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Abstract 

This paper examines the design and evaluation of Large Language Model (LLM) tutors 
for Python programming, focusing on personalization that accommodates diverse 
student backgrounds. It highlights the challenges faced by socioeconomically 
disadvantaged students in computing courses and proposes LLM tutors as a solution to 
provide inclusive educational support. The study explores two LLM tutors, Khanmigo and 
CS50.ai, assessing their ability to offer personalized learning experiences. By employing 
a focus group methodology at a public minority-serving institution, the research 
evaluates how these tutors meet varied educational goals and adapt to students’ diverse 
needs. The findings underscore the importance of advanced techniques to tailor 
interactions and integrate programming tools based on students' progress. This research 
contributes to the understanding of educational technologies in computing education and 
provides insights into the design and implementation of LLM tutors that effectively 
support equitable student success. 

Keywords: LLM, personalization, programming education 

 

Introduction 

In the fast-paced digital economy, where computing-related careers can be synonymous with opportunity, 
fostering equitable student success is of paramount importance. Students from low-income and first- 
generation backgrounds face unique hurdles including financial strain, social exclusion, lack of mentoring 
resources, and lack of digital resources such as high bandwidth and up-to-date digital devices. Stereotype 
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mailto:liwei.chen@uc.edu
mailto:cynthiab@media.mit.edu
mailto:bramesh@gsu.edu
mailto:ylong4@gsu.edu
mailto:aaria@gsu.edu


Personalization of LLM Tutors in Programming Education 

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024 
2 

 

 

threats and high DFW rates in foundational courses which disproportionately affect these students 
underscore the need for inclusive education solutions that empower rather than inhibit (Gumbel 2020). 

A major foundation for an educational pursuit in computing fields is the Introduction to Computing course, 
typically anchored in programming languages such as Python. Success in this initial foundational phase can 
instill self-efficacy and inspire a desire to pursue a computing major. However, without early positive 
interventions, challenges faced in this course can seriously erode these motivations (Tinto 1993). The 
support system within these courses, particularly the role of human tutors, is crucial. In addition to limited 
access to such resources, not all students can readily access even the available help due to work 
commitments, family responsibilities, and technological constraints (Warschauer and Matuchniak 2010). 
As a result, human tutors are often unavailable when most needed. Additionally, human tutors cannot easily 
extend their services to more students without reducing support quality or increasing costs, limiting 
scalability (Bettinger and Baker 2014). Human tutors may also struggle to relate to individual students’ 
needs due to their different backgrounds (Yosso 2005). Moreover, the psychological barrier of fearing 
judgment for asking questions can further distance students from the help they need (Steele 1997). 

As students increasingly turn to generative artificial intelligence (GenAI) resources like ChatGPT, they 
encounter both benefits and limitations. While ChatGPT typically provides solutions to commonly used 
exercises and exam questions, this can significantly limit learning by reducing the need for problem-solving 
and critical thinking (Zawacki-Richter et al. 2019; Extance 2023). Arecent MIT report (Klopfer et al. 2024) 
explores how these challenges be addressed by leveraging GenAI technologies to create “tutoring or study 
buddy” systems. The development of large language model (LLM) tutors is an innovative approach to design 
cost-effective, personalized learning experiences at scale, motivating us to explore their potential in 
addressing the diverse educational needs of students. The unique capabilities of LLM tutors to engage in 
human-like conversations enhances student motivation and engagement. They provide 24/7 accessibility, 
crucial for educational equity, and adapt in real-time to individual learning needs, offering personalized 
support that traditional human tutoring often cannot match. Two exemplar LLM tutors are Khanmigo, 
developed by Khan Academy which supports a wide range of subjects and levels of education (Extance 
2023), and CS50.ai, developed by Harvard University specifically for Python programming (Liu et al. 
2024). These platforms are designed to provide help in a non-intimidating environment, thereby 
eliminating many traditional tutoring challenges. They also allow for the evaluation of how well such 
systems meet the diverse educational goals and adapt to the varied lives and experiences of students from 
different socio-economic backgrounds. Moreover, the potential privacy safeguards these platforms can 
afford will encourage free inquiry without the fear of stigmatization. However, the promise of technology in 
transforming education often falls short (Reich 2020). The potential for LLMs to truly personalize learning 
and disrupt traditional methods remains a significant question. Thus, the design and subsequent evaluation 
of these tutors must carefully consider potential drawbacks, such as over-generalizing learning styles by 
imposing the learning styles of certain groups, communicating with biases, and hallucinations. 

Our review of the literature on AI in computing education reveals that important progress has been made 
in understanding the potential advantages and risks of LLM tutors (Denny et al. 2024). Moreover, the 
information systems (IS) literature has established a solid base of understanding on how to determine 
design requirements and evaluation considerations from the perspectives of users and other stakeholders 
including developers, regulators and auditors (Hamilton and Chervany 1981; DeLone and McLean 1992; 
Xu et al. 2013). This requires discovering the variety of design and evaluation considerations that fulfill the 
diverse needs of stakeholders in a specific socio-economic and learning institution context. 

Accordingly, our research objective is to identify the design and evaluation attributes of LLM tutors that 
support scalable, cost-effective personalization, particularly at universities with high student diversity. We 
consider diversity in terms of demographics (gender, ethnicity) and socio-economic backgrounds (income 
levels, work and family demands), which manifest as diverse learning styles, performance, and needs for 
support. Such high diversity characterizes the students at MSIs, the context in which we situate our work. 
These attributes can provide insights to guide the design of LLM tutors and to evaluate their effectiveness 
in meeting the varied learning preferences and needs of students. However, our near-term solutions are 
quite limited, as we often have to rely on more affordable foundation models like GPT-3.5, which may not 
be trained on the most recent content. This limitation highlights the importance of our research, which 
advocates aligning, integrating, and adapting to ensure LLM tutors to effectively incorporate the most 
current and relevant educational materials. 
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We employ a two-step process to lay the foundations for our empirical work. First, we examine the literature 
within the field of Information Systems (IS) to identify design attributes that have been previously 
recognized as crucial for educational support systems and user interactions. Second, we employ the revised 
Bloom's taxonomy (Anderson et al. 2001), a hierarchical model used to classify learning, teaching, and 
assessing into levels of cognitive complexity, to differentiate between learning objectives relevant to Python 
programming courses, such as understanding fundamental concepts, debugging code, preparing for 
quizzes, and developing complete programs. By applying Bloom's taxonomy, we establish a structured 
framework to assess how well LLM tutors can cater to each of these learning objectives. This dual approach 
of reviewing IS literature for design attributes and categorizing learning objectives through the Bloom's 
taxonomy lays a solid foundation for the subsequent stages of our empirical research and to discern how 
we go beyond the IS research in understanding how to evaluate LLM tutors. 

