
FairProof : Confidential and Certifiable Fairness for Neural Networks

Chhavi Yadav 1 Amrita Roy Chowdhury 1 Dan Boneh 2 Kamalika Chaudhuri 1

Abstract

Machine learning models are increasingly used

in societal applications, yet legal and privacy con-

cerns demand that they very often be kept con-

fidential. Consequently, there is a growing dis-

trust about the fairness properties of these mod-

els in the minds of consumers, who are often at

the receiving end of model predictions. To this

end, we propose FairProof ± a system that uses

Zero-Knowledge Proofs (a cryptographic prim-

itive) to publicly verify the fairness of a model,

while maintaining confidentiality. We also pro-

pose a fairness certification algorithm for fully-

connected neural networks which is befitting to

ZKPs and is used in this system. We imple-

ment FairProof in Gnark and demonstrate em-

pirically that our system is practically feasible.

Code is available at https://github.com/

infinite-pursuits/FairProof.

1. Introduction

Recent usage of ML models in high-stakes societal appli-

cations (Khandani et al., 2010; Brennan et al., 2009; Datta

et al., 2014) has raised serious concerns about their fair-

ness (Vigdor, November, 2019; Dastin, October 2018; Wal-

larchive & Schellmannarchive, June, 2021). As a result,

there is growing distrust in the minds of a consumer at the

receiving end of ML-based decisions (Dwork & Minow,

2022). In order to increase consumer trust, there is a need

for developing technology that enables public verification

of the fairness properties of these models.

A major barrier to such verification is that legal and privacy

concerns demand that models be kept confidential by or-

ganizations. The resulting lack of verifiability can lead to

potential misbehavior, such as model swapping, wherein

a malicious entity uses different models for different cus-

tomers leading to unfair behavior. Therefore what is needed
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Figure 1: Pictorial Representation of FairProof

is a solution which allows for public verification of the fair-

ness of a model and ensures that the same model is used

for every prediction (model uniformity) while maintaining

model confidentiality. The canonical approach to evaluating

fairness is a statistics-based third-party audit (Yadav et al.,

2022; Yan & Zhang, 2022; Pentyala et al., 2022). This ap-

proach however is replete with problems arising from the

usage of a reference dataset, the need for a trusted third-

party, and lack of guarantees of model uniformity (Fukuchi

et al., 2019; Shamsabadi et al., 2023).

We address the aforementioned challenges by proposing a

system called FairProof involving two parts: 1) a fairness

certification algorithm which outputs a certificate of fair-

ness , and 2) a cryptographic protocol using commitments

and Zero-Knowledge Proofs (ZKPs) that guarantees model

uniformity and gives a proof that the certificate is correct.

Given an input query, the fairness certification algorithm

outputs how fair the model is at that point according to a

fairness metric. The metric we use is local Individual Fair-

ness (IF) (Dwork et al., 2012; John et al., 2020; Benussi

et al., 2022; Bertrand & Mullainathan, 2004), which is de-

sirable for two reasons. First, it evaluates fairness of the

model at a specific data point (rather than for the entire input

space) ± this allows us to give a personalized certificate to

every customer, as would be required by customer-facing

organizations. Second, it works on the model post-training,

making it completely agnostic to the training pipeline.

How do we design a certification algorithm for the chosen

metric? We observe that certifying local IF can be reduced
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to an instantiation of certifying robustness.1 We then lever-

age techniques from the robustness literature to design our

algorithm. One of our key contributions is to design the

algorithm so that it is ZKP-friendly. In particular, the com-

putational overhead for ZKPs depends on the complexity of

the statement being proved. To this end, we design a fair-

ness certificate which results in relatively low complexity

statements.

Once the fairness certificate has been computed, we want

to enable the consumer to verify that the certificate was

indeed computed correctly, but without revealing the model

weights. To do this, we rely on Succinct Zero Knowledge

Proofs (Goldwasser et al., 1985; Goldreich et al., 1991).

This cryptographic primitive enables a prover (eg. bank) to

prove statements (eg. fairness certificate) about its private

data (eg. model weights) without revealing the private data

itself. It provides a proof of correctness as an output. Then

a verifier (eg. customer) verifies this proof without access to

the private data. In our case, if the proof passes verification,

it implies that the fairness certificate was computed correctly

with respect to the hidden model.

We design and implement a specialized ZKP protocol to

efficiently prove and verify the aforementioned fairness

certification algorithm. Doing this naively would be very

computationally expensive. We tackle this challenge with

three insights. First, we show that verification of the entire

certification algorithm can be reduced to a few strategically

chosen sub-functionalities, each of which can be proved and

verified efficiently. Second, we provide a lower bound on

the certificate, i.e., a conservative estimate of the model’s

fairness, for performance optimization. Third, we observe

that certain computations can be done in an offline phase

thereby reducing the online computational overhead.

Our solution ensures model uniformity through standard

cryptographic commitments. A cryptographic commitment

to the model weights binds the organization to those weights

publicly while maintaining confidentiality of the weights.

This has been widely studied in the ML security litera-

ture (Gupta et al., 2023; Boemer et al., 2020; Juvekar et al.,

2018; Liu et al., 2017; Srinivasan et al., 2019; Mohassel &

Zhang, 2017; Mohassel & Rindal, 2018).

Experiments. In this work we focus on fully-connected

neural networks with ReLU activations as the models. We

implement and evaluate FairProof on three standard fairness

benchmark datasets to demonstrate its practical feasibility.

For instance, for the German (Hofmann, 1994) dataset, we

observe that FairProof takes around 1.17 minutes on an

average to generate a verifiable fairness certificate per data

point without parallelism or multi-threading on an Intel-i9

1Certifiable Robustness quantifies a model’s resistance to ad-
versarial attacks by measuring the extent to which a data point can
be perturbed without altering the model prediction.
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Figure 2: A neural network with ReLU activations partitions

the input space into polytopes.

CPU chip. The communication cost is also low ± the size of

the verifiable certificate is only 43.5KB.

2. Preliminaries & Setting

Fairness. Existing literature has put forth a wide variety

of fairness definitions (Mehrabi et al., 2021; Barocas et al.,

2019). In this paper, we focus on the notion of local in-

dividual fairness (John et al., 2020; Dwork et al., 2012;

Benussi et al., 2022) defined below, as it best aligns with

our application (see Sec. 2 for more details).

Definition 1 (Local Individual Fairness). A machine learn-

ing model f : Rn 7→ Y is defined to be ϵ-individually fair

w.r.t to a data point x∗ ∼ D under some distance metric

d : Rn × R
n 7→ R if

∀x : d(x, x∗) ≤ ϵ =⇒ f(x∗) = f(x) (1)

We say a model f is exactly ϵ∗-individually fair w.r.t x∗

if ϵ∗ is the largest value that satisfies Eq. 1. In particular,

ϵ∗ is known as the local individual fairness parameter and

we are interested in finding the value of ϵ (rather than δ
conventionally as in (John et al., 2020; Dwork et al., 2012;

Benussi et al., 2022)). For brevity we will be using ϵ to

mean ϵ∗ and fairness/individual fairness to refer to the

notion of local individual fairness, unless stated other-

wise, throughout the rest of the paper.

Individual fairness formalizes the notion that similar indi-

viduals should be treated similarly; more precisely, get the

same classification. The similarity is defined according to

a task dependent distance metric d(·) that can be provided

by a domain expert. Examples of such a metric could be

weighted ℓp norm where the weights of the sensitive features

(race, gender) are set to 0 (Benussi et al., 2022).

