
Evolution and Anti-patterns Visualized:
MicroProspect in Microservice Architecture

Lauren Adams1, Amr S. Abdelfattah1, Md Showkat Hossain Chy2,
Samantha Perry2, Patrick Harris1, � Tomas Cerny2,

Dario Amoroso d’Aragona3, Davide Taibi3,4

1 Baylor University, Waco, Texas, USA
2 SIE, University of Arizona, Tucson, Arizona, USA
3 Tampere University, Tampere, FI-33720, Finland

4 University of Oulu, Oulu, FI-90520, Finland
tcerny@arizona.edu

Abstract. A microservice architecture has become the dominant
direction for designing the building blocks of large-scale, distributed
software systems. However, the dynamic and changing microservices
within decentralized systems in contrast to available static tracing
tools presents challenges for comprehending its impact on the overall
architecture. Existing tracing tools uncover service call graphs but
have limitations in visualizing historical changes; moreover, they are
not meant to aid with architecture assessment where developers seek
potential design anomalies. With the ever-growing system complexity,
developers likely resort to focusing on specific subsets of the system,
especially given the lack of tools to analyze the impacts of system
evolution. To address these challenges, we introduce the MicroProspect
tool that provides a high-level, holistic visual perspective on the system’s
service view, tracks its structural changes throughout system evolution,
and detects and visualizes anti-patterns that could lead to architectural
degradation.

Keywords: Microservices · Evolution · Degradation · Visualization

1 Introduction

Microservices are a mainstream approach to building large and scalable systems
[37]. Microservice architecture offers increased flexibility and autonomy in system
evolution involving independent development teams following Conway’s law [17].
However, development teams typically deal with the evolution of individual
microservices without paying attention to the greater system perspective as
the effect of decentralization. Without instruments to advise developers about
continuous changes and the system’s evolution as a whole, the system becomes
susceptible to architectural degradation.1 2

Architectural degradation is defined as the process of the persistent
inconsistency between the descriptive software architecture as implemented
and the prescriptive software architecture as intended [5, 16]. The example

1 MicroProspect Source Code: https://github.com/cloudhubs/mvp
2 MicroProspect Demo: https://youtu.be/HXSB4uAxRH4



2 Adams et al.

of architecture degradation in open-source software is evident as over time,
software architecture erodes, deviating from its intended conceptual structure
due to factors like requirement changes and new features. This divergence,
termed architecture erosion or drift, introduces inconsistencies between the
implemented architecture and the originally planned architecture, negatively
impacting software quality and potentially necessitating a redesign of the system
[5]. It is typically an outcome of the gradual injection of code anomalies (i.e.,
anti-patterns, poor design choices, lack of maintenance, accumulated technical
debt [7, 27], etc.) as the software evolves. Degradation occurs when the critical
quality attributes are violated [30].

Common detection strategies to identify degradation [5] base on design
quality metrics (e.g., instability, cohesion, coupling) [31, 8], or on the
prioritization of architecture anomalies referred to as smells or anti-patterns [19,
33]. Anti-patterns [36] are recurring design practices, choices, or solutions to
common problems despite appearing reasonable and effective, leading to negative
consequences and undermining the system’s overall quality. Bad smells [35]
describes a design characteristic that indicates a potential problem or violation
of good practices, a warning sign that suggests potential issues in the design.
These both prompt further analysis and consideration to identify the underlying
problems and propose appropriate design improvements. To refer to both
anomalies, we use the term anti-pattern.

With microservices, the system complexity easily grows to the point
where system evolution becomes hard to trace, requiring new methods and
tools to support history tracking for the system architecture [20]. Detecting
and rectifying microservice anti-patterns apparent from the system’s holistic
perspective throughout the development and evolution process is crucial to
avoid undesirable outcomes [4, 13, 29]. Even though distributed tracing tools
(i.e., Jaeger [1], Dapper [34]) derive service call graphs, there is no visualization
support for evolution, making it challenging to observe system changes. As many
microservice anti-patterns are elusive within individual microservices, traditional
tools like SonarQube [10] fail. The holistic system perspective (i.e., service call
graph) is necessary for such analysis; however, even then, complex graphs in
large systems pose difficulties in identifying issues due to information overload
and distractions from numerous connections and nodes.

To address these limitations, we introduce a MicroProspect tool to provide
developers with a comprehensive and interactive visualization fueled with the
capability to compare system versions, highlight anti-patterns, and provide
detailed architectural insights to identify design issues. By analyzing the
system’s historical data (i.e., from repositories), developers can visually identify
degradation trends over time, leading to informed decisions leading to wise
design choices.

