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Abstract. Integration of imaging genetics data provides unprecedented
opportunities for revealing biological mechanisms underpinning diseases
and certain phenotypes. In this paper, a new model called attentive deep
canonical correlation analysis (ADCCA) is proposed for the diagnosis
of Alzheimer’s disease using multimodal brain imaging genetics data.
ADCCA combines the strengths of deep neural networks, attention mech-
anisms, and canonical correlation analysis to integrate and exploit the
complementary information from multiple data modalities. This leads to
improved interpretability and strong multimodal feature learning abil-
ity. The ADCCA model is evaluated using the ADNI database with three
imaging modalities (VBM-MRI, FDG-PET, and AV45-PET) and genetic
SNP data. The results indicate that this approach can achieve outstand-
ing performance and identify meaningful biomarkers for Alzheimer’s dis-
ease diagnosis. To promote reproducibility, the code has been made pub-
licly available at https://github.com/rongzhou7/ADCCA.

Keywords: Brain imaging genetics · Canonical correlation analysis ·
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1 Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that
affects millions of people worldwide [5]. In recent years, brain imaging genet-
ics has emerged as a promising field for the diagnosis and prediction of AD
and its prodromal stage – mild cognitive impairment (MCI). This approach
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largely focuses on using neuroimaging techniques, such as MRI and PET, to
identify brain regions that are associated with specific genetic variants such as
single nucleotide polymorphisms (SNPs). Such analyses have produced a wealth
of research findings [23,26,28] that have demonstrated significant associations
between imaging characteristics and genetics in AD, and have the great poten-
tial to identify new multimodal biomarkers affecting specific brain systems and
provide an enormous impetus for drug discovery.

Fig. 1. An overview of the proposed framework. X1, · · · ,X4 are input modality data,
and Y is the label information. DNNs first operate on each modality, generating hidden
representations for each modality. These hidden representations go through a self-
attention mechanism generating improved self-attention representations. At the same
time, the hidden representations and label Y are multiplied by individual projection
matrices U1, . . . ,U4,Uy based on CCA, thus mapping them to a shared representation
G. Finally, the disease prediction is calculated by self-attention representations with
projection matrices and shared representation G.

In the literature, various methods have been proposed to brain imaging genet-
ics analysis [3,9–11,13,19,27,29]. In particular, canonical correlation analysis
(CCA) [12] is a powerful multivariate statistical technique for quantifying the
associations between different sets of data. CCA and its variations have been
widely applied in imaging genetics studies because of its advantages in biologi-
cal interpretation. For example, Du et al. [8] proposed a joint multitask sparse
canonical correlation analysis and classification (MTSCCALR) for identifying
imaging genetics biomarkers of AD. Kim et al. [16] introduced a multi-task
learning-based structured sparse canonical correlation analysis (MTS2CCA) for
identifying brain imaging genetics related to sleep. Moon et al. [20] proposed
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a supervised deep generalized canonical correlation analysis (SDGCCA) for
improving the classification of phenotypes and revealing biomarkers associated
with phenotypes in the context of AD. Despite much progress made in this area,
CCA-based traditional shallow models assume that the relationships between
genetic and imaging data are linear. However, this may not always be the case,
and nonlinear relationships may exist in brain imaging genetics data, leading
to biased results. On the other hand, the existing CCA-based deep models do
not provide a direct interpretation of the underlying biological mechanisms driv-
ing the observed associations between genetic and imaging data. Most of them
explored post-hoc explanations as justifications for model predictions. This can
limit the ability to translate findings into clinically relevant insights.

In this paper, we propose a novel attentive deep canonical correlation analy-
sis (ADCCA) model for diagnosing AD disease and discovering biomarkers using
multimodal brain imaging genetics data. As illustrated in Fig. 1, the proposed
framework comprises three key components: (i) deep neural network (DNN)
modeling for generating latent representations of each modality to capture intra-
modality correlations; (ii) attention update mechanism for focusing on the most
salient regions of input data; and (iii) nonlinear supervised CCA modeling for
integrating multiple modalities to discriminate phenotypic groups. By combining
the power of these techniques, the ADCCA approach effectively models nonlinear
relationships among multimodal imaging genetics data and provides simultane-
ous predictions and interpretations. The model is trained end-to-end using a
combination of classification and correlation losses.

Through extensive experiments on the real-world ADNI dataset with three
imaging modalities (VBM-MRI, FDG-PET, and AV45-PET) and genetic SNP
data, we show that our model achieves outstanding performance for classifying
AD vs. HC, AD vs. MCI, and MCI vs. HC groups. Also, it is demonstrated that
the model explanation can reveal disorder-specific biomarkers coinciding with
neuroscience findings. Last, we show that the combination of classification and
correlation models can boost disease prediction performance.

