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Abstract
We study constrained comonotone min-max op-
timization, a structured class of nonconvex-
nonconcave min-max optimization problems, and
their generalization to comonotone inclusion. In
our first contribution, we extend the Extra An-
chored Gradient (EAG) algorithm, originally pro-
posed by Yoon & Ryu (2021) for unconstrained
min-max optimization, to constrained comono-
tone min-max optimization and comonotone in-
clusion, achieving an optimal convergence rate of
O
(
1
T

)
among all first-order methods. Addition-

ally, we prove that the algorithm’s iterations con-
verge to a point in the solution set. In our second
contribution, we extend the Fast Extra Gradient
(FEG) algorithm, as developed by Lee & Kim
(2021), to constrained comonotone min-max op-
timization and comonotone inclusion, achieving
the same O

(
1
T

)
convergence rate. This rate is

applicable to the broadest set of comonotone in-
clusion problems yet studied in the literature. Our
analyses are based on simple potential function
arguments, which might be useful for analyzing
other accelerated algorithms.

1. Introduction
Min-max optimization is a cornerstone in game theory, op-
timization, and online learning. While classical theoretical
studies have primarily focused on the convex-concave case,1
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1For closed convex sets X and Y , and a smooth function f(·, ·),
the corresponding min-max optimization problem is formulated
as: minx∈X maxy∈Y f(x, y),. A min-max optimization problem
is convex-concave when additionally, function f(·, ·) is convex in
x and concave y.

there has been growing interest in nonconvex-nonconcave
min-max optimization problems within the machine learn-
ing and optimization community. This surge in attention is
attributed to a range of innovative applications of nonconvex-
nonconcave min-max such as generative adversarial net-
works (GANs) (see (Goodfellow et al., 2014; Arjovsky et al.,
2017)), adversarial examples (see (Madry et al., 2017)), ro-
bust optimization (see (Ben-Tal et al., 2009)), and reinforce-
ment learning (see (Du et al., 2017; Dai et al., 2018)).

Unfortunately, even finding a first-order stationary point is
generally intractable for nonconvex-nonconcave min-max
optimization problems (Daskalakis et al., 2021). In light
of this obstacle, recent research has shifted focus towards
classes of nonconvex-nonconcave min-max optimization
problems that exhibit more structure. One class that has
received extensive attention is the comonotone min-max op-
timization problem proposed by Bauschke et al. (2021) (see
Example 1 for the definition), which captures the convex-
concave setting as a special case.

During the past few years, we have witnessed a series of
exciting advancements in comonotone min-max optimiza-
tion (Diakonikolas et al., 2021; Pethick et al., 2022; Lee &
Kim, 2021; Yoon & Ryu, 2022; Sedlmayer et al., 2023; Cai
& Zheng, 2023a;b; Tran-Dinh, 2023; Gorbunov et al., 2023).
However, the algorithms proposed in these studies often
exhibit one or more of the following limitations: (a) they
suffer a sub-optimal convergence rate, (b) they only apply to
the unconstrained setting or (c) they lack point convergence
guarantees.2 Addressing these challenges, the primary goal
of our paper is to design algorithms that simultaneously
surmount all three of these limitations. More specifically,
we seek to answer the following question:

Question: Can we design algorithms for comonotone
min-max optimization that have (i) the optimal conver-
gence rate in the constrained setting and (ii) point
convergence to the solution set?

We provide an affirmative answer to this question. In partic-
ular, we design algorithms that exhibit the optimal conver-
gence rate of O(1/T ) in the constrained setting for comono-
tone min-max optimization, and our algorithms are guar-

2An algorithm has point convergence if its iterates has a limit.
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anteed to converge to a point within the solution set. See
Table 1 for comparison between our algorithms and the ones
proposed in the literature. Indeed, our findings extend to
the more general problem of Comonotone Inclusion. More
specifically, we consider composite inclusion problems that
involve a single-valued and Lipschitz continuous operator
F : Rn → Rn, and a maximally monotone set-valued opera-
tor A : Rn → P(Rn).3 The goal is to find a point z∗ ∈ R

n

such that 0 ∈ F (z∗) + A(z∗). If the composite operator
satisfies the ρ-comonotonicity condition:

⟨u− u′, z − z′⟩ ≥ ρ∥u− u′∥2,
∀z, z′ ∈ Rn and ∀u ∈ F (z) +A(z), u′ ∈ F (z′) +A(z′),

we refer to these problems as Comonotone Inclusion Prob-
lems (CMI). It is not hard to see that both the unconstrained
comonotone min-max optimization and the monotone varia-
tional inequality fall under the umbrella of CMI. The general
formulation of CMI enables us to capture more complex
settings, such as constrained or non-smooth min-max opti-
mization. For a more detailed discussion, see Section 2.

1.1. Our Contributions

In this paper, we evaluate the quality of a solution by
measuring the norm of the composite operator. Specif-
ically, a point z ∈ R

n is an ϵ-approximate solution if
0 ∈ F (z) +A(z) + B(0, ϵ), where B(0, ϵ) is the ball with
radius ϵ centered at 0. As discussed in Section 2.2, this
criterion is equivalent to the tangent residual of z, a notion
introduced in (Cai et al., 2022), being no more than ϵ.

First, we extend the Extra Anchored Gradient algorithm
(composite-EAG), originally proposed by Yoon & Ryu
(2021) for unconstrained convex-concave min-max prob-
lems, to solve ρ-comonotone composite inclusion problems.

Contribution 1: We show that the T -th iterate of
(composite-EAG) is an O( 1

T )-approximate solution to
CMI if (i) the single-valued operator F is L-Lipshitz,
(ii) the set-valued operator A is maximally monotone,
and (iii) the composite operator F + A is ρ > − 1

20L -
comonotone. Additionally, our algorithm ensures point
convergence to a point within the solution set when
condition (i), (ii) and (iii) hold.

Next, we extend the Fast Extra-Gradient (FEG) algo-
rithm Lee & Kim (2021) originally designed for uncon-
strained comonotone convex-concave min-max optimization
to comonotone inclusion problems.

3The powerset of Rn is denoted as P(Rn).

Contribution 2: We show that the T -th iterate of
(composite-FEG) is an O( 1

T )-approximate solution to
CMI if (i) the single-valued operator F is L-Lipschitz,
(ii) the set-valued operator A is maximally monotone,
and (iii) the composite operator F + A is ρ > − 1

2L -
comonotone. Additionally, our algorithm is guaranteed
point convergence if (i) and (ii) hold, and the composite
operator F +A is monotone, i.e., 0-comonotone.

Note that the convergence rate of our algorithms composite-
EAG and composite-FEG matches the lower bound by (Di-
akonikolas, 2020; Yoon & Ryu, 2021), and is therefore
optimal for any first-order method. Some further remarks
are in order.

• Our algorithms composite-EAG and composite-FEG are
the first first-order algorithms with optimal O

(
1
T

)
con-

vergence rates for the constrained and negatively comono-
tone setting. We remark that Kovalev & Gasnikov (2022)
concurrently propose composite-EAG and prove its con-
vergence in the constrained and monotone setting.

• Our algorithm composite-FEG achieves the optimal con-
vergence rate in the constrained and negatively monotone
setting with ρ > − 1

2L , which represents the widest range
of ρ values among all single-loop algorithms.4

• We are the first to provide first-order methods that achieve
both optimal convergence rates and point convergence in
the constrained and negatively comonotone setting.

1.2. Related Work

There is a vast literature on inclusion problems and varia-
tional inequalities. See (Facchinei & Pang, 2003; Bauschke
& Combettes, 2011; Ryu & Boyd, 2016) and the references
therein. We provide a brief discussion of the most relevant
results here and postpone the rest to Appendix A.

Accelerated Convergence Rate for Convex-Concave Min-
Max Optimization and Monotone Variational Inequal-
ities. We overview results that achieve the O( 1

T ) accel-
erated convergence rate in terms of the operator norm or
residual. Note that these results imply O( 1

T ) convergence
rate in terms of the gap function. We describe these results
in the language of inclusion problems.

Recent results show accelerated rates through Halpern itera-
tion (Halpern, 1967) or a similar mechanism – anchoring.

4Very recently, some works propose algorithms that work for
a wider range of ρ > − 1

L
in the unconstrained (Cai et al., 2024;

Fan et al., 2024) and constrained setting (Alacaoglu et al., 2024).
However, these algorithms are double-loop and are sub-optimal
by log T in terms of the convergence rates. It is an open question
to design a single-loop algorithm that works for ρ > − 1

L
with no

spurious log factors.
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Table 1. Existing results for comonotone inclusion problem. The convergence rate is in terms of the operator norm (in the unconstrained
setting) and the residual (in the constrained setting). (†): The O( 1√

T
) convergence rates hold under the weak Minty assumption, which is

implied by the comonotonicity assumption.

Algorithm Rate Range of ρ Constraints Point Convergence

EG+ (Diakonikolas et al., 2021)
(Gorbunov et al., 2023)† O( 1√

T
)

(
− 1

2L ,+∞
)

✗ ✓

CEG+ (Pethick et al., 2022; 2023)† O( 1√
T
)

(
− 1

2L ,+∞
)

✓ ✓

Double-Loop Halpern (Diakonikolas, 2020)
(Kohlenbach, 2022) O( log (T )

T ) (− 1
2L ,+∞] ✓ Unknown

APG∗ (Yoon & Ryu, 2022) O( log (T )
T ) [0,+∞] ✓ ✓

EAG (Yoon & Ryu, 2021) O( 1
T ) [0,+∞] ✗ ✓

FEG (Lee & Kim, 2021) O( 1
T )

(
− 1

2L ,+∞
)

✗ ✓(for ρ ≥ 0)

ARG (Cai & Zheng, 2023b) O( 1
T )

[
− 1

60L ,+∞
)

✓ Unknown

AOG (Cai & Zheng, 2023a) O( 1
T ) [0,+∞] ✓ Unknown

fOGDA (Sedlmayer et al., 2023) O( 1
T ) [0,+∞] ✓ ✓

composite-EAG [This paper] O( 1
T )

[
− 1

20L ,+∞
)

✓ ✓

composite-FEG [This paper] O( 1
T )

(
− 1

2L ,+∞
)

✓ ✓(for ρ ≥ 0)

Implicit versions of Halpern iteration have O( 1
T ) conver-

gence rate (Kim, 2021; Lieder, 2021; Park & Ryu, 2022)
for monotone operators and explicit variants of Halpern
iteration achieve the same convergence rate when F is co-
coercive and A is the subdifferential of the indicator func-
tion of the feasible set (Diakonikolas, 2020; Kim, 2021).
Diakonikolas (2020) also provides a double-loop imple-
mentation of the algorithm for monotone operators at the
expense of an additional logarithmic factor in the conver-
gence rate. Yoon & Ryu (2021) proposes the extra anchored
gradient (EAG) method, which is the first explicit method
with an accelerated O( 1

T ) rate in the unconstrained setting
for monotone operators, i.e., F is monotone and A = 0.5.
They also establish a matching Ω( 1

T ) lower bound that holds
for all first-order methods. Convergence analysis of the past
extragradient method with anchoring in the unconstrained
setting is provided by Tran-Dinh & Luo (2021). More re-
cently, Tran-Dinh (2022) studies the connection between
Halpern iteration and Nesterov’s accelerated method and
provides new algorithms for monotone operators and al-
ternative analyses for EAG in the unconstrained setting.
Sedlmayer et al. (2023) analyzes the fast optimistic gradi-
ent descent ascent (fOGDA) and shows that the algorithms
achieve O( 1

T ) convergence rate for constrained monotone
variational inequalities, i.e., F is monotone and A is the sub-
differential of the indicator function of the feasible set. Cai
& Zheng (2023a) proposes an anchored variant of optimistic

5We use A = 0 to denote the set operator that maps any point
to ∅

gradient descent ascent (AOG) for monotone games, and
their analysis extends to constrained monotone variational
inequalities.

Accelerated Convergence Rate for Comonotone Min-
Max Optimization and Comonotone Inclusion. For
unconstrained comonotone min-max optimization prob-
lems, i.e., F is comonotone and A = 0, Lee & Kim
(2021) proposes a generalization of EAG called fast ex-
traradient (FEG), which achieves O( 1

T ) convergence rate.
For constrained comonotone min-max optimization prob-
lems, convergence of implicit methods such as the proximal
point algorithm and the Halpern iteration has been ana-
lyzed (Bauschke et al., 2021; Kohlenbach, 2022). Moreover,
the explicit double-loop variants of the Halpern iteration
achieves O( log T

T ) convergence rates (Diakonikolas, 2020;
Kohlenbach, 2022). Cai & Zheng (2023b) analyzes the an-
chored variant of Reflected Gradient (ARG) and shows a
O( 1

T ) fast convergence rate for a subset of comonotone in-
clusion problems covered by our algorithms.6 It is unknown
whether their algorithm has point convergence.

Point Convergence in the Convex-Concave and Mono-
tone Setting. For unconstrained convex-concave min-max
optimization problems, Yoon & Ryu (2022) shows that a
range of fast algorithms, namely EAG (Yoon & Ryu, 2021),
FEG (Lee & Kim, 2021) and anchored Popov’s scheme

6See the paragraph of “Preliminary Version of this Paper” for
discussion between their results and ours.
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(Tran-Dinh & Luo, 2021), all converge to the Optimized
Halpern Iteration (Lieder, 2021; Kim, 2021) – an implicit
method. Consequentially, this implies that all aforemen-
tioned methods have point convergence, as the Optimized
Halpern Iteration has point convergence. Additionally, Sedl-
mayer et al. (2023) shows that the fOGDA has point con-
vergence to the solution set for constrained monotone varia-
tional inequalities.