Neural Networks. We focus on the classification task and

consider neural network (NN) classifiers f : X 7→ Y , where
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f is a fully-connected neural network with ReLU activa-

tions, X = R
n is the input space and Y is a discrete label

set. This NN classifier (pre-softmax) can also be viewed

a collection of piecewise linear functions over a union of

convex polytopes (Xu et al., 2021; Hanin & Rolnick, 2019;

Robinson et al., 2019; Croce et al., 2019; Serra et al., 2018).

Here each linear function corresponds to one polytope and

each polytope corresponds to one activation pattern of the

nodes in the NN. A polytope P is represented by a set of

linear inequalities, P = {x|Ax ≤ b} ; then the collection

of all such polytopes forms a partition of the input domain,

X =
⋃

P (Fig. 2).

A facet is an (n − 1)-face of the polytope corresponding

to the set {x|x ∈ P ∩ Aix = bi} where Ai and bi are

the values of A and b at the ith dimension. Two polytopes

that share a facet are known as neighboring polytopes. The

decision region of f at a data point x∗ is defined as the set

of points for which the classifier returns the same label as

it does for x∗, essentially the set {x|f(x) = f(x∗)}. This

decision region can also be expressed as a union of convex

polytopes (Jordan et al., 2019). A facet that coincides with

the decision boundary of f is known as a boundary facet.

See Fig. 2 and App. A for more details.

Cryptographic Primitives. We use two cryptographic prim-

itives, namely commitment schemes and zero knowledge

proof, for verifying the individual fairness certification.

A Commitment Scheme commits to a private input w without

revealing anything about w; its output is a commitment

string comw. A commitment scheme has two properties:

1. Hiding: the commitment string comw reveals nothing

about the committed value w.

2. Binding: it is not possible to come up with another

input w′ with the same commitment string as w, thus

binding w to comw (simplified).

Zero Knowledge Proofs (Goldwasser et al., 1985) describe a

protocol between two parties ± a prover and a verifier, who

both have access to a circuit P . A ZKP protocol enables

the prover to convince the verifier that it possesses an input

w such that P (w) = 1, without revealing any additional

information about w to the verifier. A simple example is

when Pφ(w) = 1 iff φ is a SAT formula and φ(w) = 1; a

ZKP protocol enables the prover to convince a verifier that

there is a w for which φ(w) = 1, while revealing nothing

else about w. A ZKP protocol has the following properties:

1. Completeness. For any input w such that P (w) = 1,

an honest prover who follows the protocol correctly

can convince an honest verifier that P (w) = 1.

2. Soundness. Given an input w that P (w) ̸= 1, a ma-

licious prover who deviates arbitrarily from the pro-

tocol cannot falsely convince an honest verifier that

P (w) = 1, with more than negligible probability.

3. Zero knowledge. If the prover and verifier execute the

protocol to prove that P (w) = 1, even a malicious

verifier, who deviates arbitrarily from the protocol, can

learn no additional information about w other than

P (w) = 1.

Theory suggests that it is possible to employ ZKPs to verify

any predicate P in the class NP (Goldreich et al., 1991).

Moreover, the resulting proofs are non-interactive and suc-

cinct. However, in practice, generating a proof for even

moderately complex predicates often incurs significant com-

putational costs. To this end, our main contribution lies

in introducing a ZKP-friendly certification algorithm, to

facilitate efficient fairness certificate generation.

Problem Setting. Formally, a model owner holds a con-

fidential classification model f that cannot be publicly re-

leased. A user supplies an input query x∗ to the model

owner, who provides the user with a prediction label y =
f(x∗) along with a fairness certificate C w.r.t to x∗. This

certificate can be verified by the user and the user is also

guaranteed that the model owner uses the same model for

everyone.

The above setting needs three tools. First, the model owner

requires an algorithm for generating the fairness certificate

with white-box access to the model weights. This algorithm

is discussed in Sec. 3. Second, a mechanism is needed that

enables the user to verify the received certificate (public

verification) without violating model confidentiality. This

mechanism is discussed in Sec. 4. Third, a mechanism

is needed to guarantee that the same model is used for ev-

eryone (model uniformity), also without violating model

confidentiality. For ensuring uniformity, the model owner

should commit the model in the initially itself, before it is

deployed for users. This has been widely studied and imple-

mented by prior work as discussed in the introduction and

an actual implementation of commitments is out of scope

of this work.

3. How to Certify Individual Fairness?

In this section we present an algorithm to compute a local

individual fairness certificate. This certificate is computed

by the model owner with white-box access to the model

weights and is specific to each user query, thereby leading to

a personalized certificate. The certificate guarantees to the

user that the model has certain fairness properties at their

specific query.

Preliminaries. Starting with some notation, let S be the

set of k sensitive features, S := {S1, · · · , Sk} where Si

denotes the ith sensitive feature. We assume that each sensi-

tive feature Si has a discrete and finite domain, denoted by

domain(Si), which is in line with typical sensitive features

in practice, such as race (eg. black/white/asian), presence of
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Figure 3: Connection between robustness & fairness for

n = 2 and one sensitive feature S with values {a, b, c}.
Final fairness certificate is the minimum of {ϵa, ϵb, ϵc}. Red

color denotes decision boundary.

a medical condition (yes/no). Let domain(S) represent the

set of all possible combinations of the values of sensitive

features, domain(S) := domain(S1)×· · ·×domain(Sk).
Without loss of generality, any data point x ∈ R

n is also

represented as x = x\S ∪ xS , where x\S and xS are the

non-sensitive and sensitive features of x.

For the distance metric in individual fairness (Eq. 1), we

consider a weighted ℓ2-norm where the non-sensitive fea-

tures have weight 1 while the sensitive features have weight

0. This distance metric is equivalent to the ℓ2-norm sans the

sensitive features. Thus, based on Def. 1, f is ϵ-individually

fair w.r.t x∗ iff,

∀x : ||x\S − x∗
\S ||2 ≤ ϵ =⇒ f(x∗) = f(x) (2)

With this notation in place, observe that our fairness certifi-

cate C is essentially the value of the parameter ϵ. Intuitively

it means that the model’s classification is independent of

the sensitive features as long as the non-sensitive features

lie within an ℓ2 ball of radius ϵ centered at x∗
\S . Eq.2 can

also be equivalently viewed as follows: set the sensitive fea-

tures of x∗ and x to a particular value s ∈ domain(S) (so

that they cancel out in the norm), then find the correspond-

ing certificate ϵs and repeat this procedure for all values in

domain(S); the final certificate ϵ is the minimum of all ϵs.

Next we propose an algorithm to compute this fairness cer-

tificate. Our algorithm is based on three key ideas, as we

describe below.

Idea 1: Reduction from fairness to robustness. Our first

key observation is that in our setting, certifiable fairness

can be reduced to an instantiation of certifiable robustness,

which enables us to re-use ideas from existing robustness

literature for our purpose. In particular, the reduction is as

follows. A model f is defined to be ϵ-pointwise ℓ2 robust

(henceforth robustness) for a data point x∗, if

∀x : ||x− x∗||2 ≤ ϵ =⇒ f(x∗) = f(x) (3)

Comparing this definition to Eq.2 and its alternate view,

we observe that once the sensitive features have been fixed

to a value s ∈ domain(S), computing the corresponding

fairness certificate ϵs is equivalent to solving the robustness

problem in (n − k) dimensions where the k dimensions

corresponding to the sensitive features S are excluded. Let

us assume there exists an algorithm which returns the point-

wise ℓ2 robustness value for an input. Then the final fairness

certificate ϵ computation requires |domain(S)| calls to this

algorithm, one for each possible value of the sensitive fea-

tures in S . Fig. 3 illustrates this idea pictorially for NNs.