This paper is organized as follows: Section 2 details the software architecture
reconstruction process. Section 3 introduces our tool and Section 4 gives details
on how to practcially use the tool. The evaluation of the tool on a microservice



MicroProspect in Microservice Architecture 3

Fig. 1. Generalized SAR process for service call graph extraction and visualization
used in MicroProspect processing

system is described in Section 5 and related work is briefed in Section 6. Finally,
Section 7 and 8 concludes the paper.

2 Software Architecture Reconstruction (SAR)

To accurately represent the system’s architecture, the process of Software
Architecture Reconstruction (SAR) aims at extracting the architecture from
an existing software system [9]. It involves reverse-engineering the system’s
structure, components, and interactions based on its implementation artifacts,
such as source code and configuration files. Automating the process requires
constructing a system Intermediate Representation (IR) that captures the
system structure and component dependencies [9]. Such a representation can be
extracted from the system by various means (i.e., static or dynamic analysis).

Our target result is a visualized system service view perspective [11]
decorated with information pertaining to the occurrence of anti-patterns and
the system evolution. The service view represented by a service call graph is the
mostly adopted visual approach for microservices [23]. In such a graph, services
are represented as nodes, and requests between services as links. The overall SAR
process phases are detailed in Fig. 1 and described in the following subsections.

Model Extraction: The first phase involves static analysis of the
microservices codebase to extract architectural components to construct the
model representation of the system. The two-phase process involves the analysis
of individual microservice codebases and then their interconnections.

The first phase analyzes the individual microservices, it can be assumed that
component-based development frameworks are used to develop microservices.
Resorting to low-level language use would lead to wheel reinvention and bring
significant disadvantages to system evolution [32]. Therefore, our methodology
assumes that the framework follows enterprise communication standards,
organizing components into Controller, Service, and Data Repository within
projects [15]. We scrutinize microservices’ codebases, extracting source files
and parsing them to pinpoint method declarations and bodies. This extracted
content encompasses an individual microservices component call graph, depicted
in Fig. 2. It illustrates that endpoint calls are received from the Controller
component and then delegated to the implemented Service component. The
Service component is tasked with communicating with the data sources of the
Data Repository component and other microservices, initiating remote calls to



4 Adams et al.

fulfill the required tasks. Schiewe et al. [32] demonstrated the identification of
high-level constructs and components from abstract syntax trees. This approach
reveals controllers and their endpoints with specific REST properties, along with
identifying remote REST calls within the code.

The second phase interconnects the individual microservices with each other.
The extracted remote calls from component call graphs reveal the connections
between the microservices, forming the foundation for constructing service
dependencies. The process combines individual component call graphs using
merging ingredients like call signature match to endpoints or data simulates
[3]. For extracting system interconnections, we consider the Prophet static
analysis tool [9]. For explicit dependencies, Prophet uses approximation via
signature matching between the REST endpoint and remote REST calls to
identify connections. This approach has shown to be reliable through repeated
experimentation, yet, it must be understood that static analysis provides only
an approximation. However, the requisite cost is low, given no system execution
is necessary, as in the case of dynamic system analysis.

The result then follows in the format of endpoint and rest call
interconnections which, with the trace to their original microservices, leads to
derived dependencies across microservices. A similar approach is possible for
asynchronous calls (i.e., messaging) but was not considered in this work.

Intermediate Representation: Following the model extraction phase, the
extracted component call graphs evolve into the IR, which represents the system
components and their interconnections. From this IR, we can derive information
about services, types, and dependencies which can be used to demonstrate
the interconnections between services to construct a service view. Its format
describes a composite structure listing the component call from endpoints
within all its microservices and links between services throughout the particular
endpoint route, as shown in Fig. 3. Such information makes it possible to render
a service dependency graph of the system at a high level as a directed network.

Anti-pattern Identification: From the IR, we can seek to identify various
anti-patterns within the microservice system that are traceable from the service
dependency perspective. We can traverse the intermediate representation and
label nodes with information pertaining to anti-patterns they may be a part
of. We demonstrate the detection of selected anti-patterns based on information
derived from the structure of the service call graph. In particular, we targeted
the following:

– High outgoing coupling(variable threshold) - Service (outgoing
connections) is interconnected or dependent on too many other services.