Preliminary Version of this Paper. We would like to
mention that the initial version of this paper was first made
available online in June 2022. This early version included
an algorithm similar to composite-EAG that is capable of
achieving an O( 1

T ) accelerated convergence rate for CMI.
In concurrent work, Kovalev & Gasnikov (2022) propose
composite-EAG and prove its convergence for CMI with
ρ ≥ 0. The current version not only includes this result but
also introduces a novel point convergence analysis. Note
that Sedlmayer et al. (2023); Cai & Zheng (2023a;b) ap-
peared after our manuscript was available online. In particu-
lar, the analyses used in Cai & Zheng (2023a;b) are similar
to the one first proposed in this paper, building upon certain
key lemmas and inequalities established here. Tran-Dinh
(2023) provides an alternative proof for the convergence
rates of our algorithm composite-FEG but does not provide
any point convergence guarantees.7

We summarize all results discussed in this section and our
results in Table 1.

2. Preliminaries
We consider the Euclidean Space (Rn, ∥ · ∥), where ∥ · ∥ is
the ℓ2 norm and ⟨·, ·⟩ denotes inner product on Rn.

Basic Notions about Operators. A set-valued operator
A : Rn ⇒ R

n maps z ∈ R
n to a subset A(z) ⊆ R

n. We
say A is single-valued if |A(z)| = 1 for all z ∈ R

n. The
graph of an operator A is defined as GraA = {(z, u) : z ∈
R

n, u ∈ A(z)}. The inverse operator of A is denoted as
A−1 whose graph is GraA−1 = {(u, z) : (z, u) ∈ GraA}.
We also denote Zer(A) = {z ∈ R

n : 0 ∈ A(z)}. For
two operators A and B, we denote A + B as the opera-
tor with graph GraA+B = {(z, uA + uB) : (z, uA) ∈
GraA, (z, uB) ∈ GraB}. We denote the identity operator
as I : Rn → R

n. For L ∈ (0,∞), a single-valued operator
A : Rn → R

n is L-Lipschitz if

∥A(z)−A(z′)∥ ≤ L · ∥z − z′∥, ∀z, z′ ∈ R
n.

Moreover, A is non-expansive if it is 1-Lipschitz. For a non-
expansive operator A, we denote its fix points Fix(A) =
{z ∈ R

n : z = A(z)}. For a closed convex set Z ⊆ R
n

7composite-FEG was proposed in the second version of this
paper, which appeared online in August 2022.

and point z ∈ R
n, we denote the normal cone operator as

NZ :

NZ(z) =

{
∅, z /∈ Z,

{v ∈ R
n : ⟨v, z′ − z⟩ ≤ 0, ∀z′ ∈ Z}, z ∈ Z.

Define the indicator function

IZ(z) =

{
0 if z ∈ Z,

+∞ otherwise.

Then it is not hard to see that the subdifferential operator
∂IZ = NZ . The projection operator ΠZ : Rn → R

n is
defined as ΠZ [z] := argminz′∈Z ∥z − z′∥2.

(Co)monotone Operators For ρ ∈ R, an operator A :
R

n ⇒ R
n is ρ-comonotone (Bauschke et al., 2021),8 if

⟨u− u′, z − z′⟩ ≥ ρ∥u− u′∥2, ∀(z, u), (z′, u′) ∈ GraA .

If A is 0-comonotone, then A is monotone. If A is ρ-
comonotone for ρ > 0, we also say A is ρ-cocoercive (a
stronger assumption than monotonicity). When A satisfies
negative comonotonicity, i.e., ρ-comonotonicity with ρ < 0,
then A is possibly non-monotone. Negative comonotonicity
is the focus of this paper in the non-monotone setting.

A is maximally ρ-comonotone if A is ρ-comonotone and
there is no other ρ-comonotone operator B such that
GraA ⊂ GraB strictly. A is maximally monotone if it
is maximally 0-comonotone. When f : Rn → R is a con-
vex closed proper function, then its subdifferential operator
∂f is maximally monotone. As an example, ∂IZ = NZ is
maximally monotone.

Resolvent Operators We denote the resolvent of an op-
erator A as JA := (I +A)−1.
Proposition 2.1. (Rockafellar, 1976; Ryu & Boyd, 2016;
Bauschke & Combettes, 2011; Ryu & Yin, 2022) When A
is maximally monotone, its resolvent JηA has the following
properties: for any η > 0,

1. JηA is well-defined on Rn and non-expansive;

2. if z = JηA(z
′), z′−z

η ∈ A(z);

3. when A = NZ is the normal cone operator of a closed
convex set Z ⊆ R

n, JηA = ΠZ is the projection
operator.

2.1. Inclusion Problems with Negatively Comonotone
Operators.

Given a single-valued and possibly non-monotone operator
F and a set-valued maximally monotone operator A, we

8when ρ < 0, ρ-comonotonicity is also known as |ρ|-
cohypomonotonicity (Combettes & Pennanen, 2004).
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denote E = F +A. The comonotone inclusion problem is
to find a point z∗ ∈ R

n that satisfies

0 ∈ E(z∗) = F (z∗) +A(z∗). (CMI)

We say z is an ϵ-approximate solution to CMI if 0 ∈ F (z)+
A(z) + B(0, ϵ). We summarize the assumptions on CMI
below.

Assumption 2.2. In CMI,

1. F : Rn → R
n is L-Lipschitz.

2. A : Rn ⇒ R
n is maximally monotone.

3. E = F + A is ρ-comonotone, i.e., there exists ρ ≤ 0
such that

⟨u− u′, z − z′⟩ ≥ ρ∥u− u′∥2, ∀(z, u), (z′, u′) ∈ GraE .

4. There exists a solution z∗ ∈ R
n such that 0 ∈ E(z∗).

The formulation of CMI provides a unified treatment for
a range of problems including variational inequalities (see
Appendix B.1), min-max optimization, and multi-player
games. We present one detailed example below and refer
readers to (Facchinei & Pang, 2003) for more examples.
Example 1 (Min-Max Optimization). The following struc-
tured min-max optimization problem captures a wide range
of applications in machine learning such as GANs, adver-
sarial examples, robust optimization, and reinforcement
learning:

min
x∈Rnx

max
y∈Rny

f(x, y) + g(x)− h(y), (1)

where f(·, ·) is possibly non-convex in x and non-concave
in y. Regularized and constrained min-max problems are
covered by appropriate choices of lower semicontinuous
and convex functions g and h. Examples include ℓ1-norm,
ℓ2-norm, and indicator function of a convex feasible set.
Let z = (x, y), we define F (z) = (∂xf(x, y),−∂yf(x, y))
and A(z) = (∂g(x), ∂h(y)). If F and A satisfies Assump-
tion 2.2, then we call it a comonotone min-max optimization
problem. See (Lee & Kim, 2021, Example 1) for examples
of nonconvex-nonconcave conditions that imply negative
comonotonicity. We also note that the resolvent of ∂g is also
known as the proximal operator proxηg = (I + λη∂g)−1.
The resolvent Jη∂g is efficiently computatable for g being
the ℓ1-norm, ℓ2-norm, matrix norms, an indicator function
for a convex feasible set, among many others (see (Parikh
et al., 2014, Ch 6, 7) for a comprehensive overview of prox-
imal operators and their efficient computation).

2.2. Convergence Criteria

An appropriate convergence criterion is the tangent residual
rtanF,A(z) := minc∈A(z) ∥F (z) + c∥, which is an extension

of the operator norm ∥F (z)∥ in the unconstrained setting
(A = 0) to the composite setting. This is a natural quantity
for inclusion problems, as rtanF,A(z) ≤ ϵ is equivalent to
z being an ϵ-approximate solution to CMI. In this paper,
following (Cai et al., 2022), we refer to this quantity as the
“tangent residual”. Another commonly-used convergence
criterion that captures the stationarity of a solution is the
natural residual rnatF,A := ∥z − JA[z − F (z)]∥. Note that
z∗ is a solution to CMI iff z∗ = JA[z

∗ − F (z∗)]. The
following fact shows that natural residual is upper bounded
by the tangent residual (see proof in Appendix B.2).
Fact 1. In CMI, rnatF,A(z) ≤ rtanF,A(z).

In this paper, we state our convergence rates in terms of
the tangent residual rtanF,A(z), which implies (i) convergence
rates in terms of the natural residual rnatF,A(z), and (ii) z is
an approximate solution to CMI and the variational inequal-
ity problems including SVI and MVI (see Definitions in
Appendix B.1).

3. composite-EAG for Comonotone Inclusion
with Point Convergence

We study CMI under Assumption 2.2 with ρ-comonotone
operators. The extra anchored gradient (EAG) algo-
rithm (Yoon & Ryu, 2021) has been shown to have optimal
last-iterate convergence rate and point convergence (Yoon
& Ryu, 2022). However, these results only hold when (i)
A = 0, i.e., the unconstrained setting and (ii) F is mono-
tone (ρ ≥ 0). The state-of-the-art work of Sedlmayer et al.
(2023) achieves similar results in the constrained setting, i.e.,
A = ∂IS for the feasible set S, but still requires the mono-
tonicity assumption on F . Thus the problem of achieving
O(1/T ) convergence rate and point convergence without
the monotonicity assumption is open even in the uncon-
strained case. In this section, we improve both results from
(Yoon & Ryu, 2022; Sedlmayer et al., 2023) by proposing
the composite extra anchored gradient algorithm composite-
EAG that achieves both the optimal O(1/T ) last-iterate
convergence rate (Theorem 3.2) and point convergence (The-
orem 3.8) for CMI with ρ ≥ − 1

20L .

composite-EAG We propose composite extra anchored
gradient (composite-EAG) algorithm (Algorithm 1). Specif-
ically, given an arbitrary z0 and step size η > 0,
composite-EAG first set z1 = JηA[z0 − ηF (z0)] and
c1 = z0−ηF (z0)−z1

η ; then for any k ≥ 1, it updates as shown
in Algorithm 1. Recall that by definition of the resolvent
JηA, we have ck ∈ A(zk). All missing proofs in this section
can be found in Appendix C.
Remark 3.1. A keen reader may notice that in the important
special case of constrained variational inequality problem
where A = NZ is the normal cone of a convex set Z ⊆ R

n,
the zk+ 1

2
produced by composite-EAG may not lie in the
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Algorithm 1 composite-EAG for CMI with ρ > − 1
2L

Initialization: z0 ∈ R
n. Step size η > 0. βk = 1

k+1 for k ≥ 0. Set

z1 = JηA[z0 − ηF (z0)], c1 =
z0 − ηF (z0)− z1

η

for k ≥ 1 do

zk+ 1
2
= βkz0 + (1− βk)zk − ηF (zk)− ηck

zk+1 = JηA[βkz0 + (1− βk)zk − ηF (zk+ 1
2
)]

ck+1 =
βkz0 + (1− βk)zk − ηF (zk+ 1

2
)− zk+1

η

(composite-EAG)

end for

set Z . In Appendix E, we present proj-EAG, a variant of
composite-EAG, designed to consistently produce iterates
within the set Z . Furthermore, proj-EAG preserves the
O(1/T ) convergence rate alongside point convergence.

3.1. Technical Novelty

We illustrate the main technical challenges and techniques
developed in extending the algorithms and their convergence
guarantees to the composite and comonotone settings, which
may also be applicable to analyzing other algorithms.

Constraints. One key challenge is to design the correct up-
date rule of composite-EAG in the composite setting. Stan-
dard approaches, such as adding two backward steps (i.e.,
projections) to EAG, do not yield algorithms that admit
simple analysis. In composite-EAG, we introduce a new ele-
ment ck ∈ A(zk) to ensure that F (zk)+ ck ∈ (F +A)(zk).
If we consider F +A as a single operator, the update rule
of composite-EAG simplifies to that of EAG in the uncon-
strained setting. This property enables us to smoothly extend
the analysis from the unconstrained setting to the compos-
ite setting. The design of composite-EAG also appears in
the concurrent work of Kovalev & Gasnikov (2022). Our
approach to handling constraints has inspired subsequent
work by Sedlmayer et al. (2023), which extends fast OGDA
from the unconstrained to the constrained setting.

Negative Comonotonicity. Negative comonotonicity in-
troduces an additional quadratic term in the analysis of
composite-EAG, and it is unclear how to cancel this term.
We address it through a weighted sum of terms, employing
Young’s inequality and a carefully balanced set of coef-
ficients. Although this approach enables our analysis, it
results in a more restrictive range of ρ ≥ − 1

20L compared
to composite-FEG.

3.2. O(1/T ) Last-Iterate Convergence Rate

In this section, we show that composite-EAG has O(1/T )
last-iterate convergence rate with respect to the tangent resid-
ual, which matches the lower bound for any first-order meth-
ods (Diakonikolas, 2020; Yoon & Ryu, 2021).

Theorem 3.2 (Last-iterate convergence rate of compos-
ite-EAG). Consider a comonotone inclusion problem with
Assumption 2.2 holds with ρ ≥ − 1

20L . Let η = 0.31
L and

{zk, zk+ 1
2
}k≥1 the iterates generated by composite-EAG.

Then the following holds for any T ≥ 1,

rtanF,A(zT )
2 ≤ ∥F (zT ) + cT ∥2 ≤ 20H2

η2T 2
,

where H2 := 6∥z1 − z0∥2+∥z0 − z∗∥2 ≤ 6η2rtanF,A(z0)
2+

∥z0 − z∗∥2.

