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Abstract

This paper investigates controllable genera-
tion for large language models (LLMs) with
prompt-based control, focusing on Lexically
Constrained Generation (LCG). We systemati-
cally evaluate the performance of LLMs on sat-
isfying lexical constraints with prompt-based
control, as well as their efficacy in downstream
applications. We conclude that LLMs face sig-
nificant challenges in consistently satisfying
lexical constraints with prompt-based control.
We identified three key limitations of LLMs for
LCG, including (1) position bias, where LLMs
tend to satisfy constraints that appear in spe-
cific positions within the input; (2) low respon-
siveness to decoding parameters, which render
minimal impact on control of LLMs; and (3)
struggle with handling the inherent complexity
of certain constraints (e.g., compound words).
To address these issues, we introduce a Divide
and Conquer Generation strategy, effective for
both white-box and black-box LLMs, to en-
hance LLMs performance in LCG tasks, which
demonstrates over 90% improvement on suc-
cess rate in the most challenging LCG task. Our
analysis provides valuable insights into the per-
formance of LLMs in LCG with prompt-based
control, and our proposed strategy offers a path-
way to more sophisticated and customized text
generation applications.

1 Introduction

Lexically Constrained Generation (LCG) is a cru-
cial task of text generation (Zhang et al., 2023a).
By enforcing the inclusion of pre-specified words
in the output, LCG facilitates the generation of
more faithful and relevant texts. It is helpful for
various real-world applications, such as story gen-
eration (Yao et al., 2019; Goldfarb-Tarrant et al.,
2020), poetry composition (Tian and Peng, 2022)
table-to-text generation (Chen et al., 2022), and
recipe generation (H. Lee et al., 2020).

To generate text that adheres to lexical con-
straint effectively, previous works either design

(a) Vanilla Lexical Constrained Generation

Write a profiling paragraph
contains all features of the
client: <constraints>

Input Constraints

Name: Ben Smith; Age: 29; Gender: Male;
Race: White; Marriage: Single; FICO:740
Education: Bachelor; Occupation: Engineer;
Location: Chicago; Housing: Rent

GPT-4 Response (1)

Ben Smith is a 29-year-old white male who is currently single and
resides in Chicago. He works as an engineer ... With a FICO score of
740, Ben demonstrates a strong financial responsibility.

missing !

(b) Divide and Conquer Generation Missed Constraints

} divide Housing: Rent
GPT-4 Response (1) ey | Education: Bachelor
constraints
e |

Evaluator

)
merge GPT-4 Response (2)
4+ .
E Ben Smith holds a Bachelor's degree,
Generator and he currently rents his housing

GPT-4 Response (3)

Ben Smith is a 29-year-old white male, currently single, residing in
Chicago. He holds a Bachelor's degree and works as an engineer, a
profession that demands high technical proficiency and strong problem-
solving skills. Ben rents his housing ... with a FICO score of 740, Ben
demonstrates strong financial responsibility, ...

Figure 1: Sub-figure (a) illustrates that modern LLMs
struggle to consistently meet complex lexical constraints
in real-world scenarios. As shown in sub-figure (b),
the Divide and Conquer Generation strategy divides
the constraints into two parts (satisfied and missed),
then generates a response with the missed constraints -
i.e. response (2) - and merges them with the satisfied
ones, enhancing the LLMs’ ability to meet all specified
constraints.

constrained decoding strategies, develop special-
ized model structures, or present refined mecha-
nisms (Sha, 2020; Lu et al., 2022c; Qian et al.,
2022; Meng et al., 2022; Zhang et al., 2023b; Lu
et al., 2024; Zhang et al., 2024). However, these
approaches often come with significant drawbacks,
such as high inference times, complex implementa-
tions, requirement of access to output distributions,
and unstable text quality.

Recent advancements in pretrained large lan-
guage models (LLMs) have showcased their robust
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few-shot capabilities (Brown et al., 2020; Ouyang
et al., 2022; Achiam et al., 2023). Instruction tun-
ing has further enhanced LLMs’ ability to generate
text that meets controllable constraints as desired
by humans (Zhang et al., 2023c). These develop-
ments make prompt-based control an increasingly
efficient and practical method for tackling LCG
tasks (Yang et al., 2023). Notably, prompt-based
control has shown markedly strength and robust-
ness compared to earlier methods for LCG (Sun
et al., 2023; Ashok and Poczos, 2024), which mo-
tivate us to ask: With prompt-based control, can
LLMs consistently satisfy lexical constraints?