For ReLU-activated neural networks represented using n-

dimensional polytopes, setting the values of sensitive fea-

tures implies bringing down the polytopes to (n − k) di-

mensions. Geometrically, this can be thought of as slicing

the n-dimensional polytopes with hyperplanes of the form

xi = si where xi is the ith coordinate, set to the value si.

Algorithm 1 Individual Fairness Certification

Inputs x∗ ∈ R
n, f : ReLU-activated Neural Network

Output ϵLB : Our Fairness Certificate for x∗

1: Construct the set of all polytopes P =
⋃

P for f where

each polytope is expressed as P = {x|Ax ≤ b}

2: E := [ ]
3: for s ∈ domain(S1)× · · · × domain(Sk)
4: P

′ := ReducePolyDim(P, s) (Alg. 3 in Appendix)

5: ϵs := GeoCert(x∗,P′, dproj)
6: E.append(ϵs)
7: end for

8: ϵLB := minE
9: Return ϵLB

Idea 2. Using an efficient certified robustness algorithm.

For ReLU-activated neural networks (see Sec.2), the naive

algorithm for certifying robustness is infeasible; it entails

computing the distance between x∗ and all boundary facets

(facets coinciding with the decision boundary of the model)

induced by the model, which is exponential in the number

of hidden neurons. Instead, we rely on an efficient iterative

algorithm GeoCert (Alg. 2 in App. B), proposed by (Jor-

dan et al., 2019). This algorithm starts from the polytope

containing the data point x∗ and iteratively searches for

the boundary facet with the minimum distance from x∗. A

priority queue of facets is maintained, sorted according to

their distance from x∗. At each iteration, the facet with the

minimum distance is popped and its neighbors (polytopes

adjacent to this facet) are examined. If the neighboring

polytope is previously unexplored, the distance to all of

its facets is computed and inserted them into the priority
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Figure 4: GeoCert’s behavior on point x∗. Colored facets

are in the priority queue; red and solid black lines denote

boundary and non-boundary facets respectively. Algorithm

stops when the minimum distance facet is a boundary facet

(rightmost).
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Figure 5: Projection of x∗ onto the hyperplane H containing

facet F gives a lower bound on the ℓ2 distance between x∗

and F , i.e., dproj(x
∗,F) ≤ dℓ2(x

∗,F).

queue; otherwise the next facet is popped. The algorithm

terminates as soon as a boundary facet is popped. Fig. 4

presents a pictorial overview of GeoCert. Additional details

are in App. B.

Idea 3: Generate a lower bound ϵLB for efficient ZKP.

GeoCert provides exact fairness certificates ϵ∗, by using

a constrained quadratic program solver to get the actual

distance between the input point and a facet. However,

verifying this solver using ZKPs would be a highly com-

putationally intensive task. Instead we propose to report

a lower bound on the certificate, ϵLB < ϵ∗, which consid-

erably improves performance. A lower bound means that

the reported certificate ϵLB is a conservative estimate ± the

true measure of the model’s fairness could only be higher.

Instead of the exact distance, we compute the projection dis-

tance between the input point and the hyperplane containing

the facet (facet is a subset of the hyperplane), which gives

a lower bound on the exact distance between x∗ and the

facet. The projection distance computation involves simple

arithmetic operations which are relatively computationally

feasible for ZKPs (see Sec. 4 for more details). Fig. 5 shows

the intuition pictorially.

Theorem 3.1. Given a data point x∗ and a neural network f ,

Alg. 1 provides a lower bound ϵLB of the correct individual

fairness parameter of x∗.

Proof for this theorem is given in App. C, Thm. C.3.

Our resulting fairness certification algorithm is described in

Alg.1 and detailed in App. B.

4. FairProof : Verification of the Individual

Fairness Certificate

Without careful design choices ZKPs can impose significant

computational overhead. To this end, we design an efficient

verification protocol named FairProof by combining in-

sights from cryptography and ML. Specifically, FairProof is

based on three key ideas described below.

Idea 1: Strategic verification of sub-functionalities. A

naive verification mechanism replicates all the computations

outlined in Alg.1. However, this would involve computing

all the polytopes during every proof generation ± this is

computationally expensive since the number of polytopes is

exponential in the number of hidden neurons in the model.

In contrast, we show that the verification can be streamlined

by focusing on five strategically chosen sub-functionalities,

each of which can be checked using certain properties of

polytopes and neural networks. Consequently, we only ver-

ify the polytopes traversed by the certification mechanism.

Idea 2: Representative points. Certain numeric properties

of a polytope can be efficiently proven if one has access to a

representative point in the interior of the polytope. We lever-

age this insight in FairProof to efficiently verify our chosen

sub-functionalities, discussed in the following sections.

Idea 3: Offline computation. We show that certain compu-

tations can be performed offline which further reduces the

time needed in the online phase.

Next, we detail our verification mechanism FairProof . Re-

call that in our setting model owner is the prover and user is

the verifier. The verification consists of two phases:

Phase 1: Pre-processing. All the operations in this phase

are executed only once and before the model is deployed to

the users. The following two actions need to be taken by the

model owner in this phase.

1. Commit to the weights W of the model f , resulting in

the commitment comW (we assume that the architec-

ture of f is known, i.e., f is a fully connected neural

lnetwork with ReLU activations).

2. Compute a representative point zP for each polytope

P . Additionally, it computes a representative point zF
for every facet F23.

2A facet is also essentially a polytope, albeit in the (n − 1)-
dimensional space.

3Although the number of polytopes and facets are exponential
in the number of the neurons in the model, this is a one-time
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Phase 2: Online verification. The online verification phase

is executed every time a user submits a query x∗ to the

model owner for prediction. Verifying the computation of

Algorithm 1 essentially amounts to verifying GeoCert with

some modifications and consists of five steps. The model

owner generates proofs for these five functionalities and the

user validates them.

1. Verifying initial polytope (Alg. 5). Recall that GeoCert

starts from the polytope containing data point x∗. Hence, the

verifier needs to check that the initial polytope (1) indeed

contains the data point x∗, and (2) is one of the polytopes ob-

tained from the model f . The key idea used in this function

is that each polytope is associated with a unique ReLU acti-

vation code. Verification for step (1) involves computing the

ReLU activation code for x∗ using the committed weights

comW and step (2) involves deriving the corresponding

polytope for this activation code from comW.

2. Verifying distance to facets (Alg. 6). During its course

GeoCert computes distance between x∗ and various facets.

Hence, the verifier needs to check the correctness of these

distance computations. As discussed in the preceding sec-

tion, we compute a lower bound of the exact distance using

projections, which can be efficiently proved under ZKPs.

3. Verifying neighboring polytopes (Alg. 7). In each it-

eration GeoCert visits a neighboring polytope adjacent to

the current one; the two polytopes share the facet that was

popped in the current iteration. Verifying neighborhood

entails checking that the visited polytope indeed (1) comes

from the model f , and (2) shares the popped facet. The

key idea used here is that two neighboring polytopes differ

in a single ReLU activation corresponding to the shared

facet (Fact A.2). Specifically, the prover retrieves the rep-

resentative point corresponding to the visited polytope and

computes its ReLU activation code, R′, using the committed

weights comW. Next, it computes the polytope correspond-

ing to R′ from comW to prove that it is obtained from the

model f . This is followed by showing that the hamming

distance between R′ and R is one, where R is the activation

code for the current polytope. Finally, the prover shows that

the current facet is common to both the polytopes.

