Association for Information Systems

AIS Electronic Library (AlSel)

. International Conference on Information
ICIS 2024 Proceedings Systems (ICIS)

December 2024

Design and Evaluation Attributes for Scalable, Cost-Effective
Personalization of LLM Tutors in Programming Education

Arun Rai
Georgia State University, arunrai@gsu.edu

Liwei Chen
University of Cincinnati, liwei.chen@uc.edu

Cynthia Breazeal
Massachusetts Institute of Technology, CYNTHIAB@MEDIA.MIT.edu

Balasubramaniam Ramesh
Georgia State University, bramesh@gsu.edu

Yuan Long
Georgia State University, ylongd@gsu.edu

See next page for additional authors

Follow this and additional works at: https://aisel.aisnet.org/icis2024

Recommended Citation

Rai, Arun; Chen, Liwei; Breazeal, Cynthia; Ramesh, Balasubramaniam; Long, Yuan; and Aria, Andrea,
"Design and Evaluation Attributes for Scalable, Cost-Effective Personalization of LLM Tutors in
Programming Education" (2024). ICIS 2024 Proceedings. 9.
https://aisel.aisnet.org/icis2024/learnandiscurricula/learnandiscurricula/9

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic
Library (AlSeL). It has been accepted for inclusion in ICIS 2024 Proceedings by an authorized administrator of AIS
Electronic Library (AlSeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/icis
https://aisel.aisnet.org/
https://aisel.aisnet.org/icis2024
https://aisel.aisnet.org/icis
mailto:arunrai@gsu.edu
mailto:liwei.chen@uc.edu
mailto:CYNTHIAB@MEDIA.MIT.edu
mailto:bramesh@gsu.edu
mailto:ylong4@gsu.edu
https://aisel.aisnet.org/icis2024?utm_source=aisel.aisnet.org%2Ficis2024%2Flearnandiscurricula%2Flearnandiscurricula%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/icis2024/learnandiscurricula/learnandiscurricula/9?utm_source=aisel.aisnet.org%2Ficis2024%2Flearnandiscurricula%2Flearnandiscurricula%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org

Presenter Information
Arun Rai, Liwei Chen, Cynthia Breazeal, Balasubramaniam Ramesh, Yuan Long, and Andrea Aria

This event is available at AIS Electronic Library (AlSeL): https://aisel.aisnet.org/icis2024/learnandiscurricula/
learnandiscurricula/9

https://aisel.aisnet.org/icis2024/learnandiscurricula/learnandiscurricula/9
https://aisel.aisnet.org/icis2024/learnandiscurricula/learnandiscurricula/9

Personalization of LLM Tutors in Programming Education

Design and Evaluation Attributes for
Scalable, Cost-Effective Personalization of
LLM Tutors in Programming Education
Completed Research Paper

Arun Rai Liwei Chen
Georgia State University University of Cincinnati
Atlanta, GA, USA Cincinnati, OH, USA
arunrai@gsu.edu liwei.chen@uc.edu
Cynthia Breazeal Balasubramaniam Ramesh
Massachusetts Institute of Technology Georgia State University
Cambridge, MA, USA Atlanta, GA, USA
cynthiab@media.mit.edu bramesh@gsu.edu
Yuan Long Andrea Aria
Georgia State University Georgia State University
Atlanta, GA, USA Atlanta, GA, USA
ylong4 @gsu.edu aaria@gsu.edu
Abstract

This paper examines the design and evaluation of Large Language Model (LLM) tutors
for Python programming, focusing on personalization that accommodates diverse
student backgrounds. It highlights the challenges faced by socioeconomically
disadvantaged students in computing courses and proposes LLM tutors as a solution to
provide inclusive educational support. The study explores two LLM tutors, Khanmigo and
CS50.ai, assessing their ability to offer personalized learning experiences. By employing
a focus group methodology at a public minority-serving institution, the research
evaluates how these tutors meet varied educational goals and adapt to students’ diverse
needs. The findings underscore the importance of advanced techniques to tailor
interactions and integrate programming tools based on students' progress. This research
contributes to the understanding of educational technologies in computing education and
provides insights into the design and implementation of LLM tutors that effectively
support equitable student success.

Keywords: LLM, personalization, programming education

Introduction

In the fast-paced digital economy, where computing-related careers can be synonymous with opportunity,
fostering equitable student success is of paramount importance. Students from low-income and first-
generation backgrounds face unique hurdles including financial strain, social exclusion, lack of mentoring
resources, and lack of digital resources such as high bandwidth and up-to-date digital devices. Stereotype

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
1

mailto:arunrai@gsu.edu
mailto:liwei.chen@uc.edu
mailto:cynthiab@media.mit.edu
mailto:bramesh@gsu.edu
mailto:ylong4@gsu.edu
mailto:aaria@gsu.edu

Personalization of LLM Tutors in Programming Education

threats and high DFW rates in foundational courses which disproportionately affect these students
underscore the need for inclusive education solutions that empower rather than inhibit (Gumbel 2020).

A major foundation for an educational pursuit in computing fields is the Introduction to Computing course,
typically anchored in programming languages such as Python. Success in this initial foundational phase can
instill self-efficacy and inspire a desire to pursue a computing major. However, without early positive
interventions, challenges faced in this course can seriously erode these motivations (Tinto 1993). The
support system within these courses, particularly the role of human tutors, is crucial. In addition to limited
access to such resources, not all students can readily access even the available help due to work
commitments, family responsibilities, and technological constraints (Warschauer and Matuchniak 2010).
As aresult, human tutors are often unavailable when most needed. Additionally, human tutors cannot easily
extend their services to more students without reducing support quality or increasing costs, limiting
scalability (Bettinger and Baker 2014). Human tutors may also struggle to relate to individual students’
needs due to their different backgrounds (Yosso 2005). Moreover, the psychological barrier of fearing
judgment for asking questions can further distance students from the help they need (Steele 1997).

As students increasingly turn to generative artificial intelligence (GenAl) resources like ChatGPT, they
encounter both benefits and limitations. While ChatGPT typically provides solutions to commonly used
exercises and exam questions, this can significantly limit learning by reducing the need for problem-solving
and critical thinking (Zawacki-Richter et al. 2019; Extance 2023). Arecent MIT report (Klopfer et al. 2024)
explores how these challenges be addressed by leveraging GenAlI technologies to create “tutoring or study
buddy” systems. The development of large language model (LLM) tutors is an innovative approach to design
cost-effective, personalized learning experiences at scale, motivating us to explore their potential in
addressing the diverse educational needs of students. The unique capabilities of LLM tutors to engage in
human-like conversations enhances student motivation and engagement. They provide 24/7 accessibility,
crucial for educational equity, and adapt in real-time to individual learning needs, offering personalized
support that traditional human tutoring often cannot match. Two exemplar LLM tutors are Khanmigo,
developed by Khan Academy which supports a wide range of subjects and levels of education (Extance
2023), and CS50.ai, developed by Harvard University specifically for Python programming (Liu et al.
2024). These platforms are designed to provide help in a non-intimidating environment, thereby
eliminating many traditional tutoring challenges. They also allow for the evaluation of how well such
systems meet the diverse educational goals and adapt to the varied lives and experiences of students from
different socio-economic backgrounds. Moreover, the potential privacy safeguards these platforms can
afford will encourage free inquiry without the fear of stigmatization. However, the promise of technology in
transforming education often falls short (Reich 2020). The potential for LLMs to truly personalize learning
and disrupt traditional methods remains a significant question. Thus, the design and subsequent evaluation
of these tutors must carefully consider potential drawbacks, such as over-generalizing learning styles by
imposing the learning styles of certain groups, communicating with biases, and hallucinations.

Our review of the literature on Al in computing education reveals that important progress has been made
in understanding the potential advantages and risks of LLM tutors (Denny et al. 2024). Moreover, the
information systems (IS) literature has established a solid base of understanding on how to determine
design requirements and evaluation considerations from the perspectives of users and other stakeholders
including developers, regulators and auditors (Hamilton and Chervany 1981; DeLone and McLean 1992;
Xu et al. 2013). This requires discovering the variety of design and evaluation considerations that fulfill the
diverse needs of stakeholders in a specific socio-economic and learning institution context.