Many recent works investigating prompt-based
control of LLMs (Sun et al., 2023; Zhang et al.,
2023a; Ashok and Poczos, 2024) concluded that
LLMs have shown effectiveness in satisfying lex-
ical constraints. However, their experiments have
typically involved relatively simple tasks with a
narrow scope. This leaves a significant gap in de-
tailed understanding of their proficiency, limita-
tions when it comes to satisfying lexical constraints,
and effectiveness in real-world applications.

To address this gap, we present a systematic
analysis of LLMs’ performance in generating text
under lexical constraints. We also evaluate their
utility in downstream applications where adhering
to specific keywords constraints is crucial. Through
extensive experiments, we conclude that LLMs
struggle to adapt to increasingly complex lexical
constraints with prompt-based control. We con-
firm an intuitive complexity bottleneck: As the
number of constraints increases, LLMs’ perfor-
mance decreases dramatically. We make several
complementary observations:

1. Position Bias: The position of each constraint
within the prompt can substantially influence
the model’s output.

2. Low responsiveness to control decoding pa-
rameters: Decoding parameters are not highly
sensitive for LLMs in LCG task, especially
for temperature and top-k.

3. Inherent Complexity of compound words as
constraints: LLMs tend to break down com-
pound words into subwords, which can lead to
misinterpretations or alteration of the intended
meaning of the output significantly.

To tackle the observed challenges, we introduce
an effective strategy - Divide and Conquer Gen-
eration - to enhance the ability of models to meet

lexical constraints and significantly improve per-
formance. This also helps LLMs achieve more
satisfying results in downstream applications. No-
tably, the Divide and Conquer Generation strategy
enables LLaMA-7b to improve the success rate by
93% in the most challenging LCG task, about 40%
higher than the baseline. Our method is well-suited
for both white-box and black-box models, making
it an invaluable tool for a broad scope of applica-
tions across diverse modeling environments.
Overall, our research conducts an in-depth anal-
ysis of LLMs in satisfying lexical constraints, iden-
tifies the current challenges faced by LLMs in sat-
isfying lexical constraints, and provides a viable
solution to these challenges, paving the way for
more sophisticated downstream applications.

2 Lexically Constrained Generation

2.1 Task Setup

Following previous works (Lin et al., 2020; Zhou
et al., 2023), we refer to constraints that require the
generated text to include certain keywords in the
output as lexical constraints. We consider an input
prompt composed of a series of tokens, containing
a set of constraints X = [z1,...,zy,], Where ;
represent a keyword that must be included. The tar-
get output is a coherent sentence Y = [y1,...,yn],
with each y; is a token. The task is to map the
constraint set X into an appropriate sentence Y
that both adheres to the prompt’s requirements (e.g.
generate a recipe) and satisfied the defined con-
straints(e.g. generate sentence that contain all given
keywords) .

Evaluation Metrics We introduce two evalua-
tion metrics in this study:

1. Instance Success Rate ( Ringance): This met-
ric evaluates whether each generated instance
satisfies all specified constraints. It is defined
as:

1 if X CY,
Rinstance(X7 Y) = i
0 otherwise.

2. Keyword Coverage Rate (Sieywora): This
metric measures the proportion of input con-
straints included in the generated texts. It is
calculated as:

Number of Satisfied constraints

Ryeyword = -
eywor Total number of constraints

15241



[ LLaMA2-7b-chat
[ LLaMA2-13b-chat

[ LLaMA3-8b
[ GPT-35

0 GPT-4

~ W (o)) ~ [eg) NeJ
W W ()] W W

|

|

Instance Success Rate (%)
()]

[9¥]
W

4 5
Number of Concepts

Figure 2: Experimental results showing instance success
rates by the number of concepts. GPT models consis-
tently outperform LLaMA models, though performance
declines across all models as the number of keywords
increases.

Evaluate with LLMs We have conducted
tests using various language models, including
LLaMAZ2-7b-chat, LLaMA?2-13b-chat (Touvron
et al., 2023), LLaMA3-8b-chat (Meta, 2024), GPT-
3.5(Achiam et al., 2023), and GPT-4 (Achiam et al.,
2023). In these experiments, we tasked the mod-
els with generating outputs based on specific con-
straints. Unless stated otherwise, all experiments in
this section utilized a greedy decoding strategy for
generating responses. Prompt used in evaluation is
attached to Appendix A.

2.2 Simple Constraints

We initiate our investigation with simple con-
straints, employing the CommonGen benchmark
(Lin et al., 2020) to assess how well LLMs generate
coherent sentences from a given set of concepts.
Experiment Setting. CommonGen (Lin et al.,
2020) is a constrained commonsense generation
task with lexical constraints. In this experiment,
we treat each concept list in CommonGen as input
constraints for LLMs to generate a proper sentence.
We employ the instance success rate as the evalua-
tion metric.