– Cyclic dependency - A cyclic chain of calls between two or more services
that depend on each other directly or indirectly. Various cyclic dependency
shapes can be recognized. Involved services can be hard to release and
maintain. Likely, responsibilities are not separated correctly across services.
This leads to problems with deployment, scalability, and co-change coupling.
[13]



MicroProspect in Microservice Architecture 5

– Bottleneck service (variable threshold) - A service that is highly used
(incoming connections) by other services. Its response time can be high
because too many services use it. Service availability may go down due to
the traffic.

– Megaservice (variable threshold) - Services should be small, independent,
independently deployable units and serve a single purpose. A mega service
has a high number of endpoints and a high fan-in. It is a result of poor
system decomposition when a service combines multiple functionalities that
multiple services should handle. [13] Creates maintenance issues, reduced
performance, and difficult testing.

The decorated version of the graph JSON can then be used by the
MicroProspect tool to display information pertaining to anti-patterns within
and across system versions, highlighting changes.

3 MicroProspect Tool

We sought to develop a comprehensive visualization approach to enable
developers to view the system service dependency graph regardless of the system

OrderController

Endpoint Method

service.save()

[Controller]

OrderService

Service Method

repository.save()

[Service]

OrderRepostory

Repository Method

db.save()

[Repository]

restTemplate.postObject()

Name: create
Http: POST
Argument: Order
Return: Order

Name: save
Argument: Order
Return: Order

Http: POST
URL: /notify
Return: Notification

Name: save
Op: save
Argument: Order
Return: Order

Fig. 2. Component Call Graph example



6 Adams et al.

Fig. 3. Example intermediate representation of service dependency graph from the
train ticket system benchmark

scale. This necessitated an interactive tool that allows for various features
suggested by Abdelfattah et al. [2], such as search, tracking, and isolation of
particular services and their neighbors to successfully divide large microservice
systems into manageable components. Additionally, Abdelfattah et al. found
that a 3D visualization enabled novices to perform on the same level as experts
in identifying relationships between services and outperform those using a
2D tool [2]. As a result of this and the service dependency graph’s focus
on relationships among services, we targeted a 3D visualization. Moreover, to
understand system degradation, we desired to incorporate a fourth dimension in
comparing system versions and anti-patterns over time. To further understand
the system degradation, we can also display how anti-patterns change between
system versions by comparing the individual occurrences between the two
versions. Tracking system degradation can be accomplished by repeating the
aforementioned SAR process for several system iterations and ordering them on
a timeline that can be paged through.

Fig. 4. Capture of the Train Ticket system in the MicroProspect tool



MicroProspect in Microservice Architecture 7

Interactivity: MicroProspect offers interactive navigation of a visual service
dependency graph in 3D space. The graph can be rotated, panned, zoomed, and
rearranged via dragging nodes. Services are visualized as nodes in the graph and
can be focused on via click to obtain specifics and to isolate the service and its
neighbors visually. Requests between services are visualized as arrows of width
dependent on request quantity and have the flow direction animated on hover.
The tool offers many visualization options that can be toggled from menus on
the left side of the screen, in addition to search functionality to isolate services
by name for easier navigation of complex graphs.

All of these features serve to enable navigability despite graph complexity,
which necessitated this 3D interactive approach. Fig. 4 illustrates the Train
Ticket benchmark in MicroProspect 3

Anti-pattern Visualization: Previously mentioned anti-patterns are
visualized by MicroProspect, including High outgoing coupling, Cyclic
Dependency, Bottleneck, and Mega service. The anti-pattern information is
extracted from the labeled system IR and used to highlight services and
interactions based on the selected anti-pattern. Anti-pattern information is
compared to the previous graph instance across system evolution as well to
address the need to understand when and how anti-patterns developed in the
system. Fig. 4 highlights Cyclic Dependency in purple, and the left panel informs
that a cycle did not appear in the previous system version.

System Evolution: A timeline slider enables linear paging through major
graph versions over time that was extracted and uploaded to the tool. Graph
versions are grouped by a unique named identifier and include metadata about
creation and update time, as well as a mock git commit number. This is to
be utilized in future tool iterations to extract the system timeline from a
continuous integration pipeline using our SAR process. The timeline enables us
to page through versions and compare anti-pattern occurrences between system
iterations to determine degradation sources. This can also pair with the ’track
node’ menu to focus on specific services in the graph across versions.

4 System Use Overview

The system provides two primary modes of operation that can be toggled
between in the top left corner menu (Fig. 5 ref 1). Visual Mode and Anti-Pattern
Mode each equipped with distinctive tools and capabilities. This subsection offers
an in-depth overview of these modes and their features.