Accordingly, our research objective is to identify the design and evaluation attributes of LLM tutors that
support scalable, cost-effective personalization, particularly at universities with high student diversity. We
consider diversity in terms of demographics (gender, ethnicity) and socio-economic backgrounds (income
levels, work and family demands), which manifest as diverse learning styles, performance, and needs for
support. Such high diversity characterizes the students at MSIs, the context in which we situate our work.
These attributes can provide insights to guide the design of LLM tutors and to evaluate their effectiveness
in meeting the varied learning preferences and needs of students. However, our near-term solutions are
quite limited, as we often have to rely on more affordable foundation models like GPT-3.5, which may not
be trained on the most recent content. This limitation highlights the importance of our research, which
advocates aligning, integrating, and adapting to ensure LLM tutors to effectively incorporate the most
current and relevant educational materials.

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
2

Personalization of LLM Tutors in Programming Education

We employ a two-step process to lay the foundations for our empirical work. First, we examine the literature
within the field of Information Systems (IS) to identify design attributes that have been previously
recognized as crucial for educational support systems and user interactions. Second, we employ the revised
Bloom's taxonomy (Anderson et al. 2001), a hierarchical model used to classify learning, teaching, and
assessing into levels of cognitive complexity, to differentiate between learning objectives relevant to Python
programming courses, such as understanding fundamental concepts, debugging code, preparing for
quizzes, and developing complete programs. By applying Bloom's taxonomy, we establish a structured
framework to assess how well LLM tutors can cater to each of these learning objectives. This dual approach
of reviewing IS literature for design attributes and categorizing learning objectives through the Bloom's
taxonomy lays a solid foundation for the subsequent stages of our empirical research and to discern how
we go beyond the IS research in understanding how to evaluate LLM tutors.

Our empirical research is conducted at a prominent urban minority-serving university (MSI) classified as
R1 under the Carnegie Classification of Institutions of Higher Education with a nationally top-10 ranked
Information Systems program. To answer our research question, we juxtapose the problem (i.e., the specific
learning objectives) and the diversity of students with current cost-effective LLM solutions (i.e., Khanmigo,
CS50.ai). Through their active use of the tools for a particular goal, we can assess whether their respective
needs are fulfilled effectively and which needs are not fulfilled. We utilize a focus group methodology, taking
place in an in-person setting, where a group of students actively engage with Khanmigo and CS50.ai to
assist their learning for specific learning objectives. Through analysis of survey responses from focus group
participants, chat logs with the LLM tutor, and discussions, we identify how different features of LLM tutors
align with and support the varied learning objectives of students. This approach allows us to pinpoint the
characteristics of LLM tutors that are most instrumental in facilitating effective learning experiences and
how student preferences and needs for support from LLMs vary. Overall, we contribute to how to design
and evaluate LLM tutors for equitable student success in computing education, particularly programming,.

Background Literature

We consider two streams of literature to inform our work: Al technologies in computing education, referred
to as Al Ed-Tech, and the IS literature on the design and evaluation requirements based on user preferences.

AI Technologies in Computing Education

Educational technologies have traditionally employed instructionist approaches, where learning is teacher-
directed and students passively receive information. Platforms such as Coursera and edX exemplify this
approach through their Massive Open Online Course. While these platforms have widened access to
education, they often struggle with engagement and retention among diverse learners due to their one-size-
fits-all nature (Reich 2022). In contrast, constructionist approaches, championed by Seymour Papert,
emphasize active, learner-centered education (Reich 2022). Platforms like Scratch and MIT App Inventor
are examples of this approach in computing education, allowing learners to actively engage with content
through hands-on projects, which supports deeper understanding and retention.

In the university setting, the integration of AI with other digital technologies is reshaping educational
strategies, especially in supporting students’ coursework. Al-enabled academic engagement tools represent
a significant advancement in educational technologies to enhance the learning experience by offloading
routine tasks and promoting active learning. For example, Jill Watson, an Al teaching assistant developed
at the Georgia Institute of Technology, manages routine inquiries and grading (Goel and Polepeddi 2018).
This support allows instructors to focus more on direct engagement with students and supports students’
overall academic learning experiences.

Further advancing educational technologies, GenAl has brought transformative changes in computing
education (Finnie-Ansley et al. 2022; Becker et al. 2022). LLMs are central to this evolution as they
dynamically generate content that adapts to diverse educational needs (Extance 2023). Among the various
types of LLMs, code LLMs are trained on extensive programming datasets. These models assist students by
enhancing their understanding and generation of code, providing timely, real-time assistance that
simplifies complex concepts. Chat LLMs utilize conversational interfaces that personalize feedback based
on individual student responses, creating engaging and responsive learning environments. Multi-modal

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
3

Personalization of LLM Tutors in Programming Education

LLMs integrate various data types, such as text and images, to enrich educational content and make
learning more interactive and accessible, particularly in visually oriented subjects.

The applications of GenAl in education are diverse and innovative. For instance, Quizlet’s Al feature
personalizes quiz questions and tailors them to challenge individual learning processes. Coursera leverages
GenAl to create personalized learning pathways and succinctly summarizes video lectures, aligning content
with specific career goals and learning preferences. LLM tutors like Khanmigo and Harvard's CS50.ai use
these technologies to offer customized tutoring and enhanced problem-solving support, boosting learning
efficiency and effectiveness in computing education.

Overall, the stream of research on LLM in computing education has surfaced the potential of the technology
to transform teaching methodologies and learning experiences (Denny et al. 2024). LLMs have
demonstrated high performance across various educational applications, notably in assisting with
standardized test preparation and providing real-time academic support in computing fields. Specifically,
LLMs like ChatGPT have demonstrated capabilities beyond simple question answering. They serve as
effective tools for reading and writing assistance, helping students perform better in certain academic
courses. Moreover, LLMs have been shown to have the potential to create personalized learning
environments and automating assessment processes, thus supporting both student and teacher needs.

Despite their advantages, the deployment of LLMs in education raises several ethical and practical
concerns. These include issues such as plagiarism, potential biases in AI-generated content, overreliance
on technology, and usability for non-English speakers. These challenges necessitate careful consideration
to ensure equitable and effective use of LLMs in educational contexts, echoing Reich (2020)’s caution that
new technologies often do not lead to the anticipated transformative changes.

Design and Evaluation of IS from Users’ Perspective

We reviewed the existing literature to identify key criteria, based on users’ perspectives, to design and
evaluate information systems in general and educational support systems in particular.

Availability and affordability. A foundational aspect of IS evaluation lies in the cost-benefit analysis,
which underscores the importance of affordability as a key criterion. Affordability ensures that
technological solutions reach a broad user base, particularly benefiting underrepresented and economically
disadvantaged groups (Hsieh et al. 2008). For educational technologies, it advocates for the development
of educational technologies that are affordable on widely available hardware and do not require high
bandwidth or the latest technology to operate effectively (Rodriguez-Segura 2022).

Information quality and system quality. Information quality and system quality are critical IS
evaluation criteria (DeLone and McLean 1992). On the one hand, high-quality information, characterized
by accuracy, relevance, and timeliness, enhances user satisfaction (Xu et al. 2013). For educational
technologies, it is crucial that systems provide contextually appropriate and pedagogically tailored
information to boost comprehension and retention (Ma et al. 2014). On the other hand, system quality
involves the technical capabilities of an IS to provide reliable, flexible, and responsive interactions, and is
crucial for maintaining user engagement and system effectiveness. System quality also encompasses
security and privacy measures like advanced encryption and secure protocols to protect data integrity and
foster a secure learning environment (Pearce et al. 2022).

