
Tools Reconstructing Microservice Architecture:
A Systematic Mapping Study

Alexander Bakhtin1, Xiaozhou Li1, Jacopo Soldani2,
Antonio Brogi2, Tomas Cerny3, and Davide Taibi1,4

1 University of Oulu, Oulu, Finland,
2 University of Pisa, Pisa, Italy

3 University of Arizona, Tucson, Arizona, USA
4 Tampere University, Tampere, Finland

Abstract. Various tools have been developed to reconstruct the mi-
croservice system architecture. Some of the main reasons to build yet
another architectural reconstruction tool are the lack of features to sat-
isfy the current needs or the fact that researchers are often unaware of
the existing tools. To shed light on the available tools, we performed
a review of the literature in the form of a systematic mapping study
to identify the different architectural reconstriction tools adopted in re-
search works, classifying their purpose, input, and output. This paper
compares 37 tools. Out of these, 19 are based on static analysis, 10 on
dynamic, and 8 using a combination of them. The study shows a sig-
nificant overlap among tools, with several unmaintained, abandoned, or
unavailable. This work will help researchers identify the architectural re-
construction tools that fit their purposes rather than developing another
similar tool. This work includes an online appendix [1].

Key words: Microservice, Software Architecture, Architectural Recon-
struction

1 Introduction

Microservices bring significant benefits to stakeholders involved in software de-
velopment and deployment. Development teams work in smaller, autonomous
units focused on specific services, which enables decentralization. However, there
come times when we need to see the system as a whole to make informed deci-
sions on maintenance and evolution. The problem with the decentralization that
allows teams to work more independently is that teams understand microservice
bounded context but do not see beyond. With access to a system-centered view,
they could better strategize for optimization, patches, and new features, not
introducing changes that could deteriorate system design and its operability [2].

We typically look into the system architecture to understand the system as
a whole. However, there is no guarantee that the planned architecture matches
the actual architecture since the system is developed decentrally and constantly
evolves without the means to assess whether the architecture maintains the pre-
scribed format. For example, Baabad et al. [3] synthesize work by Taylor et al.



2 Alexander Bakhtin et al.

[4] and Perry and Wolf [5] and conclude that they described the architectural
degradation as a process of the persistent inconsistency between the descriptive
software architecture as implemented and the prescriptive software architecture
as intended. Thus, to understand systems, we typically perform software archi-
tecture reconstruction [6]. However, the challenge with microservices and decen-
tralized teams is determining the system-centered view of separately designed
parts, possibly involving different codebases and separate issue-tracking systems.
While system monitoring offers certain means to discover service dependencies,
these have limits to the extent of uncovered detail and completeness [2, 7].

This work aims to identify available tools for reconstructing the system ar-
chitecture from microservice systems. For this reason, we perform a Systematic
Mapping Study [8] (SMS) identifying 37 tools, categorizing them based on com-
mon goals, supported platforms, benefits, and outputs behind such reconstruc-
tions, along with the common inputs to such tools to provide the community
with a comprehensive overview to exiting tools to apply or extend rather than
reinventing the wheel.

This paper is structured as follows: Section 2 discusses the related works,
Section 3 describes the adopted SMS method, Section 4 presents the results and
describes what information we gather about the discovered tools, Section 5 goes
into further discussion of results, and Section 6 concludes the paper. This paper
also has an online appendix [1] that provides tables with detailed information
about the discovered tools as well as a list of all papers that came from the SMS.

2 Related Works

Various secondary studies try to organize the ever-growing body of research
on microservices. The first attempts, to our knowledge, were [9] and [10]. In
[9], authors considered what was proposed by Academic literature concerning
microservices up until that point (2016), focusing on proposed views and metrics
but not on tools providing them. In [10], authors conduct an SMS to identify
different types of microservice architectures as well as tools enabling to create
projects with microservice architectures, but not tools extracting them.

Another notable attempt in this direction is [11], which analyzed the state-
of-the-art on Microservice Architectures (MSAs). The goal of [11] was indeed
to report on the evolution of software architectures into microservices and to
describe open research challenges. Other examples are [12, 13, 14]: [12] presents
the results of a Grey Literature Review aimed at analyzing the practitioners’
view on the “pains and gains” of microservices; [13, 14] instead elicit the ar-
chitectural/security smells for MSAs and the refactorings, allowing to resolve
them by conducting Multivocal Literature Reviews. However, the four studies
mentioned above all differ from our review in the aim of the study and in the
method exploited to pursue that aim. Similar considerations apply to [15, 16],
which run Systematic Literature Reviews to pursue different aims than ours.
[15] actually focuses on the deployment/communication patterns used in MSAs,
while [16] focuses on failure detection and root cause analysis in MSAs.