Proof Sketch We apply a potential function argument.
Recall the definition of the tangent residual rtanF,A(z) :=
minc∈A(z) ∥F (z) + c∥, which involves an optimization
problem and can be hard to analyze directly. Since
ck ∈ A(zk), we have ∥F (zk) + ck∥ ≥ rtanF,A(zk) and
∥F (zk) + ck∥ can be used as a proxy for the tangent resid-
ual. We construct a potential function Vk that is of the
order Ω(k2 · rtanF,A(zk)

2) (Lemma 3.5). Although the po-
tential function may not always decrease, we manage to
prove that the increment in each iteration k is sufficiently
small: Vk+1 − Vk ≤ O(1) · ∥F (zk) + ck∥2 in Theorem 3.4.
We then apply this approximately non-increasing property
of the potential function to conclude O(1/T ) last-iterate
convergence rate of ∥F (zk) + ck∥ and thus rtanF,A(zk).

3.2.1. PROOF OF THEOREM 3.2

Potential function We formally define the potential func-
tion Vk for k ≥ 1 as Vk = k(k+1)

2 ∥ηF (zk) + ηck∥2 +
k⟨ηF (zk) + ηck, zk − z0⟩. A bound on V1 is immediate.
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Lemma 3.3 (Upper bound of V1). In the same setup as
Theorem 3.2, we have V1 ≤ 6∥z1 − z0∥2 ≤ 6η2rtanF,A(z0)

2

The following result that proves that Vk is approximately
non-increasing is the core of the analysis.

Theorem 3.4 (Approximately non-increasing potential). In
the same setup as Theorem 3.2, we have for all k ≥ 1,

Vk+1 − Vk

≤ 1

2
∥ηF (zk+1) + ηck+1∥2 −

9k(k + 1)

4000

∥∥∥zk+ 1
2
− zk+1

∥∥∥2.
The following lemma shows that Vk is of order Ω(k2 ·
rtan(zk)

2).

Lemma 3.5. In the same setup as Theorem 3.2, for any
k ≥ 1, we have

k(k + 1)

4
∥ηF (zk) + ηck∥2 ≤ Vk + ∥z0 − z∗∥2

In particular, Vk ≥ −∥z0 − z∗∥2.

Proof of Theorem 3.2 Recall that H2 ≥ V1+∥z0 − z∗∥2.
For k = 1, from Lemma 3.5, we directly get that
∥ηF (z1) + ηc1∥2 ≤ 4(V1 + ∥z0 − z∗∥2).

Now fix any k ≥ 2. Combining Theorem 3.4 and
Lemma 3.5, we have

k(k + 1)

4
∥ηF (zk) + ηck∥2

≤ Vk + ∥z0 − z∗∥2

≤ V1 + ∥z0 − z∗∥2 + 1

2
·

k∑
t=2

∥ηF (zt) + ηct∥2.

Subtracting 1
2∥F (zk) + ηck∥2 from both sides and noting

that 1
4k ≥ 1

2 for k ≥ 2 gives

k2

4
∥ηF (zk) + ηck∥2

≤ V1 + ∥z0 − z∗∥2 + 1

2
·
k−1∑
t=2

∥ηF (zt) + ηct∥2.

Now we can apply Proposition F.4 with C1 =
V1 + ∥z0 − z∗∥2 to conclude that ∥ηF (zk) + ηck∥2 ≤
20(V1+∥z0−z∗∥2)

k2 ≤ 20H2

k2 .

Corollary 3.6. In the same setup as Theorem 3.4, we have

∞∑
k=1

k(k + 1)
∥∥∥zk+1 − zk+ 1

2

∥∥∥2 ≤ 4000H2.

It also implies ∥zk+1 − zk+ 1
2
∥2 ≤ 8000H2

(k+1)2 for all k ≥ 1.

3.3. Point Convergence of composite-EAG

To further show point convergence of composite-EAG, we
identify a merging path (MP) property, a notion proposed
in (Yoon & Ryu, 2022), between composite-EAG and the
optimized Halpern’s method (OHM) (Lieder, 2021; Kim,
2021). We first present the definition of the merging path
property and results for OHM.

The Merging Path Property (Yoon & Ryu, 2022) Let
R be a deterministic algorithm. We use R(x0;P) =
{x0, x1, . . .} to denote that R applied to problem P with
initial point x0 produces iterates x0, x1, . . .. We say two al-
gorithms R1 and R1 have O(r(k))-merging path if for any
problem P and point x0 ∈ R

n, the iterates Rℓ(x0;P) =

(x0, x
ℓ
1, x

ℓ
2, . . .) for ℓ = 1, 2 satisfy ∥x1

k − x2
k∥

2
= O(r(k)).

We say R1 and R1 are O(r(k))-MP if they have O(r(k))-
merging paths. The merging path property is a strong notion
that quantifies the near-equivalence of algorithms. Yoon &
Ryu (2022) establishes O(1/k2)-MP for EAG, FEG, and the
optimized Halpern’s method (OHM) in the unconstrained
(A = 0) and monotone (ρ ≥ 0) setting. Since it is well-
known that OHM has point convergence, the merging path
property implies point convergence of EAG and FEG in the
unconstrained and monotone setting.

Optimized Halpern’s Method For the inclusion problem
of F + A, OHM is an implicit method: let w0 = z0, it
updates in each iteration k ≥ 0:

wk+ 1
2
= βkw0 + (1− βk)wk

wk+1 = Jη(F+A)[wk+ 1
2
]

(OHM)

where we denote βk = 1
k+1 . For the ease of analysis, we

define dk+1 =
w

k+1
2
−ηF (wk+1)−wk+1

η . By definition of the
resolvent Jη(F+A), we have dk+1 ∈ A(wk+1). We note that
when F +A is maximally ρ-comonotone with ρ > − 1

2L , its
resolvent Jη(F+A) is nonexpansive (Bauschke et al., 2021).
Thus, classical results on Halpern’s iteration show that OHM
converges (Bauschke et al., 2017, Theorem 30.1) and has
optimal last-iterate convergence rate (Lieder, 2021). We
summarize these results below.

Theorem 3.7 (Theorem 30.1 of (Bauschke et al., 2017),
Theorem 2.1 of (Lieder, 2021)). Let w0 = z0 ∈ Z be
any point. If Jη(F+A) has a fixed point,9 then the it-
erates {wk}k≥0 of OHM converge to ΠZer(F+A)[z0] =
argminz∈Zer(F+A) ∥z − z0∥. Moreover, for any k ≥ 1, it

9Jη(F+A) has a fixed point is equivalent to Zer(F + A) is
nonempty.
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holds that

∥ηF (wk+1) + ηdk+1∥2 =
∥∥∥wk+ 1

2
− Jη(F+NZ)[wk+ 1

2
]
∥∥∥2

≤ 4∥w0 − w∗∥2

(k + 1)2
.

Merging Path between composite-EAG and OHM The
main result of this section is to establish that composite-
EAG and OHM are O( 1√

k
)-MP, i.e., ∥zk+1 − wk+1∥2 =

O( 1√
k
) (Theorem 3.8). Combining this result with the con-

vergence guarantee of OHM (Theorem 3.7) directly implies
that composite-EAG converges to the solution closest to the
initial point z0.

Theorem 3.8 (Merging path between composite-EAG and
OHM). Consider a comonotone inclusion problem with
Assumption 2.2 holds with ρ ≥ − 1

20L . Let η = 0.31
L . Denote

{zk}k≥0 the iterates of composite-EAG and {wk}k≥0 the
iterates of OHM. Let w0 = z0, then for any k ≥ 1,

∥zk+1 − wk+1∥2 ≤ 40000H2

(k + 1)
1
2

+
30000H2

(k + 1)2
.

The rate of O( 1√
k
)-MP is worse than O(1/k2)-MP obtained

by Yoon & Ryu (2022) in the unconstrained and monotone
setting. This is due to the need to tackle additional techni-
cal challenges introduced by the constraints and negative
comonotonicity. Understanding the precise dependence on
k for the merging path property is an interesting open prob-
lem. To our knowledge, composite-EAG is the first explicit
algorithm with both optimal convergence rate and point con-
vergence guarantee for CMI. Indeed, such guarantees were
not known even in the unconstrained setting.

Proof Sketch Fix any k, we conduct a single-step analysis
and prove the following inequality

(k + 1)2∥zk+1 − wk+1∥2 ≤ k2∥zk − wk∥2 + (k + 1)2Ek

where Ek represents certain terms. By telescoping the above
inequality, it remains to show that

∑k
t=1(k + 1)2Ek =

O(k3/2), which follows from combining the O(1/k) last-
iterate convergence rate (Theorem 3.2) and Corollary 3.6.

4. composite-FEG: Optimal Convergence Rate
for a Wider Range of ρ

The composite-EAG algorithm has optimal last-iterate con-
vergence rate as well as guaranteed point convergence, but
only for CMI with ρ ≥ − 1

20L . In this section, we pro-
pose the composite Fast Extra Gradient (composite-FEG)
method, an explicit method that is applicable to CMI with
ρ > − 1

2L . We show that composite-FEG achieves opti-
mal O(1/T ) last-iterate convergence rate. We remark that

CMI with ρ > − 1
2L is currently the largest class of non-

monotone problems efficiently solvable by any single-loop
algorithms. Our result generalizes previous results (Yoon &
Ryu, 2021; Lee & Kim, 2021), which are limited to the un-
constrained setting. Additionally, we show that composite-
FEG has point convergence in the monotone setting (ρ = 0),
which matches the state-of-the-art result by (Sedlmayer
et al., 2023).

Extension of FEG for Comonotone Inclusion Given any
initial point z0 ∈ R

n and step size η > 0, composite-FEG
sets c0 = 0 and updates {zk+ 1

2
, zk+1, ck+1}k≥0 as shown

in Algorithm 2. Note that by definition, we have ck ∈ A(zk)
for all k ≥ 1. Our algorithm is inspired by FEG (Lee & Kim,
2021). In particular, when A(z) = 0, i.e., the unconstrained
setting, ck is always 0, and our algorithm is identical to
FEG.

Our main results of the section shows that composite-FEG
has optimal O( 1

T ) for the range of comonotone inclusion
problems with ρ > − 1

2L . Moreover, composite-FEG enjoys
point convergence in the monotone setting. All missing
proofs in this section can be found in Appendix D.

4.1. Last-Iterate Convergence Rate of composite-FEG

Theorem 4.1. Suppose Assumption 2.2 holds for some
ρ ∈ (− 1

2L , 0]. Let z0 ∈ R
n be any starting point and

{zk, zk+ 1
2
}k≥1 be the iterates of composite-FEG with step

size η ∈ (max(0,−2ρ), 1
L ). Then for any T ≥ 1,

min
c∈A(zT )

∥F (zT ) + c∥2 = rtanF,A(zT )
2 ≤ 4

(η + 2ρ)2L2

H2
0L

2

T 2
,

where H2
0 = 4∥z1 − z0∥2 + ∥z0 − z∗∥2 ≤ 4·rtan

F,A(z0)
2

L2 +

∥z0 − z∗∥2.

Remark 4.2. To interpret the convergence rate, one can think
of a properly selected η such that (η + 2ρ)L is an absolute
constant, and rtanF,A(zT )

2 will be O(
H2

0L
2

T 2 ).

We show that composite-FEG enjoys the optimal conver-
gence rate of O( 1

T ) via a potential function argument.

Potential function To analyze our algorithm, we adopt
the following potential function: for k ≥ 1,

Uk :=

(
k2

2

(
1 +

2ρ

η

)
− ρ

η
k

)
· ∥ηF (zk) + ηck∥2

+ k · ⟨ηF (zk) + ηck, zk − z0⟩.

The potential function is the same as the one used in the
analysis for FEG (Lee & Kim, 2021) when ck is always 0,
and we adapt it for non-zero ck’s. The analysis builds on the
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Algorithm 2 composite-FEG for CMI with ρ > − 1
2L

Initialization: z0 ∈ R
n, c0 = 0, βk = 1

k+1 for k ≥ 0
for k ≥ 0 do

zk+ 1
2
= βkz0 + (1− βk)zk − (1− βk)(η + 2ρ)(F (zk) + ck)

zk+1 = JηA

[
βkz0 + (1− βk)zk − ηF (zk+ 1

2
)− 2(1− βk)ρ(F (zk) + ck)

]
ck+1 =

βkz0 + (1− βk)zk − ηF (zk+ 1
2
)− 2(1− βk)ρ(F (zk) + ck)− zk+1

η

(composite-FEG)

end for

following two properties of the potential function: Propo-
sition 4.3 establishes an upper bound of U1; Lemma 4.4
shows Uk+1 ≤ Uk for all k ≥ 1.

Proposition 4.3. U1 ≤ (1+ηL)(3+ηL)
2 · ∥z1 − z0∥2 ≤

4∥z1 − z0∥2 and ∥z1 − z0∥2 ≤ η2 · rtanF,A(z0)
2.

Lemma 4.4. Assume Assumption 2.2 holds for some ρ. Let
z0 ∈ R

n be any initial point and {zk, zk+ 1
2
}k≥1 be the

iterates of composite-FEG with step size η > −2ρ.10 Then
for all k ≥ 1, we have

Uk+1 ≤ Uk − (1− η2L2)(k + 1)2

2

∥∥∥zk+1 − zk+ 1
2

∥∥∥2.
The following lemma shows that Ut is of order Ω(t2 ·
rtanF,A(zt)

2).
Lemma 4.5. In the same setup as Theorem 4.1, for any
t ≥ 1, we have

η(η + 2ρ)t2

4
· ∥F (zt) + ct∥2 ≤ Ut +

η

η + 2ρ
∥z0 − z∗∥2

In particular, Ut ≥ −∥z0 − z∗∥2 if ρ = 0.