Evaluation Result. Figure 2 presents the results of
experiments.GPT-3.5 and GPT-4 demonstrate im-
pressive performance, achieving average instance
success rates of 91% and 95% respectively across
three distinct groups of instances. Conversely,
LLaMA3-8b shows a less satisfactory average with
a 63% coverage rate, while LLaMA2-13b achieves
only a 55% rate. LLaMAZ2-7b records the low-

est instance coverage among the evaluated models.
This result suggests that the model’s size signifi-
cantly influences its ability to generate text that ad-
heres to specified lexical constraints. Interestingly,
LLaMA3-8b outperforms LLaMA2-13b, indicat-
ing that factors other than sheer model size may
contribute to differences in model effectiveness.

2.3 Challenging Constraints

To increase the complexity of the constraints, we
expanded the number of concepts that need to be
incorporated into the generated text.

Experiment Setting. In this experiment, we ran-
domly select concepts from the entire set of con-
cepts within the CommonGen dataset to create a
new, more challenging dataset. Then we repeat
previous experiment setting to explore how well do
LLMs adapt to increasingly complex constraints.
Evaluation Result. As shown in Figure 3, there is
a clear trend across all models, where the instance
success rate declines as the complexity of con-
straints (i.e. number of concepts) increases. GPT-4
demonstrates slightly better resilience against ris-
ing complexity, maintaining a relative higher cov-
erage rate across various groups of instances than
other models. In contrast, as the number of con-
cepts reaches 15, the performance of other models
drops significantly. Notably, GPT-3.5 shows a sig-
nificant decline in coverage rates; it drops from
98% to 13% as the number of concepts increases
from 3 to 15. This sharp decrease eventually brings
its performance in line with that of smaller models,
such as LLaMA2-7b-chat and LLaMA2-13b-chat.
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—— GPT4
GPT-3.5
LLaMA3-8b
LLaMA2-13b-chat
LLaMA2-7b-chat

¢

Instance Success Rate (%)

3 45 7 10 15
Number of Concepts

Figure 3: Experiment results on instance success rate
by number of keywords. As the number of keywords
increases, LLMs’ performance decreases dramatically
with prompt-based control.
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Figure 4: Experimental results on the position sensitivity
of LLaMA3-8b, presented as keyword coverage rate (y-
axis) for constraints placed at different positions (x-axis).
Across varying numbers of keywords, the performance
of LLMs exhibit similar trends.

3 Sensitive Analysis

To better understand the factors causing LLMs to
struggle with satisfying lexical constraints, we con-
ducted a sensitivity analysis to investigate from
various perspectives.

3.1 Position Bias

The constraints are placed at varying positions
within the prompt. For example, consider the
prompt:

Generate a sentence with the following
keywords: mountain, cat, play, jump.

Here, mountain, cat, play, jump serve as constraints.
The word "mountain” is positioned earliest in the
sequence, while the word "jump" appears at the
end. Previous work finds (Wang et al., 2023) in
natural language understanding tasks, wherein it
tends to select labels placed at earlier positions as
the answer. We aim to investigate the position bias
of LLMs in LCG task.

Experiments Setting We conduct experi-
ments for 6 setting (number of keywords =
[3,5,7,10,15,20]). For each setting with different
specified number of keywords, we randomly
select 100 sets of keywords, shuffle their positions,
and conduct the experiment 20 times to ensure
robustness. We evaluate the average keyword
coverage rate for constraint in each position.

Experiment Result Our findings confirm that
all LLMs exhibit a position bias, where keywords
placed at different positions in the sequence lead
to varying coverage rates. This bias is primarily
attributed to either the primacy or recency effect,
depending on the model. Some models, such as
GPT-3.5, GPT-4, and LLaMA2-13b, are more in-
fluenced by the primacy effect, where keywords in
earlier positions are more likely to be covered. Con-
versely, models like LLaMA2-7b and LLaMA3-8b
demonstrate a stronger recency effect, prioritizing
the most recently presented items. For instance, as
illustrated in Figure 4, the keyword coverage rate
decreases as the position increases from the first
to the last. Keywords placed earlier in the input
sequence (i.e., the prompt) are more likely to be
covered than those in later positions.

This result highlights the position of each con-
straint within the prompt can substantially in-
fluence the model’s output. There’s the need for
careful consideration of keyword placement when
designing prompt for LLMs. For example, plac-
ing critical constraints in positions that are more
likely to be covered can significantly enhance the
effectiveness of the model in downstream tasks.