Tools Reconstructing Microservice Architecture 3

Other secondary studies worth mentioning are the Systematic Mapping Stud-
ies in [17, 18, 19] and the Rapid Review in [20]. [17] and [20] both consider the
reconstruction of MSAs as part of the broader scopes of analyzing and reasoning
on MSAs. [18] and [19] instead classify the existing techniques for visualizing
antipatterns in MSAs and service interactions in running MSAs, respectively.
Despite the fact that [17, 18, 20] touch the topic of MSA reconstruction and
visualization, they are not eliciting nor classifying the existing tools for running
such tasks, which is instead the aim and scope of this study.

The work by Cerny et al. [6] is perhaps the closest study to ours. The Sys-
tematic Literature Review in [6] elicits and classifies the existing techniques
for reconstructing the architecture of existing MSAs by distinguishing between
static and dynamic reconstruction techniques and by also commenting on how
reconstructed MSAs can be visualized. The focus of [6] is, however, on the tech-
niques for reconstructing and visualizing architectures, assuming that they are
already designed as MSAs, and the work only mentions whether/how they have
been implemented.

Similar considerations apply when relating our work to existing primary stud-
ies for reconstructing and visualizing MSAs, e.g., [21, 22, 23, 24]. The existing
primary studies indeed typically focus on proposing techniques for reconstruct-
ing and visualizing architectures, which are sometimes released also through
prototypical implementations.

The focus of our study is, therefore, different: we indeed review the existing
tools for reconstructing MSAs, including both the migration of monoliths to mi-
croservices, the reconstruction of existing MSAs, and the possibility to visualize
the obtained results.

3 Methods

This section describes the method we applied to identify and classify the existing
tools reconstructing MSAs.

3.1 Research questions

Our goal is to catalog existing tools that have been introduced to the commu-
nity with a scientifically published work. We, therefore, formulated the following
research questions:

RQ1 What tools for microservice reconstruction have been developed?
RQ2 What languages/platforms are currently supported by the tools?
RQ3 What is the purpose of the reconstruction?
RQ4 What is the input/output of the tools?

In order to answer our RQs, we adopt a Systematic Mapping Study of the
literature according to [8]. We also perform snowballing on the found papers
according to guidelines by Wohlin [25]. Both original and snowballed papers are
filtered with the use of Inclusion and Exclusion criteria. We then extract the
tools from the selected papers.



4 Alexander Bakhtin et al.

3.2 The Search Process

To answer our research questions, we searched for scientific literature introduc-
ing tools for reconstructing MSAs. Following the guidelines provided in [8], we
identified the search string by structuring it guided by our research questions.
More precisely, we defined the search string based on the terms characterizing
our research questions, picking keywords in order to cover the four main aspects
of our research question. As a result, we obtained the following search string:

(Microservice* OR Micro-service* OR "micro-service*") AND Architect*

AND (Reconstr* OR Mining OR Reverse engineering OR Recover* OR Extract*

OR Discover*)

AND (Tool* OR Prototype OR Implementation OR GitHub OR Proof of concept

OR POC OR Proof-of-concept)

(where “*” matches lexically related terms, e.g., plurals and conjugations). In
the search string, the first OR-group accounts for different spellings of the term
“Microservice”, and the third provides additional synonyms to the term “Re-
construction”. The fourth OR group was applied to search in-text if permitted
by the database’s search syntax/filters.

The search string was used to search for literature on the following scientific
databases by converting it to the appropriate syntax: Scopus,1, IEEEXplore2,
ACM Digital Library,3 and the citation database Web of Science4. Ini-
tially, only the Scopus search was performed on 7th of February 2023. The
decision to include other databases occurred after a team discussion of initial
results, and the queries were performed on 23rd of February 2023.

The counts of obtained papers are: Scopus - 369, IEEE - 71, ACM - 28,
Web of Science - 114; Total excluding duplicates is 387.

3.3 Selection of papers

After compiling the initial list of 387 papers found by the query, we proceeded
with a read of the title and abstract of each paper to determine if it was in
the scope of our research and worthy to be investigated for tools. We used the
following inclusion and exclusion criteria to guide the paper selection process:

– Inclusion criteria
– Mentions a tool in the context of microservice reconstruction

– Exclusion criteria
– Material not in English
– Out of topic - terms used with different meanings
– Different aspects of microservice reconstruction (not dealing with tools)

1 The Scopus database: https://www.scopus.com.
2 The IEEEXplore database: https://ieeexplore.ieee.org/.
3 The ACM Digital Library: https://dl.acm.org.
4 Web of Science: https://www.webofscience.com/wos/woscc/basic-search

https://www.scopus.com
https://ieeexplore.ieee.org/
https://dl.acm.org
https://www.webofscience.com/wos/woscc/basic-search


Tools Reconstructing Microservice Architecture 5

The inclusion of the paper was determined by two authors separately (from
the first three authors of the paper). In case of disagreements, a third author
(from the last three authors) resolved the disagreement. After looking at some
initial pool of results, we decided to be as inclusive as possible towards papers
mentioning some kind of tool in order to create a more comprehensive catalog
of proposed tools in the context of MSA reconstruction.