Service quality and personalization. In recognition of the expanding service role within the IS
function, the framework for system evaluation has evolved to include service quality (Kettinger and Lee
1994; Pitt et al. 1995; Jiang et al. 2002). Personalization emerges as a core component, reflecting the
system’s ability to adapt its services to meet individual user preferences and needs (Xu et al. 2013). In
educational technologies, personalization includes adapting content to students’ socio-economic
backgrounds, personality traits, academic histories, and communication styles. Technologies like LLM
tutors utilize adaptive mechanisms to adjust the complexity and delivery style of content in real-time, based
on ongoing assessments of users’ learning progress (Ma et al. 2014). Moreover, empathetic personalization
focuses on recognizing and responding to learners' emotional states, offering real-time motivational
feedback and support (Ma et al. 2014).

Knowledge gaps. Despite the recognized importance of personalization in IS evaluation, knowledge gaps
remain in the following aspects. First, discussions of IS evaluation remain at a generic, system-wide level,

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
4

Personalization of LLM Tutors in Programming Education

which may not adequately address the nuanced requirements of specific educational functions. For
instance, the criteria useful for evaluating an LLM tutor’s effectiveness in aiding conceptual understanding
in programming might differ markedly from those needed for debugging tasks. There is a critical need to
develop function-level evaluation criteria of LLM tutors in specific educational contexts. Second, the
current personalization design may not effectively capture the hidden learning and engagement status,
which are crucial for providing truly personalized learning experiences. Research is needed to develop
mechanisms to detect these hidden statuses to allow for more accurate and timely adjustments in the
learning process. Third, another significant challenge is designing LLM tutors that not only offer
personalization but also do so at scale, catering to the diverse needs of a large number of students. Exploring
innovative design and deployment strategies that leverage data analytics and machine learning could
provide pathways to achieving this goal.

Learning Objectives for Programming Based on Bloom’s Taxonomy

As we delve into the nuances of educational technology, it becomes essential to align the personalization
design with structured educational frameworks that guide content delivery and assessment. One such
framework is Bloom’s Taxonomy, a well-established model that categorizes learning objectives and
outcomes. Developed in the mid-20th century by Benjamin Bloom and colleagues (1956), the taxonomy
categorizes educational goals into cognitive, psychomotor, and affective domains, ranging from simple
recall of facts to complex cognitive processing. Subsequent revisions have expanded the taxonomy to better
suit the evolving needs of modern education (Adams 2015). A commonly used revision introduced a two-
dimensional framework that separates cognitive processes from knowledge types, providing a more detailed
structure for designing and assessing educational content (Krathwohl 2002). This revised taxonomy crafts
learning objectives that provide a comprehensive path from basic understanding to creative application in
various education settings, including programming education (see Table 1).

The effectiveness of the revised Bloom’s taxonomy has been demonstrated in prior studies. Lahtinen (2007)
evaluated student performance in an introductory programming course across various taxonomy levels.
Further applications of the revised taxonomy in programming education have been explored by Starr et al.
(2008), Oliver et al. (2004), and Shneider and Gladkikh (2006). Starr’s work distinguishes between basic
and advanced skills—categorizing foundational skills like Remember and Understand for beginners, and
more complex skills such as Evaluate and Create for advanced learners. Similarly, Oliver’s team developed
a Bloom rating system to assess educational effectiveness across multiple courses, demonstrating the
taxonomy’s adaptability to diverse educational needs. Shneider and Gladkikh (2006) applied the taxonomy
to structure questioning techniques in various subjects, including Programming with Visual Basic. Their
work illustrates how the taxonomy can guide the instructional strategies tailored to diverse assessment
needs and achieve personalized self-directed learning. Together, these applications underscore the
robustness of Bloom’s taxonomy as a strategic tool in programming education, enhancing the
personalization and adaptability of teaching strategies to accommodate varying learner profiles and needs.

Bloom’s Description Examples in Programming Education
Taxonomy . .
Problem Type Provided Input Expected Solution
Remember Recognize and recall key facts | Concept Comprehension: Concept or term Description
and basic concepts Define the given terms
Understand Interpret and explain ideas or | Concept Comprehension: Explanation of a new | One statement code or a
concepts Understand a new programming concept| short explanation about
programming concept this concept
Apply Use the information in new Debugging: Apply standard | A reminder of a Answering questions
and different settings debugging techniques to fix a | concept already knowr] related to applying
code issue by the students already known concept
Analyze Examine ideas and identify Debugging: Find the errorin | A block of a code and | A functional block of code
relationships by breaking the given snippet of a code | description of its without any type of errors
information into component functionality having
parts some syntax, runtime
and logic errors

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024

5

Personalization of LLM Tutors in Programming Education

Evaluate Assess arguments or Concept Comprehension: New concept provided | Answer questions that
solutions and make decisions | Justification of using a new show the reasoning
based on reasoned judgment | concept in the code behind using this new

Debugging: Evaluate concept

different solutions to fix
complex issues

Create Generate new ideas, Program Development: Requirements of the | A functional program
concepts, or solutions by Writing a program program need to be
combining elements in novel written
ways

Table 1. Learning Objectives Based on Bloom’s Taxonomy in Programming Education

Methodology
Empirical Setting
Python Course at a Minority-Serving Institution

The study was conducted in an introductory Python programming course at a prominent urban MSI with a
highly regarded IS program. Many of these students juggle part-time or full-time jobs to manage their
tuition and living expenses, which leaves them limited time for academic activities such as completing
assignments, taking quizzes, and attending lectures. The course is a core requirement in the undergraduate
IS program and teaches the basics of programming in Python. It requires at least a 'B' grade for students to
progress in their majors. There are three in-person sections and one online section, each with an enrollment
of 55 students, totaling 220 students. On average, students spend between 2.5 and 5 hours per week on
coursework. To support classroom learning, the course includes two optional virtual lab sessions each week.
These sessions, which last about 1.5 hours each, are facilitated by teaching assistants. Despite being
designed to support student learning, attendance at these labs is low, often ranging from 10% to 15%. The
low attendance rates can be attributed to scheduling conflicts and other challenges that the students face.

Two Cost-Effective LLM Tutors

For our study, we chose to evaluate two LLM tutors, Khanmigo and CS50.ai, due to their popularity and
unique features to create personalized learning experiences, and their affordability. Khanmigo, developed
by Khan Academys, is a refined GPT-4 model that caters to students, teachers, and parents across various
subjects including math, physics, and programming (Extance 2023). It offers a subscription at four dollars
monthly or 44 dollars annually. Distinctively, Khanmigo allows users to interact with AI-simulated
personas of historical or literary characters, making learning more relatable and immersive. Additionally,
it supports deeper learning by providing prompting suggestions after each response to help users formulate
thoughtful follow-up questions.

CS50.ai, developed by Harvard University, is a personal Al assistant for students in Harvard’s introductory
computer science course, CS50 (Liu et al. 2024). Launched in the summer of 2023, CS50.ai utilizes
retrieval-augmented-generation (RAG) technology to provide answers based on course lectures and
supports programming languages such as C, Python, SQL, JavaScript, CSS, and HTML. It integrates
seamlessly with the Harvard Ed forum and Visual Studio Code Integrated Development Environment (IDE)
for real-time student engagement. CS50.ai is free for the educational community and has been well received
by Harvard students, leading to a reduction in human tutors.

Since the GPT-4 model is not free, both LLM tutors employ usage throttling to limit interaction frequency.
Specifically, Khanmigo uses an “Al battery”, indicating consumption level, to limit daily message
interactions, while CS50.ai allocates “hearts” that deplete and regenerate over time, controlling the
frequency of student inquiries. Regarding response accuracy, Khanmigo displays disclaimers to
acknowledge potential errors, while CS50.ai uses RAG technology to reduce hallucinations.

