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Abstract—This work-in-progress research paper describes a
study of different categorical data coding procedures for ma-
chine learning (ML) in engineering education. Often left out
of methodology sections, preprocessing steps in data analysis
can have important ramifications on project outcomes. In this
study, we applied three different coding schemes (i.e., scalar
conversion, one-hot encoding, and binary) for the categorical
variable of Race across three different ML models (i.e., Neural
Network, Random Forest, and Naive Bayes classifiers) looking
at the four standard measures of ML classification models (i.e.,
accuracy, precision, recall, and F1-score). Results showed that in
general, the coding scheme did not affect predictive outcomes as
much as ML model type did. However, one-hot encoding — the
strategy of transforming a categorical variable with k possible
values to k binary nodes, a common practice in educational
research — does not work well with a Naive Bayes classifier
model. Our results indicate that such sensitivity studies at the
beginning of ML modeling projects are necessary. Future work
includes performing a full range of sensitivity studies on our
complete, grant-funded project dataset that has been collected,
and publishing our findings.

Index Terms—engineering education, persistence, expectancy-
value theory, machine learning

I. INTRODUCTION

Modern machine learning (ML) techniques can process
many interrelated factors, which presents interesting oppor-
tunities for understanding and predicting complex outcomes
in educational research. However, it can be difficult to collect
appropriate data and it can take an experienced ML researcher
to perform the numerous steps in the analysis pipeline. For
example, to use categorical variables such as race, sex, edu-
cational level, etc., in ML models, the data must be converted
to a numeric value of some kind. As ML technologies be-
come more accessible, it is important to help the education
research community understand some preliminary decision-
making procedures and their ramifications.
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This paper describes the influence that different categorical
variable coding strategies have on ML model performance us-
ing a sample engineering persistence dataset. This study begins
our work on a funded project that aims to streamline a ML
methodology for identifying targeted interventions for students
who are predicted to leave engineering. The project goal is to
develop a generalized modeling process that can be applied by
other institutions such that individualized interventions can be
applied on a national scale. Decisions, even in preprocessing,
require careful consideration and analysis.

II. LITERATURE REVIEW

A. Machine Learning in Engineering Education Research

The utilization of data-driven methods has facilitated the
analysis of student success indicators, including the risk of
dropout, attrition risk, and completion risk, which are often
correlated with student persistence or retention [1]. In particu-
lar, ML models have garnered attention due to their adeptness
in handling both quantitative and qualitative/categorical data,
yielding better prediction results compared to statistical tech-
niques such as logistic regression and discriminant analysis
[2]. The applications of ML techniques mainly focus on
two goals: student performance and student retention/attrition
prediction.

Several ML techniques have been employed to estimate
student performance and identify significant impacting vari-
ables. For example, Adejo et al. [3] compared different ML
techniques in predicting student performance using data from
the student record system, learning management system, and
surveys. These techniques included Decision Tree (DT), Neu-
ral Network (NN), Support Vector Machine (SVM), and en-
semble models, with the ensemble model achieving the highest
accuracy of approximately 80%. Slim et al. [4] predicted
student success (i.e., GPA score) using a Bayesian belief
network model with a margin error of 0.16. Sweeney et al.



[5] utilized regression techniques like Random Forest (RF), k-
nearest neighbor, and personalized multiple linear regression
to predict student grades in upcoming semester courses.

ML techniques have also been employed to predict stu-
dent retention. For instance, Delen [2] uses NN, DT, SVM,
and ensemble model to predict student retention before the
sophomore year, achieving an accuracy of approximately 80%.
Sensitivity analyses revealed that factors such as fall GPA,
loans, and financial aid significantly impact the prediction of
student attrition. Raju et al. [6] used ML techniques such as
DT and NN to predict student retention. The study identified
first-semester GPA, status (full/part-time), earned hours, and
high school GPA as factors with a higher impact on prediction.

Furthermore, other studies have developed ML applications
focusing on student performance and retention. For instance,
Alkhasawneh et al. [7] developed a NN model using demo-
graphic, pre-college, and college variables that were empha-
sized in focus group discussions. They used the model to
predict student GPA and retention in Science, Technology,
Engineering, and Mathematics (STEM) disciplines. Key fac-
tors such as the first math course grade, high school rank,
impact of pre-college intervention programs, and SAT math
score are found to be useful for predicting both performance
and retention.