In particular, during piloting, we noticed that three distinct areas use the
term ’Microservice Reconstruction’ with different meanings:

– Microservice Architecture Reconstruction, i.e., construction of a ’map’ of
Microservice systems, showing how different microservices connect to each
other. Main interest of this study.

– Monolith to Microservice Migration, i.e., clustering of methods/classes of
monolithic applications into distinct microservices. These papers frequently
say, ”We reconstruct the Microservice architecture from a Monolithic sys-
tem,” even though the correct word to use here would be construct, since a
novel architecture is created.

– Microservice recovery, i.e., redeploying microservices that crashed due to an
error. These papers say that ”Microservices are reconstructed from a failed
state,” using reconstruct as a synonym for recover.

After observing these results during piloting, we decided to accept papers
from the first and second contexts but reject papers from the third context. The
decision to include, during this stage, Monolith to Microservice migration tools
is explained by the hope that some of these tools might be ’tricked’ to accept a
Microservice system as input and get its real architecture as output.

The number of papers selected from 387 in our case was 81.

3.4 Tool extraction/Snowballing

After selecting the papers in the previous step, we proceeded with a full read
in order to extract the existing tools for MSA reconstruction. We extracted the
tools that were directly employed by each paper (e.g., the paper introduces the
tool or the tool is studied/applied in the paper), as well as any other tools with
similar functionalities that are mentioned in the selected papers’ sections (e.g., in
their introduction, background, or related work discussion). As such, this process
was combined with backward and forward snowballing on the papers, namely
finding additional resources by following citations [25]. Backward snowballing
was performed on citations in the selected papers, as well as forward snowballing
using Google Scholar to find papers that cite the selected papers. Since the
process was combined with extracting the tools, we could quickly see that despite
finding additional papers using snowballing, the tools they mention are the same
tools we find from the originally selected papers.

For each paper, one person extracted the tools. However, if he reported that
no tools are found, another author stepped in to read the paper and confirm
that. In the online appendix [1], we report for each tool all the papers among
the selected papers that cite the tool.



6 Alexander Bakhtin et al.

In our case, we added 14 papers by snowballing and extracted a total of 37
tools.

3.5 Tool coding

For each tool, we collect information on the development activity, license, sup-
ported languages, platforms or frameworks, input, and output. We also assessed
the architectural recovery method and the existence of visualizations that make
information about certain system aspects accessible to users. One author ex-
tracted each piece of information in a shared spreadsheet. Then, at least three
authors collaboratively classified them using a collective coding method. Incon-
gruences were discussed until disagreements were resolved.

The final coding process led to the collection and classification of the infor-
mation included in the following taxonomy:

– Tool name

– The reference of the paper introducing the tool
– All selected papers that cite the tool
– Tool repository information:

– Availability5

– Indicated license

– Last update/commit date (as of 23rd of June 2023)
– Total amount of commits

– Number of stars

– Number of forks

– Number of contributors

– Supported language/platform/framework

– Input:
– Input type:

• Source code (Source) - original source code in plaintext form; can
also refer in particular to git repositories if git history is studied

• Model-generatable from source (Model-GFS) - Some intermedi-
ate representation of code/repository/infrastructure/etc. that can be
automatically generated by existing tools as it adheres to a standard-
ized format

• Model-manual custom format (Model-MCF) - Some intermediate
representation of code/repository/infrastructure/etc. that needs to
be manually generated (or a custom generator written) since authors
define the format themselves

5 We do not provide links to save space in the table. If the repository is indicated as
available, its name in Table 1 is a hyperlink in the electronic version of the paper.
Additionally, it can be found in the introductory paper of the tool from Table 4 of
the online appendix [1].



Tools Reconstructing Microservice Architecture 7

• Traces - Special type of logs, usually implemented using OpenTrac-
ing standart6

• Deployment files - Files necessary for Docker/Kubernetes deploy-
ment, such as Dockerfile, docker-compose.yml, Kubernetes man-
ifest

– Input format - Free-form clarification of the particular case
– Output

– Output type:
• Smells, patterns, anti-patterns

• Architectural views [22, 26] - target system aspects to de-
scribe, i.e., service view (describing the service models that specify
microservices, interfaces, and endpoints), domain view (describing
the entity objects of the system as well as the data source connec-
tions of those objects.), operational view (describing service deploy-
ment and infrastructure, such as containerization, service discovery,
and monitoring), etc.