4. Verifying boundary facet (Alg. 8). The termination

condition of GeoCert checks whether the current facet is a

boundary facet or not; we verify this in FairProof as follows.

Let R denote the activation code for the current polytope P
and let fR(x) = WRx + bR represent the linear function

associated with R. For the ease of exposition, let f be a

binary classifier. In other words, fR(x) is the input to the

softmax function in the final layer of f (i.e., logits) for all

data points x ∈ P . The key idea for verification is that iff x

computation performed completely offline and can be parallelized.
See Sec. 5 for empirical overhead of this pre-processing step on
models for standard datasets.

lies on a boundary facet, fR(x) has the same value for both

the logits. For verifying this computation, we rely on the

pre-computed representative point of a facet. Specifically,

the prover retrieves the representative point z for the current

facet F = {x|Ax ≤ b}. First, it proves that z lies on F by

showing Az ≤ b holds. Next, the prover computes fR (i.e.,

the weights WR and bR) from the committed weights using

R and tests the equality of both the logits in fR(z).

5. Verify order of facet traversal (Alg. 9). The order in

which the facets are traversed needs to be verified ± this

is equivalent to checking the functionality of the priority

queue in GeoCert. Standard ZKP tools are built for verify-

ing mathematical computations (expressed as an arithmetic

or Boolean circuit) and do not have built-in support for data

structures, such as priority queues. We overcome this chal-

lenge by leveraging the following key idea ± correctness of

the priority queue can be verified by checking that the next

traversed facet is indeed the one with the shortest distance.

Additional optimizations. We identify certain computa-

tions in the above algorithms that can performed offline.

Specifically, in VerifyNeighbor the proof of correctness for

polytope construction using representative points can be

generated offline. Further, in VerifyBoundary proof for com-

putation of the linear function fR can also be generated

offline. This leads to a significant reduction in the cost of

the online proof generation (see Sec. 5.2).

End-to-end verification mechanism is presented in Alg. 4. In

the final step, the prover has to generate an additional proof

that the reported certificate of fairness corresponds to the

smallest value among all the lower bounds obtained for each

element of domain(S) (VerifyMin , Alg. 10). Additionally,

the prover also needs to prove integrity of the inference, i.e.,

y = f(x∗). For this, after computing the linear function

fRx∗ (x
∗) using the committed weights comW (where Rx∗

is the activation code for x∗) we need to additionally prove

that the label corresponds to the logit with the highest score

(Alg. 11, VerifyInference).

Next, we present our security guarantee.

Theorem 4.1. (Informal) Given a model f and a data point

x∗, FairProof provides the prediction f(x∗) and a lower

bound ϵLB on the individual fairness parameter for x∗ with-

out leaking anything, except the number of total facets tra-

versed, about the model f .

Proof Sketch. Proof of the above theorem follows directly

from the properties of zero-knowledge proofs and theorems

in App. D. The formal guarantee and detailed proof is

presented in App. D.
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5. Evaluation

In this section we evaluate the performance of FairProof

empirically. Specifically, we ask the following questions:

1. Can our fairness certification mechanism distinguish

between fair and unfair models?

2. Is FairProof practically feasible, in terms of time and

communication costs?

Datasets. We use three standard fairness benchmarks. Adult

(Becker & Kohavi, 1996) is a dataset for income classifica-

tion, where we select gender (male/female) as the sensitive

feature. Default Credit (Yeh, 2016) is a dataset for predict-

ing loan defaults, with gender (male/female) as the chosen

sensitive feature. Finally, German Credit (Hofmann, 1994)

is a loan application dataset, where Foreign Worker (yes/no)

is used as the sensitive feature.

Configuration. We train fully-connected ReLU networks

with stochastic gradient descent in PyTorch. Our networks

have 2 hidden layers with different sizes including (4, 2),
(2, 4) and (8, 2). All the dataset features are standardized

(Sta). FairProof is implemented using the Gnark (Botrel

et al., 2023) zk-SNARK library in GoLang. We run all

our code for FairProof without any multithreading or paral-

lelism, on an Intel-i9 CPU chip with 28 cores.

5.1. Model Fairness

We first evaluate if our certification mechanism can distin-

guish between fair and unfair models. Prior work (Islam

et al., 2021) has shown that overfitting leads to more unfair

models while regularization encourages fairness. Thus, to

obtain models with different fairness, we vary regularization

by changing the weight decay parameter in PyTorch. Then

we randomly sample 100 test data points as input queries

and find the fairness parameter ϵ for both types of models

on these queries.

As demonstrated in Fig. 6, the unfair models have a lower

ϵ than the corresponding fair models. This consistent differ-

ence in ϵ values across different model sizes and datasets

shows that our certification mechanism can indeed distin-

guish between fair and unfair models. Results for other

models are included in App. E.

5.2. Performance of FairProof

Since computation is a known bottleneck in ZKPs, we next

investigate the overhead of FairProof in terms of time and

communication costs. All reported numbers are averages

over a 100 random test points.

Fig. 7 (a) shows the proof generation costs for various mod-

els. Note that the proof generation time varies with the

models, due to its dependence on the number of traversed

facets4 which in turn depends on the model and query. On

average, the adult model has a larger number of traversed

facets than others as shown in Table 1 in App. E, leading

to a higher proof generation time. We also observe that

performing some computations in an offline phase results

in significant reductions in the online time cost, the largest

being 1.74×. See Table 1 and Fig.13 in App.E for details.

We also breakdown the overall proof generation time in

terms of different sub-functionalities. We report this break-

down for the query with the median proof generation cost,

in Fig. 7 (b). As shown in the figure, VerifyBoundary is the

costliest sub-function for all the models; this is so since it

is executed in every iteration (every time a facet is popped)

and involves costly non-linear comparison operations (see

Alg. 8). Other functionalities that are also executed multi-

ple times based on number of traversed facets but are not

as expensive include VerifyNeighbor, VerifyDistance and

VerifyOrder (see Alg. 7, 6, 9). The least time is taken by

VerifyMin which basically finds the minimum in a list; this

is so since the function is straight-forward and is ran only

once per query (see Alg. 10).

We also report the average verification times - time for

checking the validity of the proof by the verifier - in Fig. 7

(a). Note that the verification costs are orders of magni-

tude lower (in seconds) than the proof generation costs (in

minutes) for all models; as is standard in ZKPs. Fig.7 (c)

reports the communication overheads, i.e. size of the gen-

erated proofs. The proof size is very small, only certain

kilobytes. Low verification time and communication cost

is advantageous since it implies quick real-time verification

which does not require complex machinery at the customer

end. For detailed results on all models, refer to Fig. 14 and

Fig. 15 in App. E.

Discussion on Scalability For very large models, the num-

ber of traversed facets can be huge and running FairProof

on them may not be practically feasible anymore. In such

cases, one solution can be just verifying the fairness of the

final layers. We leave this exploration to future work.

6. Related Work

Verifiable fairness with cryptography. Most of the prior

work on verifying fairness while maintaining model con-

fidentiality (Pentyala et al., 2022; Kilbertus et al., 2018;

Toreini et al., 2023; Segal et al., 2021; Park et al., 2022) has

approached the problem in the third-party auditor setting.