3.2 Inherent Complexity of Compound Word

In previous experiments on position bias, we ran-
domly shuffled keywords to mitigate the impact
of specific words on final performance. In this
experiment, we isolate the position bias and inves-
tigate the effect of different keywords on the final
performance.

Experiments Setting From our observations in
previous experiments, compound words often pose
challenges in lexical processing. A compound
word is formed from two or more words that col-
lectively function as a single entity, such as "jel-
lyfish" (a combination of "jelly" and "fish") and
"anymore" (a combination of "any" and "more").
To evaluate the inherent complexity of compound
words, we mixed 200 compound words with 200
random words, and conducted 5-keywords setting
(i.e. generate a sentence with given five keywords)
using LLaMA-13b-chat and GPT-4.

Experiment Result Our results show that
LLaMA-13b-chat incorrectly split 65% of com-
pound words and GPT4 split 42%, resulting
in lower keyword coverage rates for compound
words—35% for LLaMA-13b-chat and 58% for
GPT4. In contrast, coverage for non-compound
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Figure 5: Comparison of different decoding parameters across different models. The difference between the highest

and the lowest scores is within 4%, suggesting low responsiveness to control decoding parameters.

words was significantly higher, at 74% for LLaMA-
13b-chat and 92% for GPT4.We can conclude that
compound words have high inherent complexity
in LCG tasks, and it’s more difficult to be cov-
ered by LLMs than non-compound words. This
issue could be attributed to the subword tokeniza-
tion methods used by these models, which may not
effectively recognize and preserve the integrity of
compound words.

The separation of compound words could not
only result in unsatisfied constraints, but also lead
to misinterpretations or significant alterations in
the intended meaning of the output. For instance,
when given the task of generating a sentence using
the keywords: courthouse, build, and attract, the ex-
pected outcome is a sentence related to the criminal
justice system. However, LLM split ’courthouse’
into ’court’ and "house’. This leads to unintended
interpretations, such as generating a sentence like,
"The basketball player hosted a tournament at the
court built beside his house, attracting local talent
to showcase their skills." Such a sentence com-
pletely deviates from the intended context of crimi-
nal justice.

3.3 Decoding Parameters

We notice that LLMs are usually evaluated for
LCG tasks using only default decoding parame-
ters(Zhang et al., 2023a), or limited fixed decoding
parameters (Sun et al., 2023; Ashok and Poczos,
2024). We systematically varied decoding param-
eters to investigate the sensitivity of decoding pa-
rameters on lexical constraint generation. We aim
to determine the impact of different decoding pa-

rameter settings on the performance of LLMs in
LCG.

Experiment Setting Follow the prior practice
(Huang et al., 2024), we experiment with the fol-
lowing three variants for decoding strategy:

* Temperature 7 controls the sharpness of the
next-token distribution. We vary it from 0.05
to 1 with step size 0.05.

* Top-K sampling filters the K most likely next
words, and then the next predicted word will
be sampled among these K words only. We
vary K in {1, 2,5, 10, 20, 50, 100, 200, 500}.

* Top-p sampling (Holtzman et al., 2019)
chooses from the smallest possible set of
words whose cumulative probability exceeds
the probability p. We vary p from 0.05 to 1
with step size 0.05.

We evaluated all models under different decoding
parameters in 10-keywords LCG task (i.e. generate
sentence with given 10 keywords). Specifically,
we only vary temperature and top-p parameters for
GPT-3.5 and GPT-4, as we did not have control
over the top-k settings.

Experiment Results Figure 5 presents the aver-
age keyword coverage rate for 150 instances, each
containing 10 keywords (see Appendix B for more
detail). For LLaMA2-7b-chat and LLaMA2-13b-
chat, there appears to be no significant effect from
variations in temperature and top-k settings, and
the differences observed with various top-p settings
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Model Recipe Generation Table to Text Profile Writing

n=5 n=10 n=15 n=5 n=10 n=15 n=5 n=10
LLaMA2-7b-chat 90% 21% 5% 87% 21% 21% 69% 28%
LLaMAZ2-13b-chat 89% 27% 17% 84% 45% 39% 73% 42%
GPT-3.5 90% 42% 54% 97% 80% 77% 90% 72%
GPT-4 100% 80% 45% 100%  87% 91% 97% 96%
LLaMAZ2-7b-chat (DnC-5) 98% 99% 98% 100% 100% 99% 100%  99%
LLaMA2-13b-chat (DnC-5) 100% 96% 94% 100% 100% 100% 100 % 97%
GPT-3.5 (DnC-5) 100% 100% 100% 100% 100% 100% 100% 100%

Table 1: Results for LLMs’ performance in real-word LCG task. The best results are highlighted in boldface,
and the second-best results are underlined. Divide and Conquer Generation strategy significantly enhances LLM

performance in LCG downstream tasks.

are within 4%, suggesting a low sensitivity to the
top-p parameter. While GPT-4 demonstrates more
variability under different settings, the difference
between the highest and lowest scores remains con-
fined to 4%.

