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Abstract

Machine learning models are increasingly used
in societal applications, yet legal and privacy con-
cerns demand that they very often be kept con-
fidential. Consequently, there is a growing dis-
trust about the fairness properties of these mod-
els in the minds of consumers, who are often at
the receiving end of model predictions. To this
end, we propose FairProof— a system that uses
Zero-Knowledge Proofs (a cryptographic prim-
itive) to publicly verify the fairness of a model,
while maintaining confidentiality. We also pro-
pose a fairness certification algorithm for fully-
connected neural networks which is befitting to
ZKPs and is used in this system. We imple-
ment FairProof in Gnark and demonstrate em-
pirically that our system is practically feasible.
Code is available at https://github.com/
infinite-pursuits/FairProof.

1. Introduction

Recent usage of ML models in high-stakes societal appli-
cations (Khandani et al., 2010; Brennan et al., 2009; Datta
et al., 2014) has raised serious concerns about their fair-
ness (Vigdor, November, 2019; Dastin, October 2018; Wal-
larchive & Schellmannarchive, June, 2021). As a result,
there is growing distrust in the minds of a consumer at the
receiving end of ML-based decisions (Dwork & Minow,
2022). In order to increase consumer trust, there is a need
for developing technology that enables public verification
of the fairness properties of these models.

A major barrier to such verification is that legal and privacy
concerns demand that models be kept confidential by or-
ganizations. The resulting lack of verifiability can lead to
potential misbehavior, such as model swapping, wherein
a malicious entity uses different models for different cus-
tomers leading to unfair behavior. Therefore what is needed
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Figure 1: Pictorial Representation of FairProof

is a solution which allows for public verification of the fair-
ness of a model and ensures that the same model is used
for every prediction (model uniformity) while maintaining
model confidentiality. The canonical approach to evaluating
fairness is a statistics-based third-party audit (Yadav et al.,
2022; Yan & Zhang, 2022; Pentyala et al., 2022). This ap-
proach however is replete with problems arising from the
usage of a reference dataset, the need for a trusted third-
party, and lack of guarantees of model uniformity (Fukuchi
et al., 2019; Shamsabadi et al., 2023).

We address the aforementioned challenges by proposing a
system called FairProof involving two parts: 1) a fairness
certification algorithm which outputs a certificate of fair-
ness , and 2) a cryptographic protocol using commitments
and Zero-Knowledge Proofs (ZKPs) that guarantees model
uniformity and gives a proof that the certificate is correct.

Given an input query, the fairness certification algorithm
outputs how fair the model is at that point according to a
fairness metric. The metric we use is local Individual Fair-
ness (IF) (Dwork et al., 2012; John et al., 2020; Benussi
et al., 2022; Bertrand & Mullainathan, 2004), which is de-
sirable for two reasons. First, it evaluates fairness of the
model at a specific data point (rather than for the entire input
space) — this allows us to give a personalized certificate to
every customer, as would be required by customer-facing
organizations. Second, it works on the model post-training,
making it completely agnostic to the training pipeline.

How do we design a certification algorithm for the chosen
metric? We observe that certifying local IF can be reduced
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to an instantiation of certifying robustness.! We then lever-
age techniques from the robustness literature to design our
algorithm. One of our key contributions is to design the
algorithm so that it is ZKP-friendly. In particular, the com-
putational overhead for ZKPs depends on the complexity of
the statement being proved. To this end, we design a fair-
ness certificate which results in relatively low complexity
statements.

Once the fairness certificate has been computed, we want
to enable the consumer to verify that the certificate was
indeed computed correctly, but without revealing the model
weights. To do this, we rely on Succinct Zero Knowledge
Proofs (Goldwasser et al., 1985; Goldreich et al., 1991).
This cryptographic primitive enables a prover (eg. bank) to
prove statements (eg. fairness certificate) about its private
data (eg. model weights) without revealing the private data
itself. It provides a proof of correctness as an output. Then
a verifier (eg. customer) verifies this proof without access to
the private data. In our case, if the proof passes verification,
it implies that the fairness certificate was computed correctly
with respect to the hidden model.

We design and implement a specialized ZKP protocol to
efficiently prove and verify the aforementioned fairness
certification algorithm. Doing this naively would be very
computationally expensive. We tackle this challenge with
three insights. First, we show that verification of the entire
certification algorithm can be reduced to a few strategically
chosen sub-functionalities, each of which can be proved and
verified efficiently. Second, we provide a lower bound on
the certificate, i.e., a conservative estimate of the model’s
fairness, for performance optimization. Third, we observe
that certain computations can be done in an offline phase
thereby reducing the online computational overhead.

Our solution ensures model uniformity through standard
cryptographic commitments. A cryptographic commitment
to the model weights binds the organization to those weights
publicly while maintaining confidentiality of the weights.
This has been widely studied in the ML security litera-
ture (Gupta et al., 2023; Boemer et al., 2020; Juvekar et al.,
2018; Liu et al., 2017; Srinivasan et al., 2019; Mohassel &
Zhang, 2017; Mohassel & Rindal, 2018).

Experiments. In this work we focus on fully-connected
neural networks with ReLU activations as the models. We
implement and evaluate FairProof on three standard fairness
benchmark datasets to demonstrate its practical feasibility.
For instance, for the German (Hofmann, 1994) dataset, we
observe that FairProof takes around 1.17 minutes on an
average to generate a verifiable fairness certificate per data
point without parallelism or multi-threading on an Intel-i9

! Certifiable Robustness quantifies a model’s resistance to ad-
versarial attacks by measuring the extent to which a data point can
be perturbed without altering the model prediction.

~

Figure 2: A neural network with ReL U activations partitions
the input space into polytopes.

CPU chip. The communication cost is also low — the size of
the verifiable certificate is only 43.5KB.

2. Preliminaries & Setting

Fairness. Existing literature has put forth a wide variety
of fairness definitions (Mehrabi et al., 2021; Barocas et al.,
2019). In this paper, we focus on the notion of local in-
dividual fairness (John et al., 2020; Dwork et al., 2012;
Benussi et al., 2022) defined below, as it best aligns with
our application (see Sec. 2 for more details).

Definition 1 (Local Individual Fairness). A machine learn-
ing model f : R™ — ) is defined to be e-individually fair
w.r.t to a data point £* ~ D under some distance metric
d:R" x R" — Rif

Ve : d(z,z") <e = f(z¥) = f(x) (1)

We say a model f is exactly e*-individually fair w.r.t =*
if €* is the largest value that satisfies Eq. 1. In particular,
€* is known as the local individual fairness parameter and
we are interested in finding the value of e (rather than §
conventionally as in (John et al., 2020; Dwork et al., 2012;
Benussi et al., 2022)). For brevity we will be using ¢ to
mean ¢" and fairness/individual fairness to refer to the
notion of local individual fairness, unless stated other-
wise, throughout the rest of the paper.

