsistent party to A. Unless
A corrupts the inconsistent party, A’s view in a real protocol instance and an
instance rigged by Aco-CDH are computationally indistinguishable.

The final part of our protocol is how Aco-CDH simulates the signing queries
under the rigged public key. Consider a naive approach where we use the sign-
ing procedure of Boldyreva’s scheme, i.e., the partial signature of signer i is
H0(m)s(i). Then, the unique aggregated signature is σ = H0(m)s. However, since

r(0) = 1, unless H0(m) = 1
Ĝ
, i.e., the identity of the group Ĝ, it will always be

the case that e(pk,H0(m)) �= e(g, σ), so A realizes that it is in a rigged instance.
This is why we bring in an additional random oracle H1 and have the partial
signatures as σi = H0(m)s(i)H1(m)r(i). The final aggregated signature is now
σ = H0(m)sH1(m). If Aco-CDH programs the two random oracles in a correlated
manner, the pairing check e(pk,H0(m)) = e(g, σ) will pass. Crucially, the corre-
lated programming of the two random oracles must be undetectable to A. In §6,
we will prove this is indeed the case for our final scheme, assuming the hardness
of DDH in Ĝ.

4 Preliminaries

Notations. For any integer a, we use [a] to denote the ordered set {1, 2, . . . , a}.
For any set S, we use s ←$ S to indicate that s is sampled uniformly randomly
from S. We use |S| to denote the size of set S. Throughout the paper, we will
use “←” for probabilistic assignment and “:=” for deterministic assignment. We
use λ to denote the security parameter. A machine is probabilistic polynomial
time (PPT) if it is a probabilistic algorithm that runs in poly(λ) time. We also
use negl(λ) to denote functions negligible in λ. We use the terms party (resp.
parties) and signer (resp. signers) interchangeably.

4.1 Model

We consider a set of n signers denoted by {1, 2, . . . , n}. We consider a PPT
adversary A who can corrupt up to t < n out of the n signers. Corrupted signers
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can deviate arbitrarily from the protocol specification. Note that with t ≥ n/2,
i.e., with a dishonest majority, it is impossible to achieve both unforgeability
and guaranteed output delivery [48]. We focus on unforgeability over guaranteed
output delivery for the dishonest majority case.

When the signing keys of our signature scheme are generated by a trusted
setup, we assume the network is asynchronous. However, for simplicity, we will
assume lock-step synchrony for our DKG protocol, i.e., parties execute the pro-
tocol in synchronized rounds, and a message sent at the start of a round arrives
by the end of that round. Moreover, our DKG assumes an honest majority, i.e.,
t < n/2. Furthermore, during DKG, we let signers access a broadcast chan-
nel to send a value to all signers. We can efficiently realize such a broadcast
channel by running a Byzantine broadcast protocol [13,34,52,58]. We note that
the synchrony assumption is not necessary since asynchronous DKG protocols
exist [31,50]. Similarly, we can remove the honest majority assumption using
ideas from [25].

4.2 Shamir Secret Sharing, Bilinear Pairing, and Assumptions

Shamir Secret Sharing. The Shamir secret sharing [64] embeds the secret s
in the constant term of a polynomial p(x) = s + a1x + a2x

2 + · · · + adx
d, where

other coefficients a1, · · · , ad are chosen uniformly randomly from a field F. The
i-th share of the secret is p(i), i.e., the polynomial evaluated at i. Given d + 1
distinct shares, one can efficiently reconstruct the polynomial and the secret s
using Lagrange interpolation. Also, s is information-theoretically hidden from
an adversary that knows d or fewer shares.

Definition 1 (Bilinear Pairing). Let G, Ĝ and GT be three prime order cyclic

groups with scalar field F. Let g ∈ G and ĝ ∈ Ĝ be generators. A pairing is
an efficiently computable function e : G × Ĝ → GT satisfying the following
properties.

1. bilinear: For all u, u′ ∈ G and v̂, v̂′ ∈ Ĝ we have

e(u · u′, v̂) = e(u, v̂) · e(u′, v̂), and e(u, v̂ · v̂′) = e(u, v̂) · e(u, v̂′)

2. non-degenerate: gT := e(g, ĝ) is a generator of GT .

We refer to G and Ĝ as the source groups and refer to GT as the target group.

We require that the decisional Diffie-Hellman (DDH) assumption holds for Ĝ

and the co-computational Diffie-Hellman (co-CDH) assumption holds for (G, Ĝ).

Assumption 1 (DDH). Let GGen be a group generation algorithm, that on

input 1λ outputs the description of a prime order group Ĝ with scalar field F of
prime order p. The description also contains a generator ĝ ∈ Ĝ, and a descrip-
tion of the group operation. We say that the decisional Diffie-Hellman (DDH)
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assumption holds relative to GGen, if for all PPT adversary A, the following
advantage is negligible:

AdvDDH

A,GGen(λ) :=

∣

∣

∣

∣

∣

Pr

[

A(Ĝ, F, p, ĝ, ĝa, ĝb, ĝab) = 1

∣

∣

∣

∣

∣

(Ĝ, F, p, ĝ) ← GGen(1λ),

a, b ←$ F

]

− Pr

[

A(Ĝ, F, p, ĝ, ĝa, ĝb, ĝc) = 1

∣

∣

∣

∣

∣

(Ĝ, F, p, ĝ) ← GGen(1λ),

a, b, c ←$ F

]
∣

∣

∣

∣

∣

= εDDH

Assumption 2 (co-CDH). Let GGen′ be a group generation algorithm, that

on input 1λ outputs the description of prime order groups (G, Ĝ, GT ) with the

scalar field F of order p, and a bilinear pairing operation e : G × Ĝ → GT . The
description also contains generators (g, ĝ) ∈ (G, Ĝ), and a description of the
group operation. We say that the co-computational Diffie-Hellman (co-CDH)
assumption holds relative to GGen′, if for all PPT adversary A, the following
advantage is negligible:

AdvCDH

A,GGen′(λ) := Pr
[

A(G, Ĝ, F, p, g, ĝ, ga, ĝb, ĝb) = ĝab

(G, Ĝ, GT , F, p, g, ĝ) ← GGen′(1λ),

a, b ←$ F

]

= εCDH

Remark on Pairing Group Types. Looking ahead, the final threshold sig-
natures in our schemes are in Ĝ, and hence, we require DDH to be hard in Ĝ.
This implies that the pairing groups must be asymmetric, i.e., G �= Ĝ. There
are two types of asymmetric pairing groups: type-II and type-III [38]. A type-II
pairing group supports one-directional efficient homomorphism. In our context,
we can work with a type-II group (G, Ĝ, GT ) with bilinear pairing operation

e : G × Ĝ → GT that supports an efficient homomorphism Φ : G → Ĝ, but
not the other way around. Note that even with such one-directional efficient
homomorphism, DDH can still be hard in Ĝ. Thus, we can use both type-II and
type-III pairing groups for our threshold signature scheme.

4.3 Threshold Signature

In this section, we introduce the syntax and security definitions for threshold
signature schemes. We focus on schemes that have non-interactive signing and
deterministic verification. Our security definitions are based on those of [17].