B. Categorical Variables

Currently, various information sources are collected to eval-
vate the effect of different factors on student persistence or
attrition, such as survey data, ACT scores, etc. [8]. Analyzed
factors encompass both numerical attributes (e.g., age, scores,
etc.) and categorical attributes (e.g., gender, race, etc.). In par-
ticular, categorical variables require encoding into numerical
values for integration into ML models. For instance, Aulk et
al. [9] employed dummy encoding to map categorical variables
in a model predicting student dropout. Similarly, Niyogisubizo
et al. [10] utilized one-hot encoding to convert categorical
features into binary vectors for an ensemble model predicting
student attrition. Pratape et al. [11] applied scalar conversion
(i.e., label encoding) for each categorical variable in an
educational enrollment status ML model. Although multiple
encoding options exist, certain methods may prove inadequate.
For instance, scalar conversion can lead to misinterpretation
due to assumptions of an ordering relation not universally
present in categorical variables [12]. Therefore, it may be
necessary to evaluate the impact of encoding methods on
ML models’ performance to provide guidelines for consistent
preprocessing of categorical variables.

C. Current Study

The current study compared three common coding strate-
gies (scalar conversion, one-hot encoding, and binary) of a
categorical variable (race) in an engineering education mod-
eling dataset. Accuracy, precision, recall, and Fl-scores were
calculated for three predictive ML models (NN, RF, and Naive
Bayes, NB, classifiers) using each coding scheme.

Our research questions were as follows:

1) Does the categorical variable encoding strategy impact
the performance of ML classification outcomes?

2) Are there any methodology sequences that should be
avoided?

III. METHODS

This study was approved by the University of Louisville’s
Institutional Review Board. The study was retrospective, uti-
lizing data collected from students in past years.

A. Dataset

Participants included in the current study were students who
enrolled in the University of Louisville as first-time full-time
undergraduate engineering students in Fall 2018 or 2019, took
a math course in the fall semester, and completed a survey
provided in their principal engineering course (N = 933; 78%
Male, 22% Female; 80% White, 6% Asian, 5% Black/African
American, 4% Hispanic/Latino, 5% Other). Students with
missing data were removed from this exploratory study.

B. Materials

The data in this preprocessing study included the following
variables:

1) Demographic Data: gender, race, Pell Grant eligibility

2) Survey Data: individual interest [13], perceived effort,
opportunity, and psychological costs [14], perceived
academic competence [15], self-efficacy [16],

3) Performance Data: ACT scores (composite, English,
math, science reading), term 1 engineering course grades
(math, introduction to engineering, and chemistry)

4) Financial Aid: source (federal, state, institutional, pri-
vate), type (scholarship, loan, grant, work-study), and
cause (need, merit)

Variables in this dataset are not described in detail for this

Work-In-Progress (WIP) publication, but will be supplied upon
request from the corresponding author.

C. Procedures

1) Overview: Different types of variables (i.e., attributes)
were first assembled in one data file. The attributes included
numerical variables (e.g., ACT scores) and categorical vari-
ables (e.g., race and gender). All variables were preprocessed
before being fed into the ML models. Numerical attributes
were standardized (i.e., converted in variables with mean 0
and standard deviation 1) and the categorical attributes, such
as gender, were converted to numerical variables (e.g., binary).
Subsequently, the ML models were trained to classify student
persistence, where student attrition was labeled as 1 and stu-
dent persistence was denoted as —1. The classification results
were assessed with the ground truth of student persistence
using common classification metrics (e.g., accuracy, precision,
etc.).

In our analysis, we focused on the race attribute, which
included several levels (e.g., White, Asian, etc.). It was trans-
formed by different encoding methods (i.e., scalar conversion,
one-hot encoding, and binary encoding). In this study, we



evaluated the effect of the categorical variables’ encoding
methods on the performance of the ML models.
Our procedures are illustrated in Fig. 1.
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Fig. 1. Scheme of the Proposed Method.