Our empirical research is conducted at a prominent urban minority-serving university (MSI) classified as 
R1 under the Carnegie Classification of Institutions of Higher Education with a nationally top-10 ranked 
Information Systems program. To answer our research question, we juxtapose the problem (i.e., the specific 
learning objectives) and the diversity of students with current cost-effective LLM solutions (i.e., Khanmigo, 
CS50.ai). Through their active use of the tools for a particular goal, we can assess whether their respective 
needs are fulfilled effectively and which needs are not fulfilled. We utilize a focus group methodology, taking 
place in an in-person setting, where a group of students actively engage with Khanmigo and CS50.ai to 
assist their learning for specific learning objectives. Through analysis of survey responses from focus group 
participants, chat logs with the LLM tutor, and discussions, we identify how different features of LLM tutors 
align with and support the varied learning objectives of students. This approach allows us to pinpoint the 
characteristics of LLM tutors that are most instrumental in facilitating effective learning experiences and 
how student preferences and needs for support from LLMs vary. Overall, we contribute to how to design 
and evaluate LLM tutors for equitable student success in computing education, particularly programming. 

Background Literature 

We consider two streams of literature to inform our work: AI technologies in computing education, referred 
to as AI Ed-Tech, and the IS literature on the design and evaluation requirements based on user preferences. 

AI Technologies in Computing Education 

Educational technologies have traditionally employed instructionist approaches, where learning is teacher- 
directed and students passively receive information. Platforms such as Coursera and edX exemplify this 
approach through their Massive Open Online Course. While these platforms have widened access to 
education, they often struggle with engagement and retention among diverse learners due to their one-size- 
fits-all nature (Reich 2022). In contrast, constructionist approaches, championed by Seymour Papert, 
emphasize active, learner-centered education (Reich 2022). Platforms like Scratch and MIT App Inventor 
are examples of this approach in computing education, allowing learners to actively engage with content 
through hands-on projects, which supports deeper understanding and retention. 

In the university setting, the integration of AI with other digital technologies is reshaping educational 
strategies, especially in supporting students’ coursework. AI-enabled academic engagement tools represent 
a significant advancement in educational technologies to enhance the learning experience by offloading 
routine tasks and promoting active learning. For example, Jill Watson, an AI teaching assistant developed 
at the Georgia Institute of Technology, manages routine inquiries and grading (Goel and Polepeddi 2018). 
This support allows instructors to focus more on direct engagement with students and supports students’ 
overall academic learning experiences. 

Further advancing educational technologies, GenAI has brought transformative changes in computing 
education (Finnie-Ansley et al. 2022; Becker et al. 2022). LLMs are central to this evolution as they 
dynamically generate content that adapts to diverse educational needs (Extance 2023). Among the various 
types of LLMs, code LLMs are trained on extensive programming datasets. These models assist students by 
enhancing their understanding and generation of code, providing timely, real-time assistance that 
simplifies complex concepts. Chat LLMs utilize conversational interfaces that personalize feedback based 
on individual student responses, creating engaging and responsive learning environments. Multi-modal 
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LLMs integrate various data types, such as text and images, to enrich educational content and make 
learning more interactive and accessible, particularly in visually oriented subjects. 

The applications of GenAI in education are diverse and innovative. For instance, Quizlet’s AI feature 
personalizes quiz questions and tailors them to challenge individual learning processes. Coursera leverages 
GenAI to create personalized learning pathways and succinctly summarizes video lectures, aligning content 
with specific career goals and learning preferences. LLM tutors like Khanmigo and Harvard's CS50.ai use 
these technologies to offer customized tutoring and enhanced problem-solving support, boosting learning 
efficiency and effectiveness in computing education. 

Overall, the stream of research on LLM in computing education has surfaced the potential of the technology 
to transform teaching methodologies and learning experiences (Denny et al. 2024). LLMs have 
demonstrated high performance across various educational applications, notably in assisting with 
standardized test preparation and providing real-time academic support in computing fields. Specifically, 
LLMs like ChatGPT have demonstrated capabilities beyond simple question answering. They serve as 
effective tools for reading and writing assistance, helping students perform better in certain academic 
courses. Moreover, LLMs have been shown to have the potential to create personalized learning 
environments and automating assessment processes, thus supporting both student and teacher needs. 

Despite their advantages, the deployment of LLMs in education raises several ethical and practical 
concerns. These include issues such as plagiarism, potential biases in AI-generated content, overreliance 
on technology, and usability for non-English speakers. These challenges necessitate careful consideration 
to ensure equitable and effective use of LLMs in educational contexts, echoing Reich (2020)’s caution that 
new technologies often do not lead to the anticipated transformative changes. 

Design and Evaluation of IS from Users’ Perspective 

We reviewed the existing literature to identify key criteria, based on users’ perspectives, to design and 
evaluate information systems in general and educational support systems in particular. 

Availability and affordability. A foundational aspect of IS evaluation lies in the cost-benefit analysis, 
which underscores the importance of affordability as a key criterion. Affordability ensures that 
technological solutions reach a broad user base, particularly benefiting underrepresented and economically 
disadvantaged groups (Hsieh et al. 2008). For educational technologies, it advocates for the development 
of educational technologies that are affordable on widely available hardware and do not require high 
bandwidth or the latest technology to operate effectively (Rodriguez-Segura 2022). 

Information quality and system quality. Information quality and system quality are critical IS 
evaluation criteria (DeLone and McLean 1992). On the one hand, high-quality information, characterized 
by accuracy, relevance, and timeliness, enhances user satisfaction (Xu et al. 2013). For educational 
technologies, it is crucial that systems provide contextually appropriate and pedagogically tailored 
information to boost comprehension and retention (Ma et al. 2014). On the other hand, system quality 
involves the technical capabilities of an IS to provide reliable, flexible, and responsive interactions, and is 
crucial for maintaining user engagement and system effectiveness. System quality also encompasses 
security and privacy measures like advanced encryption and secure protocols to protect data integrity and 
foster a secure learning environment (Pearce et al. 2022). 

Service quality and personalization. In recognition of the expanding service role within the IS 
function, the framework for system evaluation has evolved to include service quality (Kettinger and Lee 
1994; Pitt et al. 1995; Jiang et al. 2002). Personalization emerges as a core component, reflecting the 
system’s ability to adapt its services to meet individual user preferences and needs (Xu et al. 2013). In 
educational technologies, personalization includes adapting content to students’ socio-economic 
backgrounds, personality traits, academic histories, and communication styles. Technologies like LLM 
tutors utilize adaptive mechanisms to adjust the complexity and delivery style of content in real-time, based 
on ongoing assessments of users’ learning progress (Ma et al. 2014). Moreover, empathetic personalization 
focuses on recognizing and responding to learners' emotional states, offering real-time motivational 
feedback and support (Ma et al. 2014). 