Definition 2 (Non-interactive Threshold Signature). Let t, n with t <
n be natural numbers. A non-interactive (n, t)-threshold signature scheme TS

for a finite message space M is a tuple of polynomial time algorithms TS =
(Setup,KGen,PSign,PVer,Comb,Ver) defined as follows:

1. Setup(1λ) → pp takes as input a security parameter and outputs public param-
eters pp (which are given implicitly as input to all other algorithms).
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Game UF-CMAA
TS:

1: pp ← Setup(1λ)
2: pk, {pki, ski}i∈[n] ← KGen(pp)
3: Let C := ∅, H := [n]
4: inp := pp, pk, {pki}i∈[n]

// Q[m], initially {}, denotes the set
of signers A queries for the partial sig-
natures on m

5: (m, σ) ← ACorr,PSig(inp)
6: if |Q[m] ∪ C| ≤ t∧Ver(m, pk, σ) = 1 :
7: return 1
8: return 0

Oracle Corr(i):

9: if C ≥ t : return ⊥

10: C := C ∪ {i}; H := H \ {i}
11: return ski

Oracle PSig(i, m):

12: if i ∈ H :
13: Q[m] := Q[m] ∪ {i}
14: Let σi ← PSign(m, ski)
15: return σi

16: return ⊥

Game RB-CMAA
TS:

17: pp ← Setup(1λ)
18: pk, {pki, ski}i∈[n] ← KGen(pp)
19: Let C := ∅, H := [n]
20: inp := pp, pk, {pki}i∈[n]

// Verification of honest partial sig-
natures are always successful

21: i, m ← ACorr,PSig(inp)
22: σi ← PSign(ski, m)
23: if PVer(pki, m, σi) 
= 1 :
24: return 1

// Combining valid partial signature
must yield valid threshold signatures

25: S, m′, {σi}i∈S ← ACorr,PSig(inp)
26: assert |S|≥ t + 1
27: assert PVer(pki, m

′, σi) = 1, ∀i ∈ S

28: σ := Comb(S, m′, {pki, σi}i∈S)
29: if Ver(pk, m′, σ) 
= 1 :
30: return 1
31: return 0

Fig. 1. The unforgeability security game UF-CMAA
TS and the robustness secu-

rity game RB-CMAA
TS for a non-interactive (n, t)-threshold signature TS =

(Setup, KGen, PSign, Comb, Ver) with an adaptive adversary A.

2. KGen() → pk, {pki, ski}i∈[n] outputs a public key pk, a vector of threshold
public keys {pk1, . . . , pkn}, and a vector of secret key shares {sk1, . . . , skn}.
The j-th signer receives (pk, {pki}i∈[n], skj).

3. PSign(ski,m) → σi takes as input a secret key share ski, and a message
m ∈ M. It outputs a signature share σi.

4. PVer(pki,m, σi, ) → 0/1 takes as input a threshold public key share pki, a
message m, and a signature share σi. It outputs 1 (accept) or 0 (reject).

5. Comb(S,m, {(pki, σi)}i∈S) → σ/⊥ takes as input a set S with |S| ≥ t + 1, a
message m, and a set of tuples (pki, σi) consisting of public keys and signature
shares of signers in S. It outputs either a signature σ or ⊥.

6. Ver(pk,m, σ) → 0/1 takes as input a public key pk, a message m, and a
signature σ. It outputs 1 (accept) or 0 (reject).

We require a non-interactive (n, t)-threshold signature scheme to satisfy
Unforgeability and Robustness properties we describe next.

We formalize the unforgeability property using the UF-CMAA
TS game in Fig. 1.

Let A be the adversary in the UF-CMAA
TS game. A gets as input the public

parameters pp, an honestly generated public key pk and threshold public keys
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{pki}i∈[n]. At any point in time, A can query the partial signature on a message
m from any honest signer i by querying the oracle PSig(i,m). The game also
maintains a list Q to store the subset of parties A has queried for partial sig-
natures, i.e., for any message m, Q[m] stores the subset of honest signers A has
queried for partial signatures on m. Initially, Q[m] = {} for every message m.

A can corrupt up to t signers throughout the protocol using the Corr oracle.
Upon corrupting any party, say party i ∈ [n], A learns its signing key ski. Our
protocol also has the property that the internal state used in all partial signings
by a signer is efficiently computable from the signing key of the signer and the
public messages sent by the signer. Thus, upon corruption, revealing only the
signing key of the signer is sufficient.

Finally, when A outputs a valid forgery (m∗, σ∗), we say that A wins if
A queried for partial signatures on m∗ from at most t − |C| signers, i.e., |Q[m] ∪
C| ≤ t.

With the UF-CMAA
TS game defined in Fig. 1, we define the unforgeability

under chosen message attack property as follows.

Definition 3 (Unforgeability Under Chosen Message Attack). Let TS =
(Setup,KGen,PSign,Comb,Ver) is a (n, t)-threshold signature scheme. Consider
the game UF-CMAA

TS defined in Fig. 1. We say that TS is UF-CMAA
TS secure, if

for all PPT adversaries A, the following advantage is negligible, i.e.,

εσ := AdvUF-CMA

A,TS (λ) := Pr[UF-CMAA
TS(λ) ⇒ 1] = negl(λ) (1)

We formalize the robustness property using the RB-CMAA
TS game in Fig. 1.

Intuitively, the robustness property ensures that the protocol behaves as
expected for honest parties, even in the presence of an adaptive adversary that
corrupts up to t parties. More precisely, it says that: (i) PVer should always
accept honestly generated partial signatures; and (ii) if we combine t + 1 valid
partial signatures (accepted by PVer) using the Comb algorithm, the output of
Comb should be accepted by Ver, except with a negligible probability. The latter
requirement ensures that maliciously generated partial signatures cannot prevent
an honest aggregator from efficiently computing a threshold signature (except
with a negligible probability). Note that A can generate the partial signatures in
an arbitrary manner. Also, looking ahead, our scheme achieves robustness even
if A corrupts all parties.

Definition 4 (Robustness Under Chosen Message Attack). Let TS =
(Setup,KGen,PSign,Comb,Ver) is a (t, n)-threshold signature scheme. Consider
the game RB-CMAA

TS defined in Fig. 1. We say that TS is RB-CMAA
TS secure, if

for all PPT adversaries A, the following advantage is negligible, i.e.,

AdvRB-CMA

A,TS (λ) := Pr[RB-CMAA
TS(λ) ⇒ 1] = negl(λ) (2)

4.4 Boldyreva’s BLS Threshold Signature Scheme [15]

For a security parameter λ, let (G, Ĝ, GT , F, p, g) ← GGen(1λ) with bilinear

pairing operation e : G × Ĝ → GT . The public parameters of Boldyreva’s (n, t)-

threshold signature scheme for a message space M are (G, Ĝ, F, p, g,H), where
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H : M → Ĝ is a hash function modelled as a random oracle. The signature
scheme works as follows:

– KGen() samples a uniformly random polynomial s(x) ∈ F[X] of degree t. The
signing key of i-th signer is ski := s(i), the public key pk := gs(0), and the
threshold public keys are {pki := gski}i∈[n].

– PSign(ski,m) computes the partial signature with respect to secret key ski as

σi := H(m)ski ∈ Ĝ.
– PVer(pki,m, σi) retruns 1 if e(pki,H(m)) = e(g, σi), and 0 otherwise.
– Comb(S,m, {(pki, σi)}) first checks that |S| ≥ t + 1 and then runs

PVer(pki, σi,m) for all i ∈ S. If any of these calls outputs 0, then return

⊥. Otherwise, return σ :=
∏

i∈S σ
Li,S

i , where Li,S :=
∏

i∈S

(

j
j−i

)

is the i-th

Lagrange coefficient for the set S.
– Ver(pk,m, σ) returns 1 if e(pk,H(m)) = e(g, σ), and 0 otherwise.

Boldyreva’s scheme is secure in the presence of a static adversary assum-
ing hardness of computational Diffie-Hellman assumption in the random oracle
model [10,15].

5 Adaptively Secure BLS Threshold Signature

In this section, we will describe our adaptively secure (n, t)-threshold signature
scheme assuming that KGen is run by a trusted party.

Setup(1λ): Let (G, Ĝ, GT , F, p) ← GGen(1λ) be pairing groups with scalar field F

of prime order p and bilinear pairing operation e : G × Ĝ → GT . Let g, h, v ∈ G

are three uniformly random independent generators of G. Let H0,H1 : M → Ĝ

and HFS : {0, 1}∗ → Ĝ be three distinct hash functions modelled as random ora-

cles. The public parameters of our scheme are then (G, Ĝ, F, g, h, v,H0,H1,HFS).
As we discuss earlier, we assume that all the algorithms below implicitly takes
the public parameters as input.