Individual fairness formalizes the notion that similar indi-
viduals should be treated similarly; more precisely, get the
same classification. The similarity is defined according to
a task dependent distance metric d(-) that can be provided
by a domain expert. Examples of such a metric could be
weighted £, norm where the weights of the sensitive features
(race, gender) are set to O (Benussi et al., 2022).

Neural Networks. We focus on the classification task and
consider neural network (NN) classifiers f : X' — ), where



FairProof: Confidential and Certifiable Fairness for Neural Networks

f is a fully-connected neural network with ReL.U activa-
tions, X = R" is the input space and ) is a discrete label
set. This NN classifier (pre-softmax) can also be viewed
a collection of piecewise linear functions over a union of
convex polytopes (Xu et al., 2021; Hanin & Rolnick, 2019;
Robinson et al., 2019; Croce et al., 2019; Serra et al., 2018).
Here each linear function corresponds to one polytope and
each polytope corresponds to one activation pattern of the
nodes in the NN. A polytope P is represented by a set of
linear inequalities, P = {x|Az < b} ; then the collection
of all such polytopes forms a partition of the input domain,
X = JP (Fig. 2).

A facet is an (n — 1)-face of the polytope corresponding
to the set {z|x € P N A;z = b;} where A; and b; are
the values of A and b at the i*” dimension. Two polytopes
that share a facet are known as neighboring polytopes. The
decision region of f at a data point x* is defined as the set
of points for which the classifier returns the same label as
it does for *, essentially the set {z|f(z) = f(«*)}. This
decision region can also be expressed as a union of convex
polytopes (Jordan et al., 2019). A facet that coincides with
the decision boundary of f is known as a boundary facet.
See Fig. 2 and App. A for more details.

Cryptographic Primitives. We use two cryptographic prim-
itives, namely commitment schemes and zero knowledge
proof, for verifying the individual fairness certification.

A Commitment Scheme commits to a private input w without
revealing anything about w; its output is a commitment
string com,,,. A commitment scheme has two properties:

1. Hiding: the commitment string com,, reveals nothing
about the committed value w.

2. Binding: it is not possible to come up with another
input w’ with the same commitment string as w, thus
binding w to com,, (simplified).

Zero Knowledge Proofs (Goldwasser et al., 1985) describe a
protocol between two parties — a prover and a verifier, who
both have access to a circuit P. A ZKP protocol enables
the prover to convince the verifier that it possesses an input
w such that P(w) = 1, without revealing any additional
information about w to the verifier. A simple example is
when P, (w) = 1iff ¢ is a SAT formula and ¢(w) = 1; a
ZKP protocol enables the prover to convince a verifier that
there is a w for which ¢(w) = 1, while revealing nothing
else about w. A ZKP protocol has the following properties:

1. Completeness. For any input w such that P(w) = 1,
an honest prover who follows the protocol correctly
can convince an honest verifier that P(w) = 1.

2. Soundness. Given an input w that P(w) # 1, a ma-
licious prover who deviates arbitrarily from the pro-
tocol cannot falsely convince an honest verifier that
P(w) = 1, with more than negligible probability.

3. Zero knowledge. If the prover and verifier execute the
protocol to prove that P(w) = 1, even a malicious
verifier, who deviates arbitrarily from the protocol, can
learn no additional information about w other than
P(w) =1.

Theory suggests that it is possible to employ ZKPs to verify
any predicate P in the class NP (Goldreich et al., 1991).
Moreover, the resulting proofs are non-interactive and suc-
cinct. However, in practice, generating a proof for even
moderately complex predicates often incurs significant com-
putational costs. To this end, our main contribution lies
in introducing a ZKP-friendly certification algorithm, to
facilitate efficient fairness certificate generation.

Problem Setting. Formally, a model owner holds a con-
fidential classification model f that cannot be publicly re-
leased. A user supplies an input query x* to the model
owner, who provides the user with a prediction label y =
f(a*) along with a fairness certificate € w.r.t to 2*. This
certificate can be verified by the user and the user is also
guaranteed that the model owner uses the same model for
everyone.

The above setting needs three tools. First, the model owner
requires an algorithm for generating the fairness certificate
with white-box access to the model weights. This algorithm
is discussed in Sec. 3. Second, a mechanism is needed that
enables the user to verify the received certificate (public
verification) without violating model confidentiality. This
mechanism is discussed in Sec. 4. Third, a mechanism
is needed to guarantee that the same model is used for ev-
eryone (model uniformity), also without violating model
confidentiality. For ensuring uniformity, the model owner
should commit the model in the initially itself, before it is
deployed for users. This has been widely studied and imple-
mented by prior work as discussed in the introduction and
an actual implementation of commitments is out of scope
of this work.

3. How to Certify Individual Fairness?

In this section we present an algorithm to compute a local
individual fairness certificate. This certificate is computed
by the model owner with white-box access to the model
weights and is specific to each user query, thereby leading to
a personalized certificate. The certificate guarantees to the
user that the model has certain fairness properties at their
specific query.

Preliminaries. Starting with some notation, let S be the
set of k sensitive features, S := {S1,---, Sk} where S;
denotes the i*" sensitive feature. We assume that each sensi-
tive feature .S; has a discrete and finite domain, denoted by
domain(S;), which is in line with typical sensitive features

in practice, such as race (eg. black/white/asian), presence of
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Non-sensitive feature Q
Non-sensitive feature Q

S=a S=b S=c
Sensitive feature §

(b) Certifiable fairness

Sensitive feature §

(a) Certifiable robustness

Figure 3: Connection between robustness & fairness for
n = 2 and one sensitive feature S with values {a, b, c}.
Final fairness certificate is the minimum of {e,, €, €. }. Red
color denotes decision boundary.

a medical condition (yes/no). Let domain(S) represent the
set of all possible combinations of the values of sensitive
features, domain(S) := domain(Sy) X - - - x domain(Sy,).
Without loss of generality, any data point x € R" is also
represented as x = m\s U s, where 7\ s and x5 are the
non-sensitive and sensitive features of z.

For the distance metric in individual fairness (Eq. 1), we
consider a weighted /5-norm where the non-sensitive fea-
tures have weight 1 while the sensitive features have weight
0. This distance metric is equivalent to the £2-norm sans the
sensitive features. Thus, based on Def. 1, f is e-individually
fair w.r.t x* iff,

Vo : ||Jc\3 —x’\‘SHg <e = f(z*) = f(z) 2

With this notation in place, observe that our fairness certifi-
cate ¢ is essentially the value of the parameter e. Intuitively
it means that the model’s classification is independent of
the sensitive features as long as the non-sensitive features
lie within an ¢ ball of radius ¢ centered at z7 5. Eq.2 can
also be equivalently viewed as follows: set the sensitive fea-
tures of 2* and z to a particular value s € domain(S) (so
that they cancel out in the norm), then find the correspond-
ing certificate €, and repeat this procedure for all values in
domain(S); the final certificate € is the minimum of all €.

Next we propose an algorithm to compute this fairness cer-
tificate. Our algorithm is based on three key ideas, as we
describe below.