Visual Mode Visual Mode is designed to provide users with a comprehensive
visualization of the system’s microservices and their dependency relationships.
Key features of Visual Mode include:
3 https://dblp.uni-trier.de/rec/conf/icse/ZhouPX0XJZ18.html?view=bibtex



8 Adams et al.

Fig. 5. MicroProspect capture with tools labeled

– 3D Visualization: Users can explore the system in a 3D environment with
six degrees of freedom.

– Interactive Controls: Features such as rotation, panning, and zooming in
and out offer intuitive navigation.

– Node Interaction: Users can interact with nodes by clicking and dragging
them for enhanced visualization (Fig. 5 ref 2).

– Relationship Insight: Hovering over nodes reveals dependency
relationships. Purple links represent incoming dependencies, while yellow
links represent outgoing dependencies.

– Cyclic Dependency Visualization: Cyclic dependencies are easily
identified when a node is selected.

Fig. 6. Example of a selected Node’s details

– Node Details: Clicking on nodes provides access to the following
information (Fig 6):



MicroProspect in Microservice Architecture 9

• Dependency relationships.
• Endpoints encapsulated by relationships.
• Antipatterns detected on the node.
• Threshold settings, if applicable.

Furthermore, Visual Mode offers a set of tools and capabilities to enhance
the user’s experience:

– Timeline: The timeline tool allows users to explore the system’s evolution
by sliding between timeslices of development (Fig. 5 ref 3). Timeslices per
commit provide insights into changes and evolution over time.

– Track Nodes: Users can track specific nodes across different timeslices by
right-clicking on a node and adding it to the time slice menu (Fig. 5 ref 4).
Tracked nodes are marked in green and persist through various timeslices.
Users can access in-depth data for each time node by clicking on a tracked
node, and they have the option to remove it from the menu.

– Upper Right Panel: This panel provides several toggles and options,
including light and dark mode, the ability to switch between 2D and 3D
views, reactive search to filter nodes based on queries, JSON schema export,
capturing screenshots of the current camera angle, a track menu toggle, and
a reset option to return to the default camera angle (Fig. 5 ref 5).

Anti-Pattern Mode Anti-Pattern Mode focuses on the identification of various
anti-patterns within the system. Users can set specific thresholds for anti-pattern
detection. Notable features of Anti-Pattern Mode include:

– High Coupling Detection: The system highlights high coupling by
shifting affected nodes to green, orange, and red colors. Red nodes indicate
high coupling, green nodes represent low coupling, and orange nodes indicate
medium coupling. The coloring is controlled by user-defined thresholds or
dependency relationships. Additionally, the system provides a count of nodes
above the specified threshold.

– Cyclic Dependency Identification: Cyclic dependencies are highlighted
in purple for easy recognition.

– Bottleneck Detection: Services at risk of becoming bottlenecks or having
dependencies above the threshold are displayed in purple.

– Megaservice Indication: Megaservices are identified and displayed in
purple.

5 Evaluation

MicroProspect renders a service dependency graph by analyzing the IR of
microservices and interconnections between endpoints and REST calls. For
an assessment, we deployed our MicroProspect tool4 with a microservice
benchmark Train Ticket [38] and considered thirty-six of its microservices in
4 MicroProspect Tool: https://cloudhubs.ecs.baylor.edu/mavp



10 Adams et al.

our analysis since we considered only Java-based microservices. Table 1 presents
the outcomes of manual code analysis versus our tool, including the number
of microservices and REST Calls and their corresponding service dependency
graph representations.

Table 1. Service Dependency Graph Data Analysis

Numbers/Approaches Manual extraction MicroProspect
Microservices 36 36
REST calls 135 135
Nodes in SDG 36 36
Links in SDG 87 87
Cycles in SDG 2 2
Highly-Coupled Nodes in SDG 8 8

The above analysis depicts that our tool successfully extracted all services
and REST calls from the Train Ticket system we chose to visualize.
Our representation combines multiple REST calls between the same two
microservices into one singular link, which explains the different number of
REST calls and links in the service dependency graph. This comparison between
manual analysis and our tool shows that MicroProspect can provide an accurate
representation of a system through the use of a service dependency graph.

Our tool is novel in the idea of incorporating a measure of system evolution
in visualization and anti-pattern detection, allowing for distinctive use cases.
Scrolling through a timeline of all the commits in a codebase would allow
developers to quickly identify changes and the commit associated, which could
greatly reduce the costs associated with debugging. Similarly, the automatic
detection and visualization of anti-patterns is a great aid in locating the causes
of deficiencies at a glance. Thus, resources could be focused more on the service
being provided rather than on troubleshooting a faulty or ill-performing system.