Knowledge gaps. Despite the recognized importance of personalization in IS evaluation, knowledge gaps 
remain in the following aspects. First, discussions of IS evaluation remain at a generic, system-wide level, 
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which may not adequately address the nuanced requirements of specific educational functions. For 
instance, the criteria useful for evaluating an LLM tutor’s effectiveness in aiding conceptual understanding 
in programming might differ markedly from those needed for debugging tasks. There is a critical need to 
develop function-level evaluation criteria of LLM tutors in specific educational contexts. Second, the 
current personalization design may not effectively capture the hidden learning and engagement status, 
which are crucial for providing truly personalized learning experiences. Research is needed to develop 
mechanisms to detect these hidden statuses to allow for more accurate and timely adjustments in the 
learning process. Third, another significant challenge is designing LLM tutors that not only offer 
personalization but also do so at scale, catering to the diverse needs of a large number of students. Exploring 
innovative design and deployment strategies that leverage data analytics and machine learning could 
provide pathways to achieving this goal. 

Learning Objectives for Programming Based on Bloom’s Taxonomy 

As we delve into the nuances of educational technology, it becomes essential to align the personalization 
design with structured educational frameworks that guide content delivery and assessment. One such 
framework is Bloom’s Taxonomy, a well-established model that categorizes learning objectives and 
outcomes. Developed in the mid-20th century by Benjamin Bloom and colleagues (1956), the taxonomy 
categorizes educational goals into cognitive, psychomotor, and affective domains, ranging from simple 
recall of facts to complex cognitive processing. Subsequent revisions have expanded the taxonomy to better 
suit the evolving needs of modern education (Adams 2015). A commonly used revision introduced a two- 
dimensional framework that separates cognitive processes from knowledge types, providing a more detailed 
structure for designing and assessing educational content (Krathwohl 2002). This revised taxonomy crafts 
learning objectives that provide a comprehensive path from basic understanding to creative application in 
various education settings, including programming education (see Table 1). 

The effectiveness of the revised Bloom’s taxonomy has been demonstrated in prior studies. Lahtinen (2007) 
evaluated student performance in an introductory programming course across various taxonomy levels. 
Further applications of the revised taxonomy in programming education have been explored by Starr et al. 
(2008), Oliver et al. (2004), and Shneider and Gladkikh (2006). Starr’s work distinguishes between basic 
and advanced skills—categorizing foundational skills like Remember and Understand for beginners, and 
more complex skills such as Evaluate and Create for advanced learners. Similarly, Oliver’s team developed 
a Bloom rating system to assess educational effectiveness across multiple courses, demonstrating the 
taxonomy’s adaptability to diverse educational needs. Shneider and Gladkikh (2006) applied the taxonomy 
to structure questioning techniques in various subjects, including Programming with Visual Basic. Their 
work illustrates how the taxonomy can guide the instructional strategies tailored to diverse assessment 
needs and achieve personalized self-directed learning. Together, these applications underscore the 
robustness of Bloom’s taxonomy as a strategic tool in programming education, enhancing the 
personalization and adaptability of teaching strategies to accommodate varying learner profiles and needs. 

 

Bloom’s 
Taxonomy 

Description Examples in Programming Education 

Problem Type Provided Input Expected Solution 

Remember Recognize and recall key facts 
and basic concepts 

Concept Comprehension: 
Define the given terms 

Concept or term Description 

Understand Interpret and explain ideas or 
concepts 

Concept Comprehension: 
Understand a new 
programming concept 

Explanation of a new 
programming concept 

One statement code or a 
short explanation about 
this concept 

Apply Use the information in new 
and different settings 

Debugging: Apply standard 
debugging techniques to fix a 
code issue 

A reminder of a 
concept already known 
by the students 

Answering questions 
related to applying 
already known concept 

Analyze Examine ideas and identify 
relationships by breaking 
information into component 
parts 

Debugging: Find the error in 
the given snippet of a code 

A block of a code and 
description of its 
functionality having 
some syntax, runtime 
and logic errors 

A functional block of code 
without any type of errors 
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Evaluate Assess arguments or 
solutions and make decisions 
based on reasoned judgment 

Concept Comprehension: 
Justification of using a new 
concept in the code 
Debugging: Evaluate 
different solutions to fix 
complex issues 

New concept provided Answer questions that 
show the reasoning 
behind using this new 
concept 

Create Generate new ideas, 
concepts, or solutions by 
combining elements in novel 
ways 

Program Development: 
Writing a program 

Requirements of the 
program need to be 
written 

A functional program 

Table 1. Learning Objectives Based on Bloom’s Taxonomy in Programming Education 

Methodology 

Empirical Setting 

Python Course at a Minority-Serving Institution 

The study was conducted in an introductory Python programming course at a prominent urban MSI with a 
highly regarded IS program. Many of these students juggle part-time or full-time jobs to manage their 
tuition and living expenses, which leaves them limited time for academic activities such as completing 
assignments, taking quizzes, and attending lectures. The course is a core requirement in the undergraduate 
IS program and teaches the basics of programming in Python. It requires at least a 'B' grade for students to 
progress in their majors. There are three in-person sections and one online section, each with an enrollment 
of 55 students, totaling 220 students. On average, students spend between 2.5 and 5 hours per week on 
coursework. To support classroom learning, the course includes two optional virtual lab sessions each week. 
These sessions, which last about 1.5 hours each, are facilitated by teaching assistants. Despite being 
designed to support student learning, attendance at these labs is low, often ranging from 10% to 15%. The 
low attendance rates can be attributed to scheduling conflicts and other challenges that the students face. 

Two Cost-Effective LLM Tutors 

For our study, we chose to evaluate two LLM tutors, Khanmigo and CS50.ai, due to their popularity and 
unique features to create personalized learning experiences, and their affordability. Khanmigo, developed 
by Khan Academy, is a refined GPT-4 model that caters to students, teachers, and parents across various 
subjects including math, physics, and programming (Extance 2023). It offers a subscription at four dollars 
monthly or 44 dollars annually. Distinctively, Khanmigo allows users to interact with AI-simulated 
personas of historical or literary characters, making learning more relatable and immersive. Additionally, 
it supports deeper learning by providing prompting suggestions after each response to help users formulate 
thoughtful follow-up questions. 