Idea 1: Reduction from fairness to robustness. Our first
key observation is that in our setting, certifiable fairness
can be reduced to an instantiation of certifiable robustness,
which enables us to re-use ideas from existing robustness
literature for our purpose. In particular, the reduction is as
follows. A model f is defined to be e-pointwise ¢5 robust

(henceforth robustness) for a data point x*, if

Ve : |lz —a¥|l2 <e = f(z*) = f(z) 3)

Comparing this definition to Eq.2 and its alternate view,
we observe that once the sensitive features have been fixed
to a value s € domain(S), computing the corresponding
fairness certificate €, is equivalent to solving the robustness
problem in (n — k) dimensions where the k& dimensions
corresponding to the sensitive features S are excluded. Let
us assume there exists an algorithm which returns the point-
wise /5 robustness value for an input. Then the final fairness
certificate e computation requires |domain(S)| calls to this
algorithm, one for each possible value of the sensitive fea-
tures in S. Fig. 3 illustrates this idea pictorially for NNs.

For ReLU-activated neural networks represented using n-
dimensional polytopes, setting the values of sensitive fea-
tures implies bringing down the polytopes to (n — k) di-
mensions. Geometrically, this can be thought of as slicing
the n-dimensional polytopes with hyperplanes of the form

x; = s; where x; is the i*" coordinate, set to the value s;.

Algorithm 1 Individual Fairness Certification

Inputs z* € R", f: ReLU-activated Neural Network
Output ¢}, 5 : Our Fairness Certificate for x*
1: Construct the set of all polytopes P = |J P for f where
each polytope is expressed as P = {z|Az < b}
B[]
for s € domain(Sy) x - -+ x domain(Sy)
P’ := ReducePolyDim(PP, s) (Alg. 3 in Appendix)
€s := GeoCert(z*, P, dpro,)
E.append(ey)
end for
€, :=min K
Return €LB

PRI INRLR

Idea 2. Using an efficient certified robustness algorithm.
For ReLLU-activated neural networks (see Sec.2), the naive
algorithm for certifying robustness is infeasible; it entails
computing the distance between x* and all boundary facets
(facets coinciding with the decision boundary of the model)
induced by the model, which is exponential in the number
of hidden neurons. Instead, we rely on an efficient iterative
algorithm GeoCert (Alg. 2 in App. B), proposed by (Jor-
dan et al., 2019). This algorithm starts from the polytope
containing the data point x* and iteratively searches for
the boundary facet with the minimum distance from z*. A
priority queue of facets is maintained, sorted according to
their distance from x*. At each iteration, the facet with the
minimum distance is popped and its neighbors (polytopes
adjacent to this facet) are examined. If the neighboring
polytope is previously unexplored, the distance to all of
its facets is computed and inserted them into the priority
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Figure 4: GeoCert’s behavior on point *. Colored facets
are in the priority queue; red and solid black lines denote
boundary and non-boundary facets respectively. Algorithm
stops when the minimum distance facet is a boundary facet
(rightmost).

dproj (", F)

Figure 5: Projection of x* onto the hyperplane H containing
facet F gives a lower bound on the /5 distance between x*
and F, i.e., dproj(z*, F) < dg, (z*, F).

queue; otherwise the next facet is popped. The algorithm
terminates as soon as a boundary facet is popped. Fig. 4
presents a pictorial overview of GeoCert. Additional details
are in App. B.

Idea 3: Generate a lower bound ¢, g for efficient ZKP.
GeoCert provides exact fairness certificates €*, by using
a constrained quadratic program solver to get the actual
distance between the input point and a facet. However,
verifying this solver using ZKPs would be a highly com-
putationally intensive task. Instead we propose to report
a lower bound on the certificate, e, g < €*, which consid-
erably improves performance. A lower bound means that
the reported certificate €7, 5 is a conservative estimate — the
true measure of the model’s fairness could only be higher.
Instead of the exact distance, we compute the projection dis-
tance between the input point and the hyperplane containing
the facet (facet is a subset of the hyperplane), which gives
a lower bound on the exact distance between x* and the
facet. The projection distance computation involves simple
arithmetic operations which are relatively computationally
feasible for ZKPs (see Sec. 4 for more details). Fig. 5 shows
the intuition pictorially.

Theorem 3.1. Given a data point x* and a neural network f,
Alg. 1 provides a lower bound e, of the correct individual

fairness parameter of x*.
Proof for this theorem is given in App. C, Thm. C.3.

Our resulting fairness certification algorithm is described in
Alg.1 and detailed in App. B.

4. FairProof: Verification of the Individual
Fairness Certificate

Without careful design choices ZKPs can impose significant
computational overhead. To this end, we design an efficient
verification protocol named FairProof by combining in-
sights from cryptography and ML. Specifically, FairProof is
based on three key ideas described below.

Idea 1: Strategic verification of sub-functionalities. A
naive verification mechanism replicates all the computations
outlined in Alg.1. However, this would involve computing
all the polytopes during every proof generation — this is
computationally expensive since the number of polytopes is
exponential in the number of hidden neurons in the model.
In contrast, we show that the verification can be streamlined
by focusing on five strategically chosen sub-functionalities,
each of which can be checked using certain properties of
polytopes and neural networks. Consequently, we only ver-
ify the polytopes traversed by the certification mechanism.

Idea 2: Representative points. Certain numeric properties
of a polytope can be efficiently proven if one has access to a
representative point in the interior of the polytope. We lever-
age this insight in FairProof to efficiently verify our chosen
sub-functionalities, discussed in the following sections.

Idea 3: Offline computation. We show that certain compu-
tations can be performed offline which further reduces the
time needed in the online phase.

Next, we detail our verification mechanism FairProof. Re-
call that in our setting model owner is the prover and user is
the verifier. The verification consists of two phases:

Phase 1: Pre-processing. All the operations in this phase
are executed only once and before the model is deployed to
the users. The following two actions need to be taken by the
model owner in this phase.

1. Commit to the weights W of the model f, resulting in
the commitment COMyy (we assume that the architec-
ture of f is known, i.e., f is a fully connected neural
Inetwork with ReLLU activations).

2. Compute a representative point zp for each polytope
‘P. Additionally, it computes a representative point zx
for every facet F23.

2A facet is also essentially a polytope, albeit in the (n — 1)-
dimensional space.

3 Although the number of polytopes and facets are exponential
in the number of the neurons in the model, this is a one-time
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Phase 2: Online verification. The online verification phase
is executed every time a user submits a query z* to the
model owner for prediction. Verifying the computation of
Algorithm 1 essentially amounts to verifying GeoCert with
some modifications and consists of five steps. The model
owner generates proofs for these five functionalities and the
user validates them.

1. Verifying initial polytope (Alg. 5). Recall that GeoCert
starts from the polytope containing data point =*. Hence, the
verifier needs to check that the initial polytope (1) indeed
contains the data point z*, and (2) is one of the polytopes ob-
tained from the model f. The key idea used in this function
is that each polytope is associated with a unique ReLU acti-
vation code. Verification for step (1) involves computing the
ReL.U activation code for x* using the committed weights
comwy and step (2) involves deriving the corresponding
polytope for this activation code from comyy .