LLM Tutor Functions Corresponding to the Levels in the Bloom’s Taxonomy

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
6

Personalization of LLM Tutors in Programming Education

When evaluating the two LLM tutors for the introductory programming course, we identified four core
functions based on learning objectives aligned with the six levels of Bloom's Taxonomy. These functions
include Concept Comprehension, Debugging, Quiz Preparation, and Program Development. Each function
corresponds to different cognitive levels within the taxonomy: Concept Comprehension addresses
Understanding and Remembering, Debugging involves Applying and Analyzing, Quiz Preparation targets
Evaluating, and Program Development corresponds to Creating (Table 2). This categorization ensures that
our investigation covers a comprehensive range of cognitive processes, providing insights into how LLM
tutors can support students through the various stages of learning and mastery in computing education.

Research Design

Focus Groups by LLM Tutors and the Functions

We use the focus group method to explore how students evaluate LLM tutors in support of various learning
objectives for the introductory programming course. The method is particularly well-suited to the emerging
nature of LLM applications in computing education, where the rapidly evolving interactions between
students and these technologies require a flexible and exploratory approach. We designed four focus
groups, each tailored to assess the distinct functions of LLM tutors in relation to specific learning tasks
about programming.

We invited all students enrolled in the introductory programming course to participate in the focus groups
to capture diverse perspectives and experiences with LLM tutors. Additionally, we obtained Institutional
Review Board approval before conducting the study, ensuring participant confidentiality, informed
consent, and adherence to ethical guidelines throughout the research process.

Focus Group 1 Focus Group 2 Focus Group 3 Focus Group 4
Function Concept Comprehension Debugging Program Development | Quiz Preparation
Learning Remember essential Apply standard Create new programs or| Remember and
Objectives Based| programming concepts debugging techniques combine existing ones to| understand loop
on Bloom’s to fix a code issue address a problem concepts
Taxonomy Understand entire
programs or specific code Analyze whether the Apply, analyze, and
snippets code meets specified evaluate knowledge of
requirements loops to debug code
Evaluate the code Create a program using
based on established loops
coding standards and
performance criteria
Programming Explain dictionary Detect and resolve Develop programs with | Prepare for a quiz on
Tasks errors in loops the use of loops loops that includes
concept comprehension,
debugging, and writing a
program
Students (N) 1 16 21 12
Table 2. Focus Group Design by LLM Tutors and Functions

Focus Group Procedures

Before participating in the focus group activities, all participants were required to engage with the two LLM
tutors, Khanmigo and CS50.ai, through a set of predefined exercises. These tasks are designed to familiarize
participants with the interface of each LLM tutor. The exercises were structured to cover similar content
across both tutors to ensure a comparable experience. In addition, all participants were required to
complete a survey designed to capture their socio-economic background, learning needs, expectations, and
perceptions of LLM tutoring systems. This survey helped us assess the students’ contextual learning needs
and provided a baseline for assessing changes in their perceptions and understanding following interactions
with the AT tutors.

During the focus groups, a pre-test was administered to assess the participants' baseline knowledge of the
programming topics to be covered during the focus group. This test helped gauge the initial competence of
each participant and provided data for comparison with post-test results to measure learning outcomes.

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
7

Personalization of LLM Tutors in Programming Education

We randomly assigned the sequence in which participants interacted with the two LLM tutors to avoid any
sequence bias in the responses. After the pre-test, each participant interacted with the first assigned LLM
tutor to complete a specific task. Upon completing a specific task, participants were invited to evaluate the
LLM tutor based on their interaction experience. This evaluation was captured through an online survey
that included both quantitative questions and open-ended comment questions. Following a similar format,
participants engaged with the second AI tutor for a specific task. Participants completed the same
evaluation survey to provide feedback.

Once participants had interacted with both LLM tutors, they were asked to compare them directly. This
comparison focused on several aspects, such as relative advantages and disadvantages and overall
preference between the two systems.

At the conclusion of the individual tasks, a post-test with a similar level of difficulty to the pre-test was
administered. This test measured the learning gains attributed to the two LLM tutors and helped assess
whether interacting with LLM tutors enhanced learning outcomes.

Following the completion of the individual tasks, participants engaged in a group discussion moderated by
a researcher. This discussion allowed participants to share their experiences and insights from using the
LLM tutors. The moderator guided the discussion with prompts related to the strengths and weaknesses of
each Al tutor, the perceived impact on their learning, and the comparison between LLM tutors and human
tutors. The group discussion data is invaluable for understanding the collective user experience and for
gathering more nuanced feedback that might not be fully captured through individual evaluations.

Data Collection Method

We collected data from multiple sources. Specifically, we collected survey data with both quantitative
responses and qualitative comments to capture students’ contextual needs prior to their interaction with
the LLM tutors. Throughout the focus group sessions, several methods were employed to collect
comprehensive data: survey responses were gathered to track participants’ interaction experiences and
preferences, chat histories were logged to analyze interactions with the LLM tutors, and audio recordings
of group discussions were made to capture dynamic exchanges and collective insights.

Additionally, archival data including demographic information, class performance records, and TA session
attendance were collected to provide a deeper context for understanding the participants' academic
environments and background influences.

Analysis and Findings

We analyzed the qualitative data from open-ended survey responses, LLM tutor chat logs, and group
discussions through coding and thematic analysis to uncover the nuances of interactions between students
and LLM tutors. Additionally, we employed natural language processing (NLP) techniques to parse these
interactions and identify patterns. To elaborate, we used topic modeling to uncover prevalent themes in
student interactions, sentiment analysis to gauge emotional responses, and keyword-based extraction to
identify key issues in student feedback based on their experience with the LLM tutors. These methods
provided a comprehensive view of how students engage with LLM tutoring, allowing us to assess both the
cognitive and emotional aspects of their learning experiences effectively.

Demographics of Participating Students

Our study involved a diverse group of 60 students, providing insight into their backgrounds and the
challenges they face which may affect their interaction with learning technologies. Of these students, 40.7%
were male, and 59.3% were female. Additionally, 61% of the students were eligible for Pell grants. The racial
composition of the sample included 54% African American students, 27.1% Asian students, 1.7% American
Indian students, and 8.5% White students. Moreover, 18.6% of the students identified as Hispanic. Notably,
among the sampled students, 37.1% are non-native English speakers navigating academic challenges in a
second language. Furthermore, 63.9% are first-generation college students, possibly facing unique
educational and socio-economic challenges.

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
8

Personalization of LLM Tutors in Programming Education

Employment is a significant factor for our participants: 14 students work full-time, and 28 hold part-time
jobs. These employment commitments indicate that nearly 70% of the participants are balancing their
studies with work. Additionally, 24 students have responsibilities for caring for family members, adding
another layer of complexity to their time management and daily stress. The employment and caregiving
responsibility might affect their ability and energy for academic engagements.

These demographic characteristics suggest the varying needs and challenges these students face, which are
likely to influence how they interact with and benefit from LLM tutors.

Analysis of LLM Tutors’ Evaluations by Learning Objectives

We analyzed students’ responses to open-ended questions and their feedback in group discussions, and
summarized our findings in Table 3, which details students' likes and dislikes by functions and LLM tutors.
Overall, students value the non-judgmental nature and access to the two Al tutors—Khanmigo and CS50.ai.
Despite this, dissatisfaction arises with both tutors due to a lack of code visualization, insufficient
customization to individual needs, and the absence of integration with IDEs for coding tasks.