• Health metrics - For monitoring tools, data they provide that can
be used to infer the status and health of the project

• Tests

• Refactorings, violations

– Output sub-category - Free-form clarification of a particular case, com-
mon values are:

• Service Dependency Graph (SDG) - a graph that shows which ser-
vices call one another

• Class to Microservice mapping (C2M) - for monolith to microser-
vice migration tools, the proposed grouping/refactoring of existing
classes/methods into microservices

– Output format - The particular format (JSON, CSV, microTOSCA,
etc) that the tool produces

– Recovery method - One of the following:
• Static - source code/repository is analyzed without building and
running the project

• Dynamic - project is run, and runtime data (logs, metrics) are col-
lected to perform the analysis

• Hybrid - data from both stages are used
– Tool aims - Overall purpose of the tool, common values are:

• Microservice Reconstruction (MR) - mapping out the SDG of a
microservice system

• Monolith to Microservice Migration (M2M) - proposal of group-
ing methods/classes of a monolithic system into microservices

• Vulnerability detection (VD)

• Smell detection (SD)

• Pattern detection (P)

6 A couple of tools use actual logs and not traces, but we decided not to introduce
another category for this case



8 Alexander Bakhtin et al.

• Monitoring (MO)

– Visualization - whether the tool produces some kind of visualization

4 Results

A total of 81 papers are selected by a full read from 387 obtained by search, to
which an additional 14 are added by snowballing; a total of 37 tools are identified.
The summary of results is reported in Table 1. Detailed information about the
tools is provided in the online appendix [1]. We also provide the introductory
paper as well as all referencing papers for each tool in Table 4 of the appendix.

4.1 RQ1 - What tools for microservice reconstruction have been
developed?

This question concerns a general description of discovered tools. We can sum-
marize the following aspects:
Repository: Of 37 discovered tools, 2 are commercial and proprietary and do
not share the code repository. Among the remaining 35 tools, 6 do not provide
any kind of open repository.

Of the available tools, 2 were uploaded to Zenodo. This makes ’activity’
metrics such as the number of Commits, Stars, and Forks impossible to infer
and complicates potential development (’forking’) by other researchers. Another
2 tools host codes on GitLab, with the remaining 25 on GitHub.
License: The 2 commercial projects are covered by proprietary licenses, while
5 projects are not available at all.

The majority (17) of openly available projects do not indicate any license,
which is a bad practice since it creates legal ambiguity about how the project can
be used by third parties, which critically, in our case, includes other researchers.

The other 3 tools specify that they are available ’For Academic Use Only,’
which is better than not specifying any license, but also potentially ambiguous.

One project uses a Creative Commons By-Attribution license while CC
licenses are not considered suitable for software even by the license authors 7.

The remaining are permissive OSS licenses - 7 instances of MIT License and 1
Apache 2.0 License. Also, 1 instance of ’copyleft’ GPLv3 license is represented.
Activity: Most publicly available projects have not been updated since the
tool/paper publication. Only 4 tools have commits in the first half of 2023, and
additionally, 2 commercial tools are continuously supported. Another 8 tools
were last updated in 2022. The earliest abandoned tool is Decomposer, which
has not been updated since December 2016.

Another way to measure the activity of development is through commits.
Most (16) tools for which we could gather such information have less than 100

7 https://creativecommons.org/faq/#can-i-apply-a-creative-commons-\

license-to-software

https://creativecommons.org/faq/#can-i-apply-a-creative-commons-\license-to-software
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-\license-to-software