CS50.ai, developed by Harvard University, is a personal AI assistant for students in Harvard’s introductory 
computer science course, CS50 (Liu et al. 2024). Launched in the summer of 2023, CS50.ai utilizes 
retrieval-augmented-generation (RAG) technology to provide answers based on course lectures and 
supports programming languages such as C, Python, SQL, JavaScript, CSS, and HTML. It integrates 
seamlessly with the Harvard Ed forum and Visual Studio Code Integrated Development Environment (IDE) 
for real-time student engagement. CS50.ai is free for the educational community and has been well received 
by Harvard students, leading to a reduction in human tutors. 

Since the GPT-4 model is not free, both LLM tutors employ usage throttling to limit interaction frequency. 
Specifically, Khanmigo uses an “AI battery”, indicating consumption level, to limit daily message 
interactions, while CS50.ai allocates “hearts” that deplete and regenerate over time, controlling the 
frequency of student inquiries. Regarding response accuracy, Khanmigo displays disclaimers to 
acknowledge potential errors, while CS50.ai uses RAG technology to reduce hallucinations. 

LLM Tutor Functions Corresponding to the Levels in the Bloom’s Taxonomy 
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When evaluating the two LLM tutors for the introductory programming course, we identified four core 
functions based on learning objectives aligned with the six levels of Bloom's Taxonomy. These functions 
include Concept Comprehension, Debugging, Quiz Preparation, and Program Development. Each function 
corresponds to different cognitive levels within the taxonomy: Concept Comprehension addresses 
Understanding and Remembering, Debugging involves Applying and Analyzing, Quiz Preparation targets 
Evaluating, and Program Development corresponds to Creating (Table 2). This categorization ensures that 
our investigation covers a comprehensive range of cognitive processes, providing insights into how LLM 
tutors can support students through the various stages of learning and mastery in computing education. 

Research Design 

Focus Groups by LLM Tutors and the Functions 

We use the focus group method to explore how students evaluate LLM tutors in support of various learning 
objectives for the introductory programming course. The method is particularly well-suited to the emerging 
nature of LLM applications in computing education, where the rapidly evolving interactions between 
students and these technologies require a flexible and exploratory approach. We designed four focus 
groups, each tailored to assess the distinct functions of LLM tutors in relation to specific learning tasks 
about programming. 

We invited all students enrolled in the introductory programming course to participate in the focus groups 
to capture diverse perspectives and experiences with LLM tutors. Additionally, we obtained Institutional 
Review Board approval before conducting the study, ensuring participant confidentiality, informed 
consent, and adherence to ethical guidelines throughout the research process. 

 

 Focus Group 1 Focus Group 2 Focus Group 3 Focus Group 4 

Function Concept Comprehension Debugging Program Development Quiz Preparation 

Learning 
Objectives Based 
on Bloom’s 
Taxonomy 

Remember essential 
programming concepts 

 
Understand entire 
programs or specific code 
snippets 

Apply standard 
debugging techniques 
to fix a code issue 

Analyze whether the 
code meets specified 
requirements 

 
Evaluate the code 
based on established 
coding standards and 
performance criteria 

Create new programs or 
combine existing ones to 
address a problem 

Remember and 
understand loop 
concepts 

Apply, analyze, and 
evaluate knowledge of 
loops to debug code 

 
Create a program using 
loops 

Programming 
Tasks 

Explain dictionary Detect and resolve 
errors in loops 

Develop programs with 
the use of loops 

Prepare for a quiz on 
loops that includes 
concept comprehension, 
debugging, and writing a 
program 

Students (N) 11 16 21 12 

Table 2. Focus Group Design by LLM Tutors and Functions 

Focus Group Procedures 

Before participating in the focus group activities, all participants were required to engage with the two LLM 
tutors, Khanmigo and CS50.ai, through a set of predefined exercises. These tasks are designed to familiarize 
participants with the interface of each LLM tutor. The exercises were structured to cover similar content 
across both tutors to ensure a comparable experience. In addition, all participants were required to 
complete a survey designed to capture their socio-economic background, learning needs, expectations, and 
perceptions of LLM tutoring systems. This survey helped us assess the students’ contextual learning needs 
and provided a baseline for assessing changes in their perceptions and understanding following interactions 
with the AI tutors. 

During the focus groups, a pre-test was administered to assess the participants' baseline knowledge of the 
programming topics to be covered during the focus group. This test helped gauge the initial competence of 
each participant and provided data for comparison with post-test results to measure learning outcomes. 
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We randomly assigned the sequence in which participants interacted with the two LLM tutors to avoid any 
sequence bias in the responses. After the pre-test, each participant interacted with the first assigned LLM 
tutor to complete a specific task. Upon completing a specific task, participants were invited to evaluate the 
LLM tutor based on their interaction experience. This evaluation was captured through an online survey 
that included both quantitative questions and open-ended comment questions. Following a similar format, 
participants engaged with the second AI tutor for a specific task. Participants completed the same 
evaluation survey to provide feedback. 

Once participants had interacted with both LLM tutors, they were asked to compare them directly. This 
comparison focused on several aspects, such as relative advantages and disadvantages and overall 
preference between the two systems. 

At the conclusion of the individual tasks, a post-test with a similar level of difficulty to the pre-test was 
administered. This test measured the learning gains attributed to the two LLM tutors and helped assess 
whether interacting with LLM tutors enhanced learning outcomes. 

Following the completion of the individual tasks, participants engaged in a group discussion moderated by 
a researcher. This discussion allowed participants to share their experiences and insights from using the 
LLM tutors. The moderator guided the discussion with prompts related to the strengths and weaknesses of 
each AI tutor, the perceived impact on their learning, and the comparison between LLM tutors and human 
tutors. The group discussion data is invaluable for understanding the collective user experience and for 
gathering more nuanced feedback that might not be fully captured through individual evaluations. 

Data Collection Method 

We collected data from multiple sources. Specifically, we collected survey data with both quantitative 
responses and qualitative comments to capture students’ contextual needs prior to their interaction with 
the LLM tutors. Throughout the focus group sessions, several methods were employed to collect 
comprehensive data: survey responses were gathered to track participants’ interaction experiences and 
preferences, chat histories were logged to analyze interactions with the LLM tutors, and audio recordings 
of group discussions were made to capture dynamic exchanges and collective insights. 

Additionally, archival data including demographic information, class performance records, and TA session 
attendance were collected to provide a deeper context for understanding the participants' academic 
environments and background influences. 

Analysis and Findings 

We analyzed the qualitative data from open-ended survey responses, LLM tutor chat logs, and group 
discussions through coding and thematic analysis to uncover the nuances of interactions between students 
and LLM tutors. Additionally, we employed natural language processing (NLP) techniques to parse these 
interactions and identify patterns. To elaborate, we used topic modeling to uncover prevalent themes in 
student interactions, sentiment analysis to gauge emotional responses, and keyword-based extraction to 
identify key issues in student feedback based on their experience with the LLM tutors. These methods 
provided a comprehensive view of how students engage with LLM tutoring, allowing us to assess both the 
cognitive and emotional aspects of their learning experiences effectively. 