Function LLM Tutor Likes Dislikes
Concept Khanmigo Breaks down problem Indirect responses and pushes to building
Comprehension Offers prompting suggestions block concepts
Descriptive answers with relatable examples Inefficient process
CS50.ai Direct and precise answers Not tailored to users’ comprehension styles
Clarified confusion Wordy explanation
Response personalized for coding
Debugging Khanmigo Prompts to consider building blocks concepts Response too general
Iterative problem-solving process Inefficient process
Does not answer questions directly
CS50.ai Identifies error directly Does not provide direct solutions
Suggests solutions Wordy and long
Guides debugging with questions
Quiz Khanmigo Tutor-guided prompting Unbhelpful hints
Preparation CS50.ai Direct and less Socratic style of guidance Not tailored to users’ stage of learning
Program Khanmigo Break down problems Does not provide solutions
Development Discover code issue without asking Tutor-guided prompts constrain user-
Tutor-guided prompts instead of user- steered | steered conversations
conversations
CS50.ai Specific guidance for programming Ineffective guidance to get started
Direct answers
Generic Khanmigo Beginner friendly Ul distracting to use
Easy-to-understand language Does not support code editing
Human-like conversation Fake empathy
Expresses empathy Too many persona choices
Not judgmental
Persona choices
CS50.ai Simple UI Not beginner friendly
Supports code editing Assumes prior knowledge
Not judgmental User throttling

Bot-like conversation

Table 3. LLM Tutors Comparison by Functions

Individual differences are prominent, revealing that each student's preferences can sometimes be
contradictory within a single tool or function. For instance, while some students appreciate Khanmigo's
empathetic approach in concept comprehension, others find it less effective for their learning needs.
Similarly, in program development, some students benefit from Khanmigo’s detailed guidance, while those
with more experience view it as a hindrance to their learning pace.

When comparing the two LLM tutors, Khamigo generally receives more favorable feedback than CS50.ai.
This preference could be attributed to Khanmigo’s beginner-friendly approach, as it serves a wide range of
users from pre-K to college students at Khan Academy. In contrast, CS50.ai, offered at Harvard, targets all
students, including non-majors, who are typically better prepared and more motivated. Students

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
9

Personalization of LLM Tutors in Programming Education

particularly like Khamigo’s prompting suggestion feature, which helps them formulate questions when they
are unsure what to ask. They also value how Khamigo breaks down complex problems into subproblems,
guiding them through each step of the problem-solving process.

Analysis of Chat Logs for LLM Tutors

We analyzed the chat logs between students and the two LLM tutors using text mining techniques. After
discarding files with misformatting or irrelevant content, we processed 76 chat logs. In general, we observed
that students asked more questions when interacting with Khanmigo than with CS50.ai across all four
functions (Figure 1). On average, students responded more than once to prompts from the LLM tutors,
particularly in the program development function (Figure 2).

mCS50.ai = Khanmigo

27
24 25
12.3
104
1.8
8.4

8 78 g

6.9
I “ I I

Concept Debugging Quiz Program Concept Debugging Quiz Program
Comprehension Preparation Development Comprehension Preparation Development

Figure 1. Average Number of Questions asked by | Figure 2. Average Number of Responses to LLM
Students by Functions and LMM Tutors Tutors’ Prompts by Functions

Importantly, we observed heterogeneous interaction styles across students with the LLM tutors:

Socratic approach. Khanmigo uses a Socratic method, asking questions to guide students, which while
appreciated by some, causes others to disengage if they prefer to receive direct answers. For example,
Khanmigo often prompts students to critically assess their code with questions like, “The code should print
'Prime’ at the end no matter what, right? So, why might it not be printing anything at all?” This method
encourages deep reflection but can frustrate those who seek quicker solutions. In contrast, CS50.ai tends to
offer more direct answers and employs a less Socratic style of guidance. CS50.ai frequently identifies
specific issues, stating, “It seems like you're trying to print all prime numbers up to a certain number.
However, there are a few issues with your code,” which provides students with immediate corrections and
clear directions for improvement.

Prompting variation. CS50.ai’s interactions vary significantly depending on how students present their
queries. Those who provide detailed prompts receive more tailored responses, whereas those who submit
vague requests often find the guidance insufficient. For example, when a student asked, “how do i loop
through each character in the string,” CS50.ai provided a detailed and practical response:

“In C, you can loop through each character in a string using a for loop. Here's a general idea:

for (inti=o; str[i] I="\0; i++)

{

// Access each character using str(i]

/

In this loop, str[i] gives you the character at position i in the string. The loop continues until it

encounters the null character ('\0'), which marks the end of the string.”
Conversely, when a student asked, “How do I start my loop?” CS50.ai provided a code snippet in C/C++
without explaining how to adapt it to the specific student problem of counting lowercase letters in Python:

“Here's a small snippet to get you started:

for (inti = 0, n = strlen(input_string); i < n; i++)

{

// Your code here

3

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
10

Personalization of LLM Tutors in Programming Education

Engagement. Khanmigo boosts student engagement by using relatable examples. For instance, while
CS50.ai explained a Python dictionary in technical terms: “Each item in a dictionary consists of two
elements: a key and a value. The key is used to identify the item and the value is the data that is associated
with the key,” Khanmigo offered a more vivid explanation: “A dictionary in Python, you say? It's a bit like
a magical book! Imagine a book where you can look up a word (we call this the 'key') and find a meaning
or a value (we call this the 'value'). In Python, a dictionary works the same way! You use a key to get a
value. Can you think of an example where you might use a dictionary in Python?” This type of analogy,
associating Python dictionaries with everyday objects like books, not only made the concept more accessible
but also engaged students by connecting to familiar experiences. However, we found that students’
reactions to these examples varied, as some found certain content less compelling.

Tutor-guided prompting. We noticed some students struggled with formulating questions for
debugging and program development with CS50.ai. In contrast, Khanmigo not only answers queries but
also suggests follow-up questions, which has received mixed reactions. Analysis of the chat log showed that
over 63% of students utilized tutor-suggested prompts. For example, a student asked Khanmigo “How to
write a program that counts the number of lowercase letters in a string in Python?” Khanmigo responded
by suggesting prompts to help break down the problem into manageable steps, such as “how to identify if
a character is lowercase,” and “how to use islower() in my program.” These guided prompts guided the
student to explore the problem further and eventually complete the program. Notably, while some students
followed these prompts without adding their own input, others resisted this guided approach, preferring to
steer the conversation themselves.

Academic performance association. We further scrutinized the chat logs of students with varying
academic performances, examining their interaction styles in relation to their midterm exam grades, which
were completed before their participation in the focus groups. Our observation revealed distinct interaction
styles between students who performed well and those who did not in the introductory programming class
(Table 4). Specifically, high performers are generally more responsive to the AI tutors’ guidance and actively
apply corrections, showing a keenness to explore advanced features. Low performers, while often receptive
to guidance, sometimes struggle with basic concepts and require repeated clarifications, indicating varied
paths of engagement and learning. The observations collectively indicate the diverse pathways of evaluation
and interaction among students, highlighting the need for LLM tutors that can adapt flexibly to different
educational needs and learning styles.

Khanmigo CS50.ai
High Performer| o Actively follow the tutor's prompts and Show willingness to learn by asking questions built
(top 30%) instructions, demonstrating a strong on previous information, participating in exercises,
understanding of basic concepts and exploring and applying newly gained knowledge in practical
advanced features. examples.
® Proactively address potential issues and Persistently engage in the face of new challenges,
complexities, and respond positively to follow instructions closely, and frequently seek
corrections, immediately attempting to rectify confirmation to ensure correctness.
mistakes after receiving feedback. Respond positively to motivational feedback.
Low Performers| e Consistently seek and apply syntax clarification. Demonstrate a clarification-based approach to
(bottom 30%) [@ Show receptiveness to guidance, follow the laid- learning by asking a series of questions.
out learning path, and request direct clarification Follow the tutor's guidance diligently to understand
when needed. syntax and semantics, asking specific questions for
® Actively refine approaches based on tutor precise understanding.
suggestions, build on incremental information, Do not challenge the information even when
and apply concepts. prompted to think critically.
® Show willingness to learn, despite basic
programming errors.
Table 4. Interactions with LLM Tutors by High and Low Performers

Summary of Focus Group Insights

The analysis of student feedback from the focus groups reveals significant diversity in how students engage
with different LLM tutoring styles in Python programming courses. Preferences split between the Socratic,
probing style of Khanmigo, which encourages exploration of foundational principles, and the direct,
solution-oriented approach of CS50.ai that emphasizes straightforward explanations across various

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
1

Personalization of LLM Tutors in Programming Education

learning objectives. We elaborate on the differences in preferences to derive design and evaluation
implications for LLM tutors.