2 Method

Suppose that the problem includes N subjects with M modalities. Let Xm ∈
R

N×dm denote the m-th modality data, where dm represents the dimension of
features in the m-th modality, m = 1, 2, · · · ,M . Let Y ∈ R

N denote the label
information of all subjects. In this work, we seek to learn a disease prediction
model that estimates Ŷ from {Xm}Mm=1 by making full use of all M modalities,
as well as identify disease-specific biomarkers for clinical interpretation.

The proposed ADCCA aims to combine the strengths of DNN, attention
mechanism, and CCA to integrate and exploit the complementary information
from multiple data modalities (Fig. 1). First, we use a separate DNN containing
several fully-connected hidden layers to learn hidden representations for each
modality, denoted as fm (Xm) ∈ R

N×lm , where lm represents the dimension of
last layer of DNN corresponding to the m-th modality. Second, we employ the
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attention mechanism [25] on the basis of the DNN model. With the help of the
attention mechanism, our method can explicitly capture the important features
hidden in the input data. Specifically, we use self-attention, sometimes called
intra-attention, which is regarded as an improvement in attention that focuses
on internal links of features and reduces external data dependency to compute its
representation. Suppose there are three linear transformation matrices for the m-
th modality: Wm

Q ,Wm
K ,Wm

V . Mathematically, the self-attention representation
of fm (Xm) can be calculated as:

Att(fm (Xm)) = Softmax
(fm (Xm)Wm

Q (fm (Xm)Wm
K)�√

lm

)
fm (Xm)Wm

V . (1)

Third, following [20], we learn cross-modality features and incorporate the label
information of samples for supervised learning based on CCA. The correlation
loss function is defined as follows:

Lcor =
∥∥G − U�

y Y
∥∥2

F
+

M∑
m=1

∥∥G − U�
mfm (Xm)

∥∥2

F
, s.t. GG� = I. (2)

where U1, · · · ,U4,Uy are projection matrices for each modality and label infor-
mation, respectively. I denotes the identity matrix.

According to Eq. (2), we have G ≈ U�
mfm (Xm) ≈ U�

y Y. Thus, the label Y
can be approximated as follows: Y ≈ (

U�
y

)†
U�

mfm (Xm), where U†
y denotes

the pseudo-inverse of Uy. Then, we substitute self-attention representations
that are more representative of each modality into the above equation and let
Ŷm =

(
U�

y

)†
U�

m Att (fm (Xm)). Further, the conventional supervised cross-
entropy loss [7] is used to enable the propagation of label information directly
to the DNN of each modality.

Lcls =
M∑

m=1

CrossEntropy
(
Y,Softmax(Ŷm)

)
. (3)

The final label prediction of ADCCA can be obtained using the following soft vot-
ing of the label presentation of each modality: Ŷ = Softmax((

∑M
m=1 Ŷm)/M).

Overall, our final training objective can be defined as:

L = Lcls + λLcor, (4)

where Lcls is the supervised cross-entropy disease prediction loss, Lcor is the
correlation loss, and λ is a tunable hyperparameter that scales the numerical
value of each loss item to the same order of magnitude to balance their influence.
The solution on loss function L is similar to the SGDCCA method except for
substituting the outputs of DNN models to their self-attention representations.

3 Experiments and Results

3.1 Data Acquisition and Preprocessing

Brain imaging genetic data used in this study were obtained from the pub-
lic ADNI database [22]. There is a total of 597 participants with both geno-



Attentive Deep CCA for Multimodal Alzheimer’s Disease Diagnosis 685

type and brain imaging data, including 104 AD, 305 MCI, and 188 healthy
control (HC) subjects. The image data consisted of three modalities including
structural Magnetic Resonance Imaging (VBM-MRI), 18F-fluorodeoxyglucose
Positron Emission Tomography (FDG-PET), and 18F-florbetapir PET (AV45-
PET). These three imaging modalities allowed us to examine brain structure,
glucose metabolism, and amyloid plaque deposition, respectively.