KGen(): Sample three uniformly random polynomials s(x), r(x) and u(x) of
degree t each with the constraint that r(0) = u(0) = 0. The signing key of
signer i is then ski := (s(i), r(i), u(i)). Let pk := gs(0)hr(0)vu(0) = gs(0) be the
public verification key, and pki := gs(i)hr(i)vu(i) be party i’s threshold public
key.

PSign(ski,m): The partial signature of signer i on a message m is the tuple

(σi, πi), where σi := H0(m)s(i)H1(m)r(i), and πi is a non-interactive zero-
knowledge (NIZK) proof of the correctness of σi with respect to pki. Signer i
computes πi using the Σ-protocol in Fig. 3. We use the Fiat-Shamir heuristic to
make the signing phase non-interactive.

PVer(pki,m, σi): On input the threshold public key pki and the partial signature
tuple (σi, πi), and the message m validates σi by running the Σ-protocol verifier
V, and accepts if and only if V accepts.
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Setup(1λ):

1: (G, Ĝ, GT , F, p) ← GGen(1λ) be pair-
ing groups (G, Ĝ, GT ) of prime order
p, scalar field F and bilinear pairing
operation e : G × Ĝ → GT .

2: Let g, h, v ∈ G be three uniformly
random independent generators of G.

3: Let H0, H1 : M → Ĝ and HFS :
{0, 1}∗ → F be three hash functions
modeled as random oracle.

4: return (G, Ĝ, F, g, h, v, H0, H1, HFS).

// We assume all algorithms implicitly
take the output of Setup as input. We use
HFS in SigmaProve and SigmaVer.

KGen():

5: Let s(·), r(·), u(·) ←$ F[x] be three
polynomials of degree t with r(0) =
u(0) = 0.

6: Let pk := gs(0)hr(0)vu(0) = gs(0)

7: for each i ∈ [n] :
8: Let ski := (s(i), r(i), u(i))
9: Let pki := gs(i)hr(i)vu(i)

10: return (pk, {pki}i∈[n], skj) to signer
j for all j ∈ [n]

PSign(ski = (si, ri, ui), m):

11: Let σi := H0(m)siH1(m)ri

12: Let πi := SigmaProve(pki, m, σi, ski)
13: return σi, πi

PVer(pki, m, (σi, πi)):

14: return SigmaVer(pki, m, σi, πi)

Comb(S, m, {(pki, (σi, πi))}i∈S :

15: assert |S|≥ t + 1
16: for each i ∈ S :
17: assert PVer(pki, m, (σi, πi))

18: Let Li,S be the i-th Lagrange coeffi-
cients for S

19: return σ :=
∏

i∈S
σ

Li,S

i

Ver(pk, m, σ):

21: if e(pk, H0(m)) = e(g, σ) :
22: return 1
23: return 0

Fig. 2. Adaptively secure (n, t) BLS threshold signature with trusted key generation.

Comb(S,m, {(pki, (σi, πi))}i∈S : Upon receiving a set of signers S with |S| ≥ t+1,
a message m, and the corresponding threshold public-key and partial signatures
tuples {(pki, (σi, πi))}i∈S , first validates each of the partial signature using PVer.
If any of these partial signatures verification fails, i.e., returns 0, the Comb

algorithm returns ⊥. Otherwise, the Comb algorithm computes the threshold
signature σ as:

σ :=
∏

i∈T

σ
Li,S

i (3)

where Li,S is the i-th Lagrange coefficient with respect to the set S.

Ver(pk,m, σ): The verification procedure of our scheme is identical to that of the
standard BLS signature: on input the public key pk and the signature σ on a
message m, a verifier accepts if e(pk,H0(m)) = e(g, σ).

Remark. Note that signers do not use u(i) while computing σi. It is in the
public verification key (and hence used in computing πi) as an artifact to make
our adaptive security proof go through.
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Input: (g, h, v, pk) ∈ G
4, (ĝ0, ĝ1) = (H0(m), H1(m)) for some m ∈ M, σ ∈ Ĝ

Witness: (s, r, u) ∈ F
3

The prover P wants to convince the verifier V that it knows s, r, u ∈ F such that
pk = gshrvu and σ = ĝs

0 ĝ
r
1 .

// We assume that both algorithms implicitly take of g, h, v, H0, H1 as input

SigmaProve(pk, m, σ, (s, r, u)):

1: Let ĝ0 := H0(m) and ĝ1 := H1(m)
2: Sample as, ar, au ←$ F. Let x := gashar vau , and y := H0(m)asH1(m)ar .
3: Let c := HFS(x, y, pk, σ, ĝ0, ĝ1), for hash function HFS : {0, 1}∗ → F modeled

as a random oracle.
4: Let zs := as + s · c, zr := ar + r · c and zu := au + u · c.
5: return π := (x, y, zs, zr, zu).

SigmaVer(pk, m, σ, π = (x, y, zs, zr, zu)):

6: Let ĝ0 := H0(m) and ĝ1 := H1(m)
7: Let c := HFS(x, y, pk, σ, ĝ0, ĝ1)
8: if gzshzr vzu = x · pkc and ĝ

zs
0 ĝ

zr
1 = y · σc :

9: return 1
10: return 0

Fig. 3. Σ-protocol for computing and verifying the correctness proof for partial signa-
tures.

6 Proofs of Adaptive Security

We first analyze the properties of the Σ-protocol in Fig. 3, which we then use to
prove the robustness and adaptive security of our threshold signature scheme.

6.1 Properties of the Σ-Protocol

We require the Σ-protocol to satisfy the standard completeness, knowledge-
soundness, and zero-knowledge properties [29]. Briefly, the completeness prop-
erty guarantees that an honest prover will always be able to convince an honest
verifier about true statements. The knowledge soundness property ensures that,
for every prover who convinces an honest verifier about a statement with a non-
negligible probability, there exists an efficient extractor who interacts with the
prover to compute the witness. Finally, the zero-knowledge property ensures that
the proof reveals no information other than the statement’s truth. We remark
that achieving zero-knowledge against honest verifiers is sufficient for our pur-
poses. The completeness of our Σ-protocol is straightforward. The knowledge
soundness and honest-verifier zero-knowledge properties also follow from stan-
dard Σ-protocol analysis.

Knowledge Soundness. We prove knowledge soundness by extractability. For
any PPT prover P, let E be the extractor. Then E interacts with P with two
different challenges c and c′ on the same first message, to receive two pairs of
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valid responses (zs, zr, zu) and (z′
s, z

′
r, z

′
u). Then, we have:

gzs−z′

shzr−z′

rvzu−z′

u = pkc−c′

and H0(m)zs−z′

sH1(m)zr−z′

r = σc−c′

=⇒ s =
zs − z′

s

c − c′
; r =

zr − z′
r

c − c′
; u =

zu − z′
u

c − c′

Let εext be the success probability of the extractor E . Then, it follows from
the generalized forking lemma [11] that εext ≥ ε2/qFS − ε/|F| where ε is the
probability that an adversary A outputs a valid response while making at most
qFS random oracle queries to HFS.

Honest Verifier Zero-Knowledge (HVZK). Let S be the simulator. S sam-
ples uniformly random (c, zs, zr, zu) ∈ F

4 and computes x and y as

x := gzshzrvzu · pk−c and y =: H0(m)zsH1(m)zr · σ−c (4)

S then programs the random oracle such that HFS(x, y, pk, σ,m) = c and outputs
π = (c, zs, zr, zu) as the proof. Clearly, the simulated transcript is identically
distributed to the real-protocol transcript.

6.2 Robustness

Before we prove robustness of our scheme, we prove the following helper lemma.

Lemma 1. If any signer i with threshold public key pki = gs(i)hr(i)vu(i) outputs
a partial signature σi on a message m along with a valid Σ-protocol proof πi as
per Fig. 3, then assuming hardness of discrete logarithm in G, σi is well-formed,
i.e., σi = H0(m)s(i)H1(m)r(i).

Proof. For valid Σ-protocol proof πi, let E be the extractor from §6.1 and let
s′, r′, u′ be the extracted witness. We need to prove (s′, r′, u′) = (s(i), r(i), u(i)).