This minimal variance suggests that the de-
coding parameters are not highly sensitive for
LLMs in LCG task, especially for temperature
and top-k.

4 Real-world applications

We have also evaluated the performance of LLMs
in real-world applications to understand their prac-
tical effectiveness. In this section, we demonstrate
three use cases: Recipe generation, table-to-text,
and profile writing. We use the best decoding pa-
rameter configuration (Top-p = 0.9) identified in
previous section for all following experiments. Ex-
ample prompt and response for each application
are attached to Appendix A.

4.1 Recipe Generation

The task is to generate a complete recipe given
ingredients. LLLMs need to create a coherent and
structured set of cooking instructions that makes
practical and culinary sense, and cover all provided
keywords.

Experiment Setting. We randomly selected 100
food ingredients from the USDA National Nutrient
Database (US Department of Agriculture, Agricul-
tural Research Service, 2016) and grouped them
into sets with varying numbers of ingredients (n =
[5, 10,15]). Each group comprises ingredients ver-
satile enough to be applicable to multiple recipes,
guaranteeing the existence of at least one valid
recipe for the given combination of ingredients.
LLMs is then prompted in 3-shot fashion to gen-

erate recipe with given set of ingredients, where
ingredients are keywords that are expected to be
contained in the generated recipe. Each generated
recipe is evaluate based on the instance success
rate.

Evaluation Result. Table 1 presents the results of
the experiment. When tasked with recipe genera-
tion, we observed that LLMs typically outline their
plan in the initial sentence, such as "Lemon Garlic
Pasta is quick to prepare, making it perfect for a
weeknight dinner yet elegant enough for entertain-
ing guests.", and "To create Chicken and Mushroom
Risotto, follow these steps". These introductory
statements act as a double-edged sword.

On the positive side, these introductory state-
ments establish the scope for subsequent content
generation, facilitating the model’s ability to in-
corporate relevant keywords effectively. In the 5-
keyword setting, the instance success rate for the
LLaMA?2 models increases by approximately 30%
compared to Experiment 2.3, where LLMs were
tasked solely with text generation under keyword
constraints.

On the negative side, these introductory state-
ments can detract from the final generation out-
come if they are not accurate. If there are a large
number of keywords, LLMs tend to include only
a few in the first sentence, leading to the omission
of the remaining keywords. As the number of key-
words increases, there is a noticeable decline in
performance across all models. For example, the
instance success rate for LLaMA2-13b decreases
from 89% to 17% as the number of constraints
increases from 5 to 15.

4.2 Table to Text

Following previous work (Chen et al., 2022), table-
to-text task takes a table as input, and formulate
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a table as a sequence of records. We evaluate the
effectiveness of LLMs in presenting the essential
information from the structured data in a narrative
form.

Experiment Setting. WIKIBIO (Lebret et al.,
2016) is a dataset contain of 728,321 tables data
from English Wikipedia. We processed the WIK-
IBIO dataset by extracting keywords from each
table’s column headers as ground truth, and catego-
rizing the tables into groups based on the number
of keywords identified. For each group, 200 sam-
ples are randomly selected. Next, we construct
instances from each group based on number of key-
words needed. LLMs is then prompted in 3-shot
fashion to summarize the content of these tables in
a short paragraph, and each generated summary is
evaluated based on the instance success rate.
Evaluation Result. As shown in table 1,GPT-4
demonstrates the strongest performance, achieving
100% accuracy with 5 keywords setting, and main-
taining high instance success rate with larger num-
ber of keywords (87% for n = 10 and 91% for n =
15). However, other models, such as LLaMA2-7b-
chat and LLaMA2-13b-chat, show notable declines
in accuracy as the sample size increases, with sig-
nificant drops from 87% to 21% and from 84% to
39%. This result indicates that LLMs struggle in
satisfying more nuanced and complex constraints.

4.3 Profile Writing

Profile writing provides a quick overview of the
client’s basic information, significantly impacting
decision-making and enhancing operational effec-
tiveness. For instance, in healthcare, profiles sum-
marize patient histories to guide treatment plans; in
finance, they help assess client risk and customize
financial services; and in the legal field, detailed
client profiles are crucial for informed case man-
agement. This process can be viewed as a lexical
constraint generation task, where the client’s in-
formation acts as the constraint, and the resulting
profile paragraph serves as the output.