2. Verifying distance to facets (Alg. 6). During its course
GeoCert computes distance between z* and various facets.
Hence, the verifier needs to check the correctness of these
distance computations. As discussed in the preceding sec-
tion, we compute a lower bound of the exact distance using
projections, which can be efficiently proved under ZKPs.

3. Verifying neighboring polytopes (Alg. 7). In each it-
eration GeoCert visits a neighboring polytope adjacent to
the current one; the two polytopes share the facet that was
popped in the current iteration. Verifying neighborhood
entails checking that the visited polytope indeed (1) comes
from the model f, and (2) shares the popped facet. The
key idea used here is that two neighboring polytopes differ
in a single ReL.U activation corresponding to the shared
facet (Fact A.2). Specifically, the prover retrieves the rep-
resentative point corresponding to the visited polytope and
computes its ReLU activation code, R’, using the committed
weights comwy. Next, it computes the polytope correspond-
ing to R’ from comwy to prove that it is obtained from the
model f. This is followed by showing that the hamming
distance between R’ and R is one, where R is the activation
code for the current polytope. Finally, the prover shows that
the current facet is common to both the polytopes.

4. Verifying boundary facet (Alg. 8). The termination
condition of GeoCert checks whether the current facet is a
boundary facet or not; we verify this in FairProof as follows.
Let R denote the activation code for the current polytope P
and let fr(z) = Wgrx + bg represent the linear function
associated with R. For the ease of exposition, let f be a
binary classifier. In other words, fz(x) is the input to the
softmax function in the final layer of f (i.e., logits) for all
data points € P. The key idea for verification is that iff x

computation performed completely offline and can be parallelized.
See Sec. 5 for empirical overhead of this pre-processing step on
models for standard datasets.

lies on a boundary facet, fr(x) has the same value for both
the logits. For verifying this computation, we rely on the
pre-computed representative point of a facet. Specifically,
the prover retrieves the representative point z for the current
facet F = {z|Az < b}. First, it proves that z lies on F by
showing Az < b holds. Next, the prover computes fg (i.e.,
the weights Wr and br) from the committed weights using
R and tests the equality of both the logits in fz(z).

5. Verify order of facet traversal (Alg. 9). The order in
which the facets are traversed needs to be verified — this
is equivalent to checking the functionality of the priority
queue in GeoCert. Standard ZKP tools are built for verify-
ing mathematical computations (expressed as an arithmetic
or Boolean circuit) and do not have built-in support for data
structures, such as priority queues. We overcome this chal-
lenge by leveraging the following key idea — correctness of
the priority queue can be verified by checking that the next
traversed facet is indeed the one with the shortest distance.

Additional optimizations. We identify certain computa-
tions in the above algorithms that can performed offline.
Specifically, in VerifyNeighbor the proof of correctness for
polytope construction using representative points can be
generated offline. Further, in VerifyBoundary proof for com-
putation of the linear function fr can also be generated
offline. This leads to a significant reduction in the cost of
the online proof generation (see Sec. 5.2).

End-to-end verification mechanism is presented in Alg. 4. In
the final step, the prover has to generate an additional proof
that the reported certificate of fairness corresponds to the
smallest value among all the lower bounds obtained for each
element of domain(S) (VerifyMin , Alg. 10). Additionally,
the prover also needs to prove integrity of the inference, i.e.,
y = f(z*). For this, after computing the linear function
fr,- (2*) using the committed weights comvyy (where R,
is the activation code for £*) we need to additionally prove
that the label corresponds to the logit with the highest score
(Alg. 11, VerifyInference).

Next, we present our security guarantee.

Theorem 4.1. (Informal) Given a model f and a data point
a*, FairProof provides the prediction f(x*) and a lower
bound €1, g on the individual fairness parameter for x* with-
out leaking anything, except the number of total facets tra-
versed, about the model f.

Proof Sketch. Proof of the above theorem follows directly
from the properties of zero-knowledge proofs and theorems
in App. D. The formal guarantee and detailed proof is
presented in App. D.
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5. Evaluation

In this section we evaluate the performance of FairProof
empirically. Specifically, we ask the following questions:

1. Can our fairness certification mechanism distinguish
between fair and unfair models?

2. Is FairProof practically feasible, in terms of time and
communication costs?

Datasets. We use three standard fairness benchmarks. Adult
(Becker & Kohavi, 1996) is a dataset for income classifica-
tion, where we select gender (male/female) as the sensitive
feature. Default Credit (Yeh, 2016) is a dataset for predict-
ing loan defaults, with gender (male/female) as the chosen
sensitive feature. Finally, German Credit (Hofmann, 1994)
is a loan application dataset, where Foreign Worker (yes/no)
is used as the sensitive feature.

Configuration. We train fully-connected ReLU networks
with stochastic gradient descent in PyTorch. Our networks
have 2 hidden layers with different sizes including (4, 2),
(2,4) and (8,2). All the dataset features are standardized
(Sta). FairProof is implemented using the Gnark (Botrel
et al., 2023) zk-SNARK library in GoLang. We run all
our code for FairProof without any multithreading or paral-
lelism, on an Intel-i9 CPU chip with 28 cores.

5.1. Model Fairness

We first evaluate if our certification mechanism can distin-
guish between fair and unfair models. Prior work (Islam
et al., 2021) has shown that overfitting leads to more unfair
models while regularization encourages fairness. Thus, to
obtain models with different fairness, we vary regularization
by changing the weight decay parameter in PyTorch. Then
we randomly sample 100 test data points as input queries
and find the fairness parameter e for both types of models
on these queries.

As demonstrated in Fig. 6, the unfair models have a lower
€ than the corresponding fair models. This consistent differ-
ence in € values across different model sizes and datasets
shows that our certification mechanism can indeed distin-
guish between fair and unfair models. Results for other
models are included in App. E.

5.2. Performance of FairProof

Since computation is a known bottleneck in ZKPs, we next
investigate the overhead of FairProof in terms of time and
communication costs. All reported numbers are averages
over a 100 random test points.

Fig. 7 (a) shows the proof generation costs for various mod-
els. Note that the proof generation time varies with the
models, due to its dependence on the number of traversed

facets* which in turn depends on the model and query. On
average, the adult model has a larger number of traversed
facets than others as shown in Table 1 in App. E, leading
to a higher proof generation time. We also observe that
performing some computations in an offline phase results
in significant reductions in the online time cost, the largest
being 1.74 <. See Table 1 and Fig.13 in App.E for details.