Following the previous studies [2,30], we preprocessed neuroimaging data
to extract ROI-based features. Specifically, the multi-modality imaging scans
were aligned to each participant’s same visit. All imaging scans were aligned to
a T1-weighted template image, and segmented into gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) maps. They were normalized to the
standard Montreal Neurological Institute (MNI) space as 2× 2× 2 mm3 voxels,
being smoothed with an 8 mm FWHM kernel. We preprocessed the structural
MRI scans with voxel-based morphometry (VBM) by using the SPM software [1],
and registered the FDG-PET and AV45-PET scans to the MNI space by SPM.
We subsampled the whole brain imaging and contained 90 ROIs (excluding the
cerebellum and vermis) based on the AAL-90 atlas [24]. ROI-level measures were
calculated by averaging all the voxel-level measures within each ROI.

For genetic SNP data, according to the AlzGene database1, only the SNPs
belonging to top AD gene candidates were selected. The genetic data were geno-
typed by the Human 610-Quad or OmniExpress Array platform (Illumina, Inc.,
San Diego, CA, USA), and preprocessed following standard quality control and
imputation procedures. There were 54 SNPs included which were collected from
the neighbor of AD risk gene APOE according to the ANNOVAR annotation.

3.2 Evaluation of Disease Classification Performance

In our experiments, the whole data were separated into three groups, includ-
ing AD vs. HC, AD vs. MCI, and MCI vs. HC. To quantitatively evaluate the
performance of different methods, we considered four commonly-used evaluation
metrics: accuracy (ACC), F1-score (F1), area under receiver operating charac-
teristic curve (AUC), and Matthews correlation coefficient (MCC) [6]. Since the
number of subjects was limited, we calculated the mean and standard devia-
tion of all metrics using 5-fold cross-validation (CV). Many researchers have
successfully adopted multimodal brain imaging data into CCA. We carefully
choose five related methods for comparison: 1) vanilla DNN [18], 2) generalized
CCA (GCCA) [15], 3) deep generalized CCA (DGCCA) [4], 4) MTSCCALR [8],
and 5) SDGCCA [20]. Note that GCCA and DGCCA are unsupervised learning
methods, and the others are supervised learning methods. The proposed model
includes four DNNs, one for each modality, with three fully-connected layers
and a Tanh activation function, which is trained with Adam optimizer with the
learning rate set to 0.0001 and weight decay set to 0.001.

Table 1 presents the classification results, where ± represents the standard
deviation of evaluation scores across the 5 folds. From the results, it can be

1 www.alzgene.org.

www.alzgene.org
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observed that the proposed ADCCA method significantly outperforms all other
methods in terms of all four metrics. The higher AUC and MCC scores indicate
that our method is able to accurately identify both positive and negative cases of
AD. The smaller standard deviations of ADCCA illustrated the overall stability
and reproducibility of the experiment.

Table 1. Classification performance comparison. The best results are in bold.

Task Measures DNN GCCA DGCCA MTSCCALR SDGCCA ADCCA

AD vs. HC ACC .866± .037 .812± .037 .837± .028 .828± .047 .914± .029 .932± .010
F1 .873± .049 .811± .054 .833± .041 .862± .046 .883± .034 .901± .025
AUC .943± .030 .930± .015 .939± .013 .893± .051 .978± .013 .979± .015
MCC .720± .080 .652± .079 .688± .060 .629± .087 .822± .057 .895± .043

AD vs. MCI ACC .689± .035 .618± .059 .638± .017 .746± .049 .812± .063 .825± .011
F1 .579± .032 .583± .038 .535± .037 .679± .041 .683± .079 .823± .032
AUC .811± .025 .726± .050 .756± .022 .836± .039 .880± .043 .925± .050
MCC .413± .046 .256± .054 .281± .048 .482± .104 .569± .110 .625± .024

MCI vs. HC ACC .523± .026 .499± .024 .519± .044 .594± .029 .647± .058 .758± .033
F1 .529± .031 .543± .084 .513± .044 .513± .025 .702± .058 .799± .030
AUC .570± .030 .540± .032 .574± .054 .637± .022 .796± .074 .816± .051
MCC .103± .058 .105± .075 .109± .100 .172± .045 .273± .110 .407± .073