Now we are ready to prove O(1/T ) last-iterate convergence
rate of composite-FEG.

Proof of Theorem 4.1 By Proposition 4.3 and the as-
sumption that ηL < 1, U1 ≤ (1+ηL)(3+ηL)

2 · ∥z1 − z0∥2 ≤
4∥z1 − z0∥2 ≤ 4

L2 · rtan(z0)2. Now combining Lemma 4.4
and Lemma 4.5 gives

∥F (zT ) + cT ∥2

≤ 4

η(η + 2ρ)T 2

(
UT +

η

η + 2ρ
∥z0 − z∗∥2

)
≤ 4

(η + 2ρ)2T 2

(
η + 2ρ

η
U1 + ∥z0 − z∗∥2

)
≤ 4

(η + 2ρ)2T 2

(
4∥z1 − z0∥2 + ∥z0 − z∗∥2

)
. (ρ ≤ 0)

This completes the proof.

10Lemma 4.4 holds for all step size η, but our potential function
is no longer useful when η ≤ −2ρ.

4.2. Point Convergence of composite-FEG

In this section, we show that the sequence of iterates
of composite-FEG converges when F is monotone, i.e.,
ρ = 0. We adopt the same idea as in the previous sec-
tion. Specifically, we prove the merging path (MP) prop-
erty between composite-FEG and the optimized Halpern’s
method (OHM). We remark that MP property between FEG
and OHM was established only in the unconstrained set-
ting (Yoon & Ryu, 2022).

Merging Path between composite-FEG and OHM The
main result of this section is to establish that composite-FEG
and OHM are O( 1√

k
)-MP, i.e., ∥zk+1 − wk+1∥ = O( 1√

k
).

Combining this result with the convergence guarantee of
OHM (Theorem 3.7) directly proves that composite-EAG
converges to the solution closest to the initial point z0.
Theorem 4.6 (Merging path between composite-FEG and
OHM). Suppose Assumption 2.2 holds for ρ = 0. Let
z0 = w0 and η ∈ (0, 1

L ). Denote {zk}k≥0 the iterates of
composite-FEG and {wk}k≥0 the iterates of OHM. Denote
H2

0 = 4∥z1 − z0∥2 + ∥z0 − z∗∥2. Then for any k ≥ 1,

∥zk+1 − wk+1∥2 ≤ H2
0

1− η2L2
·
(

24

(k + 1)
1
2

+
36

(k + 1)2

)
.

5. Conclusion and Discussion
In this work, we propose two novel algorithms for solv-
ing comonotone inclusion problems with provable conver-
gence guarantees. The composite-EAG algorithm recovers
EAG from (Yoon & Ryu, 2021) in the unconstrained case
and has O(1/T ) last-iterate convergence rate and the favor-
able point convergence for ρ-comonotone with ρ ≥ − 1

20L .
The composite-FEG algorithm recovers FEG from (Lee
& Kim, 2021) in the unconstrained case, and has O(1/T )
last-iterate convergence rate for ρ-comonotone problems
with ρ > − 1

2L while maintains point convergence in the
monotone case. An interesting open problem is to design
an algorithm that obtains both optimal convergence rate
and point convergence for a wider range of ρ-comonotone
problems.
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A. Additional Related Work
A.1. Additional Classical Results for Convex-Concave Min-Max Optimization

Convergence in Gap Function. Nemirovski and Nesterov show that the average iterate of extragradient-type methods has
O( 1

T ) convergence rate in terms of gap function defined as maxz′∈Z ⟨F (z′), z − z′⟩ (Nemirovski, 2004; Nesterov, 2007),
matching the lower bound for first-order methods (Ouyang & Xu, 2021). Their results extend to the more general monotone
variational inequalities. Convergence to an approximate solution of CMI implies convergences with the same rate for the
gap function, while the converse is not true (see Example 2).

Convergence of the Extragradient Method in Stronger Performance Measures. For stronger performance measures
such as the norm of the operator (when Z = R

n) or the residual (in constrained setting), classical results show that
the best-iterate of the extragradient method converges at a rate of O( 1√

T
) (Korpelevich, 1976; Facchinei & Pang, 2003).

Recently, the same convergence rate is shown to hold even for the last-iterate of the extragradient method (Gorbunov et al.,
2022; Cai et al., 2022). Although O( 1√

T
) convergence on the residual is optimal for all p-SCIL algorithms (Golowich et al.,

2020b;a), a subclass of first-order methods that includes the extragradient method and many of its variations, faster rate is
possible for other first-order methods.

A.2. Additional Results on Nonconvex-Nonconcave Min-Max Optimization

(Weak) Minty Variational Inequality We only introduce the definitions in the unconstrained setting, as that is the setting
considered by several recent results, and all convergence rates are with respect to the operator norm. The Minty variational
inequality (MVI) condition (also called coherence or variationally stable) assumes the existence of point z∗ ∈ R

n such that

⟨F (z), z − z∗⟩ ≥ 0, ∀z ∈ R
n

is studied in e.g., (Dang & Lan, 2015; Zhou et al., 2017; Liu et al., 2019; Malitsky, 2020; Song et al., 2020; Liu et al., 2021).
Extragradient-type algorithms has O( 1√

T
) convergence rate for Lipschitz operators that satisfy the MVI condition (Dang &

Lan, 2015). Diakonikolas et al. (2021) proposes a weaker condition called weak MVI: there exits z∗ and ρ < 0 such that

⟨F (z), z − z∗⟩ ≥ ρ · ∥F (z)∥2, ∀z ∈ R
n.

The weak MVI condition includes both MVI and negative comonotonicity (Bauschke et al., 2021) as special cases.
Diakonikolas et al. (2021) proposes the EG+ algorithm, which has O( 1√

T
) convergence rate under the weak MVI condition

in the unconstrained setting. Böhm (2022) propose OGDA+ in the same setting while Pethick et al. (2022) generalizes EG+
to CEG+ algorithm which has O( 1√

T
) convergence rate under weak MVI condition in general (constrained) setting.

B. Additional Preliminaries
B.1. Monotone Inclusion and Variational Inequality

Variational Inequality. An important special case of CMI is the variational inequality (VI) problem where the maximally
monotone operator A is chosen to be a normal cone operator NZ for a closed and convex feasible set Z . The VI problem
has two variants. The Stampacchia Variational Inequality (SVI) problem is to find z∗ ∈ Z such that

⟨F (z∗), z∗ − z⟩ ≤ 0, ∀z ∈ Z. (SVI)

Such z∗ is called a strong solution to VI. The Minty Variational Inequality (MVI) problem is to find z∗ ∈ Z such that

⟨F (z), z∗ − z⟩ ≤ 0, ∀z ∈ Z. (MVI)

Such z∗ is called a weak solution to VI.

When F is continuous, then every solution to MVI is also a solution to SVI. When F is monotone, every solution to
SVI is also a solution to (MVI), and thus, the two solution sets are equivalent. We remark that the solution set to CMI
is the same as the solution set to SVI. For a convex set Z , ∂IZ is a maximally monotone set-valued operator, and as
such, CMI generilizes MVI, and convex-concave min-max optimization problems for (ρ = 0 and A = ∂IZ ) and serves as
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computational frameworks for numerous important applications in fields such as economics, engineering, probability and
statistics, and machine learning (Facchinei & Pang, 2003; Bauschke & Combettes, 2011; Ryu & Boyd, 2016).

Although the set of exact solutions to CMI for A = ∂IZ coincides with the set of exact solutions to the corresponding
variational inequality, the approximate solutions to these two problems differ due to different performance measures. An
approximate solution to the comonotone inclusion problem CMI must have a small natural residual,11 while an approximate
solution to the variational inequality only satisfies a weaker condition, i.e., its gap function is small.12 Indeed, it is well-
known that an approximate solution to CMI is also an approximate solution to the monotone variational equality, but the
reverse is not true in general.

Approximate Solutions. We say z ∈ Z is an ϵ-approximate solution to SVI or MVI if

⟨F (z), z − z′⟩ ≤ ϵ, ∀z′ ∈ Z, or
⟨F (z′), z − z′⟩ ≤ ϵ, ∀z′ ∈ Z, respectively.

When F is monotone, it is clear that every ϵ-approximate solution to SVI is also an ϵ-approximate solution to MVI; but the
reverse does not hold in general. When F is monotone and Z is bounded by D, then any ϵ

D -approximate solution to CMI
is an ϵ-approximate solution to SVI (Diakonikolas, 2020, Fact 1). Note that when Z is unbounded, neither SVI nor MVI
can be approximated. If we restrict the domain to be a bounded subset of (possibly unbounded) Z , then we can define the
(restricted) gap functions (Nesterov, 2007) as

GAPSV I
F,D (z) := max

z′∈Z∩B(z,D)
⟨F (z), z − z′⟩,

GAPMV I
F,D (z) := max

z′∈Z∩B(z,D)
⟨F (z′), z − z′⟩.

The O( 1
T ) convergence rate for extragradient-type algorithm (Nemirovski, 2004; Nesterov, 2007) is provided in terms of

GAPMV I
F,D (z), which means convergence to an approximate weak solution. Prior to our work, the O( 1

T ) convergence rate
on GAPSV I

F,D (z) was only known in the unconstrained setting (Yoon & Ryu, 2021). When F is monotone, then the tangent
residual rtanF,D(z) ≤ ϵ

D (definition in section 2.2) implies GAPSV I
F,D (z) ≤ ϵ (Cai et al., 2022, Lemma 2). Therefore, our

results (Theorem 3.2, 4.1, and E.4) for the tangent residual and the natural residual also imply an O( 1
T ) convergence rate on

GAPSV I
F,D (z) for SVI. In the following, we show that the converse is not true in general.

Example 2 (Gap function is weaker than natural residual). Consider an instance of the Monotone VI problem on the identity
operator F (x) = x in Z = [0, 1].

• Observe that the natural residual on x ∈ Z is ∥x−ΠZ [x− F (x)]∥ = x.

• Moreover, since Z = [0, 1], observe that for any x ∈ Z and D ≥ 0,

GAPSV I
F,D (x) ≤ GAPSV I

F,1 (x) = max
x′∈[0,1]

x · (x− x′) = x2, and

GAPMV I
F,D (x) ≤ GAPMV I

F,1 (x) = max
x′∈[0,1]

x′ · (x− x′) =
x2

4
.

As a result, any algorithm with O( 1
T ) convergence rate with respect to the gap function only implies a O( 1√

T
) convergence

rate for the corresponding CMI problem or the natural residual.
11The natural residual of a point z is simply the operator norm ∥F (z)∥ in the unconstrained case, i.e., Z = Rn, and equals to the norm

of its natural map z −ΠZ [z − F (z)] (Facchinei & Pang, 2003).
12There are several variations of the gap function. Depending on the exact definition, a small gap function value could mean an

approximate weak solution, i.e., approximately solve the Minty Variational Inequality (MVI), or an approximate strong solution, i.e.,
approximately solve the Stampacchia Variational Inequality (SVI). Formal definitions and discussions are in Section B.1.
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B.2. Proof of Fact 1

Proof. For any c ∈ A(z), we have

rnatF,A(z) = ∥z − JA[z − F (z)]∥
= ∥JA[z + c]− JA[z − F (z)]∥ (z = JA[z + c])
≤ ∥F (z) + c∥. (non-expansiveness of JA)

Thus rnatF,A(z) ≤ minc∈A(z) ∥F (z) + c∥ = rtanF,A(z).

C. Missing Proofs in Section 3
C.1. Proof of Lemma 3.3

Proof. We recall that z1 = JηA[z0−ηF (z0)]. Thus by non-expansiveness of the resolvent JηA, we have for any c0 ∈ A(z0),

∥z1 − z0∥ = ∥JηA[z0 − ηF (z0)]− JηA[z0 − ηc0]∥ ≤ η∥F (z0) + c0∥.

Since the above holds for all c0 ∈ A(z0), we get ∥z1 − z0∥ ≤ ηrtanF,A(z0). By definition of c1, we also have

∥ηF (z1) + ηc1∥2 = ∥z0 − z1 + ηF (z1)− ηF (z0)∥2

≤ 2∥z0 − z1∥2 + 2∥ηF (z1)− ηF (z0)∥2

≤ 4∥z0 − z1∥2.

Now by definition of V1, we have

V1 = ∥η(F (z1) + c1)∥2 + η⟨F (z1) + c1, z1 − z0⟩

≤ ∥η(F (z1) + c1)∥2 + ∥η(F (z1) + c1)∥∥z1 − z0∥

≤ 6∥z1 − z0∥2.

This completes the proof.

C.2. Proof of Theorem 3.4

Proof. We require the following fact.
Fact 2. For any L > 0 and ρ ≥ − 1

20L , η = 0.31
L satisfies

1 +
4ρ

η
−
(
3− 4ρ

η

)
· η2L2 ≥ 9

2000
, (2)

and ρ
η > − 1

4

Our plan is to show Vk − Vk+1 minus two non-negative terms is greater than − 1
2∥ηF (zk+1) + ck+1∥2 +

9k(k+1)
4000 ∥zk+ 1

2
− zk+1∥2.

Non-negative Terms Let p = 1
3 and c = − 4pρ

η ≥ 0. Since F is L-Lipschitz, we have

η2L2 ·
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 − ∥∥∥ηF (zk+ 1
2
)− ηF (zk+1)

∥∥∥2 ≥ 0.