Prior Evaluation of MicroProspect: Our prior research [25] yielded
insightful data that emphasized the need for our tool when applied to
microservice systems. We performed a user study involving 28 participants. The
study considered the detection of two anti-patterns: cyclic dependency and knot
in service-dependency graphs. The outcomes revealed that manual detection of
cyclic dependencies resulted in only 66% to 70% accuracy, even dropping to
as low as 32% for complex systems, despite the participants’ experience levels.
Similarly, in knot detection, practitioners achieved only 72% accuracy in small
systems and 53% in larger ones, with false positives reported by 22% to 39%
of participants. Interestingly, even highly familiar developers struggled, with
accuracy rates similar to or only marginally better than less familiar peers.
Notably, the time spent on detection tasks didn’t significantly decrease with
increased familiarity, emphasizing the inefficiency of manual detection. Naturally,
the visual highlight of the selected anti-pattern explained the problem instantly.

Our prior research [25] underscores the necessity for such tools within
microservice systems. The study revealed the limitations of manual detection
in identifying anti-patterns, with accuracy rates often falling short, regardless of
practitioners’ experience levels. Notably, the time spent on detection tasks didn’t



MicroProspect in Microservice Architecture 11

significantly decrease with increased familiarity, highlighting the inefficiency
of manual approaches. These findings strongly advocate for the adoption of
automated tools like MicroProspect to enhance accuracy and efficiency in
identifying and addressing anti-patterns within microservice architectures as
demonstrated in this evaluation.

6 Related Works

Several approaches have been proposed to address the challenges of
understanding and maintaining complex microservice architectures [6].

Gaidels et al. [21] explored leveraging service call graphs to identify
microservice system issues using centrality and community recognition methods.
Their techniques extracted meaningful metrics and visualizations, offering
valuable insights into system dynamics. However, their approach lacked tool
support, potentially limiting practical implementation and wider adoption. On
the other hand, our solution offers a thorough analysis with integrated tool
support, making it practical and accessible for evaluating and improving systems.

In the research conducted by Gamage et el. [22], they employed dynamic
analysis to retrieve the dependency graph of the microservice system. By
applying various graph algorithms, such as Degree centrality and Clustering
coefficient, they successfully identified five common anti-patterns in the system:
Bottleneck, Knot, Cyclic Dependencies, Nano Service, Service Chain. This
approach solely relies on dynamic information for obtaining the dependency
graph. Due to the dynamic nature of data extraction, sufficient time should be
allocated to collect all the communication data between services. Additionally,
the tool is limited to tracking synchronous systems that communicate in a
RESTful style.

Cerny et al. [11] describes use of major microservice architecture tools in
industry, although microservice architecture comes primarily from practitioners,
so there are limited publications on the subject.

Amazon X-Ray console utilizes a map visual representation, featuring service
nodes for requests, upstream client nodes for request origins, and downstream
service nodes representing web services and resources. Embedded views enable
users to inspect service maps and traces [11].

Netflix interactive visualization employs a service graph to depict
system-wide service dependencies, allowing users to analyze different topologies
by reconstructing the services communication graph. However, this approach
may not be optimal for debugging specific service issues [11].

Jaeger tracing offers a Jaeger UI that renders service dependencies with
dynamic data capabilities. Visualizes Directed Acyclic Graphs (DAGs) along
with call frequencies to observe system architecture [1].

Kiali provides visualization tools for Istio, producing graphs representing
traffic flow through the service mesh. Graph types include application, versioned
application, workload, and service, each offering different levels of aggregation
for system analysis [11].



12 Adams et al.

With regards to additional existing tools, Engel et al. [18] developed a tool
using architectural principles to uncover architectural issues in microservice
systems. Their proposed approach evaluates dependency graphs based on
metrics such as synchronous and asynchronous dependencies. While the tool
assists in identifying design flaws, it has limited integration of graph theory
concepts, potentially restricting the analysis depth. In contrast, our proposed
solution takes a comprehensive approach, enabling a thorough understanding of
architectural degradation and effective mitigation strategies.

MicroART [24] stands out as a tool that extracts both static and dynamic
data to create a visual representation of the system’s architecture. By leveraging
model-driven engineering concepts, MicroART primarily focuses on recovering
the system’s deployment architecture and subsequently improving it. However,
MicroART does not possess the capability to highlight issues and anti-patterns
within the system. Hence, manual effort is required to analyze the system and
identify architectural design problems.