Demographics of Participating Students 

Our study involved a diverse group of 60 students, providing insight into their backgrounds and the 
challenges they face which may affect their interaction with learning technologies. Of these students, 40.7% 
were male, and 59.3% were female. Additionally, 61% of the students were eligible for Pell grants. The racial 
composition of the sample included 54% African American students, 27.1% Asian students, 1.7% American 
Indian students, and 8.5% White students. Moreover, 18.6% of the students identified as Hispanic. Notably, 
among the sampled students, 37.1% are non-native English speakers navigating academic challenges in a 
second language. Furthermore, 63.9% are first-generation college students, possibly facing unique 
educational and socio-economic challenges. 
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Employment is a significant factor for our participants: 14 students work full-time, and 28 hold part-time 
jobs. These employment commitments indicate that nearly 70% of the participants are balancing their 
studies with work. Additionally, 24 students have responsibilities for caring for family members, adding 
another layer of complexity to their time management and daily stress. The employment and caregiving 
responsibility might affect their ability and energy for academic engagements. 

These demographic characteristics suggest the varying needs and challenges these students face, which are 
likely to influence how they interact with and benefit from LLM tutors. 

Analysis of LLM Tutors’ Evaluations by Learning Objectives 

We analyzed students’ responses to open-ended questions and their feedback in group discussions, and 
summarized our findings in Table 3, which details students' likes and dislikes by functions and LLM tutors. 
Overall, students value the non-judgmental nature and access to the two AI tutors—Khanmigo and CS50.ai. 
Despite this, dissatisfaction arises with both tutors due to a lack of code visualization, insufficient 
customization to individual needs, and the absence of integration with IDEs for coding tasks. 

 

Function LLM Tutor Likes Dislikes 

Concept 
Comprehension 

Khanmigo Breaks down problem 
Offers prompting suggestions 
Descriptive answers with relatable examples 

Indirect responses and pushes to building 
block concepts 
Inefficient process 

CS50.ai Direct and precise answers 
Clarified confusion 
Response personalized for coding 

Not tailored to users’ comprehension styles 
Wordy explanation 

Debugging Khanmigo Prompts to consider building blocks concepts 
Iterative problem-solving process 

Response too general 
Inefficient process 
Does not answer questions directly 

CS50.ai Identifies error directly 
Suggests solutions 
Guides debugging with questions 

Does not provide direct solutions 
Wordy and long 

Quiz 
Preparation 

Khanmigo Tutor-guided prompting Unhelpful hints 

CS50.ai Direct and less Socratic style of guidance Not tailored to users’ stage of learning 

Program 
Development 

Khanmigo Break down problems 
Discover code issue without asking 
Tutor-guided prompts instead of user- steered 
conversations 

Does not provide solutions 
Tutor-guided prompts constrain user- 
steered conversations 

CS50.ai Specific guidance for programming 
Direct answers 

Ineffective guidance to get started 

Generic Khanmigo Beginner friendly 
Easy-to-understand language 
Human-like conversation 
Expresses empathy 
Not judgmental 
Persona choices 

UI distracting to use 
Does not support code editing 
Fake empathy 
Too many persona choices 

CS50.ai Simple UI 
Supports code editing 
Not judgmental 

Not beginner friendly 
Assumes prior knowledge 
User throttling 
Bot-like conversation 

Table 3. LLM Tutors Comparison by Functions 

 
Individual differences are prominent, revealing that each student's preferences can sometimes be 
contradictory within a single tool or function. For instance, while some students appreciate Khanmigo's 
empathetic approach in concept comprehension, others find it less effective for their learning needs. 
Similarly, in program development, some students benefit from Khanmigo’s detailed guidance, while those 
with more experience view it as a hindrance to their learning pace. 

When comparing the two LLM tutors, Khamigo generally receives more favorable feedback than CS50.ai. 
This preference could be attributed to Khanmigo’s beginner-friendly approach, as it serves a wide range of 
users from pre-K to college students at Khan Academy. In contrast, CS50.ai, offered at Harvard, targets all 
students, including non-majors, who are typically better prepared and more motivated. Students 
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particularly like Khamigo’s prompting suggestion feature, which helps them formulate questions when they 
are unsure what to ask. They also value how Khamigo breaks down complex problems into subproblems, 
guiding them through each step of the problem-solving process. 

Analysis of Chat Logs for LLM Tutors 

We analyzed the chat logs between students and the two LLM tutors using text mining techniques. After 
discarding files with misformatting or irrelevant content, we processed 76 chat logs. In general, we observed 
that students asked more questions when interacting with Khanmigo than with CS50.ai across all four 
functions (Figure 1). On average, students responded more than once to prompts from the LLM tutors, 
particularly in the program development function (Figure 2). 

 

 

 

 

 

Figure 1. Average Number of Questions asked by 
Students by Functions and LMM Tutors 

Figure 2. Average Number of Responses to LLM 
Tutors’ Prompts by Functions 

Importantly, we observed heterogeneous interaction styles across students with the LLM tutors: 

Socratic approach. Khanmigo uses a Socratic method, asking questions to guide students, which while 
appreciated by some, causes others to disengage if they prefer to receive direct answers. For example, 
Khanmigo often prompts students to critically assess their code with questions like, “The code should print 
'Prime' at the end no matter what, right? So, why might it not be printing anything at all?” This method 
encourages deep reflection but can frustrate those who seek quicker solutions. In contrast, CS50.ai tends to 
offer more direct answers and employs a less Socratic style of guidance. CS50.ai frequently identifies 
specific issues, stating, “It seems like you're trying to print all prime numbers up to a certain number. 
However, there are a few issues with your code,” which provides students with immediate corrections and 
clear directions for improvement. 

Prompting variation. CS50.ai’s interactions vary significantly depending on how students present their 
queries. Those who provide detailed prompts receive more tailored responses, whereas those who submit 
vague requests often find the guidance insufficient. For example, when a student asked, “how do i loop 
through each character in the string,” CS50.ai provided a detailed and practical response: 

“In C, you can loop through each character in a string using a for loop. Here's a general idea: 
for (int i = 0; str[i] != '\0'; i++) 
{ 
// Access each character using str[i] 
} 
In this loop, str[i] gives you the character at position i in the string. The loop continues until it 
encounters the null character ('\0'), which marks the end of the string.” 