For the sake of contradiction, assume this is not the case. Then, we can con-
struct an adversary ADL that breaks the discrete logarithm in G as follows. On
input a discrete logarithm instance (g, y) ∈ G

2, ADL samples θ ∈ {0, 1} and sets
either h = y or v = y depending on the value of θ. ADL picks the other parameter
as gα for some known uniformly random α ∈ F. ADL next faithfully emulates the
trusted key generation with A with some chosen polynomials s(·), r(·), v(·). ADL

also faithfully emulates the corruption, partial signature queries, and random
oracle queries.

Now (s′, r′, u′) �= (s(i), r(i), u(i)) for any signer i implies that

gs′−s(i)hr−r(i)vu′−u(i) = 1G (5)

where 1G is the identity element of G.
Say h = gαh and v = gαv for some αh, αv ∈ F, and let δs := s′ − s(i),

δr := r′−r(i), and δu := u′−u(i). Then, Eq. (5), implies that δs+δrαh+δuαv = 0.
If either δr or δu is non-zero, then we can compute αh or αv, respectively, as:

δr �= 0 =⇒ αh = (−δs −αvδu) ·δ−1
r ; δu �= 0 =⇒ αv = (−δs −αhδr) ·δ−1

u (6)
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Finally, (δr, δu) = (0, 0), implies that δs = 0. Since ADL uses y as either h or
v uniformly at random, it implies that if the extractor E outputs (s′, r′, u′) �=
(s(i), r(i), u(i)) with probability εext, then ADL outputs the discrete logarithm
of y with respect to g, with probability at least εext/2. ��

We will now prove that robustness, i.e., any PPT adversary A wins the
RB-CMAA

TS game in Fig. 1 only with a negligible probability. More formally,

Theorem 3 (Robustness). The non-interactive (n, t)-threshold signature
scheme TS = (Setup,KGen,PSign,PVer,Comb,Ver) in Fig. 2 is RB-CMAA

TS secure.

Proof. There are two possible winning cases for an adversary A in the RB-CMAA
TS

game: (1) honestly computed partial signatures does not satisfy the validation
check PVer (line 23 in the RB-CMAA

TS game in Fig. 1), and (2) every partial
signatures passes PVer but the honestly aggregated full signature does not satisfy
the validation check Ver (line 29 in Fig. 1).

Let us first analyze the first winning case. Note that PVer algorithm in our
protocol runs the verifier of the Σ-protocol in Fig. 3. Then, the completeness
property of the Σ-protocol guarantees that the Σ-protocol verifier always accepts
honestly generated proofs. This implies that the winning condition in line 8 in
Fig. 1 never occurs for our protocol.

Now let us consider the second winning case. Lemma 1 ensures that assuming
hardness of discrete logarithm in G, the aggregator only aggregates well-formed
partial signatures. Thus, we get

σ =
∏

i∈S

σLi,S =
∏

i∈S

H0(m)s(i)Li,S H1(m)r(i)Li,S

= H0(m)
∑

i∈S
s(i)Li,SH1(m)

∑
i∈S

r(i)Li,S = H0(m)sH1(m)0 = H0(m)s.

Note that σ = H0(m)s always satisfy the final verification check Ver.
Thus we get that assuming hardness of discrete logarithm in G any PPT

adversary A wins the RB-CMAA
TS game only with a negligible probability. ��

6.3 Helper Lemmas for Unforgeability

Our unforgeability proof crucially relies on the following lemma from Naor-
Reingold [59, Lemma 4.4]. We refer the reader to [59] for its proof.

Lemma 2. (Lemma 4.4 in [59]). For any security parameter λ, let

(Ĝ, F, p, ĝ) ← GGen(1λ) be a cyclic group of prime order p with scalar field F and

generator ĝ ∈ Ĝ. For all qH ≤ poly(λ), assuming hardness of decisional Diffie-

Hellman (DDH) assumption in Ĝ, the following two distributions are indistin-
guishable.

D0 := ĝ, ĝα, {(ĝβi , ĝγi)}i∈[qH] for α ←$ F and ∀i ∈ [qH] (βi, γi) ←$ F
2 (7)

D1 := ĝ, ĝα, {(ĝβi , ĝα·βi)}i∈[qH] for α ←$ F and ∀i ∈ [qH] βi ←$ F (8)

More precisely, if an adversary A can distinguish between a sample from D0 and
D1 with probability ε, then A can break the DDH assumption with probability at
least ε − 1/|F|. This implies ε ≤ εDDH + 1/|F|.
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We use the abovementioned lemma to prove the following.

Lemma 3. For security parameter λ, let (Ĝ, F, p, ĝ) ← GGen(1λ) be a cyclic

group of prime order p with scalar field F and generator ĝ ∈ Ĝ. For all qH ≤
poly(λ) and any fixed k ∈ [qH], let the distribution D1,k be defined as follows:

D1,k := g, {(gβi , gγi)}i∈[qH] for α ←$ F and

{

∀i �= k, βi ←$ F, γi := α · βi

i = k, (βi, γi) ←$ F
2

Then, assuming hardness of DDH in Ĝ, the distributions D0 (defined in
Lemma 2) and D1,k are indistinguishable except with probability at most εDDH +
1/|F|.

Proof. Define D0,k to be identical to D0 for notational convenience. For any fixed
k, given a sample (g, gα, {(gβi , gγi)} from Dθ for either θ ∈ {0, 1} we can get
a sample from Dθ,k by substituting gγk in the given sample with a uniformly

random element in Ĝ and dropping the term gα.

6.4 Unforgeability with an Adaptive Adversary

We will prove the unforgeability assuming the hardness of the DDH in Ĝ and
the hardness of co-CDH in (G, Ĝ). Let Aco-CDH be the reduction adversary.
Upon input a co-CDH instance (g, ĝ, ga, ĝa, ĝb), Aco-CDH interacts with A such
that when A forges a signature, Aco-CDH uses the forgery to compute ĝab. We
summarize Aco-CDH interaction with A in Fig. 4, and describe it next.

Simulating the Public Parameters. On a co-CDH input (g, ĝ, ga, ĝa, ĝb),
Aco-CDH samples αv ←$ F, sets h := ga, v := gαv , and sends (g, h, v) to A.
Aco-CDH provides A access to the random oracles using lazy programming, i.e.,
Aco-CDH programs random oracles on any input only upon a query.

Simulating the KGen functionality. Aco-CDH samples s, u ←$ F and three
uniformly random degree t polynomials s(·), r(·), u(·) ∈ F[x], but crucially with
the constraints s(0) = s, u(0) = u, and r(0) = 1 for the multiplicative identity 1
in F. Aco-CDH then computes the public key and threshold public keys as follows:

pk := gs(0)hr(0)vu(0) = gshvu; and
{

pki := gs(i)hr(i)vu(i)
}

i∈[n]
(9)

Aco-CDH then sends pk, {pki}i∈[n] to A.

Simulating Corruption Queries. Let H and C = [n] \ H be the set of hon-
est and malicious parties, respectively. Anytime during the signing phase, if A
corrupts signer i ∈ [n], Aco-CDH checks whether |C| < t or not. If the check is suc-
cessful, Aco-CDH faithfully reveals the secret signing key ski := (s(i), r(i), u(i))
of signer i, and updates C := C ∪ {i} and H := H \ {i}. Aco-CDH lets A only
corrupt up to t signers. Otherwise, Aco-CDH outputs ⊥.

Simulating Threshold Signature. Aco-CDH simulates the signing queries by
programming the random oracles as follows. Let α = a + αvu. Note that H0 is
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Fig. 4. Aco-CDH’s interaction with A to compute the co-CDH solution, when signers
use the KGen functionality to setup the signing keys.

always queried on the forged message, at least by Aco-CDH during the signature
verification. Moreover, whenever A queries Hθ for either θ ∈ {0, 1} on any mes-
sage, Aco-CDH internally queries H1−θ on the same message. Let qH be an upper
bound on the number of queries by A to H0 and H1 combined. Aco-CDH samples
k̂ ←$ [qH]. On the k-th random oracle query on message mk, depending upon
the value of k, Aco-CDH programs the random oracles as follows.
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k �= k̂ =⇒ H0(mk) := ĝβk ; H1(mk) := ĝα·βk for βk ←$ F

k = k̂ =⇒ H0(mk) := ĝb; H1(mk) := ĝ′ for ĝ′ ←$ Ĝ

Let m
k̂

be the queried message for k = k̂. Then, except for message m
k̂
,

Aco-CDH always responds to partial signing queries as per the honest protocol.
For message m

k̂
, Aco-CDH faithfully responds to up to t − |C| partial signing

queries and aborts if A queries for more partial signatures on m
k̂
.