The closest to ours is a recent work by (Shamsabadi et al.,

2023), which proposed a fairness-aware training pipeline for

decision trees that allows the model owner to cryptograph-

ically prove that the learning algorithm used to train the

4As mentioned in Thm. 4.1, this information is leaked by
FairProof .
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Figure 6: Histogram of fairness parameter ϵ for fair & unfair models. ϵ values are higher than those for unfair models.
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Figure 7: (a) Proof Generation (in mins) and Verification times (in secs) for different models. Offline computations are done

in the initial setup phase while Online computations are done for every new query. Verification is only done online, for every

query. (b) Breakdown of the proof generation time (in mins) for the data point with the median time. (c) Total Proof Size (in

KB) for various models. This includes the proof generated during both online and offline phases.

model was fair by design. In contrast, we focus on neural

networks and issue a fairness certificate by simply inspect-

ing the model weights post-training. Our system FairProof

and certification mechanism is completely agnostic of the

training pipeline.

Another line of work has been using cryptographic prim-

itives to verify other properties (rather than fairness) of

an ML model while maintaining model confidentiality ±

(Zhang et al., 2020; Liu et al., 2021) focus on accuracy and

inference, while (Zhao et al., 2021; Garg et al., 2023; Sun

& Zhang, 2023) focus on the training process.

A separate line of work uses formal verification approaches

for verifying the fairness of a model (Albarghouthi et al.,

2017; Bastani et al., 2019; Urban et al., 2020; Ghosh et al.,

2020; Biswas & Rajan, 2023). However, these works focus

on certification in the plain text, i.e., they do not preserve

model confidentiality and do not involve any cryptography.

Fairness Certification Mechanisms. Prior work on certi-

fication mechanisms for fairness can be broadly classified

into three categories. The first line of work frames the cer-

tification problem as an optimization program (John et al.,

2020; Benussi et al., 2022; Kang et al., 2022b). The second

line of research has leveraged the connection between ro-

bustness and fairness, and proposed fairness-aware training

mechanisms akin to adversarial training (Ruoss et al., 2020;

Yurochkin et al., 2020; Khedr & Shoukry, 2022; Yeom &

Fredrikson, 2021; Doherty et al., 2023). In contrast to both,

we focus on local IF specifically for neural networks and

use an iterative algorithm rather than solving a complex

optimization problem and are completely agnostic of the

training pipeline.

The final line of work is based on black-box query access

learning theoretic approaches (Yadav et al., 2022; Yan &

Zhang, 2022; Maneriker et al., 2023). Contrary to our work,

these approaches however are replete with problems arising

from the usage of a reference dataset (Fukuchi et al., 2019;

Shamsabadi et al., 2023), the need for a trust third-party,

and lack of guarantees of model uniformity.

See App. Sec. F for a further discussion on related works.

7. Conclusion

In this paper we proposed FairProof ± a protocol enabling

model owners to issue publicly verifiable certificates while

ensuring model uniformity and confidentiality. Our experi-

ments demonstrate the practical feasibility of FairProof for

small neural networks and tabular data. While our work is

grounded in fairness and societal applications, we believe
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that ZKPs are a general-purpose tool and can be a promising

solution for overcoming problems arising out of the need

for model confidentiality in other areas/applications as well.

We call for further research in this direction.

Impact Statement

This paper presents work whose goal is to advance the field

of Trustworthy Machine Learning, by making public veri-

fication of properties, specifically fairness, of ML models

feasible. While we use a notion of fairness ± Local Indi-

vidual Fairness ± in this work, we do not believe that it is

‘the’ perfect measure of fairness or that it can quantify every

kind of unfairness and doubt if such a measure can exist.

Faced with the model confidentiality constraint, we try to

offer some transparency in the form of public verification

through FairProof . However, there might exist ways of

gaming this system, leading to fairwashing on the customer

end or to potential exposure of the model weights on the

organization’s end. This calls for dedicated research in the

area.
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A. Background Cntd.

A.1. Polytopes

The polytopes described succinctly by their linear inequalities (i.e., they are H-polytopes), which means that the number of

halfspaces defining the polytope, denoted by m, is at most O(poly(n)), i.e. polynomial in the ambient dimension.

Next, we present a lemma which states that slicing a polyhedral complex with a hyperplane also results in a polyhedral

complex.

Lemma A.1. Given an arbitrary polytope P := {x|Ax ≤ B} and a hyperplane H := {x|cTx = d} that intersects

the interior of P , the two polytopes formed by the intersection of P and the each of closed halfspaces defined by H are

polyhedral complices.

Fact A.2. Two ReLU activation codes of two neighboring polytopes differ in a single position and the differing bit

corresponds to the facet common to both.

B. Individual Fairness Certification Cntd.

Algorithm. In this section, we describe the concrete algorithm to compute the local individiual fairness parameter for a

data point x∗ (Algorithm 1). Our construction is based on the Geocert algorithm by Jordan et. al (Algorithm 2, Section 2)

for computing the pointwise ℓ2 robustness of neural networks with two key distinctions. First, we run on all the union of

(n− k)-dimensional polytopes each of which corresponds to a fixed value of the sensitive feature set S . Second, for each of

these complices, we compute a lower bound on the pointwise ℓ2 robustness. The final certificate of fairness is the minimum

over all the above bounds.

In the following, we describe the working of the algorithm 1 in more detail. First, we compute the polyhedral complex P for

the model f (Step 1). Next for a fixed value of the set of the sensitive features S (Step 3), we compute the corresponding

(n−k)-dimensional polyhedral complex P
′ from the original n-dimensional polyhedral complex (ReducePolyDim function

Alg. 3). The key idea is to fix the corresponding values of the features in S in the linear constraints of the polytopes in P.

In the next step, we compute a lower bound on the pointwise ℓ2 robustness of x∗ for the polyhedral complex P
′ using the

Geocert algorithm (Step 5-6). In particular, instead of minimizing the ℓ2 distance to a facet F , we compute the projection of

x∗ onto a hyperplane H , where F lies entirely on H . The above computation is repeated for all the values of the set of

sensitive features S . The final certificate of fairness is the minimum of all the lower bounds as computed above (Step 8).

In what follows, we briefly describe how to compute of the pointwise ℓ2 robustness of a point x. The problem essentially

boils down to computing the largest ℓ2 ball centered at x that fits within the union of n-dimensional polytopes defined by f .

Algorithm 3 ReducePolyDim : Construct (n− k)-dimensional polytopes from n-dimensional polytopes

Inputs P =
⋃

P : Set of Polytopes where each polytope P is expressed as {x|Ax ≤ b}, s = (s1, · · · , sk) : Values of k
sensitive features

Output P′ : Set of (n− k)-dimensional Polytopes

1: P
′ := {}

2: for P ∈ P

3: for i ∈ |row(A)|
4: for j ∈ [k + 1, n]
5: A

′[i][j − k] = A
′[i][j]

6: end for

7: b
′[i] = b[i]−

∑k
j=1 A[i][j] · sj

8: end for

9: Express P ′ = {x|A′x ≤ b
′}

10: P
′ := P

′ ∪ P ′

11: end for

12: Return P
′
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Algorithm 2 Geocert: Pointwise ℓ2 Robustness

Input x∗ - Data point for pointwise ℓ2 robustness certification; f - Neural network; dist - Distance Metric;

Output ϵ - Pointwise ℓ2 robustness certificate on x∗;

1: Compute all the polytopes for f
2: Setup priority queue Q← [ ]
3: Setup list of seen polytopes C ← {P(x)} ▷ P(x) denotes the polytope containing x
4: For Facet F ∈ P(x) do