2) Encoding Methods: Three different encoding methods,
namely scalar conversion, one-hot encoding, and binary en-
coding were employed to transform the categorical variable
race into numerical values. In the scalar conversion method, an
integer is assigned to each race category and the integer values
are integrated into the predictors afterwards. The one-hot en-
coding method produces k binary variables by comparing each
level of the categorical variable to a random fixed reference
level, being k£ the number of race levels. The binary encoding
method transforms the categories into an ordinal variable, and
then this variable is converted into binary code. The binary
string is split into separate numerical attributes. Table I shows
the corresponding representation of the race categories for the
three different encoding methods.

TABLE I
ENCODED REPRESENTATION OF THE ATTRIBUTE ’RACE’

Race Encoding representation
Scalar Binary One-hot
White I {1-1-1T | {0,0,000,1}
Two or more 2 {-1,-1,1 0,0,0,0,1,0}
Black/African American 3 {-1,1,-1 0,0,0,1,0,0
Asian 4 {-1,1,1} 0,0,1,0,0,0
Non-Resident 5 {1,-1,-1} 0,1,0,0,0,0
Hispanic/Latino 6 {1,-1,1} {1,0,0,0,0,0}

3) Classification Models: Three classification models were
explored, namely NN, RF, and NB classifiers.

NN is a classification model in which intermediate layers
(i.e., hidden layers) between the input (i.e., attributes) and
the output (i.e., student persistence) are created. Each layer
increases the complexity of the model. Model outcomes are
represented as C' = sgn(By + BT z), where By and 3 are
model parameters, and z = (z1,22,---,2p) is the hidden
layer conformed by M hidden units. The hidden units z,,
are created from linear combinations of the input variables
x via z, = tanh(ag + alx),m = 1,..,M, where ag
and al are model parameters, and tanh is the hyperbolic
tangent function. The NN is trained by minimizing the error
between real outcome values (i.e., ground truth) and predicted
values, and performing a back-propagation method to obtain
the optimal model parameter values [17].

RF is a classification model that builds a large collection
of decorrelated trees and averages them. These trees are

created through a random selection of the attributes and
samples. Two tuning parameters are involved while building
the RF: the number of grouped variables m, and the number
of trees B. The RF model is described by CEp(z) =
majority vote{Cy(x)} P, where Cy(a) is the class prediction
of the bth RF tree and « represent the predictors [17].

NB is a statistical classification technique based on Bayes’
theorem. NB classifier assumes that the predictors are inde-
pendent of each other such that P(z|C) = M¢ , P(z;|C),
where = (z1, z9, ..., 24) are the predictors and C' the student
persistence value. Consequently, the joint probability P(C, x)
is calculated as P(C,x) = P(C)I{_,P(z;|C). Thus, the
NB classified predicts an outcome C' for a new predictor x
by selecting arg maxc (P(C)II%_, P(x;|C)), where P(C) and
P(z;|C) are the estimation of the outcome probability and the
conditional probabilities of the predictors @ = (x1,x2, ..., Tq)
[18].

4) Traning and Evaluation: During the training of ML clas-
sification models, the samples were divided into ten randomly
generated and equally sized folds for Cross-Validation (CV).
Nine out of the ten folds were utilized for model training,
while the remaining fold was allocated for model testing.
This evaluation process was iterated until all folds had been
considered in the testing dataset. The entire procedure was
repeated 100 times to analyze the consistency of the models.
The classification results during each CV were compared
with the ground truth student persistence to evaluate the
performance of the models, as shown in Fig 1.

We employed four classification metrics, namely:

_ TP4TN
1) accuracy= TPT*PTNJFFP+FN,

2) precision= TPITD®

— TP
3) recall= 7TP+FNéTagd
4) Fl-score= TP+ EFPFEN’

where T'P is true positive (i.e., correct prediction of student
attrition), T'N is true negative (i.e., correct prediction of
student persistence), F'P is false positive (i.e., predict student
attrition when the student did not leave the program), and
F'N is false negative (i.e., predict student persistence when
the student left the program).

Accuracy represents the percentage of correct predictions.
In binary classification with imbalanced classes, such as
this study, accuracy measurements can lead to misleading
conclusions due to their inherent bias toward favoring the
classification of the majority class [19]. On the other hand,
precision measures the ratio between the correct predictions of
student attrition and all students correctly predicted. Similarly,
recall calculates the ratio of the correct predictions of student
attrition to the total true number of students who have dropped
out. The Fl-score represents the harmonic mean between the
precision and recall metrics.