Experiment Setting. This task is aimed to gener-
ate a profile contain all specific features of a client.
We obtained data consists of various attributes of
clients to assessing risk score !, such as age, em-
ployment details, education, housing level, etc. In
our experiment, we extract individual client infor-
mation from this dataset, and prompt LLMs to gen-

'We conduct experiment on an open-source dataset:
https://www.kaggle.com/datasets/parisrohan/
credit-score-classification

Algorithm 1 Divide and Conquer Generation

1: Input: Set of keywords X, maximum number
of iterations k

2: Output: Output sentence s, initially empty.
3: while X is not empty do

4: s’ < generate a sentence using X

5: Y < extract words from s’

6: s < merge s’ with s

7: X < X\ 'Y > remove included keywords
8: if number of iterations exceeds & then

9: return s
10: end if

11: end while

erate a detailed profile graph contain all informa-
tion.

Evaluation Result. Table 1 presents the results of
the experiment. Similar to previous experiments,
GPT-4 demonstrates the highest consistency and
robustness among the models, scoring 97% with n
=5 and 96% with n = 10, showing only a slight de-
crease in performance with an increase in number
of constraints. Other models show more signifi-
cant drops in performance, denoting the need of
improvement strategy.

5 Divide and Conquer Generation

As demonstrated in previous experiments, LLMs
face significant challenges in satisfying increas-
ingly complex constraints. To address these dif-
ficulties, we propose a simple and effective strat-
egy—Divide and Conquer Generation (DnC) —to
improve LLMs’ performance in Language Con-
straint Generation (LCG), which suitble for both
white-box and black-box models.

5.1 Method

From our observation, we found LLMs struggle
with complex tasks that encompass a large amount
of keywords. In contrast, they exhibit a high suc-
cess rate when dealing with simpler tasks involving
a smaller number of keywords, which motivate us
to break down the complex task to several simple
tasks in divide and conquer fashion.

Algorithm 1 illustrates DnC strategy. Recall that
the task is to generate a natural sentence containing
the token sequence Y = [y1,¥2,...,yn] using a
specified set of N keywords X = [x1,x2,...,2ZN],
such that X C Y. Our strategy iteratively gener-
ates sentences while addressing the missing key-
words X \Y = {z € X | z ¢ Y} from each
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generation iteration, then merge these sentences
into a cohesive final output. Figure 1 contains de-
tailed example of the process of our strategy. We
repeat this process until all constraints are satisfied,
or exceed the max allowed number of iteration K.

5.2 Performance Evaluation

Rejection Sampling (RJ) is a Monte Carlo algo-
rithm to sample data from a sophisticated distribu-
tion with the help of a proxy distribution (Robert
and Casella, 2004). This method can assist with
black-box models, where texts that do not meet
certain criteria are discarded, and the sampling pro-
cess is iteratively repeated. We choose rejection
sampling as the baseline method, and evaluate the
DnC strategy.

We repeat the 15-keyword generation experi-
ment with LLaMA2-7b-chat and GPT-3.5, using
both RJ and DnC strategy under varying maximum
number of iterations K allowed. Figure 6 demon-
strate the result, where y-axis is the error rate in
satisfying all lexical constraints (i.e. 1 minus the
instance success rate). At K = 0, the models gener-
ate in a vanilla setting, without employing any spe-
cific strategies. From the result, we can observe that
while the RJ strategy manages to reduce the error
rate, it does not lead to significant improvements.
In the contrast, DnC help both model achieve a
near-perfect performance (error rate close to 0%)
with K = 4. With the help of DnC, LLaMA2-7b-
chat model decrease error rate from approximately
96% to 3%, demonstrating the effectiveness of the
DnC approach.

Furthermore, we revisited application tasks intro-
duced in 4. Table 1 compares the instance success
rates for each approach. From the result, with the
implementation of the DnC strategy, all models
achieve near-perfect performance (instance cov-
erage rates approaching 100%). Specifically, the
LLaMA2-7b-chat model records an average im-
provement of 61% across all tasks with the help of
DnC strategy. Notably, GPT-3.5 (DNC-5) achieves
a 100% instance success rate for all tasks.