Conversely, when a student asked, “How do I start my loop?” CS50.ai provided a code snippet in C/C++ 
without explaining how to adapt it to the specific student problem of counting lowercase letters in Python: 

“Here's a small snippet to get you started: 
for (int i = 0, n = strlen(input_string); i < n; i++) 
{ 
// Your code here 
}.” 



Personalization of LLM Tutors in Programming Education 

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024 
11 

 

 

Engagement. Khanmigo boosts student engagement by using relatable examples. For instance, while 
CS50.ai explained a Python dictionary in technical terms: “Each item in a dictionary consists of two 
elements: a key and a value. The key is used to identify the item and the value is the data that is associated 
with the key,” Khanmigo offered a more vivid explanation: “A dictionary in Python, you say? It's a bit like 
a magical book! Imagine a book where you can look up a word (we call this the 'key') and find a meaning 
or a value (we call this the 'value'). In Python, a dictionary works the same way! You use a key to get a 
value. Can you think of an example where you might use a dictionary in Python?” This type of analogy, 
associating Python dictionaries with everyday objects like books, not only made the concept more accessible 
but also engaged students by connecting to familiar experiences. However, we found that students’ 
reactions to these examples varied, as some found certain content less compelling. 

Tutor-guided prompting. We noticed some students struggled with formulating questions for 
debugging and program development with CS50.ai. In contrast, Khanmigo not only answers queries but 
also suggests follow-up questions, which has received mixed reactions. Analysis of the chat log showed that 
over 63% of students utilized tutor-suggested prompts. For example, a student asked Khanmigo “How to 
write a program that counts the number of lowercase letters in a string in Python?” Khanmigo responded 
by suggesting prompts to help break down the problem into manageable steps, such as “how to identify if 
a character is lowercase,” and “how to use islower() in my program.” These guided prompts guided the 
student to explore the problem further and eventually complete the program. Notably, while some students 
followed these prompts without adding their own input, others resisted this guided approach, preferring to 
steer the conversation themselves. 

Academic performance association. We further scrutinized the chat logs of students with varying 
academic performances, examining their interaction styles in relation to their midterm exam grades, which 
were completed before their participation in the focus groups. Our observation revealed distinct interaction 
styles between students who performed well and those who did not in the introductory programming class 
(Table 4). Specifically, high performers are generally more responsive to the AI tutors’ guidance and actively 
apply corrections, showing a keenness to explore advanced features. Low performers, while often receptive 
to guidance, sometimes struggle with basic concepts and require repeated clarifications, indicating varied 
paths of engagement and learning. The observations collectively indicate the diverse pathways of evaluation 
and interaction among students, highlighting the need for LLM tutors that can adapt flexibly to different 
educational needs and learning styles. 

 

 Khanmigo CS50.ai 

High Performer 

(top 30%) 
● Actively follow the tutor's prompts and 

instructions, demonstrating a strong 
understanding of basic concepts and exploring 
advanced features. 

● Proactively address potential issues and 
complexities, and respond positively to 
corrections, immediately attempting to rectify 
mistakes after receiving feedback. 

● Show willingness to learn by asking questions built 
on previous information, participating in exercises, 
and applying newly gained knowledge in practical 
examples. 

● Persistently engage in the face of new challenges, 
follow instructions closely, and frequently seek 
confirmation to ensure correctness. 

● Respond positively to motivational feedback. 

Low Performers 

(bottom 30%) 
● Consistently seek and apply syntax clarification. 

● Show receptiveness to guidance, follow the laid- 
out learning path, and request direct clarification 
when needed. 

● Actively refine approaches based on tutor 
suggestions, build on incremental information, 
and apply concepts. 

● Show willingness to learn, despite basic 
programming errors. 

● Demonstrate a clarification-based approach to 
learning by asking a series of questions. 

● Follow the tutor's guidance diligently to understand 
syntax and semantics, asking specific questions for 
precise understanding. 

● Do not challenge the information even when 
prompted to think critically. 

Table 4. Interactions with LLM Tutors by High and Low Performers 

Summary of Focus Group Insights 

The analysis of student feedback from the focus groups reveals significant diversity in how students engage 
with different LLM tutoring styles in Python programming courses. Preferences split between the Socratic, 
probing style of Khanmigo, which encourages exploration of foundational principles, and the direct, 
solution-oriented approach of CS50.ai that emphasizes straightforward explanations across various 
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learning objectives. We elaborate on the differences in preferences to derive design and evaluation 
implications for LLM tutors. 

Preferences for tutoring styles based on learning objectives. (1) Understanding Concepts: 
Students who value deep conceptual understanding tend to favor Khanmigo’s method, which promotes 
critical thinking, while those focused on immediate clarity and precision prefer CS50.ai’s direct answers. 
(2) Debugging Code: Preferences vary between direct error identification and solutions offered by CS50.ai 
and the deeper and iterative problem-solving engagement prompted by Khanmigo. (3) Preparing for 
Quizzes: CS50.ai’s domain-specific knowledge is preferred for efficient quiz preparation, contrasting with 
Khanmigo’s less focused Socratic interactions. (4) Developing Programs: CS50.ai is favored for its specific, 
technical guidance in practical programming tasks, highlighting the need for precise, actionable feedback. 

Need for seamless and comprehensive linking to course content. Feedback from focus groups 
indicates a desire among students for LLM tutors to not only assist with immediate queries and problems 
but also connect these discussions to broader course materials such as lectures, assignments, videos, and 
archives of in-person tutoring sessions. This capability would provide students with a contextual learning 
experience, deepening their understanding and reinforcing learning through multiple touchpoints. Also, 
students would like the tutor to restrict its suggestions only to concepts that have been covered in their 
classes rather than more advanced concepts that have not yet been covered. 

User throttling and session control. CS50.ai employs a user throttling mechanism where students are 
allocated a finite number of “hearts” that are consumed with each prompt. This feature frustrated many 
students, particularly when hearts were spent due to misunderstandings or misinterpretations by the tutor. 
The depletion of hearts because of perceived tutor errors led to dissatisfaction, as it restricted their ability 
to engage fully with the learning material. An emerging insight suggests that the LLM tutors could be 
improved by allowing students to earn points if they perform well competitively, enhancing motivation and 
engagement by rewarding success, rather than solely reducing the amount of use. 

Operational performance concerns. Several students, across the focus groups, expressed 
dissatisfaction with the operational performance of both tutoring systems, particularly in terms of response 
times. Delays and slow interactions were noted as significant hindrances to learning, impacting the overall 
effectiveness and user experience of the tutoring sessions. 

Challenges with user interface and lack of IDE integration. Students reported challenges with the 
user interface, specifically the lack of integration between the tutors and the IDE used for programming. 
The absence of an integrated IDE meant that students found it tedious to transfer content between the 
tutoring environment and the IDE, impacting their efficiency and overall learning experience. 