We also breakdown the overall proof generation time in
terms of different sub-functionalities. We report this break-
down for the query with the median proof generation cost,
in Fig. 7 (b). As shown in the figure, VerifyBoundary is the
costliest sub-function for all the models; this is so since it
is executed in every iteration (every time a facet is popped)
and involves costly non-linear comparison operations (see
Alg. 8). Other functionalities that are also executed multi-
ple times based on number of traversed facets but are not
as expensive include VerifyNeighbor, VerifyDistance and
VerifyOrder (see Alg. 7, 6, 9). The least time is taken by
VerifyMin which basically finds the minimum in a list; this
is so since the function is straight-forward and is ran only
once per query (see Alg. 10).

We also report the average verification times - time for
checking the validity of the proof by the verifier - in Fig. 7
(a). Note that the verification costs are orders of magni-
tude lower (in seconds) than the proof generation costs (in
minutes) for all models; as is standard in ZKPs. Fig.7 (c)
reports the communication overheads, i.e. size of the gen-
erated proofs. The proof size is very small, only certain
kilobytes. Low verification time and communication cost
is advantageous since it implies quick real-time verification
which does not require complex machinery at the customer
end. For detailed results on all models, refer to Fig. 14 and
Fig. 15 in App. E.

Discussion on Scalability For very large models, the num-
ber of traversed facets can be huge and running FairProof
on them may not be practically feasible anymore. In such
cases, one solution can be just verifying the fairness of the
final layers. We leave this exploration to future work.

6. Related Work

Verifiable fairness with cryptography. Most of the prior
work on verifying fairness while maintaining model con-
fidentiality (Pentyala et al., 2022; Kilbertus et al., 2018;
Toreini et al., 2023; Segal et al., 2021; Park et al., 2022) has
approached the problem in the third-party auditor setting.
The closest to ours is a recent work by (Shamsabadi et al.,
2023), which proposed a fairness-aware training pipeline for
decision trees that allows the model owner to cryptograph-
ically prove that the learning algorithm used to train the

*As mentioned in Thm. 4.1, this information is leaked by
FairProof .
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Figure 6: Histogram of fairness parameter e for fair & unfair models. e values are higher than those for unfair models.
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Figure 7: (a) Proof Generation (in mins) and Verification times (in secs) for different models. Offline computations are done
in the initial setup phase while Online computations are done for every new query. Verification is only done online, for every
query. (b) Breakdown of the proof generation time (in mins) for the data point with the median time. (c) Total Proof Size (in
KB) for various models. This includes the proof generated during both online and offline phases.

model was fair by design. In contrast, we focus on neural
networks and issue a fairness certificate by simply inspect-
ing the model weights post-training. Our system FairProof
and certification mechanism is completely agnostic of the
training pipeline.

Another line of work has been using cryptographic prim-
itives to verify other properties (rather than fairness) of
an ML model while maintaining model confidentiality —
(Zhang et al., 2020; Liu et al., 2021) focus on accuracy and
inference, while (Zhao et al., 2021; Garg et al., 2023; Sun
& Zhang, 2023) focus on the training process.

A separate line of work uses formal verification approaches
for verifying the fairness of a model (Albarghouthi et al.,
2017; Bastani et al., 2019; Urban et al., 2020; Ghosh et al.,
2020; Biswas & Rajan, 2023). However, these works focus
on certification in the plain text, i.e., they do not preserve
model confidentiality and do not involve any cryptography.

Fairness Certification Mechanisms. Prior work on certi-
fication mechanisms for fairness can be broadly classified
into three categories. The first line of work frames the cer-
tification problem as an optimization program (John et al.,
2020; Benussi et al., 2022; Kang et al., 2022b). The second
line of research has leveraged the connection between ro-
bustness and fairness, and proposed fairness-aware training

mechanisms akin to adversarial training (Ruoss et al., 2020;
Yurochkin et al., 2020; Khedr & Shoukry, 2022; Yeom &
Fredrikson, 2021; Doherty et al., 2023). In contrast to both,
we focus on local IF specifically for neural networks and
use an iterative algorithm rather than solving a complex
optimization problem and are completely agnostic of the
training pipeline.

The final line of work is based on black-box query access
learning theoretic approaches (Yadav et al., 2022; Yan &
Zhang, 2022; Maneriker et al., 2023). Contrary to our work,
these approaches however are replete with problems arising
from the usage of a reference dataset (Fukuchi et al., 2019;
Shamsabadi et al., 2023), the need for a trust third-party,
and lack of guarantees of model uniformity.

See App. Sec. F for a further discussion on related works.

7. Conclusion

In this paper we proposed FairProof— a protocol enabling
model owners to issue publicly verifiable certificates while
ensuring model uniformity and confidentiality. Our experi-
ments demonstrate the practical feasibility of FairProof for
small neural networks and tabular data. While our work is
grounded in fairness and societal applications, we believe
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that ZKPs are a general-purpose tool and can be a promising
solution for overcoming problems arising out of the need
for model confidentiality in other areas/applications as well.
We call for further research in this direction.

Impact Statement

This paper presents work whose goal is to advance the field
of Trustworthy Machine Learning, by making public veri-
fication of properties, specifically fairness, of ML models
feasible. While we use a notion of fairness — Local Indi-
vidual Fairness — in this work, we do not believe that it is
‘the’ perfect measure of fairness or that it can quantify every
kind of unfairness and doubt if such a measure can exist.
Faced with the model confidentiality constraint, we try to
offer some transparency in the form of public verification
through FairProof. However, there might exist ways of
gaming this system, leading to fairwashing on the customer
end or to potential exposure of the model weights on the
organization’s end. This calls for dedicated research in the
area.
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A. Background Cntd.
A.1. Polytopes

The polytopes described succinctly by their linear inequalities (i.e., they are H-polytopes), which means that the number of
halfspaces defining the polytope, denoted by m, is at most O(poly(n)), i.e. polynomial in the ambient dimension.

Next, we present a lemma which states that slicing a polyhedral complex with a hyperplane also results in a polyhedral
complex.

Lemma A.1. Given an arbitrary polytope P = {x|Ax < B} and a hyperplane H = {x|c'x = d} that intersects
the interior of ‘P, the two polytopes formed by the intersection of ‘P and the each of closed halfspaces defined by H are
polyhedral complices.

Fact A.2. Two ReLU activation codes of two neighboring polytopes differ in a single position and the differing bit
corresponds to the facet common to both.

B. Individual Fairness Certification Cntd.

Algorithm. In this section, we describe the concrete algorithm to compute the local individiual fairness parameter for a
data point * (Algorithm 1). Our construction is based on the Geocert algorithm by Jordan et. al (Algorithm 2, Section 2)
for computing the pointwise ¢5 robustness of neural networks with two key distinctions. First, we run on all the union of
(n — k)-dimensional polytopes each of which corresponds to a fixed value of the sensitive feature set S. Second, for each of
these complices, we compute a lower bound on the pointwise /5 robustness. The final certificate of fairness is the minimum
over all the above bounds.