IV. RESULTS

The metrics obtained from the 100 iterations of the ten-
fold CVs are depicted in Fig. 2. The metrics are represented
as a box plot using each combination of encoding methods
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Fig. 2. Evaluation Metrics for the Three Encoding Methods and Three Classification Models: a) Accuracy, b) Precision, ¢) Recall, and d) Fl-score.

and classification models employed in this study. Fig. 2 (a)
shows that the highest accuracy is achieved with the RF model,
regardless of the encoding method, reaching a mean of ~ (.81,
for all iterations. It is closely followed by the NB and the NN
accuracy.

A particular low accuracy (i.e., ~ 0.5) is obtained with the
NB model when the race is one-hot encoded (see Fig. 2a).
The NB classifier assumes that all predictors (features) are
conditionally independent given the class label. This means
that once we know the class label, the presence or absence
of any particular feature should not influence the presence
or absence of any other feature. But, when categorical data
is encoded using one-hot encoding strategy, each category
within a feature is transformed into its own binary feature. This
expansion results in a set of binary features where each feature
represents the presence or absence of a specific category
within the original feature (e.g., race). Consequently, this
encoding strategy introduces dependencies among the binary
features derived from the same original categorical feature,
as they cannot coexist within the same observation. Due to
this encoding process, the assumption of independence among
predictors is violated. In other words, the binary features
derived from the same categorical variable are not independent
of each other, as they are mutually exclusive within each
observation. This violation of the independence assumption
can help explain the worsened performance of the NB model,
as it relies heavily on this assumption for its probabilistic
calculations.

Fig. 2b shows that the RF precision is ~ 0.78, which
is notably superior compared to the NN and NB classifiers.
Notice also that the NB precision is considerably low at around
0.4, which is attributed to the violation of the independence
assumption discussed earlier. From Fig. 2 (c) it is observed that
all combinations of encoding methods and ML models exhibit
similar recall values, around 0.57, except for the one-hot NB
case, which achieves recall values close to one. This implies
that such a model is more sensitive to student attrition’s
FN (i.e., predicting student persistence when the student has
discontinued his/her studies). The high recall and low precision
values using the one-hot NB combination are attributed to a
large amount of FP predictions and few FN predictions, as
shown in Table II. Furthermore, the mean F1-score of all ML
models is approximately 0.6, as depicted in Fig 2 (d). The
precision, recall, and Fl-score values present more variability

across the CV iterations compared to the accuracy variability
for all models, as shown in Fig. 2.

TABLE 1T
CONFUSION MATRIX OF THE 1ST CV ITERATION USING THE ONE-HOT
NB MODEL
Ground Prediction
Truth Attrition | Persistence
Attrition 279 12
Persistence 469 235

V. DISCUSSION & CONCLUSIONS

In this study, the impact of different coding strategies for
categorical data, such as race, on the performance of ML
models for engineering persistence prediction was evaluated.
Three different coding strategies, namely scalar conversion,
one-hot encoding, and binary encoding, were assessed con-
sidering three distinct statistical classifiers, i.e., NN, RF, and
NB. A significant finding was that the one-hot encoding
strategy drastically reduced the performance of the NB model,
including, accuracy, precision, and Fl-score. Such behavior
can be explained by the fact that the one-hot encoding strategy
violates the main statistical assumption of the NB model,
the assumption of independence between considered features.
Therefore, the observed deterioration in performance when
using one-hot encoding with the Naive Bayes Classifier on
categorical data can be attributed to the conflict between
the encoding strategy and the Naive Bayes assumption of
predictor independence. This combination of encoding type
and modeling choice should be avoided in engineering edu-
cation research. This highlights the importance of considering
appropriate encoding strategies that align with the underlying
assumptions of the classification model utilized.

Overall, our results showed that though coding strategies
for categorical variables did not affect predictive outcomes
as much as ML model types, certain coding strategies can
lead to violation of model assumptions and impact model
performance, thus, it is meaningful to test different prepro-
cessing methodologies rather than arbitrarily selecting one
popular method. Correspondingly, our next step is to work
on a larger dataset to keep testing different categorical data
coding strategies, but we will not continue with the Naive-
Bayes and one-hot-encoding modeling combination. We will



instead use a Bayes classifier with a prior distribution, and
in addition, work to reduce the number of correlated nodes.

We

will similarly test continuous variable standardization or

normalization methods.
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