Preferences for tutoring styles based on learning objectives. (1) Understanding Concepts:
Students who value deep conceptual understanding tend to favor Khanmigo’s method, which promotes
critical thinking, while those focused on immediate clarity and precision prefer CS50.ai’s direct answers.
(2) Debugging Code: Preferences vary between direct error identification and solutions offered by CS50.ai
and the deeper and iterative problem-solving engagement prompted by Khanmigo. (3) Preparing for
Quizzes: CS50.ai’s domain-specific knowledge is preferred for efficient quiz preparation, contrasting with
Khanmigo’s less focused Socratic interactions. (4) Developing Programs: CS50.ai is favored for its specific,
technical guidance in practical programming tasks, highlighting the need for precise, actionable feedback.

Need for seamless and comprehensive linking to course content. Feedback from focus groups
indicates a desire among students for LLM tutors to not only assist with immediate queries and problems
but also connect these discussions to broader course materials such as lectures, assignments, videos, and
archives of in-person tutoring sessions. This capability would provide students with a contextual learning
experience, deepening their understanding and reinforcing learning through multiple touchpoints. Also,
students would like the tutor to restrict its suggestions only to concepts that have been covered in their
classes rather than more advanced concepts that have not yet been covered.

User throttling and session control. CS50.ai employs a user throttling mechanism where students are
allocated a finite number of “hearts” that are consumed with each prompt. This feature frustrated many
students, particularly when hearts were spent due to misunderstandings or misinterpretations by the tutor.
The depletion of hearts because of perceived tutor errors led to dissatisfaction, as it restricted their ability
to engage fully with the learning material. An emerging insight suggests that the LLM tutors could be
improved by allowing students to earn points if they perform well competitively, enhancing motivation and
engagement by rewarding success, rather than solely reducing the amount of use.

Operational performance concerns. Several students, across the focus groups, expressed
dissatisfaction with the operational performance of both tutoring systems, particularly in terms of response
times. Delays and slow interactions were noted as significant hindrances to learning, impacting the overall
effectiveness and user experience of the tutoring sessions.

Challenges with user interface and lack of IDE integration. Students reported challenges with the
user interface, specifically the lack of integration between the tutors and the IDE used for programming.
The absence of an integrated IDE meant that students found it tedious to transfer content between the
tutoring environment and the IDE, impacting their efficiency and overall learning experience.

Variability in student interaction styles. Our analysis of the chat logs revealed the variability in
student interaction styles—from those seeking quick, specific answers to those engaging in extended,
concept-exploring discussions—highlights the need for tutors to adapt responses based on the depth and
nature of prompts. This variability, from the initial prompt to the chain of interaction, indicates that
effective LLM tutors must be capable of both direct problem-solving and facilitating deeper inquiry.

Role of empathy in tutor interactions. Khanmigo’s attempts to offer emotional support and
encouragement, such as affirmations and motivational comments, were appreciated by some students for
enhancing confidence. However, others found these attempts at empathy less credible, especially when the
tutor praised efforts that were off the mark. To enhance credibility, expressed empathy should be reserved
for situations where the student is on the right track and such encouragement can genuinely boost self-
efficacy. Moreover, offering multilingual support could enhance the usability for non-English speakers,
making all students feel understood and supported regardless of their native language. In contrast,
CS50.ai’s matter-of-fact style, devoid of expressed empathy, was not seen as a drawback by many students,
who valued its precision and to-the-point interactions, particularly when efficiency was prioritized over a
detailed exploration of challenging concepts.

Implications for the Design and Evaluation of LLM Tutors

We interpret the implications of the focus groups’ insights for the design and evaluation of LLM tutors to
cost-effectively personalize the interactions at scale—whereby they fulfill the diverse learning styles and
preferences of students and cater to the nature of learning objectives at different levels of complexity in the

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
12

Personalization of LLM Tutors in Programming Education

learning process. In doing so, we also surface how we contribute to the current understanding in the
literature on AI Ed-Tech and that on IS design and evaluation based on user preferences.

First, contributing to the insight that aligning the design and evaluation of IS to
requirements has been long recognized as necessary for IS success (Ramesh et al. 2010), we
surface two alignment considerations for LLM tutors.

Aligning tutoring methods to learning objectives. Educational technologies, especially those
involving LLM tutors, to enable student learning must incorporate adaptive tutoring methods that are
responsive not only to varying student preferences for interaction styles but also to different learning
objectives (Newman et al., 2013; Xie et al. 2019). The underlying rationale is in sync with the guidelines in
the IS literature to dynamically align the technology with the varying requirements of the user and the task
(Benbya et al. 2023; Goodhue and Thompson 1995; Grani¢ 2022) and to elaborate on the contextual
differences to understand the design requirements and the nature of IS use that is effective (e.g., Hong et
al. 2014; Burton-Jones and Volkoff 2017).

We add to this understanding by surfacing how the nature of adaptive tutoring needs to vary across levels
of Bloom’s Taxonomy. For example, direct responses may be more effective for objectives at lower levels of
Bloom's Taxonomy, such as understanding basic concepts, while a Socratic, inquiry-based method may be
better suited for higher levels, such as applying concepts to diagnose and remedy errors, and developing
complex programming projects, especially when there are multiple pathways to developing a solution.

Aligning tutor interaction styles to student learning styles. Tutors need to be responsive to the
diversity in student interaction styles, from those who prefer concise, technical inquiries to those who
engage in broader, conceptual discussions. This requires sophisticated natural language processing
capabilities and an understanding of different educational contexts. Evaluations should measure the tutor's
ability to adequately respond to varied types of inquiries and adapt teaching strategies accordingly.

Second, integration with complementary resources is a key requirement to develop novel
ways to create value with AI (Brynjolfsson et al. 2019). We identify integration with two
complementary resources as focal design and evaluation considerations for LLM tutors.

Integrating with development tools. Integration of LLM tutors with essential programming tools,
particularly Integrated Development Environments is crucial. This integration should provide a seamless
experience where students can write, test, and debug code within the same environment they are receiving
tutoring, thus reducing the need to switch contexts and improving learning efficiency. Such a seamless
experience reflects the IS design principle of integration and interoperability, ensuring that LLM tutors
work effectively within the existing educational infrastructure. Evaluations should assess how well these
integrations minimize workflow disruption and enhance user satisfaction.

Integrating with course content through retrieval-augmented generation. To achieve seamless
integration with the variety of course content, LLM tutors should employ advanced techniques such as RAG.
This approach allows the tutor to dynamically retrieve relevant information from a vast database of course
content while generating responses. By doing so, the tutor can provide not only immediate answers but also
contextually relevant resources and explanations, aligning with user-centered design principles and directly
linking tutoring interactions to specific parts of the course material.

Incorporating RAG and other similar techniques into LLM tutors could greatly enhance the 'stickiness' of
the interactions—meaning that students are more likely to engage frequently and deeply with the tutor,
leading to better retention and understanding. This seamless integration can ensure that every interaction
with the tutor is both a point of learning and a gateway to further exploration of the course content.

For designers, this underscores the importance of creating LLM tutors that can intelligently access and
integrate diverse educational resources. Evaluation metrics should therefore not only assess the accuracy
and relevance of the responses provided by the tutor but also measure how effectively these responses are
integrated with the course content. This will ensure that the tutor is truly augmenting the learning
experience by making all relevant materials readily accessible and usable within the learning context.
Further, this will also restrict the guidance provided by the tutor to the concepts that have been covered in
class sessions thus far rather than introducing concepts that the student has not yet been exposed to.

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
13

Personalization of LLM Tutors in Programming Education

Third, in dynamic contexts such as learning where exogenous and endogenous factors
evolve, a system needs to be able to adapt with precision to meet shifting needs (Malgonde
et al. 2022). A key implication is that LLM tutor needs to adapt their interventions,
engagement, and controls with precision to fulfill the evolving cognitive and affective needs
of students and managing costs while rendering effective learning support in an
institutional context.