Computing the co-CDH Solution. When A outputs a valid forgery (m
k̂
, σ),

Aco-CDH uses its knowledge of (s, u) and computes the co-CDH solution as fol-
lows:

ĝcdh := σ · (ĝb)−b(s+αvu) (10)

Lemma 4. If (m
k̂
, σ) is a valid forgery, then ĝcdh is the valid co-CDH solution.

Proof. Since (m
k̂
, σ) is a valid forgery, the following holds.

e(pk,H0(mk̂
)) = e(g, σ) =⇒ e(gshvu, ĝb) = e(g, σ) (11)

Let ĥ = ĝa and v̂ = ĝαv . Then, from Eq. (11), we get that:

σ =
(

ĝsĥv̂u
)b

=⇒ σ · ĝ−b(s+αvu) = ĥb = ĝab = ĝcdh
��

Next, we illustrate that assuming the hardness of DDH in Ĝ, if A forges
a signature in the UF-CMAA

TS game, then A also forges a signature during its
interaction with Aco-CDH, just with a slightly lower probability.

We will illustrate this via a sequence of games. Game G0 is the real protocol
execution, and game G7 is the interaction of A with Aco-CDH. Here on, for
any game Gi, we will use “Gi ⇒ 1” as a shorthand for the event that a PPT
adversary A forges a signature in game Gi.

Game G0: This game is the security game UF-CMAA
TS for our threshold signature

scheme, where the game follows the honest protocol. Here, the game provides A
access to any random oracle using the standard lazy simulation technique.

We also make a purely conceptual change to the game. Let (m∗, σ∗) be the
forgery. Then, we assume that A always queries H0(m

∗) before outputting the
forgery. This is without loss of generality and does not change the advantage
of A because one could build a wrapper adversary that internally runs A but
queries H0(m

∗) before outputting. Then by definition, we have:

AdvUF-CMA

A,TS (λ) = Pr[G0 ⇒ 1] = εσ.

Game G1: Let qH be the upper-bound on the total number of random oracle
queries to H0 and H1. For each k ∈ [qH], let mk be the input to the k-th random

oracle query. This game is identical to G0, except that we sample k̂ ←$ [qH],

and the game aborts if the A forges a message mk for k �= k̂ or queries for more
than t− |C| partial signatures for m

k̂
. Clearly, if no abort occurs, games G0 and

G1 are the same. Furthermore, the view of A is independent of k̂. Thus, we get:
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Pr[G1 ⇒ 1] ≥
1

qH

· Pr[G0 ⇒ 1] (12)

Game G2: This game is identical to G1, except that we sample αh, αv ←$ F

and set h := gαh and v := gαv . Clearly, the view of A in G1 is identical to its
view in G2, hence Pr[G1 ⇒ 1] = Pr[G2 ⇒ 1].

Game G3: In this game, we change how we program the random oracles H0 and
H1. In particular, we program the random oracles H0,H1 in a correlated manner
to ensure a distribution identical to how Aco-CDH programs these random oracles
in Fig. 4. The rest of the steps are identical to game G2.

More specifically, in game G3, we sample u ←$ F and let α := αh + αvu.
Then, for the k-th random oracle query, depending upon whether k = k̂, we
program the random oracles as follows:

k �= k̂ =⇒ H0(mk) := ĝβk ; H1(mk) := ĝα·βk for βk ←$ F (13)

k = k̂ =⇒ H0(mk) := ĝβ ; H1(mk) := ĝ′ for ĝ′ ←$ Ĝ (14)

We next bound the probability Pr[G3 ⇒ 1] as follows.

Lemma 5. Let εDDH be the advantage of breaking DDH in Ĝ as defined in
Assumption 1, then |Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| ≤ εDDH + 1/|F|.

Proof. Observe that, in game G2, we program the random oracles H0 and H1

with a sample from D0 defined in Lemma 2. Similarly, in game G3, we program
the random oracles H0 and H1 exactly with a sample from the distribution D1,k̂

defined in Lemma 3. Apart from the output of the random oracles H0 and H1,
the rest of the view is identically distributed in G2 and G3. Recall from Lemma
3, assuming hardness of DDH in Ĝ, samples from distributions D0 and D1,k̂

are
computationally indistinguishable. Thus, we get,

|Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| ≤ εDDH +
1

|F|
(15)

Game G4: This game is identical to G3, except that for each honest signer we
use simulated NIZK proofs for correctness of partial signatures instead of actual
NIZK proofs. Looking ahead, we switch to simulated NIZK proofs in this game
to later argue in game G6 that the NIZK proofs do not reveal any information
about the secret signing keys. This is crucial to argue the indistinguishability
between game G5 and G6.

During the NIZK simulation, the game programs the random oracle HFS on
input (x, y, pk, σ, ĝ0, ĝ1) at a choice of its challenge. The game aborts if HFS is
already programmed at (x, y, pk, σ, ĝ0, ĝ1). Note that the NIZK protocol we use
is perfect honest-verifier zero-knowledge (HVZK). Hence, conditioned on the
successful programming of the random oracle HFS, i.e., if the game does not
abort, A’s view in games G3 and G4 are identically distributed. Next, we will
formally analyze the abort probability.

Let E be the event that at least one of our HFS query collides with A’s
random oracle query. Then, we have,

|Pr[G3 ⇒ 1] − Pr[G4 ⇒ 1]| = |Pr[G3 ⇒ 1|E] − Pr[G4 ⇒ 1|E]| · Pr[E] ≤ Pr[E].
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Here, we use the fact that |Pr[G3 ⇒ 1|E] − Pr[G4 ⇒ 1|E]| ≤ 1 and Pr[G3 ⇒
1|¬E] = Pr[G4 = 1|¬E].

We now analyze the probability of event E. For each NIZK simulation, the
game needs to program HFS at a input (x, y, pk, σ, ĝ0, ĝ1) for some uniformly
random x, y ←$ G. Since A makes at most qFS queries to the random oracle HFS,
the probability that the game aborts during each NIZK simulation is at most
qFS/|F|2. Since A makes at most qs signing queries and we need to simulate at
most n partial signatures per signing query, using a simple union bound, we get

Pr[E] ≤
qFS · qs · n

|F|2
= εnizk-fail. (16)

Hence, we get |Pr[G3 ⇒ 1] − Pr[G4 ⇒ 1]| ≤ εnizk-fail.

Game G5: In this game, we change how we sample the signing keys. To illustrate
our modification, we will distinguish between the signing key polynomials of
game G4 and G5. More precisely, let s4(x), r4(x), u4(x) and s5(x), r5(x), u5(x)
be the signing key polynomials in game G4 and game G5, respectively. Then,
in game G5 we sample the signing key polynomial s5(x) := s4(x) + α where
α = αh + αvu. The other two signing key polynomials remain unchanged, i.e.,
r5(x) = r4(x) and u5(x) = u4(x).

Observe that for any fixed α, since s4(x) is a random degree t polynomial,
s5(x) = s4(x)+α is also a random degree t polynomial. Hence, A’s view in game
G4 is identical to its view in game G5, and Pr[G4 ⇒ 1] = Pr[G5 ⇒ 1].

Game G6: In this game, we change how we sample the signing keys again.
More precisely, we sample signing key polynomials such that s6(x) := s4(x),
r6(x) := r4(x) + 1 and u6(x) := u4(x) + u, for uniformly random u ∈ F we use
to define α = αh + αvu.

The indistinguishability between A’s view in game G5 and game G6 is
another crucial step of our proof.