In the following, we describe the working of the algorithm 1 in more detail. First, we compute the polyhedral complex [P for
the model f (Step 1). Next for a fixed value of the set of the sensitive features S (Step 3), we compute the corresponding
(n— k)-dimensional polyhedral complex P from the original n-dimensional polyhedral complex (ReducePolyDim function
Alg. 3). The key idea is to fix the corresponding values of the features in S in the linear constraints of the polytopes in P.
In the next step, we compute a lower bound on the pointwise 5 robustness of z* for the polyhedral complex P’ using the
Geocert algorithm (Step 5-6). In particular, instead of minimizing the /5 distance to a facet F, we compute the projection of
x* onto a hyperplane H, where F lies entirely on H. The above computation is repeated for all the values of the set of
sensitive features S. The final certificate of fairness is the minimum of all the lower bounds as computed above (Step 8).

In what follows, we briefly describe how to compute of the pointwise /2 robustness of a point z. The problem essentially
boils down to computing the largest /5 ball centered at « that fits within the union of n-dimensional polytopes defined by f.

Algorithm 3 ReducePolyDim : Construct (n — k)-dimensional polytopes from n-dimensional polytopes

Inputs P = |JP : Set of Polytopes where each polytope P is expressed as {z|Az < b}, s = (s1,- -+, Sx) : Values of k
sensitive features
Output P’ : Set of (n — k)-dimensional Polytopes

L P={}

2: forP € P

3: for i € |row(A)|

4 for j € [k +1,n]

5: A'li][j — k] = A'[i][j]

6: end for .

7. b/[i] = bli] — S5, Afillj] - s,
8: end for

9: Express P’ = {z|A’z < b’}
10: P=PuUP

11: end for

12: Return P’
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Algorithm 2 Geocert: Pointwise /5 Robustness

Input 2 - Data point for pointwise /5 robustness certification; f - Neural network; dist - Distance Metric;
Output ¢ - Pointwise {5 robustness certificate on z*;

1: Compute all the polytopes for f
2: Setup priority queue Q <+ []
3: Setup list of seen polytopes C' + {P(x)} > P(x) denotes the polytope containing x
4: For Facet 7 € P(z) do
5: Q.push(ComputeDistance(F, z*), F, dist)
6: End For
7: While Q # 0 do
8: (d, F) < Q.pop()
9: If IsBoundary(F) ==
10: Return d
11: Else
12: For P € N(F)\ C do
13: > N (F) denote the two polytopes sharing the facet F
14: For 7 € P do
15: Q.push(ComputeDistance(F, z*), F, dist)
16: End For
17: End For
18: End If

19: End While
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Algorithm 4 FairProof: Verifiable Individual Fairness Certification

Input 2* - Data point for fairness certification; W - Weights of the piecewise linear neural network;
Output € - Local individual fairness parameter for z; cOomyy, - Commitment to the weights of the model; ZK proof that
the ¢ is indeed a lower bound on ¢;

1: Pre-Processing Offline Phase
2: Construct the polyhedral complex P = [ J P from W where each polytope is expressed as P = {z|Az < b}
3: Compute a reference point z; for each polytope P; € P such that z; € P;
4: Commit to the model weights comwy and release them publicly
5: Online Phase
6: E=1]
7: for (s1,- -, sx) € domain(S1) X - -+ x domain(Sk)
8: forP P
9: for i € |row(A)|
10 for j € [+ 1,n]
11: A'li][j — k] = A/[i][j]
12: end for
13: b[i] = bli] — Y5, Al 5,
14: end for
15: Express P’ = {z|A'z < b’}
16: P=PUP
17: end for
18: (¢, P, ((F1,d1), -, (Fn,dy))) = GeoCert(z*, P, dpro;)
19: > Py is the first polytope traversed
20: > ((F1,d1),- -+, (Fn,dy)) is the ordered sequence of the visited facets and their corresponding distances
21:  Prover proves that P, is the polytope in P’ containing x* > Using VerifyPolytope
22:  Initialize the list of seen facets T' = [ ]
23:  for facet F € N'(Py)
24: Prover proves that the computation of the distance d from x* to JF is correct > Using VerifyDistance
25: T.insert((F,d));
26:  end for
27: fori € [m —1]
28: Prover proves that F; is indeed the facet with the smallest distance in T’ > Using VerifyOrder
29: Prover proves that F is not a boundary facet > Using VerifyBoundary
30: for P € N(F;)
31: Prover proves that P is a neighboring polytope sharing facet 7 > Using VerifyNeighbor
32: for F € N (P)
33: Prover proves that the computation of the distance d from z* to F is correct > Using VerifyDistance
34: T.insert((F,d))
35: end for
36: end for
37: T.remove((F;, d;))
38:  end for
39:  Prover proves that F,, is indeed the facet with the smallest distance in 75 > Using VerifyOrder
40:  Prover proves that F,,, is a boundary facet > Using VerifyBoundary
41: FE.insert (dm)
42: end for

43: Prove that € = min F/

> Using VerifyMin
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Algorithm 5 VerifyPolytope

Input x* - Data point for fairness certification; comwy - Committed weights of the piecewise linear neural network;
(s1,- - ,8k) - Values of the sensitive features;

Output P’ - Polytope corresponding to W containing z*; R - ReLU activation code of z*; 7 - ZK proof of the
computation;

: Evaluate x* on comyy to obtain ReLLU activation code R

Compute the n — k-dimensional polytope P = {x|Ax < b} corresponding to R on comyy with (sq,- - , si) as the
values of the sensitive features

Generate proof 7 of the above computation

return (P, R, )

Algorithm 6 VerifyDistance

bl A

Input 2* - Data point for fairness certification; F - Facet;
Output d - Projected distance; 7 - ZK proof of the computation;

Let F be represented as a’ -z = b

Compute d = (‘b - aTx*)/||a||‘
Generate proof 7 of the above computation
return (d, 7)

Algorithm 7 VerifyNeighbor

P RDIN AR

Input comyy - Weights of the piecewise linear neural network; F - Facet; P - Current polytope; R - ReLU activation
code for P; z - Representative point for neighboring polytope; (s1, - - , sx) - Values of the sensitive features;
Output P’ - Neighboring polytope; R’ - ReLU activation code of P’; 7 - ZK proof of the computation

(P',R/,n") < VerifyPolytope(z, comw, (s1, - , Sk))
> Can be performed apriori in a pre-processing stage for efficiency
if(R-—R|1 #1) > Check hamming distance 1 between two binary vectors
return L
if (FENP)N(F EN(P))) > Check facet F is common to both the polytopes
return L

Generate proof 7 of the above computation
return (P, R/, (m, "))

Algorithm 8 VerifyBoundary

—_
N

—_ =
rEES AN R A AR A ol

Input z* - Data point for fairness certification; comwy - Weights of the piecewise linear neural network; F - Current
facet represented as {z| Az < b}; P - Current polytope; R - ReLU activation code for P; z - Representative point for
current facet F (sq,- - ,sg) - Values of the sensitive features;