Ma [28] introduces a tool that automatically generates the system’s
dependency graph for a microservice system by analyzing the source code
through reflection. The tool identifies cyclic dependencies using Tarjan’s Strongly
Connected Component graph technique. However, its capability is limited to
detecting only the cyclic dependencies anti-pattern. In contrast, our proposed
method enables the analysis and comparison of multiple versions, facilitating
efficient monitoring and management of architectural changes and degradation.

Several software tools are available for visualizing architecture, such as
Appdash, Datadog, Dynatrace, ElasticAPM, Hypertrace, Honeycomb.io,
Instana, Jaeger, Kamon, LightStep, Logit.io, Lumigo, OpenCensus,
OpenTelemetry, Splunk, Signoz, Site24x7, Uptrace, Victoriametrics, and
Zipkin. These tools vary in their supported programming languages, licensing
models, pricing, and functionalities. For instance, Datadog is renowned for
its broad language support and comprehensive monitoring capabilities, while
Zipkin and Jaeger offer free distributed tracing with simplicity in visualization.
On the other hand, tools like Appdash and Grafana Tempo emphasize simplicity
and are available for free, although they might lack certain advanced features.
Janes et al. [26] delve into a comparative analysis of these tools, discussing
their features, performance, and limitations, offering valuable insights into
their effectiveness in diverse architectural contexts. Nevertheless, they reveal
limitations in processing visualization to identify and incorporate anti-patterns,
a gap addressed by our proposed tool. Moreover, our tool emphasizes the
evolutionary aspect, providing complementary features that align with the
dynamic nature of architectural changes, further enriching the toolset.

Recently, Cerny et al. introduced Microvision [12], a cutting-edge tool
that offers the ability to reconstruct and visualize microservice systems in a
captivating 3D virtual reality (VR) environment. By leveraging Prophet static
analysis tool [9], Microvision can automatically reconstruct the architecture
of Java-based microservice systems. However, it’s important to note that
Microvision only relies on static analysis and is limited to Java-based



MicroProspect in Microservice Architecture 13

microservice systems, potentially overlooking the dynamic aspects of system
behavior. Similarly, our tools share the same limitations.

7 Conclusion

The evolution of microservice systems faces multiple challenges related to
decentralized development teams operating at individual microservice levels,
focusing little on the overall system perspective. Such and many other factors
might lead to system architecture degradation. In this work, we present a
MicroProspect tool that uses a service call graph extracted from microservice
systems to provide developers with a system-centered view of the system’s
dependencies. Given the extraction of the graph happens statically, they do
not need to wait for the system to deploy and undergo comprehensive testing
as common for established instruments. To mitigate architecture degradation,
MicroProspect goes beyond presenting the system-centered view to developers
expecting them to reason about the system. It utilizes the service dependency
graph to detect and visualize selected anti-patterns. While we demonstrated a
few examples, there are no limitations to continuing the effort by adding more
anti-patterns to be detected. Furthermore, the evolution aspect is considered as
the tool takes into account service call graphs from multiple system versions to
detect differences in and inform on newly formed anti-patterns. All these aspects
are integrated through an intuitive visual approach using a 3D perspective that
is more likely to better cope with more complex systems. The benefit of such
a visualization approach is that it points developers to the specific place in the
system’s architecture that needs their attention rather than presenting a plain
message that the system has a certain issue, which allows developers to analyze
the problem in a greater context and make an informed decision on evolution.
It is our belief that this approach has the potential to significantly improve the
maintainability and evolvability of microservice systems and can be integrated
into existing developer tools for wider adoption.

We aim to present the advancements our tool provides to the scientific
community to join efforts to aid the maintenance and evolution of infrastructure
for microservice systems. There are many avenues for future work extension,
including dynamic analysis integration, mining software repository integration,
more experimentation, and broader anti-pattern support. In ongoing works,
efforts are made to catalog over 50 microservice anti-patterns [14] and some
of these can be detected and visualized to bring direct utility to developers.

8 Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 2409933, and a grant from the Academy of Finland (grant n.
349488 - MuFAno).