5: Q.push(ComputeDistance(F , x∗),F , dist)
6: End For

7: While Q ̸= ∅ do

8: (d,F)← Q.pop()
9: If IsBoundary(F) == 1

10: Return d
11: Else

12: For P ∈ N (F) \ C do

13: ▷ N (F) denote the two polytopes sharing the facet F
14: For F ∈ P do

15: Q.push(ComputeDistance(F , x∗),F , dist)
16: End For

17: End For

18: End If

19: End While
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Algorithm 4 FairProof : Verifiable Individual Fairness Certification

Input x∗ - Data point for fairness certification; W - Weights of the piecewise linear neural network;

Output ϵ - Local individual fairness parameter for x; comW - Commitment to the weights of the model; ZK proof that

the ϵ is indeed a lower bound on ϵIF
1: Pre-Processing Offline Phase

2: Construct the polyhedral complex P =
⋃

P from W where each polytope is expressed as P = {x|Ax ≤ b}

3: Compute a reference point zi for each polytope Pi ∈ P such that zi ∈ Pi

4: Commit to the model weights comW and release them publicly

5: Online Phase

6: E = [ ]
7: for (s1, · · · , sk) ∈ domain(S1)× · · · × domain(Sk)
8: for P ∈ P

9: for i ∈ |row(A)|
10: for j ∈ [k + 1, n]
11: A

′[i][j − k] = A
′[i][j]

12: end for

13: b
′[i] = b[i]−

∑k
j=1 A[i][j] · sj

14: end for

15: Express P ′ = {x|A′x ≤ b
′}

16: P
′ = P

′ ∪ P ′

17: end for

18:
(

ϵ′,P1, ⟨(F1, d1), · · · , (Fn, dn)⟩
)

= GeoCert(x∗,P′, dproj)
19: ▷ P1 is the first polytope traversed

20: ▷ ⟨(F1, d1), · · · , (Fn, dn)⟩ is the ordered sequence of the visited facets and their corresponding distances

21: Prover proves that P1 is the polytope in P
′ containing x∗

▷ Using VerifyPolytope

22: Initialize the list of seen facets T = [ ]
23: for facet F ∈ N (P1)
24: Prover proves that the computation of the distance d from x∗ to F is correct ▷ Using VerifyDistance

25: T.insert
(

(F , d)
)

;
26: end for

27: for i ∈ [m− 1]
28: Prover proves that Fi is indeed the facet with the smallest distance in T ▷ Using VerifyOrder

29: Prover proves that F is not a boundary facet ▷ Using VerifyBoundary

30: for P ∈ N (Fi)
31: Prover proves that P is a neighboring polytope sharing facet F ▷ Using VerifyNeighbor

32: for F ∈ N (P)
33: Prover proves that the computation of the distance d from x∗ to F is correct ▷ Using VerifyDistance

34: T.insert
(

(F , d)
)

35: end for

36: end for

37: T.remove
(

(Fi, di)
)

38: end for

39: Prover proves that Fm is indeed the facet with the smallest distance in T2 ▷ Using VerifyOrder

40: Prover proves that Fm is a boundary facet ▷ Using VerifyBoundary

41: E.insert
(

dm
)

42: end for

43: Prove that ϵ = minE ▷ Using VerifyMin
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Algorithm 5 VerifyPolytope

Input x∗ - Data point for fairness certification; comW - Committed weights of the piecewise linear neural network;

(s1, · · · , sk) - Values of the sensitive features;

Output P ′ - Polytope corresponding to W containing x∗; R - ReLU activation code of x∗; π - ZK proof of the

computation;

1: Evaluate x∗ on comW to obtain ReLU activation code R

2: Compute the n− k-dimensional polytope P = {x|Ax ≤ b} corresponding to R on comW with (s1, · · · , sk) as the

values of the sensitive features

3: Generate proof π of the above computation

4: return (P,R, π)

Algorithm 6 VerifyDistance

Input x∗ - Data point for fairness certification; F - Facet;

Output d - Projected distance; π - ZK proof of the computation;

1: Let F be represented as aT · x = b

2: Compute d = (
∣

∣

∣
b− aTx∗)/||a||

∣

∣

∣

3: Generate proof π of the above computation

4: return (d, π)

Algorithm 7 VerifyNeighbor

Input comW - Weights of the piecewise linear neural network; F - Facet; P - Current polytope; R - ReLU activation

code for P; z - Representative point for neighboring polytope; (s1, · · · , sk) - Values of the sensitive features;

Output P ′ - Neighboring polytope; R′ - ReLU activation code of P ′; π - ZK proof of the computation

1: (P ′,R′, π′)← VerifyPolytope(z, comW, (s1, · · · , sk))
2: ▷ Can be performed apriori in a pre-processing stage for efficiency

3: if (|R−R
′|1 ̸= 1) ▷ Check hamming distance 1 between two binary vectors

4: return ⊥
5: if (F ̸∈ N (P ′) ∧ (F ̸∈ N (P))) ▷ Check facet F is common to both the polytopes

6: return ⊥
7: Generate proof π of the above computation

8: return (P ′,R′, (π, π′))

Algorithm 8 VerifyBoundary

Input x∗ - Data point for fairness certification; comW - Weights of the piecewise linear neural network; F - Current

facet represented as {x|Ax ≤ b}; P - Current polytope; R - ReLU activation code for P; z - Representative point for

current facet F (s1, · · · , sk) - Values of the sensitive features;

Output b - Bit indicating boundary condition; π - ZK proof of the computation

1: Compute the linear function fR corresponding to activation code R on comW with (s1, · · · , sk) as the values of the

sensitive features

2: ▷ Can be performed apriori in a pre-processing stage for efficiency

3: if (Az > b)

4: return ⊥
5: end if

6: b = 1
7: for i ∈ [1, |Y| − 1]
8: b← b · (fR(z)[0] == fR(z)[i])
9: ▷ Testing that fR(z) is equal on all of its elements

10: end for

11: Generate proof π of the above computation

12: return (b, (π, π′))
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Algorithm 9 VerifyOrder

Input (F , d) - Current facet with distance d; F = {(F1, d1), · · · , (Fk, dk)} - List of all previously unseen facets and

their distances;

Output π - ZK proof of the computation

1: for Fi ∈ F

2: if (d > di)
3: return ⊥
4: end if

5: end for

6: Generate proof π of the above computation

7: return π

Algorithm 10 VerifyMin

Input E - List of values; ϵ∗ - Individual fairness parameter;

Output π - ZK proof of the computation

1: for ϵ ∈ E
2: if (ϵ∗ > ϵ)
3: return ⊥
4: end if

5: end for

6: Generate proof π of the above computation

7: return π

Algorithm 11 VerifyInference

Input x∗ - Data point for fairness certification; comW - Committed weights of the piecewise linear neural network f ;

Output y - The prediction f(x∗); π - ZK proof of the computation;

1: Evaluate x∗ on comW to obtain ReLU activation code R

2: Compute the linear function fR corresponding to activation code R on comW

3: Compute fR(x∗)
4: y = argmaxi∈[|Y|] fR(x∗)
5: Generate proof π of the above computation

6: return (y, π)
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RealA,W(pp) :
1. comW ← FairProof.Commit(W, pp, r)
2. x← A(comW, pp)
3. (y, ϵ, π)← FairProof.Prove(W, x, pp, r)
4. b← A(comW, x, y, ϵ, π, pp)
5. Output b

C. Correctness of FairProof

In this section, we prove the correctness of FairProof given in Alg. 4. First, we re-state the correctness of GeoCert.