Variability in student interaction styles. Our analysis of the chat logs revealed the variability in 
student interaction styles—from those seeking quick, specific answers to those engaging in extended, 
concept-exploring discussions—highlights the need for tutors to adapt responses based on the depth and 
nature of prompts. This variability, from the initial prompt to the chain of interaction, indicates that 
effective LLM tutors must be capable of both direct problem-solving and facilitating deeper inquiry. 

Role of empathy in tutor interactions. Khanmigo’s attempts to offer emotional support and 
encouragement, such as affirmations and motivational comments, were appreciated by some students for 
enhancing confidence. However, others found these attempts at empathy less credible, especially when the 
tutor praised efforts that were off the mark. To enhance credibility, expressed empathy should be reserved 
for situations where the student is on the right track and such encouragement can genuinely boost self- 
efficacy. Moreover, offering multilingual support could enhance the usability for non-English speakers, 
making all students feel understood and supported regardless of their native language. In contrast, 
CS50.ai’s matter-of-fact style, devoid of expressed empathy, was not seen as a drawback by many students, 
who valued its precision and to-the-point interactions, particularly when efficiency was prioritized over a 
detailed exploration of challenging concepts. 

Implications for the Design and Evaluation of LLM Tutors 

We interpret the implications of the focus groups’ insights for the design and evaluation of LLM tutors to 
cost-effectively personalize the interactions at scale—whereby they fulfill the diverse learning styles and 
preferences of students and cater to the nature of learning objectives at different levels of complexity in the 
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learning process. In doing so, we also surface how we contribute to the current understanding in the 
literature on AI Ed-Tech and that on IS design and evaluation based on user preferences. 

First, contributing to the insight that aligning the design and evaluation of IS to 
requirements has been long recognized as necessary for IS success (Ramesh et al. 2010), we 
surface two alignment considerations for LLM tutors. 

Aligning tutoring methods to learning objectives. Educational technologies, especially those 
involving LLM tutors, to enable student learning must incorporate adaptive tutoring methods that are 
responsive not only to varying student preferences for interaction styles but also to different learning 
objectives (Newman et al., 2013; Xie et al. 2019). The underlying rationale is in sync with the guidelines in 
the IS literature to dynamically align the technology with the varying requirements of the user and the task 
(Benbya et al. 2023; Goodhue and Thompson 1995; Granić 2022) and to elaborate on the contextual 
differences to understand the design requirements and the nature of IS use that is effective (e.g., Hong et 
al. 2014; Burton-Jones and Volkoff 2017). 

We add to this understanding by surfacing how the nature of adaptive tutoring needs to vary across levels 
of Bloom’s Taxonomy. For example, direct responses may be more effective for objectives at lower levels of 
Bloom's Taxonomy, such as understanding basic concepts, while a Socratic, inquiry-based method may be 
better suited for higher levels, such as applying concepts to diagnose and remedy errors, and developing 
complex programming projects, especially when there are multiple pathways to developing a solution. 

Aligning tutor interaction styles to student learning styles. Tutors need to be responsive to the 
diversity in student interaction styles, from those who prefer concise, technical inquiries to those who 
engage in broader, conceptual discussions. This requires sophisticated natural language processing 
capabilities and an understanding of different educational contexts. Evaluations should measure the tutor's 
ability to adequately respond to varied types of inquiries and adapt teaching strategies accordingly. 

Second, integration with complementary resources is a key requirement to develop novel 
ways to create value with AI (Brynjolfsson et al. 2019). We identify integration with two 
complementary resources as focal design and evaluation considerations for LLM tutors. 

Integrating with development tools. Integration of LLM tutors with essential programming tools, 
particularly Integrated Development Environments is crucial. This integration should provide a seamless 
experience where students can write, test, and debug code within the same environment they are receiving 
tutoring, thus reducing the need to switch contexts and improving learning efficiency. Such a seamless 
experience reflects the IS design principle of integration and interoperability, ensuring that LLM tutors 
work effectively within the existing educational infrastructure. Evaluations should assess how well these 
integrations minimize workflow disruption and enhance user satisfaction. 

Integrating with course content through retrieval-augmented generation. To achieve seamless 
integration with the variety of course content, LLM tutors should employ advanced techniques such as RAG. 
This approach allows the tutor to dynamically retrieve relevant information from a vast database of course 
content while generating responses. By doing so, the tutor can provide not only immediate answers but also 
contextually relevant resources and explanations, aligning with user-centered design principles and directly 
linking tutoring interactions to specific parts of the course material. 

Incorporating RAG and other similar techniques into LLM tutors could greatly enhance the 'stickiness' of 
the interactions—meaning that students are more likely to engage frequently and deeply with the tutor, 
leading to better retention and understanding. This seamless integration can ensure that every interaction 
with the tutor is both a point of learning and a gateway to further exploration of the course content. 

For designers, this underscores the importance of creating LLM tutors that can intelligently access and 
integrate diverse educational resources. Evaluation metrics should therefore not only assess the accuracy 
and relevance of the responses provided by the tutor but also measure how effectively these responses are 
integrated with the course content. This will ensure that the tutor is truly augmenting the learning 
experience by making all relevant materials readily accessible and usable within the learning context. 
Further, this will also restrict the guidance provided by the tutor to the concepts that have been covered in 
class sessions thus far rather than introducing concepts that the student has not yet been exposed to. 
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Third, in dynamic contexts such as learning where exogenous and endogenous factors 
evolve, a system needs to be able to adapt with precision to meet shifting needs (Malgonde 
et al. 2022). A key implication is that LLM tutor needs to adapt their interventions, 
engagement, and controls with precision to fulfill the evolving cognitive and affective needs 
of students and managing costs while rendering effective learning support in an 
institutional context. 

Adapting push-pull interventions to student learning needs. By analyzing student feedback, such 
as upvotes and downvotes on responses, LLM tutors can calibrate their support to meet the specific learning 
needs of students as these evolve. In alignment with the IS design principle of adapting a solution to 
evolving user requirements, LLM tutors need to dynamically calibrate push (proactive) and pull (reactive) 
support to the students’ learning needs, and thereby promote their attainment of learning objectives. 

Moreover, an effective strategy to enhance the personalization of LLM tutor interactions can involve 
calibrating the push-pull interventions based on utilization of knowledge graphs. These graphs can be used 
to map out the entire body of knowledge relevant to a course or subject area. By tracking a student's progress 
and attention allocated over time to different concepts and applications, the tutor knows where a student is 
in their learning journey and can identify knowledge gaps and areas of strength. As such, the knowledge 
graph for each student should dynamically update as the student interacts with the tutor and the course 
material, reflecting their evolving understanding and focus areas. 