14 Adams et al.

References

1. Jaeger: Open source, distributed tracing platform, https://www.jaegertracing.
io/, accessed 2023/11/17

2. Abdelfattah, A.S., Cerny, T., Taibi, D., Vegas, S.: Comparing 2d and
augmented reality visualizations for microservice system understandability:
A controlled experiment. In: 2023 IEEE/ACM 31st International
Conference on Program Comprehension (ICPC). pp. 135–145 (2023).
https://doi.org/10.1109/ICPC58990.2023.00028

3. Abdelfattah, A.S., Cerny, T.: The microservice dependency matrix. In: European
Conference on Service-Oriented and Cloud Computing. pp. 276–288. Springer
Nature Switzerland Cham (2023)

4. Abdelfattah, A.S., Cerny, T.: Roadmap to reasoning in microservice systems: A
rapid review. Applied Sciences 13(3), 1838 (2023)

5. Baabad, A., Zulzalil, H.B., Hassan, S., Baharom, S.B.: Software architecture
degradation in open source software: A systematic literature review. IEEE Access
8, 173681–173709 (2020). https://doi.org/10.1109/ACCESS.2020.3024671

6. Bakhtin, A., Li, X., Soldani, J., Brogi, A., Tomas, C., Taibi, D.: Tools
reconstructing microservice architecture: A systematic mapping study. In: Agility
with Microservices Programming, co-located with ECSA 2023 (2023)

7. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Limiting technical debt with
maintainability assurance – an industry survey on used techniques and differences
with service- and microservice-based systems. In: 2018 IEEE/ACM International
Conference on Technical Debt (TechDebt). pp. 125–133 (2018)

8. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the
maintainability of service-and microservice-based systems – a literature review (10
2017). https://doi.org/10.1145/3143434.3143443

9. Bushong, V., Das, D., Cerny, T.: Reconstructing the holistic architecture of
microservice systems using static analysis. In: Proceedings of the 12th International
Conference on Cloud Computing and Services Science-CLOSER (2022)

10. Campbell, G.A., Papapetrou, P.P.: SonarQube in Action. Manning Publications
Co., USA, 1st edn. (2013)

11. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice
architecture reconstruction and visualization techniques: A review. In: 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE). pp.
39–48. IEEE (2022)

12. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microvision:
Static analysis-based approach to visualizing microservices in augmented reality.
In: 2022 IEEE International Conference on Service-Oriented System Engineering
(SOSE). pp. 49–58 (2022). https://doi.org/10.1109/SOSE55356.2022.00012

13. Cerny, T., Abdelfattah, A.S., Maruf, A.A., Janes, A., Taibi, D.:
Catalog and detection techniques of microservice anti-patterns and
bad smells: A tertiary study. Journal of Systems and Software 206,
111829 (2023). https://doi.org/https://doi.org/10.1016/j.jss.2023.111829,
https://www.sciencedirect.com/science/article/pii/S0164121223002248

14. Cerny, T., Maruf, A., Janes, A., Taibi, D.: Microservice anti-patterns and bad
smells. how to classify, and how to detect them. a tertiary study. SSRN Electronic
Journal (01 2023). https://doi.org/10.2139/ssrn.4328067

15. Cerny, T., Svacina, J., Das, D., Bushong, V., Bures, M., Tisnovsky, P., Frajtak, K.,
Shin, D., Huang, J.: On code analysis opportunities and challenges for enterprise
systems and microservices. IEEE access 8, 159449–159470 (2020)



MicroProspect in Microservice Architecture 15

16. Cerny, T., Taibi, D.: e static analysis: opportunities, gaps, and advancements.
In: Joint Post-proceedings of the Third and Fourth International Conference on
Microservices (Microservices 2020/2022). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik GmbH (2023)

17. Conway, M.E.: How do committees invent? Datamation (April 1967)

18. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice
architectures: A metric and tool-based approach. In: Information Systems in the
Big Data Era. pp. 74–89. Springer International Publishing, Cham (2018)

19. Fontana, F.A., Roveda, R., Zanoni, M.: Tool support for evaluating architectural
debt of an existing system: An experience report. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing. p. 1347–1349. SAC ’16, ACM
(2016). https://doi.org/10.1145/2851613.2851963

20. de Freitas Apolinário, D.R., de França, B.B.N.: Towards a method for monitoring
the coupling evolution of microservice-based architectures. In: Proceedings of the
14th Brazilian Symposium on Software Components, Architectures, and Reuse. p.
71–80. SBCARS ’20, ACM (2020). https://doi.org/10.1145/3425269.3425273

21. Gaidels, E., Kirikova, M.: Service dependency graph analysis in microservice
architecture. In: Buchmann, R.A., Polini, A., Johansson, B., Karagiannis, D. (eds.)
Perspectives in Business Informatics Research. pp. 128–139. Springer (2020)