Multiplying both sides of the above inequality by (1 + c) and rearranging terms, we get

p ·
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 − ∥∥∥ηF (zk+ 1
2
)− ηF (zk+1)

∥∥∥2
+
(
(1 + c)η2L2 − p

)
·
∥∥∥zk+ 1

2

∥∥∥2 − c ·
∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2 ≥ 0. (3)

Moreover, since ck ∈ A(zk) and ck+1 ∈ A(zk+1) and the fact that F +A is ρ-comonotone, we have

⟨ηF (zk+1) + ηck+1 − ηF (zk)− ηck, zk+1 − zk⟩ −
ρ

η
∥ηF (zk+1) + ηck+1 − ηF (zk)− ηck∥2 ≥ 0. (4)
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Descent Identity We have the following identity holds by Proposition F.2 (Equation (24)) since ηck = zk − ηF (zk) +
1

k+1 (z0 − zk)− zk+ 1
2

and ηck+1 = zk − ηF (zk+ 1
2
) + 1

k+1 (z0 − zk)− zk+1.

Vk − Vk+1 −
k(k + 1)

2p
· LHS of Inequality (3) − k(k + 1) · LHS of Inequality (4)

=
(1− p)k(k + 1)

2p

∥∥∥ηF (zk+ 1
2
)− ηF (zk+1)

∥∥∥2 (5)

+ (k + 1) ·
〈
ηF (zk+ 1

2
)− ηF (zk+1), ηF (zk+1) + ηck+1

〉
(6)

+
k(k + 1)

2p

(
(p− (1 + c)η2L2) ·

∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + c
∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2) (7)

+
k(k + 1)ρ

η
∥ηF (zk+1) + ηck+1 − ηF (zk)− ηck∥2. (8)

Since ∥a∥2 + ⟨a, b⟩ = ∥a+ b
2∥

2 − ∥b∥2

4 , we have

Expression(5) + Expression(6)

=

∥∥∥∥∥
√

(1− p)k(k + 1)

2p
·
(
ηF (zk+ 1

2
)− ηF (zk+1)

)
+

√
p(k + 1)

2(1− p)k
· (ηF (zk+1) + ηck+1)

∥∥∥∥∥
2

− k + 1

2k
· p

1− p
∥ηF (zk+1) + ηck+1∥2

≥ − p

1− p
∥ηF (zk+1) + ηck+1∥2. (k ≥ 1)

= −1

2
∥ηF (zk+1) + ηck+1∥2.

Now it remains to give a non-negative lower bound of Expression (7) + Expression (8). Recall that p = 1
3 and c = − 4ρp

η ,
thus

(
2

k(k + 1)
) · (Expression (20) + Expression (21))

=

(
1−

(
3− 4ρ

η

)
· η2L2

)
·
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 − 4ρ

η
· ·
∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2
+

2ρ

η
· ∥ηF (zk+1) + ηck+1 − ηF (zk)− ηck∥2

≥
(
1−

(
3− 4ρ

η

)
· η2L2

)
·
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 + 4ρ

η
·
∥∥∥ηF (zk+ 1

2
) + ηck+1 − ηF (zk)− ηck

∥∥∥2
(∥A∥2 − 1

2∥B∥2 ≥ −∥A+B∥2)

=

(
1 +

4ρ

η
−
(
3− 4ρ

η

)
· η2L2

)∥∥∥zk+ 1
2
− zk+1

∥∥∥2
≥ 9

2000

∥∥∥zk+ 1
2
− zk+1

∥∥∥2,
where in the last equality we use the fact that zk+ 1

2
− zk+1 = ηF (zk+ 1

2
) + ηck+1 − ηF (zk) − ηck which holds by the

update rule of composite-EAG, and in the last inequality we use Fact 2.

C.3. Proof of Lemma 3.5

Proof. Fix any k ≥ 1. Since 0 ∈ F (z∗) +A(z∗), by ρ-comonotonicity and Fact 2, we have

⟨ηF (zk) + ηck, zk − z∗⟩ ≥ ρ

η
∥ηF (zk) + ηck∥2 > −1

4
∥ηF (zk) + ηck∥2. (9)
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By definition of Vk, we have

Vk =
k(k + 1)

2
· ∥ηF (zk) + ηck∥2 + k · ⟨ηF (zk) + ηck, zk − z0⟩

=
k(k + 1)

2
· ∥ηF (zk) + ηck∥2 + k · ⟨ηF (zk) + ηck, zk − z∗⟩+ k⟨ηF (zk) + ηck, z

∗ − z0⟩

≥ k(k + 1)

2
· ∥ηF (zk) + ηck∥2 −

1

4
∥ηF (zk) + ηck∥2 + k⟨ηF (zk) + ηck, z

∗ − z0⟩ (By (9))

≥
k(k + 1

2 )

2
· ∥ηF (zk) + ηck∥2 −

k2

4
∥ηF (zk) + ηck∥2 − ∥z0 − z∗∥2

=
k(k + 1)

4
· ∥ηF (zk) + ηck∥2 − ∥z0 − z∗∥2,

where in the second last inequality, we apply ⟨a, b⟩ ≥ −α
4 ∥a

2∥ − 1
α∥b

2∥ with a = ηF (zk) + ηck, b = z∗ − z0, and α = k.
This completes the proof.

C.4. Proof of Corollary 3.6

Proof. By Theorem 3.4, we have

9k(k + 1)

4000

∥∥∥zk+1 − zk+ 1
2

∥∥∥2 ≤ Vk − Vk+1 +
1

2
∥ηF (zk+1) + ηck+1∥2

Telescoping the above inequality for k = 1, 2, . . . , T gives

9

4000

T∑
k=1

k(k + 1)
∥∥∥zk+1 − zk+ 1

2

∥∥∥2 ≤ V1 − VT+1 +
1

2

T∑
k=1

∥ηF (zk+1) + ηck+1∥2

≤ V1 + ∥z0 − z∗∥2 + 10H2 ·

(
T∑

k=1

1

(t+ 1)2

)
≤ 9H2.

where in the second inequality we use (1) VT+1 ≥ −∥z0 − z∗∥2 by Lemma 3.5 and (2) ∥ηF (zk+1) + ηck+1∥2 ≤ 20H2)
(t+1)2 by

Theorem E.2, in the last inequality we use
∑∞

k=1
1

(t+1)2 = π2

6 − 1 ≤ 3
4 . This concludes

∑∞
k=1 k(k+1)∥zk+1 − zk+ 1

2
∥2 ≤

4000H2. Since 1
2 (k + 1)2 ≤ k(k + 1) for all k ≥ 1, it further implies ∥zk+1 − zk+ 1

2
∥2 ≤ 8000H2

(k+1)2 for all k ≥ 1.

C.5. Proof of Theorem 3.8

Proof. Using the update rule of composite-EAG and OHM and recall: ηck+1 := zk − ηF (zk+ 1
2
) + βk(z0 − zk)− zk+1

and ηdk+1 = wk+ 1
2
− ηF (wk+1)− wk+1 we have

zk+1 − wk+1 =
(
βkz0 + (1− βk)zk − ηF (zk+ 1

2
)− ηck+1

)
− (βkw0 + (1− βk)wk − ηF (wk+1)− ηdk+1)

= (1− βk)(zk − wk) + η
(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)
, (w0 = z0)

which implies

∥zk+1 − wk+1∥2 = (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (wk+1) + dk+1 − F (zk+ 1
2
)− ck+1

∥∥∥2
+ 2
〈
(1− βk)(zk − wk), η

(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
︸ ︷︷ ︸

I

.

We focus on term I. We can verify

zk+ 1
2
− wk+1 = (1− βk)(zk − wk)− η(F (zk) + ck − F (wk+1)− dk+1).

17
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Thus term I can be rewritten as

I = 2
〈
(1− βk)(zk − wk), η

(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
= 2
〈
zk+ 1

2
− wk+1 + η(F (zk) + ck − F (wk+1)− dk+1), η

(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
= 2η2

〈
F (zk) + ck − F (wk+1)− dk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+

+ 2η
〈
zk+ 1

2
− wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
︸ ︷︷ ︸

Ak

.

Combining the above (we keep term Ak for now), we get

∥zk+1 − wk+1∥2

≤ (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (wk+1) + dk+1 − F (zk+ 1
2
)− ck+1

∥∥∥2
+ 2η2

〈
F (zk) + ck − F (wk+1)− dk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+Ak

= (1− βk)
2∥zk − wk∥2 − η2∥F (wk+1) + dk+1∥2 + 2η2⟨F (zk) + ck, F (wk+1) + dk+1⟩

− 2η2
〈
F (zk) + ck, F (zk+ 1

2
) + ck+1

〉
+ η2

∥∥∥F (zk+ 1
2
) + ck+1

∥∥∥2 +Ak.

≤ (1− βk)
2∥zk − wk∥2 + η2∥F (zk) + ck∥2 (We use −a2 + 2ab ≤ b2)

− 2η2
〈
F (zk) + ck, F (zk+ 1

2
) + ck+1

〉
+ η2

∥∥∥F (zk+ 1
2
) + ck+1

∥∥∥2 +Ak

= (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (zk) + ck − F (zk+ 1
2
)− ck+1

∥∥∥2 +Ak

= (1− βk)
2∥zk − wk∥2 +

∥∥∥zk+1 − zk+ 1
2

∥∥∥2 +Ak,

where in the last equality we use the fact that zk+1 − zk+ 1
2
= η(F (zk) + ck − F (zk+ 1

2
) − ck+1) by update rule of

composite-EAG. Plugging βk = 1
k+1 and multiplying both sides with (k + 1)2 gives

(k + 1)2∥zk+1 − wk+1∥2 ≤ k2∥zk − wk∥2 + (k + 1)2
∥∥∥zk+1 − zk+ 1

2

∥∥∥2 + (k + 1)2Ak.

Telescoping the above gives

(k + 1)2∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2 +
k∑

t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + k∑
t=1

(t+ 1)2At.

⇒ ∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2

(k + 1)2
+

1

(k + 1)2

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + 1

(k + 1)2

k∑
t=1

(t+ 1)2At

It remains to bound 1
(k+1)2

∑k
t=1(t+ 1)2∥zt+1 − zt+ 1

2
∥2 and 1

(k+1)2

∑k
t=1(t+ 1)2At.

For the first term, using Corollary 3.6, we have

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 ≤ 2
k∑

t=1

t(t+ 1)
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 ≤ 8000H2.

18



Accelerated Algorithms for Constrained Nonconvex-Nonconcave Min-Max Optimization and Comonotone Inclusion

For the term with At, we need a more careful analysis. We decompose Ak = Bk + Ck +Dk as follows.

Ak = 2η
〈
zk+ 1

2
− wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
= 2η

〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+ 2η

〈
zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
= 2η

〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
︸ ︷︷ ︸

Bk

+2η
〈
zk+1 − wk+1, F (zk+1)− F (zk+ 1

2
)
〉

︸ ︷︷ ︸
Ck

+ 2η⟨zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+1)− ck+1⟩︸ ︷︷ ︸
Dk

.

For Bk, we have

Bk = 2η
〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
≤ 2η

∥∥∥zk+1 − zk+ 1
2

∥∥∥(∥F (wk+1) + dk+1∥+
∥∥∥F (zk+1)− F (zk+ 1

2
)
∥∥∥+ ∥F (zk+1) + ck+1∥

)
≤ 2ηL

∥∥∥zk+1 − zk+ 1
2

∥∥∥2 + 2η
∥∥∥zk+1 − zk+ 1

2

∥∥∥(∥F (wk+1) + dk+1∥+ ∥F (zk+1) + ck+1∥)

≤ 16000H2

(k + 1)2
+ 2η

√
8000H2

(k + 1)2
·

(
2∥z0 − z∗∥
η(k + 1)

+

√
20H2

η(k + 1)

)

≤ 17400H2

(k + 1)2
,

where in the second last inequality we use the last-iterate convergence rate of OHM (Theorem 3.7) and composite-EAG
(Theorem 3.2) as well as the bound on ∥zk+1 − zk+ 1

2
∥2 (Corollary 3.6).

For Ck, we have

Ck = 2η
〈
zk+1 − wk+1, F (zk+1)− F (zk+ 1

2
)
〉

≤ 2η∥zk+1 − wk+1∥
∥∥∥F (zk+1)− F (zk+ 1

2
)
∥∥∥

≤ 2∥zk+1 − wk+1∥
∥∥∥zk+1 − zk+ 1

2

∥∥∥ (F is L-Lipschitz and ηL ≤ 1)

≤ 400H
∥∥∥zk+1 − zk+ 1

2

∥∥∥,
where in the last inequality we use ∥zk+1 − wk+1∥ ≤ 200H is bounded by Corollary C.3.

For Dk, since F +NZ is ρ-comonotone, we have

Dk = 2η⟨zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+1)− ck+1⟩

≤ −2ρη∥F (wk+1) + dk+1 − F (zk+1)− ck+1∥2

≤ −4ρη∥F (wk+1) + dk+1∥2 − 4ρη∥F (zk+1) + ck+1∥2

≤ −4ρ

η
· 4∥z0 − z∗∥2

(k + 1)2
− 4ρ

η
· 20H2

(k + 1)2
(convergence rate of OHM and Theorem 3.2)

≤ 24H2

(k + 1)2
. ( ρη ≥ − 1

4 )

Combining the above bounds for Bk, Ck, Dk, we get

(k + 1)2Ak ≤ 17424H2 + 400H(k + 1)2
∥∥∥zk+1 − zk+ 1

2

∥∥∥.
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Since
∑∞

t=1(t+ 1)2∥zt+1 − zt+ 1
2
∥2 ≤ 3200H2, using Cauchy-Schwartz, we get

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥ ≤

√√√√( k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2) ·

(
k∑

t=1

(t+ 1)2

)
≤ 100H(k + 1)3/2.