5.3 Quality Evaluation

The DnC strategy assumes that LLLMs can gener-
ate fluent and high-quality text. To evaluate this,
we conducted additional experiments to assess the
overall quality of the text produced using the DnC
strategy. We randomly selected 20 samples from
both the vanilla and Divide-and-Conquer genera-
tion strategy (DnC-5) for the GPT-40 models, and
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Instance Error Rate (%)

—

Figure 6: Comparison experiment between Rejection
Sampling (RJ) and Divide-and-Conquer Generation
(DnC). The x-axis represents the maximum number of
allowed iterations, while the y-axis shows the error rate
for each approach in satisfying all lexical constraints.
The Divide-and-Conquer Generation strategy improves
LLM performance by over 40% compared to the base-
line.

performed both human and automatic evaluations
as outlined below.

First, we recruited 5 volunteers to manually eval-
uate the readability of the generated text. Each vol-
unteer rated the text on a scale from 1 to 5, consid-
ering factors of coherence, fluency, and readability.
The inter-annotator agreement was approximately
0.8 based on the Pearson correlation metric. The
result demonstrates that the DnC-5 strategy deliv-
ers comparable performance to the vanilla models.
The readability and fluency of the generated text,
both with and without Divide and Conquer, receive
scores of 5.0, indicating high readability. The aver-
age coherence score of the generated text of DnC-5
strategy is 4.88, only slightly lower than generated
text without DnC-5 strategy (4.94), demonstrating
the overall high quality generated text.

Second, we utilized GPT-4-turbo-0409 to auto-
matically evaluate the text quality. We prompted
GPT-4-turbo-0409 to evaluate the generated text
quality in a one-shot fashion. Specifically, we pro-
vided one example from the human evaluation and
then asked GPT-4-turbo-0409 to rate the input text.
The prompt used here is provided in Appendix A.5.
The results indicate that the DnC-5 strategy per-
forms comparably to the vanilla generation strat-
egy, with only minimal differences. Specifically,
GPT-40 with DnC-5 achieves nearly identical aver-
age scores as GPT-4o vanilla in coherence (4.9 vs.
5.0) and fluency (4.9 vs. 5.0), and the same perfect
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readability score (5.0).

These evaluations ensure that our model not only
satisfies lexical constraints but also produces high-
quality and readable text.

6 Related Work

LLMs Evaluation on Controllable Generation
With recent advancements in Large Language Mod-
els (LLMs), there is increasing interest in evaluat-
ing controllable text generation tasks (Liu et al.,
2024; Sun et al., 2023; Zhang et al., 2023a; Ashok
and Poczos, 2024). For example, Sun et al. (2023)
conducted evaluations of these tasks and discov-
ered that LLMs often struggle to meet fine-grained
constraints. However, their analysis of lexical con-
straint generation was limited to relatively simple
constraints in a narrow context. Our work expands
on this by conducting a more comprehensive and
in-depth analysis of lexical constraint generation,
providing deeper insights into the capabilities and
limitations of LLMs in this area.

Lexically Constrained Generation There are
many works trying to improve lexically constrained
generation. We roughly categorize these studies:
(1) Fine tuning: In auto-regressive models, control-
ling over the generated contents can be naturally
achieved by fine-tuning or retraining the models on
examples with specific attributes (Peng et al., 2018;
Keskar et al., 2019). However, these methods are
considered expensive in inference and low quality
in generated texts. (2) Post processing: Injecting
constraints into the decoding algorithm is one ap-
proach to addressing LCG tasks. Methods like con-
strained beam search (Anderson et al., 2017; Post
and Vilar, 2018; Hokamp and Liu, 2017) and Neu-
roLogic decoding (Lu et al., 2022c,b) follow this
strategy. Another approach involves using an auxil-
iary discriminator to guide the model based on the
desired attribute, as proposed by PPLM (Dathathri
et al., 2020). Methods such as GeDi (Krause et al.,
2021) and DEXPERTS (Liu et al., 2021) employ
contrastive learning by training an auxiliary lan-
guage model to adjust the token distribution at each
step. Though shown effectiveness in lexically con-
strained generation, these algorithmic methods are
not suitable for recent pre-trained LLMs due to
the black-box nature. (2) Specialized model struc-
ture: InsNET is an expressive insertion-based text
generator with efficient training and flexible decod-
ing (Lu et al., 2022a). (3) Prompt-based control
methods: Another line of research focuses on im-

proving lexically constrained generation through
prompt-based control mechanisms (Sheng et al.,
2020; Shin et al., 2020; Lester et al., 2021; Li and
Liang, 2021; Iso, 2024). However, these methods
often exhibit weaker controllability and have strug-
gled to demonstrate effectiveness in real-world ap-
plications involving modern LLMs.