22. Gamage, I.U.P., Perera, I.: Using dependency graph and graph theory concepts
to identify anti-patterns in a microservices system: A tool-based approach. In:
2021 Moratuwa Engineering Research Conference (MERCon). pp. 699–704 (2021).
https://doi.org/10.1109/MERCon52712.2021.9525743

23. Gortney, M.E., Harris, P.E., Cerny, T., Al Maruf, A., Bures, M., Taibi, D.,
Tisnovsky, P.: Visualizing microservice architecture in the dynamic perspective:
A systematic mapping study. IEEE Access (2022)

24. Granchelli, G., Cardarelli, M., Francesco, P., Malavolta, I., Iovino, L., Di Salle, A.:
Towards recovering the software architecture of microservice-based systems. pp.
46–53 (04 2017). https://doi.org/10.1109/ICSAW.2017.48

25. Huizinga, A., Parker, G., Abdelfattah, A., Li, X., Cerny, T., Taibi, D.: Detecting
microservice anti-patterns using interactive service call graphs: Effort assessment.
In: Southwest Data Science Conference. Springer Nature Switzerland Cham (2023),
(In print)

26. Janes, A., Li, X., Lenarduzzi, V.: Open tracing tools: Overview and
critical comparison. Journal of Systems and Software 204, 111793
(2023). https://doi.org/https://doi.org/10.1016/j.jss.2023.111793, https:

//www.sciencedirect.com/science/article/pii/S0164121223001887

27. Lenarduzzi, V., Lomio, F., Saarimäki, N., Taibi, D.: Does migrating
a monolithic system to microservices decrease the technical
debt? Journal of Systems and Software 169, 110710 (2020).
https://doi.org/https://doi.org/10.1016/j.jss.2020.110710

28. Ma, S.P., Fan, C.Y., Chuang, Y., Liu, I.H., Lan, C.W.: Graph-based
and scenario-driven microservice analysis, retrieval, and testing.
Future Generation Computer Systems 100, 724–735 (11 2019).
https://doi.org/10.1016/j.future.2019.05.048

29. Parker, G., Kim, S., Maruf, A.A., Cerny, T., Frajtak, K., Tisnovsky,
P., Taibi, D.: Visualizing anti-patterns in microservices at runtime:
A systematic mapping study. IEEE Access 11, 4434–4442 (2023).
https://doi.org/10.1109/ACCESS.2023.3236165



16 Adams et al.

30. Riaz, M., Sulayman, M., Naqvi, H.: Architectural decay during continuous software
evolution and impact of ‘design for change’ on software architecture. In: Advances
in Software Engineering. pp. 119–126. Springer Berlin Heidelberg (2009)

31. Roveda, R., Arcelli Fontana, F., Pigazzini, I., Zanoni, M.: Towards
an architectural debt index. In: 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). pp. 408–416 (2018).
https://doi.org/10.1109/SEAA.2018.00073

32. Schiewe, M., Curtis, J., Bushong, V., Cerny, T.: Advancing static code analysis
with language-agnostic component identification. IEEE Access 10, 30743–30761
(2022)

33. Schmitt Laser, M., Medvidovic, N., Le, D.M., Garcia, J.: Arcade: An extensible
workbench for architecture recovery, change, and decay evaluation. In: Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. p. 1546–1550. ESEC/FSE
2020, ACM (2020). https://doi.org/10.1145/3368089.3417941

34. Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver,
D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing
infrastructure. Tech. rep., Google, Inc. (2010), https://research.google.com/

archive/papers/dapper-2010-1.pdf

35. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE
Software 35(3), 56–62 (2018). https://doi.org/10.1109/MS.2018.2141031

36. Taibi, D., Lenarduzzi, V., Pahl, C.: Microservices Anti-patterns: A
Taxonomy, pp. 111–128. Springer International Publishing (2020).
https://doi.org/10.1007/978-3-030-31646-4 5

37. Xiao, L., Cai, Y., Kazman, R., Mo, R., Feng, Q.: Identifying and
quantifying architectural debt. In: Proceedings of the 38th International
Conference on Software Engineering. p. 488–498. ICSE ’16, ACM (2016).
https://doi.org/10.1145/2884781.2884822

38. Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C., Zhao, W.: Benchmarking
microservice systems for software engineering research. In: The 40th International
Conference on Software Engineering. p. 323–324. ICSE ’18, ACM (2018).
https://doi.org/10.1145/3183440.3194991