Thus 1
(k+1)2

∑k
t=1(t+ 1)2∥zt+1 − zt+ 1

2
∥ ≤ 100H(k + 1)−

1
2 .

Hence we get

1

(k + 1)2

k∑
t=1

(t+ 1)2At =
17424H2

(k + 1)2
+

40000H2

(k + 1)
1
2

Combining all the above, we conclude that for all k,

∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2

(k + 1)2
+

1

(k + 1)2

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + 1

(k + 1)2

k∑
t=1

(t+ 1)2At

≤ 40000H2

(k + 1)
1
2

+
30000H2

(k + 1)2
.

This completes the proof.

C.5.1. BOUNDED ITERATES OF OHM AND COMPOSITE-EAG

In this section, we prove auxiliary results needed in the proof of Theorem 3.8. We show that the iterates of OHM and
composite-EAG all have bounded distance away from the initial point z0.

Lemma C.1 (Bounded Iterates of OHM). The iterates {wk}k≥0 of OHM satisfies for all k ≥ 0

∥wk − w0∥2 ≤ 4∥w0 − w∗∥2.

Proof. When k = 1, by nonexpansiveness of the resolvent Jη(F+A), we know

∥w1 − w∗∥ =
∥∥Jη(F+A)[w0]− Jη(F+A)[w

∗]
∥∥ ≤ ∥w0 − w∗∥.

This implies
∥w1 − w0∥2 ≤ 2∥w1 − w∗∥2 + 2∥w0 − w∗∥2 ≤ 4∥w0 − w∗∥2.

For k ≥ 1, by definitions of OHM and dk+1, we have

∥wk+1 − w0∥2 =

∥∥∥∥ k

k + 1
(wk − w0)− η(F (wk+1) + dk+1)

∥∥∥∥2
≤
(
1 +

1

k

)
k2

(k + 1)2
∥wk − w0∥2 + (1 + k)η2∥(F (wk+1) + dk+1)∥2 (Young’s inequality)

≤ k

k + 1
∥wk − w0∥2 +

4∥w0 − w∗∥2

k + 1
. (Theorem 3.7)

This implies (k + 1)∥wk+1 − w0∥2 ≤ k∥wk − w0∥2 + 4∥w0 − w∗∥2. By induction, it is easy to see that ∥wk − w0∥2 ≤
4∥w0 − w∗∥2 for all k ≥ 0.

Lemma C.2 (Bounded Iterates of composite-EAG). The iterates {zk}k≥0 of composite-EAG satisfies for all k ≥ 0

∥zk − z0∥2 ≤ 16040H2.
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Proof. For k = 1, ∥z1 − z0∥2 ≤ H2 is clear. By definitions of composite-EAG and ck+1, we have

∥zk+1 − z0∥2 =

∥∥∥∥ k

k + 1
(zk − z0)− η(F (zk+ 1

2
) + dk+1)

∥∥∥∥2
≤
(
1 +

1

k

)
k2

(k + 1)2
∥zk − z0∥2 + (1 + k)η2

∥∥∥(F (zk+ 1
2
) + dk+1)

∥∥∥2 (Young’s inequality)

≤ k

k + 1
∥zk − z0∥2 + 2(1 + k)η2

(∥∥∥F (zk+ 1
2
)− F (zk+1)

∥∥∥2 + ∥F (zk+1) + dk+1∥2
)

≤ k

k + 1
∥zk − z0∥2 +

1

k + 1
16040H2. (Corollary 3.6 and Theorem 3.2)

By induction, we get ∥zk+1 − z0∥2 ≤ 16040H2.

Combining Lemma C.1 and Lemma C.2 directly implies that the iterates of OHM and composite-EAG are at most constant
away from each other.

Corollary C.3. Let w0 = z0. The iterates {zk}k≥0 of composite-EAG and the iterates {wk}k≥0 of OHM satisfies for all
k ≥ 0,

∥wk − zk∥ ≤
√

(32080 + 8)H2 ≤ 200H.

D. Missing Proofs in Section 4
D.1. Proof of Proposition 4.3

Proof. Note that z 1
2

= z0 and z1 = JηA[z0 − ηF (z0)]. Thus we have ηc1 = z0 − ηF (z0) − z1. We first bound
∥ηF (z1) + ηc1∥ as follows:

∥ηF (z1) + ηc1∥ = ∥z0 − z1 + ηF (z1)− ηF (z0)∥
≤ ∥z0 − z1∥+ ∥ηF (z1)− ηF (z0)∥ (Triangle inequality)
≤ (1 + ηL) · ∥z0 − z1∥. (F is L-Lipschitz)

Then we can bound U1 as follows:

U1 =
1

2
· ∥ηF (z1) + ηc1∥2 + ⟨ηF (z1) + ηc1, z1 − z0⟩

≤ 1

2
· ∥ηF (z1) + ηc1∥2 + ∥ηF (z1) + ηc1∥ · ∥z1 − z0∥ (Cauchy-Schwarz Inequality)

≤
(
(1 + ηL)2

2
+ (1 + ηL)

)
· ∥z1 − z0∥2

≤ (1 + ηL)(3 + ηL)

2
· ∥z1 − z0∥2.

Moreover, for any c ∈ A(z0), we have

∥z1 − z0∥ = ∥JηA[z0 − ηF (z0)]− JηA[z0 + ηc]∥
≤ η · ∥F (z0) + c∥. (JηA is non-expansive)

Hence ∥z1 − z0∥ ≤ η ·minc∈A(z0) ∥F (z0) + c∥ = η · rtanF,A(z0).

D.2. Proof of Lemma 4.4

Proof. Fix any k ≥ 1. We first present several inequalities. Since F is L-Lipschitz, we have(
− (k + 1)2

2

)
·
(
η2L2 ·

∥∥∥zk+ 1
2
− zk+1

∥∥∥2 − ∥∥∥ηF (zk+ 1
2
)− ηF (zk+1)

∥∥∥2) ≤ 0. (10)
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Additionally, since F +A is ρ-comonotone, ck ∈ A(zk), and ck+1 ∈ A(zk+1), we have

(−k(k + 1))·
(
⟨ηF (zk+1) + ηck+1 − ηF (zk)− ηck, zk+1 − zk⟩

− ρ

η
∥ηF (zk+1) + ηck+1 − ηF (zk)− ηck∥2

)
≤ 0. (11)

The following identity holds due to Identity (25) in Proposition F.2: we treat x0 as z0; xt as zk+ t−1
2

for t ∈ {1, 2, 3};
yt as ηF (zk+ t−1

2
) for t ∈ {1, 2, 3}; u1 as ηck, and u3 as ηck+1; p as η2L2, q as k, and r as ρ

η . Note that by the

update rule of composite-FEG, we have ηck =
zk+

1
k+1 (z0−zk)− k

k+1 (1+2 ρ
η )·ηF (zk)−z

k+1
2

k
k+1 (1+2 ρ

η )
, and by definition, we have

ηck+1 = zk + 1
k+1 (z0 − zk)− ηF (zk+ 1

2
)− 2k ρ

η

k+1 · (ηF (zk) + ηck)− zk+1.

Uk − Uk+1 + LHS of Inequality (10) + LHS of Inequality (11)

=
(1− η2L2)(k + 1)2

2
·
∥∥∥zk+1 − zk+ 1

2

∥∥∥2.
This completes the proof.

The following corollary will be used in the proof of Theorem 4.6.

Corollary D.1. In the same setup as Theorem 4.1 but we assume ρ = 0, then we have

∞∑
k=1

(k + 1)2
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 ≤ 2H2
0

1− η2L2
.

Proof. By Lemma 4.4, we get 1−η2L2

2 (k+1)2∥zk+ 1
2
− zk+1∥2 ≤ Uk −Uk+1 holds for any k ≥ 1. Then the claim follows

by telescoping the above inequality and notice that U1 − Uk+1 ≤ H2
0 .

D.3. Proof of Lemma 4.5

Proof. Fix any T ≥ 1. According to Lemma 4.4, we have UT ≤ U1. Then by definition of UT , we have

UT =

(
T 2

2

(
1 +

2ρ

η

)
− ρ

η
T

)
· ∥ηF (zT ) + ηcT ∥2 + T · ⟨ηF (zT ) + ηcT , zT − z∗⟩

+ T · ⟨ηF (zT ) + ηcT , z
∗ − z0⟩

≥
(
T 2

2

(
1 +

2ρ

η

)
− ρ

η
T

)
· ∥ηF (zT ) + ηcT ∥2 +

ρ

η
T · ∥ηF (zT ) + ηcT ∥2

+ T · ⟨ηF (zT ) + ηcT , z
∗ − z0⟩

=
η(η + 2ρ)T 2

2
· ∥F (zT ) + cT ∥2 + T · ⟨ηF (zT ) + ηcT , z

∗ − z0⟩

≥ η(η + 2ρ)T 2

2
· ∥F (zT ) + cT ∥2 −

η(η + 2ρ)T 2

4
· ∥F (zT ) + cT ∥2

− η

η + 2ρ
∥z0 − z∗∥2

=
η(η + 2ρ)T 2

4
· ∥F (zT ) + cT ∥2 −

η

η + 2ρ
∥z0 − z∗∥2.

In the first inequality, we use the fact that z∗ is a solution of the CMI with the ρ-comonotone operator F +A. In the second
inequality, we use ⟨a, b⟩ ≥ − δ

4∥a∥
2 − 1

δ ∥b∥
2 for δ > 0.
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D.4. Proof of Theorem 4.6

Proof. Using the update rule of composite-FEG and OHM and recall: ηck+1 := zk − ηF (zk+ 1
2
) + βk(z0 − zk) − zk+1

and ηdk+1 = wk+ 1
2
− ηF (wk+1)− wk+1 we have

zk+1 − wk+1 =
(
βkz0 + (1− βk)zk − ηF (zk+ 1

2
)− ηck+1

)
− (βkw0 + (1− βk)wk − ηF (wk+1)− ηdk+1)

= (1− βk)(zk − wk) + η
(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)
, (w0 = z0)

which implies

∥zk+1 − wk+1∥2 = (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (wk+1) + dk+1 − F (zk+ 1
2
)− ck+1

∥∥∥2
+ 2
〈
(1− βk)(zk − wk), η

(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
︸ ︷︷ ︸

I

.

We focus on term I. We can verify

zk+ 1
2
− wk+1 = (1− βk)(zk − wk)− η(1− βk)(F (zk) + ck)− η(F (wk+1) + dk+1).

Thus term I can be rewritten as

I = 2
〈
(1− βk)(zk − wk), η

(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
= 2
〈
zk+ 1

2
− wk+1 + η(1− βk)(F (zk) + ck)− η(F (wk+1) + dk+1), η

(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
= 2η2

〈
(1− βk)(F (zk) + ck)− (F (wk+1) + dk+1), F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+

+ 2η
〈
zk+ 1

2
− wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
︸ ︷︷ ︸

Ak

.

Combining the above (we keep term Ak for now), we get

∥zk+1 − wk+1∥2

= (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (wk+1) + dk+1 − F (zk+ 1
2
)− ck+1

∥∥∥2
+ 2η2

〈
(1− βk)(F (zk) + ck)− (F (wk+1) + dk+1), F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+Ak

= (1− βk)
2∥zk − wk∥2 − η2∥F (wk+1) + dk+1∥2 + 2η2(1− βk)⟨F (zk) + ck, F (wk+1) + dk+1⟩

− 2η2(1− βk)
〈
F (zk) + ck, F (zk+ 1

2
) + ck+1

〉
+ η2

∥∥∥F (zk+ 1
2
) + ck+1

∥∥∥2 +Ak.

≤ (1− βk)
2∥zk − wk∥2 + η2∥(1− βk)(F (zk) + ck)∥2 (We use −a2 + 2ab ≤ b2)

− 2η2(1− βk)
〈
F (zk) + ck, F (zk+ 1

2
) + ck+1

〉
+ η2

∥∥∥F (zk+ 1
2
) + ck+1

∥∥∥2 +Ak

= (1− βk)
2∥zk − wk∥2 + η2

∥∥∥(1− βk)(F (zk) + ck)− F (zk+ 1
2
)− ck+1

∥∥∥2 +Ak

= (1− βk)
2∥zk − wk∥2 +

∥∥∥zk+1 − zk+ 1
2

∥∥∥2 +Ak,

where in the last equality we use the fact that zk+1 − zk+ 1
2
= η(1− βk)(F (zk) + ck)− ηF (zk+ 1

2
)− ηck+1 by update rule

of composite-FEG. Plugging βk = 1
k+1 and multiplying both sides with (k + 1)2 gives

(k + 1)2∥zk+1 − wk+1∥2 ≤ k2∥zk − wk∥2 + (k + 1)2
∥∥∥zk+1 − zk+ 1

2

∥∥∥2 + (k + 1)2Ak.
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Telescoping the above gives

(k + 1)2∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2 +
k∑

t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + k∑
t=1

(t+ 1)2At.

⇒ ∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2

(k + 1)2
+

1

(k + 1)2

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + 1

(k + 1)2

k∑
t=1

(t+ 1)2At

It remains to bound 1
(k+1)2

∑k
t=1(t + 1)2∥zt+1 − zt+ 1

2
∥2 and 1

(k+1)2

∑k
t=1(t + 1)2At. By Corollary D.1, we have∑∞

t=1(t+ 1)2∥zt+1 − zt+ 1
2
∥2 ≤ 2H2

0

1−η2L2 .