Output b - Bit indicating boundary condition; 7 - ZK proof of the computation

Compute the linear function fgr corresponding to activation code R on comyy with (s, - , si) as the values of the
sensitive features
> Can be performed apriori in a pre-processing stage for efficiency
if (Az > b)
return L
end if
b=1
foric[1,|Y| —1]
b b-(fr(2)[0] == fr(2)[)
> Testing that fr(2) is equal on all of its elements
end for
Generate proof 7 of the above computation

: return (b, (7, 7))
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Algorithm 9 VerifyOrder

Input (F,d) - Current facet with distance d; F = {(F1,d1), -+ , (Fr,di)} - List of all previously unseen facets and
their distances;
Output 7 - ZK proof of the computation

for 7; € F
if (d > d;)
return L
end if
end for
Generate proof 7 of the above computation
return m

AN A SR S oy

Algorithm 10 VerifyMin

Input £ - List of values; €* - Individual fairness parameter;
Output 7 - ZK proof of the computation

forec E
if (¢* > ¢€)
return L
end if
end for
Generate proof 7 of the above computation
return T

NN R

Algorithm 11 Verifylnference

Input z* - Data point for fairness certification; comyy - Committed weights of the piecewise linear neural network f;
Output y - The prediction f(x*); 7 - ZK proof of the computation;

Evaluate z* on comyy to obtain ReLLU activation code R

Compute the linear function fgr corresponding to activation code R on comwy
Compute fr(z*)

y = arg max;c(|y|] Jr(z")

Generate proof 7 of the above computation

return (y, )

SANEAN S
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Real 4 w(pp) :

1. comwy < FairProof.Commit(W, pp, )
x + A(comw, pp)
(y, €, ) < FairProof.Prove(W, z,pp, )
b« A(comw,x,y, €, 7, PP)
Output b

Nk

C. Correctness of FairProof

In this section, we prove the correctness of FairProof given in Alg. 4. First, we re-state the correctness of GeoCert.

Theorem C.1 (Correctness of GeoCert (Jordan et al., 2019)). For a fixed polyhedral complex P, a fixed point =* and a
distance function ¢ that satisfies ray monotonocity, GeoCert returns a boundary facet with the minimum distance.

Fact C.2. The projection of a given point x* onto a hyperplane H where F C H gives a lower bound on its {5 distance to
Fie., dproj(x, F) < dg, (2, F).

Theorem C.3. Let f be a piecewise-linear neural network. Replacing in Algorithm 2 with dy, (-) distance with dyy;(-)
gives a lower bound on the individual fairness guarantee, i.e., €q,, . < €q,,.

Proof. We will prove by contradiction. Let IP be the polyhedral complex associated with the model f. Let us assume that
there exists a boundary facet 7 such that dg, (F,x) < €q,,,;. Now if the corresponding polytope Pz~ was traversed
by GeoCert(z, P, dyro;), then all the facets in Pr- including F* were checked. Then from the correctness of GeoCert
(Thm. C.1), this leads to a contradiction of C.2. Now let us consider the alternative case where Px+ was not traversed by
GeoCert(z, P, dpro;). From Thm. C.1 this means that there exists another boundary facet * such that dp,.o;(z, F*) <
dproj(x, F). Then by Fact C.2, dproj (F*, ) = €q,,,, < dproj(F,x) < dg, (F,x) which contradicts our assumption. [

proj —

Theorem C.4 (Correctness of FairProof). For a given data point x*, FairProof (Algorithm 4) generates € such that € < erp.

Proof. The proof of the above theorem follows directly from Theorem C.1, Theorem C.3 and Fact C.2. O

D. Security Proof
1. Completeness

Vo, W “

pp <« FairProof.KeyGen(1*)
comw < FairProof.Commit(W, pp, )

o (y7 & ﬂ-) = FairPr{)()‘f.PrOVe(W, Z, ppa T) =1 (5)
FairProof Verify(comwy, , y, €, m,pp) = 1
2. Soundness
pp <« FairProof.-KeyGen(1*)
(W, comw-, X, e, y*,7*,7) < A(1*,pp)
Pr comwy+ < FairProof.Commit(W*, 1)) < negl() o

FairProof Nerify(comwy«, x, y*, €, 7, pg) =1
(3%, d(z, &) < e N F(WH,X) # f(W*, X))
vy # (W, X)

3. Zero-Knowledge Let ) be the security parameter obtained from \, pp < FairProof. K eyGen (1)

|Pr[Real 4 w(pp) = 1] — Pr[ldeal 4 s4(pp) = 1]|
< negl(A) (7)
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Ideal 4 s4(pp, h) :
1. com « S;(1*, pp,7)
2. z + A(com,pp)
3. (y,Le,e,m) + Si(com,z,pp,r) given oracle access to y = pred(W,z),
L,=L(z)ande = [F (W, )
4. b« A(comw,z,y, L, e, m,pp)
5. Output b

Figure 8: Zero-knowledge games

Proof Sketch. Completeness. The completeness guarantee follows trivially from our construction.

Soundness. L(x) denotes the leakage function for FairProof, specifically, L(z) = {ni,---,ns}, where n;
denotes the number of facets traversed for the i-th value of the sensitive attribute S.

Recall, the functioning of GeoCert can be summarized as follows:

1. Start traversing from the polytope containing x*.

2. Compute the distances to all the facets of the current polytope and store them.
3. Select the hitherto unseen facet with the smallest distance.

4. Stop if this is a boundary facet.

5. Else, traverse next to the neighboring polytope that shares the current facet.

A malicious prover can cheat in any (or a combination) of the above steps. We will consider each of them separately as
follows.

Lemma D.1 (Soundness of VerifyPolytope). Let P = {z|Ax < B} be the correct polytope obtained from the piecewise-
linear neural network with weights W for a given value of the sensitive features. For any polytope P' = { A’z < b’} such
that (A # A’) V (b # b'), we have

Pr[FairProof.Verify(comw -, z,y™, e*, 7%, pp) = 1] < negl(A) (8)

Proof Sketch. As shown in Alg. 5, the verification process re-computes the correct polytope from the committed model
weights. The only way the prover can cheat is if they can produce a P’ such that Open(comp) = P’ which violates the
binding property of the commitment scheme. O

Lemma D.2 (Soundness of VerifyDistance). For a given facet F = {Ax < b}, data point x*, and value d’ such that
d # % , we have:

Pr[FuairProof.Verify(comw-, z,y™, e*, 7", pp) = 1] < negl()) 9)
Proof Sketch. The verification process (Alg. 6) re-computes the correct distance. Hence, the only way the prover can cheat
is if they can produce a d’ such that Open(com,) = d’ which violates the binding property of the commitment scheme. [J

Lemma D.3 (Soundness of VerifyOrder). Letd = {d1,- - ,dy} be a set of values such that d,;,, = min; d;. For any value
d’ such that d' > d,;n, we have:

Pr[FairProof Verify(comw, z, y*, €*, 7", pp) = 1] < negl(\) (10)

Proof Sketch. The verification checks the minimality of the given value against all values in d (Alg. 9). The only way
to cheat would require producing a d with a different minimum which violates the binding property of the commitment
scheme. O