Theorem C.1 (Correctness of GeoCert (Jordan et al., 2019)). For a fixed polyhedral complex P, a fixed point x∗ and a

distance function ϕ that satisfies ray monotonocity, GeoCert returns a boundary facet with the minimum distance.

Fact C.2. The projection of a given point x∗ onto a hyperplane H where F ⊆ H gives a lower bound on its ℓ2 distance to

F , i.e., dproj(x,F) ≤ dℓ2(x,F).

Theorem C.3. Let f be a piecewise-linear neural network. Replacing in Algorithm 2 with dℓ2(·) distance with dproj(·)
gives a lower bound on the individual fairness guarantee, i.e., ϵdproj

≤ ϵdℓ2
.

Proof. We will prove by contradiction. Let P be the polyhedral complex associated with the model f . Let us assume that

there exists a boundary facet F∗ such that dℓ2(F , x) < ϵdproj
. Now if the corresponding polytope PF∗ was traversed

by GeoCert(x,P, dproj), then all the facets in PF∗ including F∗ were checked. Then from the correctness of GeoCert

(Thm. C.1), this leads to a contradiction of C.2. Now let us consider the alternative case where PF∗ was not traversed by

GeoCert(x,P, dproj). From Thm. C.1 this means that there exists another boundary facet F∗ such that dproj(x,F
∗) ≤

dproj(x,F). Then by Fact C.2, dproj(F
∗, x) = ϵdproj

≤ dproj(F , x) ≤ dℓ2(F , x) which contradicts our assumption.

Theorem C.4 (Correctness of FairProof ). For a given data point x∗, FairProof (Algorithm 4) generates ϵ such that ϵ ≤ ϵIF .

Proof. The proof of the above theorem follows directly from Theorem C.1, Theorem C.3 and Fact C.2.

D. Security Proof

1. Completeness

∀x,W (4)

Pr









pp← FairProof.KeyGen(1λ)
comW ← FairProof.Commit(W, pp, r)
(y, ϵ, π)← FairProof.Prove(W, x, pp, r)
FairProof.Verify(comW, x, y, ϵ, π, pp) = 1









= 1 (5)

2. Soundness

Pr

















pp← FairProof.KeyGen(1λ)
(W∗, comW∗ ,X, ϵ∗, y∗, π∗, r)← A(1λ, pp)
comW∗ ← FairProof.Commit(W∗, r))
FairProof.Verify(comW∗ , x, y∗, ϵ∗, π∗, pp) = 1
(

∃x̃, d(x, x̃) ≤ ϵ ∧ f(W∗,X) ̸= f(W∗, X̃)
)

∨y ̸= f(W∗,X)

















< negl(λ) (6)

3. Zero-Knowledge Let λ be the security parameter obtained from λ, pp← FairProof.KeyGen(1λ)

|Pr[RealA,W(pp) = 1]− Pr[IdealA,SA(pp) = 1]|

≤ negl(λ) (7)
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IdealA,SA(pp, h) :
1. com← S1(1

λ, pp, r)
2. x← A(com, pp)
3. (y, Lx, ϵ, π) ← SA2 (com, x, pp, r) given oracle access to y = pred(W, x),

Lx = L(x) and ϵ = IFLB(W, x)
4. b← A(comW, x, y, Lx, ϵ, π, pp)
5. Output b

Figure 8: Zero-knowledge games

Proof Sketch. Completeness. The completeness guarantee follows trivially from our construction.

Soundness. L(x) denotes the leakage function for FairProof , specifically, L(x) = {n1, · · · , n|S|}, where ni

denotes the number of facets traversed for the i-th value of the sensitive attribute S .

Recall, the functioning of GeoCert can be summarized as follows:

1. Start traversing from the polytope containing x∗.

2. Compute the distances to all the facets of the current polytope and store them.

3. Select the hitherto unseen facet with the smallest distance.

4. Stop if this is a boundary facet.

5. Else, traverse next to the neighboring polytope that shares the current facet.

A malicious prover can cheat in any (or a combination) of the above steps. We will consider each of them separately as

follows.

Lemma D.1 (Soundness of VerifyPolytope). Let P = {x|Ax ≤ B} be the correct polytope obtained from the piecewise-

linear neural network with weights W for a given value of the sensitive features. For any polytope P ′ = {A′x < b
′} such

that (A ̸= A
′) ∨ (b ̸= b

′), we have

Pr[FairProof.Verify(comW∗ , x, y∗, ϵ∗, π∗, pp) = 1] < negl(λ) (8)

Proof Sketch. As shown in Alg. 5, the verification process re-computes the correct polytope from the committed model

weights. The only way the prover can cheat is if they can produce a P ′ such that Open(comP) = P
′ which violates the

binding property of the commitment scheme.

Lemma D.2 (Soundness of VerifyDistance). For a given facet F = {Ax ≤ b}, data point x∗, and value d′ such that

d′ ̸=
∣

∣

b−AT x∗

∥A∥

∣

∣, we have:

Pr[FairProof.Verify(comW∗ , x, y∗, ϵ∗, π∗, pp) = 1] < negl(λ) (9)

Proof Sketch. The verification process (Alg. 6) re-computes the correct distance. Hence, the only way the prover can cheat

is if they can produce a d′ such that Open(comd) = d′ which violates the binding property of the commitment scheme.

Lemma D.3 (Soundness of VerifyOrder). Let d = {d1, · · · , dk} be a set of values such that dmin = mini di. For any value

d′ such that d′ > dmin, we have:

Pr[FairProof.Verify(comW, x, y∗, ϵ∗, π∗, pp) = 1] < negl(λ) (10)

Proof Sketch. The verification checks the minimality of the given value against all values in d (Alg. 9). The only way

to cheat would require producing a d with a different minimum which violates the binding property of the commitment

scheme.

Lemma D.4 (Soundness of VerifyBoundary). Consider a piecewise-linear neural network with weights W. For any facet F
such that which is not a boundary facet, we have
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Pr[FairProof.Verify(comW, x, y∗, ϵ∗, π∗, pp) = 1] ≤ negl(λ) (11)

Proof Sketch. The verification algorithm computes the linear function corresponding to the given activation code (Alg. 8.

A prover can cheat here only if they can compute a different linear function f ′ which would require violating the binding

property of the commitment scheme.

Lemma D.5 (Soundness of VerifyNeighbor). Let P = {x|Ax ≤ b} be a polytope belonging to the polyhedral complex of

the piecewise-linear neural network with weights W and let F ∈ N (P). Let P̄ = {x|Āx ≤ b̄} and P be neighboring

polytopes, sharing the facet F , i.e., P̄ ∈ N (F) \ P . Let z ∈ R
n be a data point. For any polytope P ′ = {x|A′x ≤ b

′}
such that (Ā ̸= A

′) ∧ (b̄ ̸= b
′), we have

Pr[FairProof.Verify(comW, x, y∗, ϵ∗, π∗, pp) = 1] < negl(λ) (12)

Proof Sketch. The verification algorithm first checks whether P̄ contains the reference point z (Alg. 7). The soundness

of this follows from VerifyPolytope. Cheating on the next steps (checking the hamming distance and facet intersection)

means that the prover is essentially able to generate a polytope P ′ such that Open(comP) = P
′ which violates the binding

property of the commitment scheme.