Adapting push-pull interventions to student learning needs. By analyzing student feedback, such
as upvotes and downvotes on responses, LLM tutors can calibrate their support to meet the specific learning
needs of students as these evolve. In alignment with the IS design principle of adapting a solution to
evolving user requirements, LLM tutors need to dynamically calibrate push (proactive) and pull (reactive)
support to the students’ learning needs, and thereby promote their attainment of learning objectives.

Moreover, an effective strategy to enhance the personalization of LLM tutor interactions can involve
calibrating the push-pull interventions based on utilization of knowledge graphs. These graphs can be used
to map out the entire body of knowledge relevant to a course or subject area. By tracking a student's progress
and attention allocated over time to different concepts and applications, the tutor knows where a student is
in their learning journey and can identify knowledge gaps and areas of strength. As such, the knowledge
graph for each student should dynamically update as the student interacts with the tutor and the course
material, reflecting their evolving understanding and focus areas.

This continuous updating allows the LLM tutor to deliver highly specific interventions—both push and
pull—tailored to the immediate needs of the student over time. For instance, if a student consistently
struggles with a particular concept, the tutor can proactively offer additional resources or simplified
explanations before the student becomes too frustrated. Such a process can prevent a student from slipping
into undesirable states that can lead to erosion of confidence, self-esteem, and resignation.

By leveraging knowledge graphs, tutors can make their interventions not only more specific but also more
engaging to the student’s current context and learning phase. This specificity to the student and their
journey in a course enhances the 'stickiness' of interactions, encouraging deeper and more frequent
engagement with the tutor. Students are more likely to perceive the tutor as a helpful and integral part of
their learning process, which fosters a positive learning environment and can boost educational outcomes.

The design of LLM tutors that utilize knowledge graphs requires sophisticated algorithms capable of not
only tracking and analyzing student interactions but also integrating this data into a coherent framework
that supports adaptive learning strategies. Evaluation of such systems should focus on the effectiveness of
the knowledge graph in enhancing personalization. Metrics should assess how well the tutor adapts to
students’ learning progress and the impacts of personalized interventions on learning outcomes.

Adapting emotional engagement to student affective needs. Tutors should be designed to
recognize and respond to both the emotional and cognitive needs of students. While some students
appreciate and benefit from emotional encouragement, others may find it lacks credibility, especially if it
does not align with their actual performance. Tutors should have the capability to adapt their level of
empathetic feedback based on student responses and preferences. Evaluations should consider student
perceptions of tutor empathy and its impact on learning outcomes.

Adapting operational controls to achieve cost-effective LLM tutoring. The operational
performance of tutoring systems, including response times and system reliability, must be a key focus in
design and evaluation. Slow or unreliable connectivity, in general and at peak times such as during exam
and assignment times, can trigger frustration, thereby significantly hindering learning and reducing user
satisfaction. Continuous performance optimization and rigorous testing, alongside changes in technology
capability and compute costs, should be conducted to ensure systems meet the expectations of students and
other key stakeholders in computing educational settings at different types of universities.

Design considerations on operational control mechanisms should also include user-controlled session
management to avoid frustration associated with rigid system-imposed rigid controls like the “hearts”
system in CS50.ai. Tutors should provide flexibility in how interaction limits are implemented, possibly by
allowing students to earn additional interaction opportunities through engagement or performance.
Additionally, it's important to evaluate the impact of these mechanisms on student learning and system
usability. Implementing such controls serves dual purposes: it provides a cooling-off period to promote

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
14

Personalization of LLM Tutors in Programming Education

thoughtful inquiry, potentially enhancing learning, and they help manage the operational costs of running
LLMs. However, while cost management is necessary, the educational effectiveness of the cooling-off period
still requires further exploration.

In sum, these implications enhance our understanding of how to effectively design and evaluate LLM tutors
to meet the diverse needs of students. The ability to automate and personalize interactions through RAG
enables LLM tutors to deliver tailored, real-time responses, reducing the need for human intervention while
maintaining high-quality support. Additionally, the 24/7 availability increases accessibility, especially for
students from under-resourced backgrounds. Exemplary LLM tutors demonstrate affordability, though the
evolving costs of popular LLMs require adaptable design strategies to sustain cost-effectiveness.

Future Research Avenues

Future research can develop LLM functionalities and assessment approaches based on the design and
evaluation implications that we have identified based on the focus groups. Such LLM functionalities can be
further assessed in future focus groups and also assessed in terms of their effects by using pre- and post-
tests, lab experiments, or randomized control trial research designs. As LLM technology continues to
evolve, it will be essential to reassess the emerging capabilities like multimodal interactions and evaluate
students’ learning outcomes when working with LLM tutors across different learning settings (e.g.,
programming languages, course levels, types of institutions). Moreover, future research will need to
investigate how to achieve classroom integration of LLMs. Additionally, it is important to consider the long-
term implications of LLM integration for computing education on the meta-cognition of learners: what
aspects are supported by the tutor and what new demands are imposed by it. Moreover, it is important to
consider the requirements of teachers and administrators, to understand the tensions in these
requirements, and to develop approaches to manage the tensions. In doing so, we can develop a much more
complete understanding of how LLMs tutors can be designed and deployed in a personalized, scalable, and
cost-effective manner and used responsibly by students, teachers, teaching assistants, and administrators.

Future research can track students’ interaction with LLM tutors and employ NLP and process mining
techniques to analyze students’ transitions in learning state, progression in knowledge acquisition, and
changes in sentiment over time. Specifically, NLP will allow us to identify prevalent themes, sentiments,
and interaction patterns with LLM tutors. Process mining will further enable a thorough examination of
learning behavior and engagement. Collectively, these analyses will reveal the interaction nuances between
students and LLM tutors, offering a granular view of their learning processes and experiences.

Since students have (free) access to resources like ChatGPT 3.5 that provide correct solutions to commonly
used assignments and exam questions, it is important for the developers of LLM Tutors to provide
compelling reasons for students to use these tutors rather than ChatGPT 3.5 or other resources. This may
require the tutor to take a proactive role in the student's learning journey, say for example, engaging the
student when they have not yet commenced their work on an upcoming assignment. Also, instructors need
to make significant changes in their evaluations of student performance, by focusing on a student's
understanding and mastery of knowledge elements (in a knowledge graph) rather than typical assessment
methods like tests and coding assignments. Such an assessment is feasible only when the LLM tutor can
continually monitor and assess student interactions.

Building on the framework of Bloom’s taxonomy, future studies can utilize the four types of knowledge (i.e.,
factual, conceptual, procedural, and metacognitive knowledge) to tailor the development of computational
thinking skills for diverse learning needs. Employing this framework could advance our understanding of
how knowledge dimensions integrate with cognitive processes in educational settings. This approach will
enrich theoretical models of learning by demonstrating interactions and dependencies between factual,
conceptual, procedural, and metacognitive knowledge within various learning environments.

The need to develop policies to address ethical and academic integrity considerations that are crucial for
maintaining the credibility and effectiveness of the educational experiences is heighted with increasing
access to LLM tutors. Future research should develop policies to safeguard academic rigor and standards
that ensure that assessment of student performance reflects genuine knowledge and effort. Additionally,
such policies should be designed to foster an environment of honesty, trust, and fairness, which is essential
for meaningful learning experiences.

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
15

Personalization of LLM Tutors in Programming Education

Acknowledgements

This research was funded by Axim Collaborative (Grant #S6304/PO#1048777). Balasubramaniam
Ramesh’s research was sponsored by the Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911F-23-2-024. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

References

Adams, N. (2015). Bloom’s taxonomy of cognitive learning objectives. Journal of the Medical Library
Association, 103(3), 152-153. https://doi.org/10.3163/1536-5050.103.3.010

Benbya, H., Leidner, D., & Preston, D. (2019). Research curation on information systems alignment. MIS
Quarterly, www.misqresearchcurations.org/blog/2019/3/14/information-systems-alignment.

Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., & Santos, E.A. (2023).
Programming is hard-or at least it used to be: Educational opportunities and challenges of AI code
generation. Proceedings of the 54th ACM Technical Symposium on Computer Science Education, Vol.
1, 500-506. https://doi.org/10.1145/3545945.3569759

Bettinger, E., & Baker, R. (2011). The effects of student coaching in college: An evaluation of a randomized
experiment in student mentoring. NBER Working Paper No. 16881. https://doi.org/10.3386/w16881

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1964). Taxonomy of
Educational Objectives (Vol. 2). New York: Longmans, Green.

Brynjolfsson, E., Rock, D., & Syverson, C. (2019). Artificial intelligence and the modern productivity
paradox: A clash of expectations and statistics, 23-60, University of Chicago Press.

Burton-Jones, A., & Volkoff, O. (2017). How can we develop contextualized theories of effective use? A
demonstration in the context of community-care electronic health records. Information Systems
Research, 28(3), 468-489. https://doi.org/10.1287/isre.2017.0702

Denny, P., Prather, J., Becker, B.A., Finnie-Ansley, J., Hellas, A., Leinonen, J., Luxton-Reilly, A., Reeves,
B.N., Santos, E.A. & Sarsa, S. (2024). Computing education in the era of generative Al
Communications of the ACM, 67(2), 56-67. https://doi.org/10.1145/3624720

Extance, A. (2023). ChatGPT has entered the classroom: How LLMs could transform education. Nature
623(7987), 474-477. https://doi.org/10.1038/d41586-023-03507-3

Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., & Prather, J. (2022). The robots are coming:
Exploring the implications of OpenAl codex on introductory programming. Proceedings of the 24th
Australasian Computing Education Conference, 10-19. https://doi.org/10.1145/3511861.3511863

Goodhue, D.L. & Thompson, R.L. (1995). Task-technology fit and individual performance. MIS Quarterly,
19(2), 213-236. https://doi.org/10.2307/249689

Goel, A. K., & Polepeddi, L. (2018). Jill Watson: A virtual teaching assistant for online education. Learning
Engineering for Online Education, 120-143, Routledge.

Granié¢, A. (2022). Educational technology adoption: A systematic review. Education and Information
Technologies, 27(7), 9725-9744. https://doi.org/10.1007/s10639-022-11053-0

Gumbel, A. (2020). Won't Lose This Dream: How an Upstart Urban University Rewrote the Rules of a
Broken System. The New Press.

Hamilton, S., & Chervany, N. L. (1981). Evaluating information system effectiveness: Comparing evaluation
approaches. MIS Quarterly, 5(3), 55-69. https://doi.org/10.2307/249291

Hong, W., Chan, F.K., Thong, J. Y., Chasalow, L.C., & Dhillon, G. (2014). A framework and guidelines for
context-specific theorizing in information systems research. Information Systems Research, 25(1), 111-
136. https://doi.org/10.1287/isre.2013.0501

Hsieh, J.P.A., Rai, A., & Keil, M. (2008). Understanding digital inequality: Comparing continued use
behavioral models of the socio-economically advantaged and disadvantaged. MIS Quarterly, 32(1), 97-
126. https://doi.org/10.2307/25148830

Klopfer, E., Reich, J., Abelson, H. & Breazeal, C. (2024). Generative Al and K-12 education: An MIT
perspective. https://mit-genai.pubpub.org/pub/4komspi7/release/1?readingCollection=0e231e9c

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
16

http://www.misqresearchcurations.org/blog/2019/3/14/information-systems-alignment

Personalization of LLM Tutors in Programming Education

Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory into Practice, 41(4), 212-
218. https://doi.org/10.1207/s15430421tip4104_2

Lahtinen, E. (2007). A categorization of novice programmers: A cluster analysis study. Proceedings of the
Annual Workshop of Programming Interest Group. Joensuu, Finland. Vol. 16, 32-41.

Liu, R., Zenke, C., Liu, C., Holmes, A., Thornton, P., & Malan, D. J. (2024). Teaching CS50 with Al:
Leveraging generative Al in computer science education. Proceedings of the ACM Technical
Symposium on Computer Science Education, 1, 750-756. https://doi.org/10.1145/3626252.3630938

Luckin, R. & Holmes, W. (2016). Intelligence Unleashed: An Argument for Al in Education. Pearson.

Ma, W., Adesope, 0.0., Nesbit, J.C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes:
A meta-analysis. J. of Educational Psychology, 106(4), 901-918. http://dx.doi.org/10.1037/a0037123
Malgonde, O.S., Zhang, H., Padmanabhan, B., & Limayem, M. (2022). Managing digital platforms with
robust multi-sided recommender systems. Journal of Management Information Systems, 39(4), 938-
968. https://doi.org/10.1080/07421222.2022.2127440

Newman, A., Bryant, G., Stokes, P., & Squeo, T. (2013). Learning to Adapt: Understanding the Adaptive
Learning Supplier Landscape. Tyton Partners White Paper.

Oliver, D., Dobele, A., Greber, M., & Roberts, T. (2004). This course has a bloom rating of 3.9. Proceedings
of the Sixth Australasian Conference on Computing Education, 227—231. Dunedin, New Zealand.
Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., & Karri, R. (2022). Asleep at the keyboard? Assessing the
security of Github Copilot’s code contributions. IEEE Symposium on Security and Privacy, 754-768.

https://doi.org/ 10.1109/SP46214.2022.9833571

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering practices and challenges: An
empirical study. Information Systems Journal, 20(5), 449-480. https://doi.org/10.1109/MS.2008.1

Reich, J., (2020). Failure to Disrupt: Why Technology Alone Can’t Transform Education. Harvard
University Press.

Reich, J. (2022). Learning analytics and learning at scale. Lang, C., Siemens, G. Wise, A.F., Gasevié, D.,
Merceron, A. (eds.) Handbook of Learning Analytics, 2nd ed. Vancouver, Canada: SOLAR.

Rodriguez-Segura, D. (2022). EdTech in developing countries: A review of the evidence. The World Bank
Research Observer, 37(2), 171-203. https://doi.org/10.1093/wbro/lkabo11

Shneider, E., & Gladkikh, O. (2006). Designing questioning strategies for information technology courses.
Proceedings of the 19th Annual Conference of the National Advisory Committee on Computing
Qualifications, 243-248.

Starr, C. W., Manaris, B., & Stalvey, R. H. (2008). Bloom's taxonomy revisited: Specifying assessable
learning objectives in computer science. ACM SIGCSE Bulletin, 40(1), 261-265.
https://doi.org/10.1145/1352322.1352227

Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance.
American Psychologist, 52(6), 613-629. https://doi.org/10.1037/0003-066X.52.6.613

Tinto, V. (2012). Leaving college: Rethinking the causes and cures of student attrition. U. of Chicago Press.

Warschauer, M., & Matuchniak, T. (2010). New technology and digital worlds: Analyzing evidence of equity

in access, use, and outcomes. Review of Research in Education, 34(1), 179-225.
https://doi.org/10.3102/0091732X09349791

Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and Development in Technology-Enhanced
Adaptive/Personalized Learning: A Systematic Review of Journal Publications from 2007 to 2017.
Computers and Education, 140, 103599. https://doi.org/10.1016 /j.compedu.2019.103599

Xu, J., Benbasat, 1., & Cenfetelli, R. T. (2013). Integrating service quality with system and information
quality: An empirical test in the e-service context. MIS Quarterly, 37(3), 777-794.
https://doi.org/10.25300/misq/2013/37.3.05

Yosso, T. J. (2005). Whose culture has capital? A critical race theory discussion of community cultural
wealth. Race ethnicity and education, 8(1), 69-91. https://doi.org/10.1080/1361332052000341006

Zawacki-Richter, O., Marin, V. 1., Bond, M., & Gouverneur, F. (2019). Systematic review of research on
artificial intelligence applications in higher education—Where are the educators? International Journal
of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-
0171-0

Forty-Fifth International Conference on Information Systems, Bangkok, Thailand 2024
17

http://dx.doi.org/10.1037/a0037123