Lemma 6. Pr[G5 ⇒ 1] = Pr[G6 ⇒ 1]

Proof. Let pkG5
and pkG6

are the public keys in game G5 and G6, respectively.
We first prove that pkG5

and pkG6
are identically distributed. Note that by

design, we have s6(0) = s4(0), r6(0) = 1, and u6(0) = u. This implies that,

pkG5
= gs5(0)hr5(0)vu5(0) = gs4(0)+α = gs4(0)+αh+αvu

= gs4(0)hvu = gs6(0)hr6(0)vu6(0) = pkG6

Next, for any signer i, let pki,G5
and pki,G6

be its threshold public keys in
game G5 and G6, respectively. Then, since h = gαh and v = gαv , we have:

pki,G5
= gs5(i)hr5(i)vu5(i) = gs4(0)+αh+αvu · hr4(i) · vu4(i)

= gs4(i) · hr4(i)+1 · vu4(i)+u

= gs6(i) · hr6(i) · vu6(i) = pki,G6
(17)
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Similarly, for any signer i, for any message mk for k �= k̂, let σi,G5
and σi,G6

be its partial signatures in G5 and G6, respectively. Recall from Eq. (13), for

k �= k̂, we have that:

H0(mk) = ĝβk and H1(mk) = ĝα·βk for α = αh + uαv and βk ←$ F

This implies that,

σi,G5
= H0(mk)s5(i)H1(mk)r5(i) = H0(mk)s4(i)+α · H1(mk)r4(i)

= gβk·(s4(i)+α) · gαβkr4(i) = gβks4(i) · gαβk(1+r4(i))

= gβks6(i) · gαβkr6(i) = H0(m)s(i) · H1(m)r+r(i) = σi,G7
(18)

Equations (17) and (18) imply that the threshold public keys and the par-
tial signatures are identically distributed in games G5 and G6. Moreover, the
simulated partial signature correctness NIZK proofs reveal no additional infor-
mation about the signing keys of the honest signers, except what is revealed by
the threshold public keys and the partial signatures.

Hence, it remains to show that the joint view of signing keys of the corrupt
signers and the set of partial signatures on the forged message m

k̂
in games

G5 and G6 are identically distributed. Let C be the set of corrupt signers. Let
Q[m

k̂
] ⊂ H be the subset of honest signers A queries for partial signatures on

the forged message m
k̂
. We have |Q(m

k̂
) ∪ C| ≤ t. Also, let ĝ0 = H0(mk̂

) and
ĝ1 = H1(mk̂

). Then, for any fixed α, let D5 and D6 be the views of A in game
G5 and G6, respectively, i.e.,

D5 =

(

{

ĝ
s4(i)+α
0 · ĝ

r4(i)
1

}

i∈Q[m
k̂
]
, {s4(i) + α, r4(i), u4(i)}i∈C

)

,

D6 =

(

{

ĝ
s4(i)
0 · ĝ

r4(i)+1
1

}

i∈Q[m
k̂
]
, {s4(i), r4(i) + 1, u4(i) + u}k∈C

)

We argue that D5 and D6 are identically distributed based on the following.
Consider the following two distributions D5,t and D6,t as defined below:

D5,t =
(

{s4(i) + α, r4(k), u4(k)}k∈C∪Q[m
k̂
]

)

D6,t =
(

{s4(k), r4(k) + 1, u4(k) + u}k∈C∪Q[m
k̂
]

)

Observe that the distributions D5,t and D6,t are Shamir’s secret shares of
three secrets using independent random polynomials. Since |C ∪ Q[m

k̂
]| ≤ t,

the perfect secrecy of Shamir’s secret sharing implies that D5,t and D6,t are
identically distributed. Observe that given a sample from either D5,t or D6,t,
one can efficiently compute a sample from D5 or D6, respectively. Hence, D5

and D6 are also identically distributed. Therefore, A’s view in G5 and G6 are
identically distributed, and hence Pr[G5 ⇒ 1] = Pr[G6 ⇒ 1]. ��

Game G7: This game is identical to G6, except that we use actual NIZK
proofs for partial signatures. We switch back to real proofs in this game because
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Aco-CDH in Fig. 4 uses real proofs during its interaction with A. Finally, using
an argument similar as in the advantage of A between G4 and G5, we get that:

|Pr[G6 ⇒ 1] − Pr[G7 ⇒ 1]| ≤ εnizk-fail. (19)

Observe that, if game G7 does not abort, then A’s view in game G7 is identi-
cally distributed as its view in its interaction with Aco-CDH, where Aco-CDH uses
(ga, gb) from co-CDH input (g, ga, gb, ĝa) as (h, gβ) in game G7. Additionally,
Aco-CDH uses ĝa to compute the random oracle outputs in step 11(b) in Fig. 4.
Hence, from the above sequence of games, we get that:

| Pr[G0 ⇒ 1] − Pr[G7 ⇒ 1]| ≤ εDDH +
1

|F|
+ 2εnizk-fail +

(

1 −
1

qH

)

· Pr[G0 ⇒ 1]

=⇒ Pr[G7 ⇒ 1] ≥
1

qH

· εσ − εDDH −
1

|F|
− 2εnizk-fail. (20)

This implies that if adversary A outputs a forgery in the UF-CMAA
TS game

of our signature scheme (i.e., G0) with probability εσ, then A outputs a forgery
on m

k̂
during its interaction with Aco-CDH (i.e., in G7) with probability at least

εσ/qH −εDDH −1/|F|−2εnizk-fail. Moreover, Lemma 4 implies that Aco-CDH can
efficiently compute the co-CDH solution using the forgery on m

k̂
. Combining all

the above, we get our main theorem, as stated below.

Theorem 4 (Adaptively secure BLS threshold signature). Let λ be the

security parameter, and let (F, G, Ĝ, GT , p) ← GGen(1λ) be pairing groups of
prime order p. For any n, t for n = poly(λ) and t < n, assuming hardness of

decisional Diffie-Hellman (DDH) in Ĝ, and hardness of co-computational Diffie-

Hellman (co-CDH) in (G, Ĝ) in the random oracle model, any PPT adversary
making at most qH random oracle queries to H0 and H1 combined, qFS queries
to the random oracle HFS, and at most qs signature queries wins the UF-CMAA

TS

game Fig. 1 for our scheme in Fig. 2 with probability at most εσ where:

εσ ≤ qH ·

(

εDDH +
1

|F|
+ 2εnizk-fail + εCDH

)

,

εnizk-fail = (qFS · qs · n)/|F|2, and εDDH and εCDH are the advantages of an

adversary running in T · poly(λ, n) time in breaking DDH in Ĝ and co-CDH in

(G, Ĝ), respectively. This implies that εσ is negligible, and hence, our threshold
signature scheme in §5 is unforgeable.

Remark. Note that the unforgeability property of our threshold signature
scheme does not rely on the soundness property of the Σ-protocol signers use to
prove the correctness of the partial signatures. We only rely on the knowledge-
soundness property to achieve robustness of our scheme (see §6.2).

6.5 Unforgeability with Static Adversary

We now briefly argue that if we are content with proving our signature scheme
statically secure, then we only need the hardness of CDH assumption in a pairing
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group (G, Ĝ) in the ROM. For static security, we do not require asymmetric

pairing groups. Thus, we will assume G = Ĝ in this analysis, and hence the
CDH assumption instead of co-CDH. Moreover, we will only consider the TS-
UF-0 threat model from [10]. Our security proof is similar to the static security
proof of Boldyreva’s scheme. We want to note that assuming the hardness of
CDH in the random oracle model, Boldyreva’s scheme has only been proven
TS-UF-0 secure. We adopt TS-UF-0 for simplicity since static security is not the
main focus of the paper.