Zero-Knowledge. The zero-knowledge property follows directly from the commitment scheme and the zero-knowledge

backend proof system we use. We note that the zero-knowledge proof protocol itself is not the focus of this paper; instead,

we show how we can use existing zero-knowledge proof protocols to provide verifiable individual fairness certification in a

smart way for high efficiency.
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E. Evaluation Cntd.

Dataset-Model Online (in mins) Offline (in mins) Improvement Traversals

German (4,2) 4.90 ± 0.12 3.61 ± 0.19 1.74× 40 ± 3

German (2,4) 1.17 ± 0.02 0.67 ± 0.03 1.57 × 13± 1

Credit (4,2) 3.52 ± 0.08 2.31 ± 0.10 1.66× 28 ± 2

Credit (2,4) 2.08 ± 0.04 1.11 ±0.07 1.49 × 25 ± 1

Adult (4,2) 3.94 ±0.10 1.72 ± 0.08 1.43 × 41 ± 3

Adult (8,2) 3.94 ± 0.30 1.34 ± 0.08 1.36 × 38 ± 8

Table 1: Time for proof generation averaged over 100 randomly sampled data points. Mean and standard error are reported

for each dataset-model. Offline computations are done in the initial setup phase of FairProof while Online computations are

done for every new query. Improvement = (Online time + Offline time)/ Online time. Traversals gives the total number of

iterations (also total number of popped facets) of GeoCert ran by FairProof .
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Figure 9: Histogram of fairness parameter ϵ for fair models of size (4,2). ‘wd’ represents the values of the Weight decay

parameter.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Individual Fairness Parameter 

0

5

10

15

20

Fr
eq

ue
nc

y

Mean = 0.33
Std. Dev. = 0.38

(a) Credit

0 1 2 3 4
Individual Fairness Parameter 

0

5

10

15

20

25

Fr
eq

ue
nc

y

Mean = 0.51
Std. Dev. = 0.61

(b) Adult

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Individual Fairness Parameter 

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 0.41
Std. Dev. = 0.38

(c) German

Figure 10: Histogram of fairness parameter ϵ for unfair models of size (4,2). Weight decay is set to zero here for all.
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Figure 11: Histogram of fairness parameter ϵ for fair models of size (8,2). ‘wd’ represents the values of the Weight decay

parameter.
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Figure 12: Histogram of fairness parameter ϵ for unfair models of size (8,2). Weight decay is set to zero here for all.
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Figure 13: Proof generation time for 100 random data points.

22



FairProof : Confidential and Certifiable Fairness for Neural Networks

0 1 2 3 4 5 6
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 2.09
Std. Dev. = 1.06

(a) Credit (2,4)

0 1 2 3 4 5 6 7 8
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 2.98
Std. Dev. = 1.66

(b) Adult (8,2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Verification Time (in sec)

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y

Mean = 0.78
Std. Dev. = 0.38

(c) German (2,4)

0 1 2 3 4 5 6 7
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 3.21
Std. Dev. = 1.21

(d) Credit (4,2)

1 2 3 4 5 6 7 8 9
Total Verification Time (in sec)

0

1

2

3

4

5
Fr

eq
ue

nc
y

Mean = 4.09
Std. Dev. = 1.47

(e) Adult (4,2)

0 2 4 6 8 10
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 4.58
Std. Dev. = 1.81

(f) German (4,2)

Figure 14: Distribution of verification time for 100 random data points.
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Figure 15: Distribution of communication cost (proof size) for 100 random data points.
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F. Related Work

Certifiable fairness. Prior research on certifying fairness of a ML model can be classified into three types. The first line

of work issues a certificate of fairness directly from the model weights by framing it as an optimization problem. (John

et al., 2020) presented optimization based mechanisms for certifying the (global) individual fairness of linear classifiers

and kernelized classifiers with polynomial/rbf kernels. (Benussi et al., 2022) extended the results to neural networks by

encoding (global) individual fairness certification as a mixed-integer linear programming problem. (Kang et al., 2022b)

proposed a notion of distributional fairness and give a framework to compute provable certificates for the same.

The second line of research has leveraged the connection between robustness and fairness, and proposed fairness-aware

training mechanisms akin to adversarial training. (Ruoss et al., 2020) deviced a mechanism for training individually fair

representations which can be used to obtain a certificate of individual fairness for the end-to-end model by proving local

robustness. SenSR (Yurochkin et al., 2020) introduced a distributionally robust optimization approach to enforce individual

fairness on a model during training. CertiFair (Khedr & Shoukry, 2022) enabled certification of (global) individual fairness

using off-the-shelf neural network verifiers. Additionally, the authors proposed a fairness aware training methodology with

a modified reguralizer. (Yeom & Fredrikson, 2021) applied randomized smoothing from adversarial robustness to make

neural networks individually fair under a given weighted ℓp metric. (Doherty et al., 2023) estimated the (global) individual

fairness parameter for Bayesian neural networks by designing Fair-FGSM and Fair-PGD ± fairness-aware extensions to

gradient-based adversarial attacks for BNNs.

The final line of work is based on learning theoretic approaches (Yadav et al., 2022; Yan & Zhang, 2022; Maneriker et al.,

2023) where a third-party audits the fairness of a model in a query-efficient manner.

The problem of fairness certification has also garnered attention from the formal verification community. FairSquare (Al-

barghouthi et al., 2017) encoded a range of global fairness definitions as probabilistic program properties and provides

a tool for automatically certifying that a program meets a given fairness property. VeriFair (Bastani et al., 2019) used

adaptive concentration inequalities to design a probabilistically sound global fairness certification mechanism for neural

networks. (Urban et al., 2020) proposes a static analysis framework for certifying fairness of feed-forward neural networks.

Justicia (Ghosh et al., 2020) presents a stochastic satisfiability framework for formally verifying different group fairness

measures, such as disparate impact, statistical parity, and equalized odds, of supervised learning algorithms. A recent work,

Fairify (Biswas & Rajan, 2023), generates a certificate for the global individual fairness of a pre-trained neural network

using SMT solvers. It is important to note that all the aforementioned approaches focus on certification in the plain text, i.e.,

they do not preserve model confidentiality.

Verifiable machine learning. A growing line of work has been using cryptographic primitives to verify certain properties of

a ML model without violating its confidentiality. Prior research has primarily focused on verifying the inference and accuracy

of models. For instance, (Zhang et al., 2020) proposed a zero-knowledge protocol for tailored for verifying decision trees,

while zkCNN (Liu et al., 2021) introduced an interactive protocol for verifying model inference for convolutional neural

networks. Several other works have focused on non-interactive zero-knowledge inference for neural networks, including

(Weng et al., 2023; VI2, 2023; Kang et al., 2022a; Sun & Zhang, 2023; Feng et al., 2021; Lee et al., 2020). VeriML (Zhao

et al., 2021) enabled the verification of the training process of a model that has been outsourced to an untrusted third party.

(Garg et al., 2023) proposed a mechanism for generating a cryptographic proof-of-training for logistic regression.

Most of the prior work on verifying fairness while maintaining model confidentiality (Pentyala et al., 2022; Kilbertus et al.,

2018; Toreini et al., 2023; Segal et al., 2021; Park et al., 2022) has approached the problem in the third-party auditor setting.

A recent work (Shamsabadi et al., 2023) proposed a fairness-aware training pipeline for decision trees that allows the

model owner to cryptographically prove that the learning algorithm used to train the model was fair by design. In contrast,

FairProof allows a model owner to issue a certificate of fairness of neural networks by simply inspecting the model weights

post-training.
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