This continuous updating allows the LLM tutor to deliver highly specific interventions—both push and 
pull—tailored to the immediate needs of the student over time. For instance, if a student consistently 
struggles with a particular concept, the tutor can proactively offer additional resources or simplified 
explanations before the student becomes too frustrated. Such a process can prevent a student from slipping 
into undesirable states that can lead to erosion of confidence, self-esteem, and resignation. 

By leveraging knowledge graphs, tutors can make their interventions not only more specific but also more 
engaging to the student’s current context and learning phase. This specificity to the student and their 
journey in a course enhances the 'stickiness' of interactions, encouraging deeper and more frequent 
engagement with the tutor. Students are more likely to perceive the tutor as a helpful and integral part of 
their learning process, which fosters a positive learning environment and can boost educational outcomes. 

The design of LLM tutors that utilize knowledge graphs requires sophisticated algorithms capable of not 
only tracking and analyzing student interactions but also integrating this data into a coherent framework 
that supports adaptive learning strategies. Evaluation of such systems should focus on the effectiveness of 
the knowledge graph in enhancing personalization. Metrics should assess how well the tutor adapts to 
students’ learning progress and the impacts of personalized interventions on learning outcomes. 

Adapting emotional engagement to student affective needs. Tutors should be designed to 
recognize and respond to both the emotional and cognitive needs of students. While some students 
appreciate and benefit from emotional encouragement, others may find it lacks credibility, especially if it 
does not align with their actual performance. Tutors should have the capability to adapt their level of 
empathetic feedback based on student responses and preferences. Evaluations should consider student 
perceptions of tutor empathy and its impact on learning outcomes. 

Adapting operational controls to achieve cost-effective LLM tutoring. The operational 
performance of tutoring systems, including response times and system reliability, must be a key focus in 
design and evaluation. Slow or unreliable connectivity, in general and at peak times such as during exam 
and assignment times, can trigger frustration, thereby significantly hindering learning and reducing user 
satisfaction. Continuous performance optimization and rigorous testing, alongside changes in technology 
capability and compute costs, should be conducted to ensure systems meet the expectations of students and 
other key stakeholders in computing educational settings at different types of universities. 

Design considerations on operational control mechanisms should also include user-controlled session 
management to avoid frustration associated with rigid system-imposed rigid controls like the “hearts” 
system in CS50.ai. Tutors should provide flexibility in how interaction limits are implemented, possibly by 
allowing students to earn additional interaction opportunities through engagement or performance. 
Additionally, it's important to evaluate the impact of these mechanisms on student learning and system 
usability. Implementing such controls serves dual purposes: it provides a cooling-off period to promote 
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thoughtful inquiry, potentially enhancing learning, and they help manage the operational costs of running 
LLMs. However, while cost management is necessary, the educational effectiveness of the cooling-off period 
still requires further exploration. 

In sum, these implications enhance our understanding of how to effectively design and evaluate LLM tutors 
to meet the diverse needs of students. The ability to automate and personalize interactions through RAG 
enables LLM tutors to deliver tailored, real-time responses, reducing the need for human intervention while 
maintaining high-quality support. Additionally, the 24/7 availability increases accessibility, especially for 
students from under-resourced backgrounds. Exemplary LLM tutors demonstrate affordability, though the 
evolving costs of popular LLMs require adaptable design strategies to sustain cost-effectiveness. 

Future Research Avenues 

Future research can develop LLM functionalities and assessment approaches based on the design and 
evaluation implications that we have identified based on the focus groups. Such LLM functionalities can be 
further assessed in future focus groups and also assessed in terms of their effects by using pre- and post- 
tests, lab experiments, or randomized control trial research designs. As LLM technology continues to 
evolve, it will be essential to reassess the emerging capabilities like multimodal interactions and evaluate 
students’ learning outcomes when working with LLM tutors across different learning settings (e.g., 
programming languages, course levels, types of institutions). Moreover, future research will need to 
investigate how to achieve classroom integration of LLMs. Additionally, it is important to consider the long- 
term implications of LLM integration for computing education on the meta-cognition of learners: what 
aspects are supported by the tutor and what new demands are imposed by it. Moreover, it is important to 
consider the requirements of teachers and administrators, to understand the tensions in these 
requirements, and to develop approaches to manage the tensions. In doing so, we can develop a much more 
complete understanding of how LLMs tutors can be designed and deployed in a personalized, scalable, and 
cost-effective manner and used responsibly by students, teachers, teaching assistants, and administrators. 

Future research can track students’ interaction with LLM tutors and employ NLP and process mining 
techniques to analyze students’ transitions in learning state, progression in knowledge acquisition, and 
changes in sentiment over time. Specifically, NLP will allow us to identify prevalent themes, sentiments, 
and interaction patterns with LLM tutors. Process mining will further enable a thorough examination of 
learning behavior and engagement. Collectively, these analyses will reveal the interaction nuances between 
students and LLM tutors, offering a granular view of their learning processes and experiences. 

Since students have (free) access to resources like ChatGPT 3.5 that provide correct solutions to commonly 
used assignments and exam questions, it is important for the developers of LLM Tutors to provide 
compelling reasons for students to use these tutors rather than ChatGPT 3.5 or other resources. This may 
require the tutor to take a proactive role in the student's learning journey, say for example, engaging the 
student when they have not yet commenced their work on an upcoming assignment. Also, instructors need 
to make significant changes in their evaluations of student performance, by focusing on a student's 
understanding and mastery of knowledge elements (in a knowledge graph) rather than typical assessment 
methods like tests and coding assignments. Such an assessment is feasible only when the LLM tutor can 
continually monitor and assess student interactions. 

Building on the framework of Bloom’s taxonomy, future studies can utilize the four types of knowledge (i.e., 
factual, conceptual, procedural, and metacognitive knowledge) to tailor the development of computational 
thinking skills for diverse learning needs. Employing this framework could advance our understanding of 
how knowledge dimensions integrate with cognitive processes in educational settings. This approach will 
enrich theoretical models of learning by demonstrating interactions and dependencies between factual, 
conceptual, procedural, and metacognitive knowledge within various learning environments. 

The need to develop policies to address ethical and academic integrity considerations that are crucial for 
maintaining the credibility and effectiveness of the educational experiences is heighted with increasing 
access to LLM tutors. Future research should develop policies to safeguard academic rigor and standards 
that ensure that assessment of student performance reflects genuine knowledge and effort. Additionally, 
such policies should be designed to foster an environment of honesty, trust, and fairness, which is essential 
for meaningful learning experiences. 
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