Lemma D.4 (Soundness of VerifyBoundary). Consider a piecewise-linear neural network with weights W. For any facet F
such that which is not a boundary facet, we have
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Pr[FairProof Verify(comw, z,y*, e*, 7%, pp) = 1] < negl(A) (11)

Proof Sketch. The verification algorithm computes the linear function corresponding to the given activation code (Alg. 8.
A prover can cheat here only if they can compute a different linear function f* which would require violating the binding
property of the commitment scheme. O

Lemma D.5 (Soundness of VerifyNeighbor). Let P = {z|Axz < b} be a polytope belonging to the polyhedral complex of
the piecewise-linear neural network with weights W and let F € N'(P). Let P = {x|Axz < b} and P be neighboring
polytopes, sharing the facet F, i.e., P € N'(F)\ P. Let = € R™ be a data point. For any polytope P' = {x|A'z < b’}
such that (A # A’) A (b # b’), we have

Pr[FairProof Verify(comw, z, y*, €*, 7", pp) = 1] < negl(\) (12)

Proof Sketch. The verification algorithm first checks whether P contains the reference point z (Alg. 7). The soundness
of this follows from VerifyPolytope. Cheating on the next steps (checking the hamming distance and facet intersection)
means that the prover is essentially able to generate a polytope P’ such that Open(comp) = P’ which violates the binding
property of the commitment scheme. O

Zero-Knowledge. The zero-knowledge property follows directly from the commitment scheme and the zero-knowledge
backend proof system we use. We note that the zero-knowledge proof protocol itself is not the focus of this paper; instead,
we show how we can use existing zero-knowledge proof protocols to provide verifiable individual fairness certification in a
smart way for high efficiency. O
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.

E. Evaluation Cntd.
Dataset-Model ‘ Online (in mins) ‘ Offline (in mins) ‘ Improvement ‘ Traversals
German(4.2) | 4904012 | 361£019 | 174x | 40+3
German (2.4) LI7£002 | 067+£003 | 157x | 13%1
Credit (4,2) 3524008 | 231£010 | 1.66x | 28+2
Credit (2,4) 208£004 | LIT£007 | 149x | 25+1
Adult (4,2) 3.9440.10 | 1724008 | 143x | 4143
Adult (8,2) 3944030 | 134£008 | 136x | 38+8

Table 1: Time for proof generation averaged over 100 randomly sampled data points. Mean and standard error are reported
for each dataset-model. Offline computations are done in the initial setup phase of FairProof while Online computations are
done for every new query. Improvement = (Online time + Offline time)/ Online time. Traversals gives the total number of

iterations (also total number of popped facets) of GeoCert ran by FairProof.
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Figure 9: Histogram of fairness parameter e for fair models of size (4,2). ‘wd’ represents the values of the Weight decay
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parameter.
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F. Related Work

Certifiable fairness. Prior research on certifying fairness of a ML model can be classified into three types. The first line
of work issues a certificate of fairness directly from the model weights by framing it as an optimization problem. (John
et al., 2020) presented optimization based mechanisms for certifying the (global) individual fairness of linear classifiers
and kernelized classifiers with polynomial/rbf kernels. (Benussi et al., 2022) extended the results to neural networks by
encoding (global) individual fairness certification as a mixed-integer linear programming problem. (Kang et al., 2022b)
proposed a notion of distributional fairness and give a framework to compute provable certificates for the same.

The second line of research has leveraged the connection between robustness and fairness, and proposed fairness-aware
training mechanisms akin to adversarial training. (Ruoss et al., 2020) deviced a mechanism for training individually fair
representations which can be used to obtain a certificate of individual fairness for the end-to-end model by proving local
robustness. SenSR (Yurochkin et al., 2020) introduced a distributionally robust optimization approach to enforce individual
fairness on a model during training. CertiFair (Khedr & Shoukry, 2022) enabled certification of (global) individual fairness
using off-the-shelf neural network verifiers. Additionally, the authors proposed a fairness aware training methodology with
a modified reguralizer. (Yeom & Fredrikson, 2021) applied randomized smoothing from adversarial robustness to make
neural networks individually fair under a given weighted ¢,, metric. (Doherty et al., 2023) estimated the (global) individual
fairness parameter for Bayesian neural networks by designing Fair-FGSM and Fair-PGD - fairness-aware extensions to
gradient-based adversarial attacks for BNNs.

The final line of work is based on learning theoretic approaches (Yadav et al., 2022; Yan & Zhang, 2022; Maneriker et al.,
2023) where a third-party audits the fairness of a model in a query-efficient manner.

The problem of fairness certification has also garnered attention from the formal verification community. FairSquare (Al-
barghouthi et al., 2017) encoded a range of global fairness definitions as probabilistic program properties and provides
a tool for automatically certifying that a program meets a given fairness property. VeriFair (Bastani et al., 2019) used
adaptive concentration inequalities to design a probabilistically sound global fairness certification mechanism for neural
networks. (Urban et al., 2020) proposes a static analysis framework for certifying fairness of feed-forward neural networks.
Justicia (Ghosh et al., 2020) presents a stochastic satisfiability framework for formally verifying different group fairness
measures, such as disparate impact, statistical parity, and equalized odds, of supervised learning algorithms. A recent work,
Fairify (Biswas & Rajan, 2023), generates a certificate for the global individual fairness of a pre-trained neural network
using SMT solvers. It is important to note that all the aforementioned approaches focus on certification in the plain text, i.e.,
they do not preserve model confidentiality.

Verifiable machine learning. A growing line of work has been using cryptographic primitives to verify certain properties of
a ML model without violating its confidentiality. Prior research has primarily focused on verifying the inference and accuracy
of models. For instance, (Zhang et al., 2020) proposed a zero-knowledge protocol for tailored for verifying decision trees,
while zZkCNN (Liu et al., 2021) introduced an interactive protocol for verifying model inference for convolutional neural
networks. Several other works have focused on non-interactive zero-knowledge inference for neural networks, including
(Weng et al., 2023; VI2, 2023; Kang et al., 2022a; Sun & Zhang, 2023; Feng et al., 2021; Lee et al., 2020). VeriML (Zhao
et al., 2021) enabled the verification of the training process of a model that has been outsourced to an untrusted third party.
(Garg et al., 2023) proposed a mechanism for generating a cryptographic proof-of-training for logistic regression.

Most of the prior work on verifying fairness while maintaining model confidentiality (Pentyala et al., 2022; Kilbertus et al.,
2018; Toreini et al., 2023; Segal et al., 2021; Park et al., 2022) has approached the problem in the third-party auditor setting.
A recent work (Shamsabadi et al., 2023) proposed a fairness-aware training pipeline for decision trees that allows the
model owner to cryptographically prove that the learning algorithm used to train the model was fair by design. In contrast,
FairProof allows a model owner to issue a certificate of fairness of neural networks by simply inspecting the model weights
post-training.
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