Tools Reconstructing Microservice Architecture 9

Table 1: Summary of results
RQ1 RQ2 RQ3 RQ4

Tool name R
ep

o

L
ic
en

se

1

L
a
st

u
p
d
a
te

P
la
tf
o
rm

2

R
ec
ov
er
y

5

T
o
o
l
a
im

s

6

In
p
u
t

3

O
u
tp
u
t

4

V
is
u
a
li
za
ti
o
n

Arcan ✓ P - Many7 S SD S S, LV ✓
ARCHI4MOM ✓ - 06/22 OT D MR T OV ✓
Aroma ✓ M 04/23 OT D MR, SD T OV ✓
attack-graph-generator ✓ - 01/21 D S VD D HM ✓
Code2DFD ✓ AP 06/23 J S MR, VD S OV ✓
Decomposer ✓ - 12/16 J S M2M MG LV -
IdentificationApproach ✓ - 01/22 J S M2M S SV -
ImpactAnalysis ✓ - 01/19 J S Test MG T ✓
istio-log-parser ✓ - 05/22 I D MR T SV ✓
MAIG - - - OT D MR, P T SV, AP ✓
MicADO ✓ M 06/22 Any H MR T, MC SV ✓
microART ✓ A 04/17 D H MR S,D,T SV -
MicroDepGraph ✓ - 11/21 J S MR S SV ✓
microFreshener ✓ M 11/22 Any S SD MG SV ✓
Microlyze ✓ - 07/18 EU, OT D MR T SV ✓
MicroMiner ✓ M 11/20 KU H MR D SV ✓
MAAT - - - J D MR, P T SV ✓
microserviceExtraction ✓ A - J S M2M S SV ✓
microTOM ✓ M 01/23 KU H MR D SV ✓
monitoring ms ✓ - 08/18 EU,D D MR, MO T SV, HM ✓
mono2micro (socialsoftw.) ✓ M 06/23 J H M2M S SV ✓
Mono2Micro (IBM) ✓ P - J D M2M T SV ✓
MonoToMicro ([27]) - - - J S M2M S SV -
MS-MDE-RL ✓ G 01/22 J S M2M MG SV ✓
MSA-Nose ✓ - 04/21 J S SD S S -
MSDesigner - - - J S M2M MC SV ✓
MSExtractor - - - J S M2M S SV -
Rademacher et al. ([28]) ✓ - 03/20 J S MR S DV, OV, SV -
De Alwis et al. ([29]) ✓ - 07/19 J H M2M S,T SV -
Ntentos et al. ([30]) ✓ CC 02/21 Any S MO MC Ref., Vio. -
OpenTracingProcessor ✓ M 07/19 OT D MR, MO T SV, HM ✓
Prophet ✓ - 09/21 J S MR S SV -
RAD ✓ - 01/21 J,P S MR, SEC S SV -
ServiceCutter ✓ A 05/21 J S M2M MG SV ✓
Subtype ✓ - 05/18 Any H M2M MG SV -
VECROSim ✓ - 12/22 KU D MO MC HM -
VMAMV ✓ - 01/22 J H MO S HM -
1 P - Proprietary, M - MIT, AP - Apache v.2, A - Academic Use Only, G - GPL v.3,
CC - CC BY 4.0
2 OT - OpenTracing, D - Docker, J - Java, EU - Eureka, KU - Kubernetes, P - Python
3 S - Source, T - Traces, D - Deployment files, MG - Model-generatable from source,
MC - Model-custom manual format
4 S - Smells, LV - Logical View, OV - Operational View, SV - Service View, DV - Do-
main View, HM - Health Metrics, T - Tests, AP - Anti-Patterns, Ref. - Refactorings,
Vio. - Violations
5 S - Static, D - Dynamic, H - Hybrid
6 SD - Smell Detection, MR - Microservice Reconstruction, VD - Vulneraibility De-
tection, M2M - Monolith to Microservice, Test - Test Generation, P - [Anti-]Pattern
Detection, MO - Monitoring, SEC - Security Analysis
7 Java, C, C++, C#, Python

https://www.arcan.tech/
https://zenodo.org/record/6786913
https://gitlab.com/essere.lab.public/aroma/-/tree/master/
https://github.com/tum-i4/attack-graph-generator
https://github.com/tuhh-softsec/code2DFD
https://github.com/mgarriga/decomposer
https://gitlab.com/LeveragingInternalArchitecture/IdentificationApproach
https://github.com/the-redback/istio-log-parsing
https://github.com/AMUSEResearch/MicADO
https://github.com/microart/microART-Tool
https://github.com/clowee/MicroDepGraph
https://github.com/di-unipi-socc/microFreshener
https://github.com/ga52can/microlyze
https://github.com/di-unipi-socc/microMiner
https://github.com/gmazlami/microserviceExtraction-backend
https://github.com/di-unipi-socc/microTOM
https://github.com/fabiopina/monitoring_ms
https://github.com/socialsoftware/mono2micro
https://www.ibm.com/cloud/mono2micro
https://github.com/hadiDHD/MS-MDE-RL
https://github.com/cloudhubs/msa-nose
https://github.com/SeelabFhdo/emmsad2020
https://github.com/AnuruddhaDeAlwis/NSGAIIFOROptimization
https://zenodo.org/record/4491583
https://github.com/andrepbento/OpenTracingProcessor
https://github.com/cloudhubs/prophet
https://github.com/cloudhubs/rad-analysis
https://github.com/ServiceCutter/ServiceCutter
https://github.com/AnuruddhaDeAlwis/Subtype
https://github.com/etigerstudio/vecrosim
https://github.com/ChunYu-Chen159/VMAMVS


10 Alexander Bakhtin et al.

commits. We exclude from this 4 projects that have been pushed to a public
repository without preserving the git history; thus, they had 1-2 commits.

The largest amount of commits are in VMAMV (798) and mono2micro (609);
however, they are not that popular with the community as judged by Stars,
Forks, as well as the number of citations among our papers in the online appendix
[1].

The most popular by a huge margin, both in terms of GitHub stats and
citations, is the ServiceCutter, which is one of the oldest projects in our list
and is used as a reference implementation in many M2M papers. However, the
project is now abandoned, and the build is broken, with only surviving Docker
images making it possible to run it.

4.2 RQ2 What languages/platforms are currently supported by
tools?

The overwhelming majority of tools cover Java (21), most as the only supported
language (19). Other represented languages include Python (2 tools), as well as
C, C++, and C# (1 tool - Arcan is multiplatform). Apart from that, certain
tools target a certain framework rather than a language - 6 tools use OpenTracing
logs, 2 leverage Eureka, and 1 Istio. Some tools study deployments, with 3 tools
studying Docker containers and another 3 Kubernetes pods. Additionally, 4 tools
use some intermediate model representation as input, thus potentially being
applicable to any language.