Let Astatic be the static adversary that breaks the unforgeability of our sig-
nature scheme, and let ACDH be the CDH adversary. Let C be the set of signers
Astatic corrupts at the beginning of the protocol, and H = [n] \ C be the set
of honest signers. Also, let S ⊂ H be the subset of honest signers Astatic will
query for partial signatures on the forged message. By the definition of a static
adversary, we require that |C ∪ S| ≤ t and Astatic declare the sets C,S to ACDH.
ACDH on input a CDH input (g, ga, gb) ∈ G

3 simulates the KGen functionality
and the signature scheme with Astatic as follows.

Simulating the KGen functionality. For simplicity, let us assume |C ∪ S| = t.
ACDH samples h, v ←$ G. Next, ACDH samples two random degree t polynomials
r(x), u(x) with the constraint r(0) = u(0) = 0. To compute the polynomial s(x),
Astatic samples s(j) ←$ F for each j ∈ C ∪ S. ACDH sets the public key as
pk = ga and computes threshold public keys {pki} = {gs(i)hr(i)vu(i)}i∈[n] using
interpolation in the exponent. ACDH then sends pk, {pki}i∈[n], {ski}i∈C to Astatic.

Simulating the Signing Queries. Throughout the simulation ACDH always
faithfully responds to queries to H1. Note that H0 is always queried on the forged
message, at least by ACDH during the signature verification. Let qH be an upper
bound on the number of random oracle queries to H0, including the query during
the signature verification. For static security, the number of queries to H1 can
be unbounded. ACDH samples k̂ ←$ [qH]. On the k-th random oracle query on
message mk, depending upon the value of k, ACDH programs the random oracle
as follows:

k �= k̂ =⇒ H0(mk) = gβk for βk ←$ F; and k = k̂ =⇒ H0(mk) = gb;

Let qs be the maximum number of signing queries made by Astatic. We have
qs ≤ qH. Then, whenever k �= k̂, ACDH uses its knowledge of βk and polynomial
r(·) to respond to partial signing queries correctly. Alternatively, when k = k̂
and let m

k̂
be the corresponding message, ACDH correctly responds to partial

signing queries for each signer j ∈ C ∪ S, using its knowledge of s(j). If Astatic

queries for partial signatures on m
k̂

from signers not in C ∪ S, ACDH aborts.
Now, whenever Astatic outputs a valid forgery (m

k̂
, σ∗), ACDH outputs σ∗ as

the CDH solution. It is easy to see that σ∗ = gab.

7 Adaptive Security with Distributed Key Generation

In our discussion so far, we proved the adaptive security of our threshold signa-
ture scheme, assuming that a trusted party generates the signing keys. In this
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section, we present a distributed key generation (DKG) protocol that signers
can run to set up the signing keys of our threshold signature scheme instead of
relying on the trusted KGen. DKG has the following interface.

DKG() : For any (n, t) non-interactive threshold signature scheme TS with t <
n/2, DKG is an interactive protocol among n parties, which all take some public
parameters as inputs. At the end of the protocol, signers output a public key
pk, a vector of threshold public keys {pk1, . . . , pkn}. Each signer i additionally
outputs a secret key share ski.

As in §5, concretely, at the end of the DKG protocol, each party i outputs
ski := (s(i), r(i), u(i)), threshold public keys {pkj := gs(j)hr(j)vu(j)}j∈[n], and

the public verification key pk := gs(0)hr(0)vu(0). Here, s(·), r(·) and u(·) are three
degree t polynomials with r(0) = 0 and u(0) = 0. This implies that pk := gs(0).

7.1 Design of Our DKG Protocol

We design our DKG protocol by augmenting the classic Pedersen DKG proto-
col, also referred to as the JF-DKG protocol [42]. We pick JF-DKG due to its
simplicity and popularity. We believe we can use many other DKG protocols
using a similar modification (see our discussion at the end of this section). We
summarize our protocol in Fig. 5 and describe it next.

Let g, h, v ∈ G be three uniformly random generators of G with a scalar field
F. We will describe our DKG protocol in three phases: Sharing, Agreement and
Key Derivation.

Sharing Phase. During the sharing phase, each party i, as a verifiable
secret sharing (VSS) dealer, samples three random degree-t polynomials
si(x), ri(x), ui(x) with ri(0) = ui(0) = 0 such that

si(x) := si,0 + si,1x + · · · + si,tx
t

ri(x) := ri,1x + · · · + ri,tx
t and ui(x) := ui,1x + · · · + ui,tx

t

Party i then computes a commitment cmi ∈ G
t+1 to these polynomials

cmi := [gsi,0 , gsi,1hri,1vui,1 , · · · , gsi,thri,tvui,t ] (21)

and a proof of knowledge π of discrete logarithm of cmi[0] = gsi,0 with respect
to the generator g using the Schnorr identification scheme [63] (steps 2 and 3).

Party i then publishes (step 4), using a broadcast channel, (cmi, πi). Intu-
itively, the proof πi ensures that the constant terms of ri(x) and ui(x) are zero,
except with a negligible probability. Also, party i sends each party j, via a private
channel, the tuple (si(j), ri(j), ui(j)).

Agreement Phase. The purpose of the agreement phase is for parties to agree
on a subset of dealers, also referred to as the qualified set, who correctly par-
ticipated in the sharing phase. To agree on the qualified set, each party j, upon
receiving from dealer i the tuple (s′, r′, u′) (via the private channel) and (cmi, πi)



Adaptively Secure BLS Threshold Signatures from DDH and co-CDH 275

Fig. 5. Our DKG protocol which is a modification of the JF-DKG [42].

(via the broadcast channel), accepts them as valid shares if πi is a valid proof
and the following holds:

gs′

hr′

vu′

=
∏

k∈[0,t]

cmi[k]j
k

(22)

If either of the validation checks fails for any dealer i, the party broadcasts
a complaint against the dealer i (step 7). The dealer i then responds to all the
complaints against it by publishing the shares of all the complaining parties. All
parties then locally validate all the revealed shares for all the complaints. If any
dealer i publishes an invalid response to any complaint or does not respond at
all, then dealer i is disqualified (step 8). Let Q be the set of qualified dealers.
Note that all honest parties will always be part of Q.
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Key-Derivation Phase. With a qualified set Q, the final public key is pk =
∏

i∈Q cmi[0]. The threshold public key pkj of every party j is computed as in
Eq. (24). The signing key skj of each party j is the sum of the j-th share of all
dealers in Q as shown in step 10 of Fig. 5. Let s(x), r(x), u(x) be the polynomials
defined as:

s(x) :=
∑

i∈Q

si(x); r(x) :=
∑

i∈Q

ri(x); u(x) :=
∑

i∈Q

ui(x). (23)

Once the DKG protocol finishes, each party i outputs its signing key ski :=
(s(i), r(i), u(i)), the public key pk := gs(0)hr(0)vu(0) = gs(0), and the threshold
public keys {pkj := gs(j)hr(j)vu(j)}j∈[n].

Using other DKG Protocols. In Fig. 5, we augment the JF-DKG protocol for our
signature scheme. Our augmentation techniques are generic and can be used with
many existing DKG protocols that follow the same three-phase structure [23,
24,31,35,42,44,47,50,60]. Specifically, we can augment any such DKG protocol
by having each VSS dealer: (i) share two additional zero-polynomials r(·) and
u(·); and (ii) publish a NIZK proof π for the correctness of the zero-polynomial.
Similarly, each VSS recipient will validate the shares it receives with the updated
check in Fig. 5.

Signature Scheme with DKG Our threshold signature scheme with a DKG
protocol is identical to Fig. 2, except that signers generate their signing keys by
running the DKG protocol in Fig. 5.

7.2 Adaptive Security Analysis with DKG

To ensure robustness of our threshold signature scheme, we require the DKG
protocol to satisfy robustness. Intuitively, the robustness property states that
the keys output by the DKG protocol are well-formed, even in the presence of
an adaptive adversary that can corrupt up to t out of n signers. The robustness
property ensures that the constant terms of the polynomials r(x) and u(x) are
zero. In the full version, we will formalize the robustness property and prove
that our DKG ensures robustness, assuming the hardness of discrete logarithm
in G.