For the term with At, we need a more careful analysis. We decompose Ak = Bk + Ck +Dk as follows.

Ak = 2η
〈
zk+ 1

2
− wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
= 2η

〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+ 2η

〈
zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
= 2η

〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
︸ ︷︷ ︸

Bk

+2η
〈
zk+1 − wk+1, F (zk+1)− F (zk+ 1

2
)
〉

︸ ︷︷ ︸
Ck

+ 2η⟨zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+1)− ck+1⟩︸ ︷︷ ︸
Dk

.

For Bk, we have

Bk = 2η
〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
≤ 2η

∥∥∥zk+1 − zk+ 1
2

∥∥∥(∥F (wk+1) + dk+1∥+
∥∥∥F (zk+1)− F (zk+ 1

2
)
∥∥∥+ ∥F (zk+1) + ck+1∥

)
≤ 2ηL

∥∥∥zk+1 − zk+ 1
2

∥∥∥2 + 2η
∥∥∥zk+1 − zk+ 1

2

∥∥∥(∥F (wk+1) + dk+1∥+ ∥F (zk+1) + ck+1∥)

≤ 4H2
0

(1− η2L2)(k + 1)2
+ 2η

√
2H2

0

(1− η2L2)(k + 1)2
·
(
2∥z0 − z∗∥
η(k + 1)

+
2H0

η(k + 1)

)
≤ 20H2

0

(1− η2L2)(k + 1)2
,

where in the second last inequality we use ηL ≤ 1, the last-iterate convergence rate of OHM (Theorem 3.7) and composite-
FEG (Theorem 4.1) as well as the bound on ∥zk+1 − zk+ 1

2
∥2 (Corollary D.1); in the last inequality, we use H0 ≥ ∥z0 − z∗∥.

For Ck, we have

Ck = 2η
〈
zk+1 − wk+1, F (zk+1)− F (zk+ 1

2
)
〉

≤ 2η∥zk+1 − wk+1∥
∥∥∥F (zk+1)− F (zk+ 1

2
)
∥∥∥

≤ 2∥zk+1 − wk+1∥
∥∥∥zk+1 − zk+ 1

2

∥∥∥ (F is L-Lipschitz and ηL ≤ 1)

≤ 12H0√
1− η2L2

∥∥∥zk+1 − zk+ 1
2

∥∥∥,
where in the last inequality we use ∥zk+1 − wk+1∥ ≤ 6H0√

1−η2L2
is bounded by Corollary D.3.
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For Dk, since F +NZ is ρ-comonotone, we have

Dk = 2η⟨zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+1)− ck+1⟩

≤ −2ρη∥F (wk+1) + dk+1 − F (zk+1)− ck+1∥2

≤ −4ρη∥F (wk+1) + dk+1∥2 − 4ρη∥F (zk+1) + ck+1∥2

≤ −4ρ

η
· 4∥z0 − z∗∥2

(k + 1)2
− 4ρ

η
· 4H2

0

(1− η2L2)(k + 1)2
(convergence rate of OHM and Theorem 4.1)

≤ 8H2
0

(1− η2L2)(k + 1)2
. ( ρη ≥ − 1

4 )

Combining the above bounds for Bk, Ck, Dk, we get

(k + 1)2Ak ≤ 28H2
0

1− η2L2
+

12H0√
1− η2L2

(k + 1)2
∥∥∥zk+1 − zk+ 1

2

∥∥∥.
Since

∑∞
t=1(t+ 1)2∥zt+1 − zt+ 1

2
∥2 ≤ 2H2

0

1−η2L2 , using Cauchy-Schwartz, we get

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥ ≤

√√√√( k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2) ·

(
k∑

t=1

(t+ 1)2

)

≤ 2H0√
1− η2L2

(k + 1)3/2.

Thus 12H0√
1−η2L2

∑k
t=1(t+ 1)2∥zt+1 − zt+ 1

2
∥ ≤ 24H2

0

(1−η2L2) (k + 1)3/2.

Hence we get

1

(k + 1)2

k∑
t=1

(t+ 1)2At =
28H2

0

(1− η2L2)(k + 1)2
+

24H2
0

(1− η2L2)(k + 1)
1
2

.

Combining all the above, we concludes that for all k,

∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2

(k + 1)2
+

1

(k + 1)2

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + 1

(k + 1)2

k∑
t=1

(t+ 1)2At

≤ H2
0

1− η2L2
·
(

24

(k + 1)
1
2

+
36

(k + 1)2

)
.

This completes the proof.

D.4.1. BOUNDED ITERATES OF COMPOSITE-FEG

In this section, we prove auxiliary results needed in the proof of Theorem 4.6. We show that the iterates of OHM and
composite-FEG all have bounded distance away from the initial point z0.

Lemma D.2 (Bounded Iterates of composite-FEG). Let ρ = 0. The iterates {zk}k≥0 of composite-FEG satisfies for all
k ≥ 0

∥zk − z0∥2 ≤ 12H2
0

1− η2L2
.
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Proof. For k = 1, ∥z1 − z0∥2 ≤ H2
0 is clear. By definitions of composite-FEG and ck+1, we have

∥zk+1 − z0∥2 =

∥∥∥∥ k

k + 1
(zk − z0)− η(F (zk+ 1

2
) + dk+1)

∥∥∥∥2
≤
(
1 +

1

k

)
k2

(k + 1)2
∥zk − z0∥2 + (1 + k)η2

∥∥∥(F (zk+ 1
2
) + dk+1)

∥∥∥2 (Young’s inequality)

≤ k

k + 1
∥zk − z0∥2 + 2(1 + k)η2

(∥∥∥F (zk+ 1
2
)− F (zk+1)

∥∥∥2 + ∥F (zk+1) + dk+1∥2
)

≤ k

k + 1
∥zk − z0∥2 +

1

k + 1
· 12H2

0

1− η2L2
. (Corollary D.1 and Theorem 4.1)

By induction, we get ∥zk+1 − z0∥2 ≤ 12H2
0

1−η2L2 .

Combining Lemma D.2 and Lemma C.1 gives the following cororllary.

Corollary D.3. Let w0 = z0. The iterates {zk}k≥0 of composite-FEG and the iterates {wk}k≥0 of OHM satisfies for all
k ≥ 0,

∥wk − zk∥ ≤ 6H0√
1− η2L2

.

E. proj-EAG for comonotone inclusion with point convergence
In this section, we study constrained variational inequality problem, a special case of CMI where A = ∂IZ = NZ is the
normal cone operator of a closed convex set Z ⊆ R

n. This problem captures constrained non-convex-non-concave min-max
optimization. We extend the extra anchored gradient (EAG) algorithm in the unconstrained case to this setting and propose
the following projected extra anchored gradient (proj-EAG) algorithm.

zk+ 1
2
= ΠZ [βkz0 + (1− βk)zk − ηF (zk)]

zk+1 = ΠZ [βkz0 + (1− βk)zk − ηF (zk+ 1
2
)]

(proj-EAG)

where βk = 1
k+1 . Note that all the iterates {zk, zk+ 1

2
}k≥0 lies in the feasible set Z ⊆ R

n. As a consequence, we only
require L-Lipschitzness and ρ-comonotonicity hold on the feasible set Z , but not the whole Rn space. Specifically, we
assume F : Z → Z is L-Lipschitz and F +NZ is ρ-comonotone with ρ ≥ − 1

20L .

The two main results of the section are:

1. proj-EAG has O( 1
T ) last-iterate convergence rate with respect to the tangent residual.

2. proj-EAG has point convergence

E.1. Last-Iterate Convergence Rate

We use the following potential function for

Vk :=
k(k + 1)

2
· ∥ηF (zk) + ηck∥2 + k · ⟨ηF (zk) + ηck, zk − z0⟩, k ≥ 1,

where ck :=
βk−1z0+(1−βk−1)zk−1−ηF (z

k− 1
2
)−zk

η for k ≥ 1. Introducing ck gives the identity zk+1 = βkz0 + (1− βk)zk −
ηF (zk+ 1

2
)− ηck+1 for all k ≥ 0. Recall that by definition of projection on Z , we have ck ∈ NZ(zk).

Lemma E.1 (Upper bound of V1). In the same setup as Theorem E.2, we have V1 ≤ 16∥z0 − z 1
2
∥2 ≤ 16η2rtanF,NZ

(z0)
2
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Proof. By nonexpansiveness of ΠZ , L-Lipschitzness of F , and ηL ≤ 1, we have ∥z1 − z 1
2
∥2 ≤ ∥z 1

2
− z0∥2. This also

implies ∥z1 − z0∥2 ≤ 2∥z1 − z 1
2
∥2 + 2∥z 1

2
− z0∥2 ≤ 4∥z 1

2
− z0∥2. Then we get

∥ηF (z1) + ηc1∥2 =
∥∥∥z0 − z1 + ηF (z1)− ηF (z 1

2
)
∥∥∥2

≤ 2∥z0 − z1∥2 + 2
∥∥∥z 1

2
− z1

∥∥∥2
≤ 10

∥∥∥z0 − z 1
2

∥∥∥2.
Now by definition of V1,

V1 = ∥η(F (z1) + c1)∥2 + η⟨F (z1) + c1, z1 − z0⟩

≤ (10 + 2
√
10)
∥∥∥z0 − z 1

2

∥∥∥2 ≤ 16
∥∥∥z0 − z 1

2

∥∥∥2.
Let c0 ∈ NZ(z0). Using nonexpansiveness of JηA, we have ∥z 1

2
− z0∥ ≤ ∥ηF (z0) + ηc0∥. Thus ∥z 1

2
− z0∥ ≤ ηrtanF,NZ

(z0).

Theorem E.2 (Approximate monotonicity of the potential). Let Z ⊆ R
n is closed convex set and suppose F : Z → R

n

is L-Lispchitz and F + NZ is a ρ-comonotone operator with 0 ≥ ρ ≥ − 1
20L . Let z0 ∈ Z be any starting point and

{zk, zk+ 1
2
}k≥0 be the iterates of proj-EAG with step size η = 0.31

L that satisfies Fact 2. Then for any k ≥ 1,

Vk+1 ≤ Vk +
1

2
∥ηF (zk+1) + ηck+1∥2 −

9k(k + 1)

4000

∥∥∥zk+ 1
2
− zk+1

∥∥∥2.
Proof. We first present several inequalities. Let p = 1

3 and c = − 4pρ
η ≥ 0. Since F is L-Lipschitz, we have

η2L2 ·
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 − ∥∥∥ηF (zk+ 1
2
)− ηF (zk+1)

∥∥∥2 ≥ 0.

Multiplying the both sides of the above inequality by (1 + c) and rearranging terms, we get

p ·
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 − ∥∥∥ηF (zk+ 1
2
)− ηF (zk+1)

∥∥∥2
+
(
(1 + c)η2L2 − p

)
·
∥∥∥zk+ 1

2

∥∥∥2 − c ·
∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2 ≥ 0.. (12)

Since F +NZ satisfies negative comonotonicity and 0 ∈ NZ(z) for any z ∈ Z , we have

(−k(k + 1)) ·
(
⟨ηF (zk+1)− ηF (zk), zk+1 − zk)⟩ −

ρ

η
· ∥ηF (zk+1)− ηF (zk)∥2

)
≤ 0. (13)

Since zk+ 1
2
= ΠZ [zk − ηF (zk) +

1
k+1 (z0 − zk)], we can infer that zk − ηF (zk) +

1
k+1 (z0 − zk)− zk+ 1

2
∈ NZ(zk+ 1

2
).

Moreover, by definition of ck and ck+1, we know ck ∈ NZ(zk) and ck+1 ∈ NZ(zk+1). Therefore, we have

(−k(k + 1)) ·
〈
zk − ηF (zk)− zk+ 1

2
+

1

k + 1
(z0 − zk), zk+ 1

2
− zk+1

〉
≤ 0, (14)

(−k(k + 1)) · ⟨ηck+1, zk+1 − zk⟩ ≤ 0, (15)

(−k(k + 1)) ·
〈
ηck, zk − zk+ 1

2

〉
≤ 0. (16)

Moreover, by definition, we have ηck+1 = zk − ηF (zk+ 1
2
)+ 1

k+1 (z0− zk)− zk+1). Then have the following identity holds.
The correctness of the identity follows by Equation (23) in Proposition F.2: we treat x0 as z0; xt as zk+ t−1

2
for t ∈ {1, 2, 3};

yt as ηF (zk+ t−1
2

for t ∈ {1, 2, 3}; u1 as ηck and u3 as ηck+1; q as k. Note that Term (17), (18), and (19) comes from the
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right hand side of Equation (23), while Term (20) directly comes from Inequality (12) and Term (21) directly comes from
Inequality (13).

Vk − Vk+1 −
k(k + 1)

2p
· LHS of Inequality (12) + LHS of Inequality (13) + LHS of Inequality (14)

+ LHS of Inequality (15) + LHS of Inequality (16)

=
k(k + 1)

2
·
∥∥∥∥zk+ 1

2
− zk + ηF (zk) + ηck +

1

k + 1
(zk − z0)

∥∥∥∥2 (17)

+
(1− p)k(k + 1)

2p
·
∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2 (18)

+ (k + 1) ·
〈
ηF (zk+ 1

2
)− ηF (zk+1), ηF (zk+1) + ηck+1

〉
(19)

+
k(k + 1)

2p
·
(
(p− (1 + c)η2L2)

∥∥∥zk+ 1
2
− zk+1

∥∥∥2 + c ·
∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2) (20)

+ k(k + 1)
ρ

η
∥ηF (zk+1)− ηF (zk)∥2. (21)

Since ∥a∥2 + ⟨a, b⟩ = ∥a+ b
2∥

2 − ∥b∥2

4 , we have

Expression(18) + Expression(19)

=

∥∥∥∥∥
√

(1− p)k(k + 1)

2p
·
(
ηF (zk+ 1

2
)− ηF (zk+1)

)
+

√
p(k + 1)

2(1− p)k
· (ηF (zk+1) + ηck+1)

∥∥∥∥∥
2

− k + 1

2k
· p

1− p
∥ηF (zk+1) + ηck+1∥2

≥ − p

1− p
∥ηF (zk+1) + ηck+1∥2. (k ≥ 1)

= −1

2
∥ηF (zk+1) + ηck+1∥2.