Figure 1 groups all available platforms hierarchically by corresponding input
type (see Section 3.5/Table 1). It shows, for each specific platform (outer ring),
how many tools support this platform. Note that, as explained above, some tools
support several platforms, so numbers along the ring do not sum up to 37, and
it is thus not possible to deduce intermediate categories from the figure and we
do not put numbers to intermediate categories.

4.3 RQ3 What is the purpose of reconstruction?

When it comes to Reconstruction approaches, 19 tools use Static methods and
10 Dynamic, with another 8 using a combination of both (Hybrid).

Some tools handle systems already using Microservice Architecture (17 in to-
tal). For some (10), reconstructing the architecture by providing the SDG is the
only purpose. Another 2 tools couple this with Monitoring of the Microservice
system, 2 with Pattern and 1 with Smell Detection, and 2 more with Vulnerabil-
ity detection/Security Analysis; also 3 of found tools are concerned purely with
Monitoring of the health of the system, and 3 more purely with Smell Detection.

Additionally, results included 12 tools that deal with Monolith to Microser-
vice migration by analyzing the legacy monolithic system and proposing a group-
ing/refactoring of methods/classes into separate microservices.

Figure 2 shows the distribution of different purposes of reconstruction.



Tools Reconstructing Microservice Architecture 11

Fig. 1: Sunburst chart showing the correspondence between input types and
platforms (languages). Some tools cover several languages, so numbers along the
ring exceed 37.

4.4 RQ4 What is the input/output of the tools?

The mapping between different types of inputs and outputs among the tools is
presented in Figure 3.

As for the input, the majority (13) of the tools use source code as input di-
rectly, meaning they can be potentially integrated into IDEs or CI/CD pipelines.
Further, 6 tools use some kind of generatable model that can be inferred from the
Source, which can also be an automatic step in a pipeline (examples of models
are OpenAPI, microTOSCA). Another 3 tools use a custom-defined Model for-
mat, which means that adoption is harder since tools to construct such models
need to be developed first because manual model creation for large projects is
impractical.

Additionally, 3 tools do not study the Source directly but instead use the
Deployment files, which are usually checked into the same repository.



12 Alexander Bakhtin et al.

Fig. 2: Block diagram showing relative proportions of different reconstruction
purposes. Note: some tools have several purposes, so numbers do not sum up to
37 tools.

Fig. 3: Sankey diagram mapping tool Inputs to Outputs. Categories that appear
only once are excluded; Views except Service View are grouped together.

Most of the tools that perform Dynamic Analysis use Traces (9), in particular,
OpenTracing, with particular tools using either Jaeger8 or Zipkin9 as the tracing
tool of choice, while others use Eureka10 or Istio11.

Furthermore, some tools combine different inputs (e.g., Traces and Sources).

8 Jaeger https://www.jaegertracing.io
9 Zipkin https://zipkin.io

10 Spring Eureka Server https://cloud.spring.io/spring-cloud-netflix/multi/

multi_spring-cloud-eureka-server.html
11 Istio Service Mesh https://istio.io

https://www.jaegertracing.io
https://zipkin.io
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-eureka-server.html
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-eureka-server.html
https://istio.io


Tools Reconstructing Microservice Architecture 13

When it comes to the output, the majority of tools return some kind of
view (28), the most common being (as expected by the goal of this research)
service view (26), which is either the Service Dependency Graph for Microservice
systems (15) or Class to Microservice grouping for Monolith to Microservice
migration systems (1312).

Additionally, 4 tools provide an operational view, 2 tools - a logical view,
and 1 tool a domain view.

Out of 6 tools that deal with smell/pattern/anti-pattern detection (see pre-
vious RQ), 4 provide a list of detected smells/patterns/anti-patterns. However,
the remaining 2 tools only report these detections on top of the provided SDG
as part of the visualization, so we do not mark it as separately obtained input.

5 tools provide health metrics, which in particular can take the form of a
system response to injected faults (2), an attack graph (1), or simply metrics
given for different parts of the system (2). Another tool concerned with vulnera-
bility detection returns a dataflow diagram and yet another a breakdown of roles
required to access different endpoints to monitor potential privilege escalation
problems.

Also, 2 tools aim to improve existing code - one by suggesting refactorings
that solve detected violations, another by suggesting which CRUD-operations
tests to implement.

Different tools use different output formats to provide the results - common
include Neo4j, JSON, and microTOSCA to report SDGs or C2Mmappings. Some
tools only provide the reconstructed SDG as a graphic or web visualization in
their front-end application. With 11 papers, we could not determine from the
paper text or repository description what formats were used. Additionally, we
could confirm that 23 tools provide some kind of visualization for their results
while the remaining 15 either do not provide it or did not mention such support
in documentation or source publication.

5 Discussion

Different architectural reconstruction tools, often with similar features, have
been developed in the last few years. The analysis of the literature identified in
the SMS indicates that while there is a need for MSA reconstruction tools, there
is a limited amount of them actively developed, and in particular, there are no
widely adopted tools.