Next, similar to §6, we will prove unforgeability, assuming the hardness of
the DDH in Ĝ and the hardness of co-CDH in (G, Ĝ). To break the co-CDH
assumption, the reduction adversary Aco-CDH simulates the DKG and threshold
signing protocol with the adversary A. Importantly, for this to work, we require
the DKG protocol to satisfy the single inconsistent party (SIP) simulatability
property. Recall that the security proof of our threshold signature used a rigged
public key with r(0) = 1 and uniformly random u(0). However, with DKG,
we do not have a trusted entity to set up the rigged public key. Instead, we
will rely on the single inconsistent party (SIP) technique [23,36,37] to set up
a rigged public key. In more detail, we will let one honest party deviate from
the specified DKG protocol so that the final DKG output has the rigged with
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r(0) = 1 and uniformly random u(0) structure we need. For this to go through,
we need to ensure that A cannot distinguish between the real execution of the
protocol where all parties follow the DKG protocol and the execution with a
single inconsistent party. We capture this by requiring the DKG protocol to
satisfy the SIP simulatability property we formally define in in the full version.

In the full-version, we prove that our DKG protocol satisfies the SIP simu-
latability property. Intuitively, the SIP simulatability of our DKG scheme follows
from the fact that for uniformly random s(x), u(x) and non-zero r(0), cmi for
each i ∈ H perfectly hides s(0), r(0), and u(0). Given a DKG protocol with the
SIP simulatability property, the rest of our security proof is similar to that of §6.
We present the full proof in the full version.

8 Implementation and Evaluation

8.1 Evaluation Setup

We implement our threshold signature scheme in Go. Our implementation is
publicly available at https://github.com/sourav1547/adaptive-bls. We use the
gnark-crypto library [18] for efficient finite field and elliptic curve arithmetic
for the BLS12-381 curve. We also use (for both our implementation and the base-
lines) the multi-exponentiation of group elements using Pippenger’s method [14]
for efficiency. We evaluate our scheme and baselines on a t3.2xlarge Amazon Web
Service (AWS) instance with 32 GB RAM, 8 virtual cores, and 2.50 GHz CPU.

Baselines. We implement two variants of Boldyreva’s BLS threshold signatures
as baselines. The variants differ in how the aggregator validates the partial sig-
natures. The Boldyreva-I variant is the standard variant we describe in §4.4. In
Boldyreva-II, along with the partial signatures, signers also attach a Σ-protocol
proof attesting to the correctness of the partial signatures. Instead of pairings,
the aggregator uses the Σ-protocol proof to check the validity of the partial
signatures, resulting in faster verification time. We refer readers to Burdges et
al. [20] for more details on Boldyreva-II. For Σ-protocols in both Boldyreva-II
and our scheme, we use the standard optimization where the proof omits the
first message of the prover and instead includes the Fiat-Shamir challenge [21].

We evaluate the signing time and partial signature verification time of our
scheme. The signing time refers to the time a signer takes to sign a message and
compute the associated proofs. The partial signature verification time measures
the time the aggregator takes to verify a single partial signature. Note that after
partial signature verification, the aggregation time of our threshold signature is
identical to the aggregation time of Boldyreva’s scheme, but for completeness,
we also measure the total aggregation time. Our final verification time is identical
to Boldyreva’s scheme (and standard BLS).

https://github.com/sourav1547/adaptive-bls
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Table 1. Comparison of BLS threshold signatures using BLS12-381 elliptic curve. We
assume that public keys are in G and signatures are in Ĝ.

Scheme
Partial signing
time (in ms)

Partial signature
verification time (in ms)

Partial Signature
size (in bytes)

Aggregation time
for t = 64 (in ms)

Boldyreva-I 0.81 1.12 96 74.01

Boldyreva-II 1.20 0.76 160 55.43

Ours scheme 3.92 2.16 224 149.52

8.2 Evaluation Results

We report our results in Table 1. Through our evaluation, we seek to illustrate
that our scheme only adds a small overhead compared to Boldyreva’s scheme [15]
to achieve adaptive security.

Signing Time. As expected, the per signer signing time of Boldyreva-II is
slightly higher than Boldyreva-I, since a signer in Boldyreva-II also computes
the Σ-protocol proof. Similarly, our per signer signing cost is 3.3× higher than
Boldyreva-II as our Σ-protocol involves more computation than Boldyreva-II.

Partial Signature Verification Time. The verification time of Boldyreva-II
is less than Boldyreva-I, since pairings operations are much slower than group
exponentiations. As expected, our partial signature verification time is 2.84×
longer than Boldyreva-II due to more expensive Σ-protocol verification. Com-
pared to Boldyreva-I, our partial signature verification is 1.92× slower.

Partial Signature Size. The partial signature size only depends on the under-
lying elliptic curve group we use. For the BLS12-381 elliptic curve, F, G and Ĝ ele-
ments are 32, 48, and 96 bytes, respectively. The partial signature in Boldyreva-I
is a single Ĝ element, which is 96 bytes. In Boldyreva-II, the partial signature
also consists of a Σ-protocol proof, that, using the standard optimization of
including the Fiat-Shamir challenge [21] is (c, z) ∈ F

2. Hence, the partial signa-
tures in Boldyreva-II are 64 bytes longer compared to Boldyreva-I. Finally, our
partial signature includes a Σ-protocol proof (c, zs, zr, zu) ∈ F

4, and hence in
total are 224 bytes long. If we assume that parties are semi-honest, then partial
signatures of all three schemes will be identical.

Total Aggregation Time. We measure the total signature aggregation time for
t = 64. Recall during aggregation, the aggregator, apart from verifying the par-
tial signatures, performs O(t log2 t) field operations to compute all the Lagrange
coefficients and a multi-exponentiation of width t [68]. Since field operations
are orders of magnitude faster than group exponentiations, for moderate val-
ues of t such as 64, the partial signature verification costs dominate the total
aggregation time. Thus, the aggregation time of all three schemes we evaluate is
approximately t times the single partial signature verification time.
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Common Case Optimization of Aggregation Time. Note that it is possible to
optimize the aggregation time of both the baselines and our scheme in the
common case. More specifically, the aggregator can optimistically aggregate the
partial signatures without verifying them individually and then verify the aggre-
gated signature. If the final verification is successful, the aggregator outputs
the aggregated signature. Otherwise, the aggregator validates the partial signa-
ture individually, identifies the invalid ones, discards them, and recomputes the
aggregated signature. Moreover, the aggregator discards the partial signatures
from the signers who sent invalid partial signatures in all future aggregations.
We refer to the latter as the fall-back path.

Our evaluation illustrates that with this optimization, the aggregation in the
optimistic case is 7.7 ms (in AWS t3.2xlarge machine) for both the baselines
and our scheme. Also, the robustness property implies that the aggregator will
always identify at least one malicious party in case of the fall-back path and will
never blame an honest party. This implies that the aggregator needs to run the
fall-back path at most t times in total. Thus, we believe that in long-running
system, our added overhead is very minimal.

9 Discussion and Conclusion

In this paper, we presented a new adaptively secure threshold BLS signature
scheme and a distributed key generation protocol for it. Our scheme is adap-
tively secure assuming the hardness of decisional Diffie Hellman (DDH) and
co-computational Diffie Hellman assumption (co-CDH) in asymmetric pairing
groups in the random oracle model (ROM). The security of our scheme grace-
fully degenerates: in the presence of a static adversary, our scheme relies only on
the hardness of CDH in pairing groups in the ROM, which is the same assump-
tion as in the standard non-threshold BLS signature scheme.

Our scheme maintains the non-interactive signing, compatible verification,
and practical efficiency of Boldyreva’s BLS threshold signatures. We imple-
mented our scheme in Go, and our evaluation illustrates that it has a small
overhead over the Boldyreva scheme.

Future Research Directions. Our scheme only works with type-II and type-
III asymmetric pairing groups. This is because the security of our signature
scheme assumes the hardness of DDH. Removing the reliance on the DDH
assumption on a source group is a fascinating open problem. Another exciting
research direction is to extend our ideas to prove the adaptive security of other
threshold signature or encryption schemes such as threshold Schnorr, ECDSA,
and RSA.
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