3.3 The Most Discriminative Brain Regions and SNPs

Identifying the most discriminative brain regions (i.e., ROIs) and SNPs is crucial
for AD diagnosis. Here, we employed the integrated gradients interface provided
by Captum [17] to assign importance scores to each feature of different modal-
ities by analyzing the pre-trained model, which can provide a comprehensive
explanation of how the input features of a deep learning model contribute to
the model’s output. The reason why not using the self-attention weights is that
we use the self-attention to assign attention scores to hidden representations
instead of the original features, thus it may not fully capture the importance
of the original features in the input data. Figure 2(a-c) shows the top 20 dis-
criminative ROIs identified by the proposed method from each individual brain
imaging modality. Figure 2(d) shows the top 20 discriminative ROIs selected
by the average importance scores of ROIs from the three modalities. We found
that the hippocampal, amygdala, uncus, and gyrus regions are only identified
by using the three modalities together. These selected regions are known to be
highly related to AD and MCI in previous studies [21]. Besides, the result shows
that the selected ROIs exhibited differences across different classification groups,
indicating that our model can effectively differentiate the important ROIs for
specific diseases. Figure 3 shows the most frequently selected SNPs with impor-
tance scores. The result indicates that rs6448453, rs3865444, and rs2718058 are
the most discriminative SNPs which is consistent with previous evidence [14].
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Fig. 2. Top 20 discriminative ROIs identified by ADCCA from three brain imaging
modalities for three different classification groups in lateral, medial, and ventral view.
The color bar indicates the importance score. The commonly selected ROIs across
different modalities are circled in blue. (Color figure online)

Fig. 3. The importance scores of SNPs. The red color indicates a high score. (Color
figure online)

3.4 Ablation Study

The proposed ADCCA is trained using both correlation and classification losses.
To understand the impact of each loss on classification, we conducted ablation
studies by evaluating the performance of two additional models: the ADCCA
model trained without the correlation loss (w/o Lcor) and without the classifi-
cation loss (w/o Lcls). The results presented in Table 2 indicate that ADCCA
outperforms the other two models for all evaluation metrics on all three classifi-
cation tasks, suggesting that both correlation and classification losses contribute
to ADCCA’s improved performance. Removing either loss leads to decreased
performance, and the impact will be particularly significant if the classification
loss is eliminated.
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Table 2. Classification performance comparison with and without Lcor and Lcls

Task Method ACC F1 AUC MCC

AD vs. HC ADCCA .932± .010 .901± .025 .979± .015 .895± .043
(w/o) Lcor .924± .025 .892± .034 .963± .016 .837± .067
(w/o) Lcls .876± .037 .853± .029 .928± .020 .791± .058

AD vs. MCI ADCCA .825± .011 .823± .032 .925± .050 .625± .024
(w/o) Lcor .806± .029 .795± .032 .897± .048 .589± .033
(w/o) Lcls .758± .059 .723± .038 .856± .050 .466± .054

MCI vs. HC ADCCA .758± .033 .799± .030 .816± .051 .407± .073
(w/o) Lcor .692± .033 .713± .056 .761± .072 .317± .092
(w/o) Lcls .619± .024 .683± .084 .599± .032 .176± .075

3.5 Hyperparameter Analysis

We investigated the impact of two important hyperparameters in the ADCCA
model: λ, which appears in the loss function to balance the classification and
correlation losses, and the dimension of the shared representation G. In order to
explore the effects of these hyperparameters on the performance of the model,
we conducted experiments using different values of λ and the shared represen-
tation dimensionality. Due to the space limit, we only report the classification
results in AD vs. HC group, as shown in Fig. 4. The results in other groups can
be found in the supplementary material. We observed that decreasing the value
of λ generally leads to improved model performance across various tasks, but a
lambda value of zero causes the model’s performance to deteriorate. This may
indicate that for the ADCCA model, Lcls is more important than Lcor. Further-
more, combining these two loss functions to jointly guide the model can lead
to improved model performance. We also found that for the AD vs. HC group,
the model achieves good performance even with a low-dimensional shared rep-
resentation. However, for other groups, the impact of the shared representation
dimension on the model’s performance seems not significant. One explanation
for this could be that the AD vs. HC group exhibits distinct feature differences,
allowing the original features to be well represented even when mapped into a
low-dimensional shared representation.

Fig. 4. Sensitivity analysis of hyperparameters on AD vs. HC
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4 Conclusion

In this work, we propose a novel deep canonical correlation analysis method
for multimodal Alzheimer’s disease diagnosis that leverages attention mecha-
nisms to enhance interpretability and multimodal feature learning. Experimen-
tal results on the real-world imaging-genetics dataset demonstrate that our app-
roach achieves better classification performance than the existing state-of-the-
art methods in terms of both classification accuracy and correlation between
the modalities. In an exploratory analysis, we further show that the biomark-
ers identified by our model are closely associated with Alzheimer’s disease. Our
proposed approach is applicable to other diseases with multimodal data avail-
able. However, the limited size of medical datasets may restrict the effectiveness
and generalization ability of such deep learning models. To address this issue, a
potential future direction is to employ pre-training and transfer learning tech-
niques that facilitate learning across datasets.
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