Such tools are commonly built from scratch instead of extending previous
ones. Some of the reasons why researchers are developing new tools might be the
unavailability of tools meeting their requirements. Often, tools require particular
resources, input, or configuration that discourage other research teams from
using them. Another reason might be the impossibility of running them. Often,

12 Note: one tool (MicADO) is reported with the aim being MR, but output being C2M
because it studies an existing Microservice system and proposes a new, optimized
grouping of methods into microservices



14 Alexander Bakhtin et al.

tools are not easily executable or require access to some libraries, databases,
or specific hardware not available in the research group trying to run them.
Moreover, not all the tools were available in source code repositories. To increase
the availability of the tools, we recommend hosting the tools both on GitHub
and archival platforms like Zenodo or Software Heritage, the latter providing
easy integrations with the former.

It should also be emphasized that, when considering static analysis tools, only
a limited number of tools are directly applicable to the industry, mainly because
they parse a very limited number of languages or technologies. Most of the
research-developed tools parse Java code, thus making them inapplicable in the
industry where microservices are developed with a large number of technologies.

5.1 Future Research Directions

Based on the discussion of the research questions (RQs) above, we propose the
following directions for future research in this field:

– Focus on validating existing tools and their outcomes to enhance their credi-
bility and facilitate their adoption in the industry. While some tools already
exist, our findings suggest that they have not undergone thorough validation
in terms of precision and recall of the components of the SDGs, resulting in
limited application.

– Center the tools around inputs that produce outcomes of genuine interest
to stakeholders and explore the possibility of utilizing inputs from widely
accepted technologies, both for static and dynamic analysis tools.

5.2 Threats to Validity

Various sources of bias or error could potentially impact the validity of our
study’s results. The research questions and classification schema used in our
study may be subject to construction validity. To minimize this risk, the au-
thors independently reviewed and discussed the research questions. As for the
classification schema, we classified tools and their categories based on objective
enumerated categories (e.g., language, license, etc.).

Also, to ensure replicability, we carefully identified and reported the biblio-
graphic sources used to identify peer-reviewed literature. We also provided the
search strings and the inclusion and exclusion criteria. Potential issues in the se-
lection process could, however, arise from the choice of search terms, which may
lead to an incomplete set of results. To mitigate this risk, we expanded the search
string by including possible synonyms. Moreover, to address the limitations of
search engines, we queried academic literature from four different bibliographic
sources, and we performed both forward and backward snowballing [25] to in-
crease the coverage of possible sources.

Other possible threats may apply to the reliability and generalizability of
our results. As for reliability, all primary sources underwent review by at least



Tools Reconstructing Microservice Architecture 15

two authors to mitigate bias in data extraction, with any disagreements re-
solved through consensus involving a third author. As generalizability, instead,
we mapped the academic literature on MSA reconstruction tools. However, we
cannot claim to have screened all possible literature, as some documents may
not have been appropriately indexed or may be subject to copyright restrictions
or limited availability.

6 Conclusion

In this work, we performed a Systematic Mapping Study to classify the tools for
MSA reconstruction. We classified 37 tools from 95 primary studies, comparing
their input and output, which will be useful to researchers and practitioners to
have a quick overview of the existing tools. It is interesting to note that the vast
majority of tools are implemented from scratch without extending previous ones.
Moreover, most tools are based on static analysis and can parse only a limited
set of technologies.

We plan to extend this work by comparing the detection accuracy of the
tools that can be executed on a set of microservice projects and conducting
an industrial survey to investigate their applicability and the usefulness of the
output provided.

Acknowledgements

This material is based upon work supported by grants from the Research Council
of Finland (grants n. 349487 and 349488 - MuFAno) and 6GSoft project from
Business Finland (grant n. 24304494 - 6GSoft); National Science Foundation
(grant n. 2245287); and partly supported by the projects “FREEDA” (PRIN
MUR, Italy, CUP: I53D23003550006) and “OSMWARE” project UNIPI PRA
2022 64.

References

1. Bakhtin, A., et al.: Appendix to: Tools reconstructing microservice architecture: A
systematic mapping study. Zenodo, https://zenodo.org/doi/10.5281/zenodo.
8207331

2. Cerny, T., Abdelfattah, A.S., Maruf, A.A., Janes, A., Taibi, D.: Catalog and
detection techniques of microservice anti-patterns and bad smells: A tertiary study.
Journal of Systems and Software 206 (2023) 111829

3. Baabad, A., Zulzalil, H.B., Hassan, S., Baharom, S.B.: Software architecture degra-
dation in open source software: A systematic literature review. IEEE Access 8
(2020) 173681–173709

4. Medvidovic, N., Taylor, R.N.: Software architecture: foundations, theory, and prac-
tice. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2. (2010) 471–472

https://zenodo.org/doi/10.5281/zenodo.8207331
https://zenodo.org/doi/10.5281/zenodo.8207331