7 Conclusion

We systematically conduct in-depth analysis on
LLMs in satisfying lexical constraints, and iden-
tify the current challenges faced by LLMs in sat-
isfying lexical constraints, including position bias,
low responsiveness to control decoding parameters,
and struggle with handling the inherent complexity
of certain constraints (e.g. compound word). To
tackle these challenge, we provide a effective novel
solution, Divide and Conquer Generation strategy,
paving the way for more sophisticated downstream
applications.

Limitation

Our work is not without limitations. First, our ex-
periments are prompt-based, requiring extensive
prompt engineering effort. While we selected the
best-performing prompts available, there remains
the possibility that more effective prompts could
further enhance the reported result. Second, au-
tomatic evaluations have inherent imperfections.
Third, the proposed Divide and Conquer (DnC)
strategy increases the number of API calls, result-
ing in higher costs. Additionally, due to the nature
of the DnC approach, the coherence of the merged
results may be compromised. We leave the evalua-
tion and further refinement of this to future work.
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A Prompts and Example Response

Prompt and example response for lexical con-
strained generation, and downstream applications.

A.1 Example of Lexical Constrained
generation

Prompt Generate a sentence using the following
keywords: cat, leaves, sunny, leaps, energy

Response Generate a sentence using the follow-
ing keywords: cat, leaves, sunny, leaps, energy

A.2 Example of Recipe Generation

Prompt Generate a recipe using the following
ingredients: milk, beef, rice.

Response The recipe for Creamy Beef and Rice
Casserole: Begin by cooking 1 cup of rice accord-
ing to package instructions and set aside to cool.
Add 1 pound of ground beef to the skillet, break-
ing it apart with a spatula. Cook until the beef is
thoroughly browned and no pink remains. Drain
any excess fat and set aside.In a large casserole
dish, combine the cooked rice, browned beef, and
2 cups of milk, mixing well. Stir in 1 cup of shred-
ded cheddar cheese, season with salt and freshly
ground black pepper to taste, and add a dash of pa-
prika for a smoky flavor, if desired. Dot the top of
the mixture with small pieces of butter to enrich the
flavor.Preheat your oven to 350°F (175°C). Cover
the casserole dish with aluminum foil and bake for
25 minutes. Remove the foil and continue baking
for an additional 5-10 minutes, or until the top is
bubbly and golden brown. Remove from the oven
and let it sit for a few minutes to settle

A.3 Example of Table-to-text

Prompt Generate a short paragraph to summa-
rize the table content:

Nationality | German
Birth Date | 1954
Name Walter Extra
Article Aviation Legend:
Title Walter Extra

. Aircraft Designer
Occupation and Manufacturer

Response Walter extra is a german award-
winning aerobatic pilot, chief aircraft designer and
founder of extra flugzeugbau (extra aircraft con-
struction )), a manufacturer of aerobatic aircraft .

extra was trained as a mechanical engineer. Walter
extra has designed a series of performance aircraft
which include unlimited aerobatic aircraft and tur-
boprop transports.

A.4 Example of Profile Writing

Prompt Write a profiling paragraph contains all
features of the client: Name: Ben Smith; Age: 29;
Gender: Male; Race: White; Marriage: Single;
FICO:740; Education: Bachelor; Occupation: En-
gineer; Location: Chicago; Housing: Rent.

Response Ben Smith is a 29-year-old white male,
currently single, residing in Chicago. He holds
a Bachelor’s degree and works as an engineer, a
profession that demands high technical proficiency
and strong problem-solving skills. Ben rents his
housing, which could suggest flexibility in his liv-
ing arrangements or a preference for less perma-
nent commitments in terms of residency. With a
FICO score of 740, Ben demonstrates strong finan-
cial responsibility, indicating good management of
credit and other financial obligations. This profile
suggests that Ben is both stable in his career and
adaptable in his personal life.

A.5 Prompt used for automatic evaluation

Please evaluate the following text
based on three criteria: coherence,
fluency, and overall readability.
Provide a score from 1 to 5 for
each criterion,

along with a brief explanation

for your rating.

Use the following definitions

for the criteria:

- Coherence: How logically consistent
and well-organized the text is.

- Fluency: How smoothly and naturally
the text reads.

- Readability: How easy the text is
to read and understand.

Example Evaluation: [examples here]

Text to Evaluate:
"[Text to be evaluate herel”

Please provide detailed feedback
on each criterion to help improve
the quality of the text generation.
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B Decoding Hyperparameters

We visualize the instance success rate for each instance under different decoding hyperparameters. Heat-
maps are attached as following.
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Figure 7: Heatmap of keyword coverage rate per instance for LLaMA?2-7b model.
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Figure 9: Heatmap of keyword coverage rate per instance for GPT model.
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