16 Alexander Bakhtin et al.

5. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software engineering notes 17(4) (1992) 40–52

6. Cerny, T., et al.: Microservice architecture reconstruction and visualization tech-
niques: A review. In: 2022 IEEE International Conference on Service-Oriented
System Engineering (SOSE). (2022) 39–48

7. Abdelfattah, A.S., Cerny, T.: Roadmap to reasoning in microservice systems: A
rapid review. Applied Sciences 13(3) (2023) 1838

8. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software
Technology 64 (2015) 1–18

9. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice
architecture. In: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA). (2016) 44–51

10. Pahl, C., Jamshidi, P.: Microservices: A systematic mapping study. In: Proceedings
of the 6th International Conference on Cloud Computing and Services Science
- Volume 1 and 2. CLOSER 2016, Setubal, PRT, SCITEPRESS - Science and
Technology Publications, Lda (2016) 137–146

11. Dragoni, N., et al. In: Microservices: Yesterday, Today, and Tomorrow. Springer,
Cham (2017) 195–216

12. Soldani, J., et al.: The pains and gains of microservices: A systematic grey literature
review. J. Syst. Softw. 146 (2018) 215–232

13. Neri, D., et al.: Design principles, architectural smells and refactorings for mi-
croservices: a multivocal review. SICS 35 (2020)

14. Ponce, F., et al.: Smells and refactorings for microservices security: A multivocal
literature review. J. Syst. Softw. 192(C) (2022)

15. Karabey Aksakalli, I., et al.: Deployment and communication patterns in mi-
croservice architectures: A systematic literature review. J. Syst. Softw. 180 (2021)
111014

16. Soldani, J., Brogi, A.: Anomaly detection and failure root cause analysis in (micro)
service-based cloud applications: A survey. ACM Comput. Surv. 55(3) (2022)

17. Bushong, V., Abdelfattah, A.S., Maruf, A.A., Das, D., Lehman, A., Jaroszewski,
E., Coffey, M., Cerny, T., Frajtak, K., Tisnovsky, P., Bures, M.: On microservice
analysis and architecture evolution: A systematic mapping study. Applied Sciences
(Switzerland) 11(17) (2021)

18. Gortney, M.E., et al.: Visualizing microservice architecture in the dynamic per-
spective: A systematic mapping study. IEEE Access 10 (2022) 119999–120012

19. Parker, G., et al.: Visualizing anti-patterns in microservices at runtime: A system-
atic mapping study. IEEE Access 11 (2023) 4434–4442

20. Abdelfattah, A.S., Cerny, T.: Roadmap to reasoning in microservice systems: A
rapid review. Applied Sciences 13(3) (2023)

21. Cerny, T., et al.: Microvision: Static analysis-based approach to visualizing mi-
croservices in augmented reality. In: 2022 IEEE International Conference on
Service-Oriented System Engineering (SOSE). (2022) 49–58

22. Walker, A., et al.: On automatic software architecture reconstruction of microser-
vice applications. In: Information Science and Applications, Springer Singapore
(2021) 223–234

23. Rademacher, F., et al.: A modeling method for systematic architecture reconstruc-
tion of microservice-based software systems. In: Enterprise, Business-Process and
Information Systems Modeling, Springer International Publishing (2020) 311–326



Tools Reconstructing Microservice Architecture 17

24. Kleehaus, M., et al.: Microlyze: A framework for recovering the software architec-
ture in microservice-based environments. In: Information Systems in the Big Data
Era, Springer International Publishing (2018) 148–162

25. Wohlin, C.: Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering. In: International Conference on Evaluation
and Assessment in Software Engineering. Ease ’14 (2014) 1–10

26. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice
architecture reconstruction and visualization techniques: A review. In: 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE), IEEE
(2022) 39–48

27. Zaragoza, P., Seriai, A.D., Seriai, A., Bouziane, H.L., Shatnawi, A., Derras, M.:
Refactoring monolithic object-oriented source code to materialize microservice-
oriented architecture. (2021) 78 – 89

28. Rademacher, F., Sachweh, S., Zündorf, A.: A modeling method for systematic
architecture reconstruction of microservice-based software systems. Lecture Notes
in Business Information Processing 387 LNBIP (2020) 311 – 326

29. De Alwis, A.A.C., Barros, A., Fidge, C., Polyvyanyy, A.: Availability and scala-
bility optimized microservice discovery from enterprise systems. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 11877 LNCS (2019) 496 – 514

30. Ntentos, E., Zdun, U., Plakidas, K., Geiger, S.: Semi-automatic feedback for im-
proving architecture conformance to microservice patterns and practices. (2021)
36 – 46


	Tools Reconstructing Microservice Architecture: A Systematic Mapping Study
	Alexander Bakhtin, Xiaozhou Li, Jacopo Soldani, Tomas Cerny, Antonio Brogi, Davide Taibi