Now it remains to give a non-negative lower bound of Expression (20) + Expression (21). Recall that p = 1
3 and c = − 4ρp

η ,
thus

(
2

k(k + 1)
) · (Expression (20) + Expression (21))

=

(
1−

(
3− 4ρ

η

)
· η2L2

)
·
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 − 4ρ

η
·
(
·
∥∥∥ηF (zk+ 1

2
)− ηF (zk+1)

∥∥∥2 − 1

2
· ∥ηF (zk+1)− ηF (zk)∥2

)
≥
(
1−

(
3− 4ρ

η

)
· η2L2

)
·
∥∥∥zk+ 1

2
− zk+1

∥∥∥2 + 4ρ

η
·
∥∥∥ηF (zk+ 1

2
)− ηF (zk)

∥∥∥2 (∥A∥2 − 1
2∥B∥2 ≥ −∥A−B∥2)

≥
(
1 +

4ρ

η
−
(
3− 4ρ

η

)
· η2L2

)∥∥∥zk+ 1
2
− zk+1

∥∥∥2,
where the last inequality holds because ∥zk+ 1

2
− zk+1∥2 ≤ ∥ηF (zk+ 1

2
)− ηF (zk)∥2, which is due to update rule

of proj-EAG and the fact that ΠZ is non-expansive. Hence, we have Vk+1 ≤ Vk + 1
2∥ηF (zk+1) + ηck+1∥2 -

(1 + 4ρ
η − (3− 4ρ

η ) · η2L2)k(k+1)
2 ∥zk+ 1

2
− zk+1∥2. Plugging η = 0.31

L , we have (1 + 4ρ
η − (3− 4ρ

η ) · η2L2) ≥ 9
2000

( by Fact 2). This completes the proof.

We also show that Vk is of order Ω(k2 · rtan(zk)).
Lemma E.3. In the same setup as Theorem E.2, for any k ≥ 1, we have

k(k + 1)

4
∥ηF (zk) + ηck∥2 ≤ Vk + ∥z0 − z∗∥2

In particular, Vk ≥ −∥z0 − z∗∥2.
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Proof. Fix any k ≥ 1. Since 0 ∈ F (z∗) +NZ(z
∗), by ρ-comonotonicity and Fact 2, we have

⟨ηF (zk) + ηck, zk − z∗⟩ ≥ ρ

η
∥ηF (zk) + ηck∥2 > −1

4
∥ηF (zk) + ηck∥2. (22)

By definition of Vk, we have

Vk =
k(k + 1)

2
· ∥ηF (zk) + ηck∥2 + k · ⟨ηF (zk) + ηck, zk − z0⟩

=
k(k + 1)

2
· ∥ηF (zk) + ηck∥2 + k · ⟨ηF (zk) + ηck, zk − z∗⟩+ k⟨ηF (zk) + ηck, z

∗ − z0⟩

≥ k(k + 1)

2
· ∥ηF (zk) + ηck∥2 −

1

4
∥ηF (zk) + ηck∥2 + k⟨ηF (zk) + ηck, z

∗ − z0⟩ (By Equation (22))

≥
k(k + 1

2 )

2
· ∥ηF (zk) + ηck∥2 −

k2

4
∥ηF (zk) + ηck∥2 − ∥z0 − z∗∥2

=
k(k + 1)

4
· ∥ηF (zk) + ηck∥2 − ∥z0 − z∗∥2,

where in the second last inequality, we apply ⟨a, b⟩ ≥ −α
4 ∥a

2∥ − 1
α∥b

2∥ with a = ηF (zk) + ηck, b = z∗ − z0, and α = k.
This completes the proof.

Combinging the approximate monotonicity of the potential function Vk in Theorem E.2 and the above lower bound of Vk,
we can prove the O( 1

T ) last-iterate convergence rate easily.

Theorem E.4 (Last-iterate convergence rate of (proj-EAG) for comonotone inclusion problem). In the same setup as
Theorem E.2, we have for any k ≥ 1,

∥F (zk) + ck∥2 ≤ 20(V1 + ∥z0 − z∗∥2)
η2k2

≤ 20H2

η2k2
.

where H2 = 16∥z 1
2
− z0∥2 + ∥z0 − z∗∥2 ≤ 16η2rtanF,NZ

(z0)
2 + ∥z0 − z∗∥2.

Proof. For k = 1, from Lemma E.3, we directly get that ∥ηF (z1) + ηc1∥2 ≤ 4(V1 + ∥z0 − z∗∥2).

Now fix any k ≥ 2. Combining Theorem E.2 and Lemma E.3, we have

k(k + 1)

4
∥ηF (zk) + ηck∥2 ≤ Vk + ∥z0 − z∗∥2

≤ V1 + ∥z0 − z∗∥2 + 1

2
·

k∑
t=2

∥ηF (zt) + ηct∥2.

Subtracting 1
2∥F (zk) + ηck∥2 from both sides and noting that 1

4k ≥ 1
2 for k ≥ 2 gives

k2

4
∥ηF (zk) + ηck∥2 ≤ V1 + ∥z0 − z∗∥2 + 1

2
·
k−1∑
t=2

∥ηF (zt) + ηct∥2

Now we can apply Proposition F.3 with C1 = V1 + ∥z0 − z∗∥2 to conclude that ∥ηF (zk) + ηck∥2 ≤ 20(V1+∥z0−z∗∥2)
k2 .

Applying Lemma E.1, we know V1 ≤ 16∥z 1
2
− z0∥2 ≤ 16η2rtanF,NZ

(z0)
2 gives the desired result.

Corollary E.5. In the same setup as Theorem E.2, we have

∞∑
k=1

k(k + 1)
∥∥∥zk+1 − zk+ 1

2

∥∥∥2 ≤ 4000H2.

It also implies ∥zk+1 − zk+ 1
2
∥2 ≤ 8000H2

(k+1)2 for all k ≥ 1.
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Proof. By Theorem E.2, we have

9k(k + 1)

4000

∥∥∥zk+1 − zk+ 1
2

∥∥∥2 ≤ Vk − Vk+1 +
1

2
∥ηF (zk+1) + ηck+1∥2

Telescoping the above inequality for k = 1, 2, . . . , T gives

9

4000

T∑
k=1

k(k + 1)
∥∥∥zk+1 − zk+ 1

2

∥∥∥2 ≤ V1 − VT+1 +
1

2

T∑
k=1

∥ηF (zk+1) + ηck+1∥2

≤ V1 + ∥z0 − z∗∥2 + 10H2 ·

(
T∑

k=1

1

(t+ 1)2

)
≤ 9H2.

where in the second inequality we use (1) VT+1 ≥ −∥z0 − z∗∥2 by Lemma E.3 and (2) ∥ηF (zk+1) + ηck+1∥2 ≤ 20H2

(t+1)2 by

Theorem E.2, in the last inequality we use
∑∞

k=1
1

(t+1)2 = π2

6 − 1 ≤ 3
4 . This concludes

∑∞
k=1 k(k+1)∥zk+1 − zk+ 1

2
∥2 ≤

4000H2. Since 1
2 (k + 1)2 ≤ k(k + 1) for all k ≥ 1, it further implies ∥zk+1 − zk+ 1

2
∥2 ≤ 8000H2

(k+1)2 for all k ≥ 1.

E.2. Point Convergence of proj-EAG in the Comonotone Case

In the following, we show that ∥zk+1 − wk+1∥ → 0, i.e., the trajectory of proj-EAG and OHM merges. This would directly
prove the point convergence of OHM.

Theorem E.6. Let Z ⊆ R
n be a closed convex set, F : Z → Z be L-Lipschitz, and F + NZ be ρ-comonotone with

ρ ≥ − 1
20L . Let βk = 1

k+1 , η = 0.31
L , and w0 = z0. Then the iterates {zk}k≥0 of proj-EAG and the iterates {wk}k≥0 of

OHM merges, i.e.,

∥zk+1 − wk+1∥2 ≤ 40000H2

(k + 1)
1
2

+
30000H2

(k + 1)2
= O(

H2

(k + 1)
1
2

)

In particular, limk→∞ ∥zk+1 − wk+1∥ = 0.

Proof. Using the update rule of proj-EAG and OHM and recall: ηck+1 := zk − ηF (zk+ 1
2
) + βk(z0 − zk) − zk+1 and

ηdk+1 = wk+ 1
2
− ηF (wk+1)− wk+1 we have

zk+1 − wk+1 =
(
βkz0 + (1− βk)zk − ηF (zk+ 1

2
)− ηck+1

)
− (βkw0 + (1− βk)wk − ηF (wk+1)− ηdk+1)

= (1− βk)(zk − wk) + η
(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)
, (w0 = z0)

which implies

∥zk+1 − wk+1∥2 = (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (wk+1) + dk+1 − F (zk+ 1
2
)− ck+1

∥∥∥2
+ 2
〈
(1− βk)(zk − wk), η

(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
︸ ︷︷ ︸

I

.

We focus on term I. Denote ck+ 1
2
:=

βkz0+(1−βk)zk−ηF (zk)−z
k+1

2

η ∈ NZ(zk+ 1
2
). We can verify

zk+ 1
2
− wk+1 = (1− βk)(zk − wk)− η

(
F (zk) + ck+ 1

2
− F (wk+1)− dk+1

)
.
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Thus term I can be rewritten as

I = 2
〈
(1− βk)(zk − wk), η

(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
= 2
〈
zk+ 1

2
− wk+1 + η

(
F (zk) + ck+ 1

2
− F (wk+1)− dk+1

)
, η
(
F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

)〉
= 2η2

〈
F (zk) + ck+ 1

2
− F (wk+1)− dk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+

+ 2η
〈
zk+ 1

2
− wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
︸ ︷︷ ︸

Ak

.

Combining the above (we keep term Ak for now), we get

∥zk+1 − wk+1∥2

≤ (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (wk+1) + dk+1 − F (zk+ 1
2
)− ck+1

∥∥∥2
+ 2η2

〈
F (zk) + ck+ 1

2
− F (wk+1)− dk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+Ak

= (1− βk)
2∥zk − wk∥2 − η2∥F (wk+1) + dk+1∥2 + 2η2

〈
F (zk) + ck+ 1

2
, F (wk+1) + dk+1

〉
− 2η2

〈
F (zk) + ck+ 1

2
, F (zk+ 1

2
) + ck+1

〉
+ η2

∥∥∥F (zk+ 1
2
) + ck+1

∥∥∥2 +Ak.

≤ (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (zk) + ck+ 1
2

∥∥∥2 (We use −a2 + 2ab ≤ b2)

− 2η2
〈
F (zk) + ck+ 1

2
, F (zk+ 1

2
) + ck+1

〉
+ η2

∥∥∥F (zk+ 1
2
) + ck+1

∥∥∥2 +Ak

= (1− βk)
2∥zk − wk∥2 + η2

∥∥∥F (zk) + ck+ 1
2
− F (zk+ 1

2
)− ck+1

∥∥∥2 +Ak

= (1− βk)
2∥zk − wk∥2 +

∥∥∥zk+1 − zk+ 1
2

∥∥∥2 +Ak

Plugging βk = 1
k+1 and multiplying both sides with (k + 1)2 gives

(k + 1)2∥zk+1 − wk+1∥2 ≤ k2∥zk − wk∥2 + (k + 1)2
∥∥∥zk+1 − zk+ 1

2

∥∥∥2 + (k + 1)2Ak.

Telescoping the above gives

(k + 1)2∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2 +
k∑

t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + k∑
t=1

(t+ 1)2At.

⇒ ∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2

(k + 1)2
+

1

(k + 1)2

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + 1

(k + 1)2

k∑
t=1

(t+ 1)2At

It remains to show that 1
(k+1)2

∑k
t=1(t+ 1)2∥zt+1 − zt+ 1

2
∥2 = o(1) and 1

(k+1)2

∑k
t=1(t+ 1)2At = o(1).

For the first term, using Corollary E.5, we have

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 ≤ 2
k∑

t=1

t(t+ 1)
∥∥∥zt+1 − zt+ 1

2

∥∥∥2
≤ 8000H2.
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We need a more careful analysis of Ak for the second term. We decompose Ak = Bk + Ck +Dk as follows.

Ak = 2η
〈
zk+ 1

2
− wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
= 2η

〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
+ 2η

〈
zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
= 2η

〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
︸ ︷︷ ︸

Bk

+2η
〈
zk+1 − wk+1, F (zk+1)− F (zk+ 1

2
)
〉

︸ ︷︷ ︸
Ck

+ 2η⟨zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+1)− ck+1⟩︸ ︷︷ ︸
Dk

.

For Bk, we have

Bk = 2η
〈
zk+ 1

2
− zk+1, F (wk+1) + dk+1 − F (zk+ 1

2
)− ck+1

〉
≤ 2η

∥∥∥zk+1 − zk+ 1
2

∥∥∥(∥F (wk+1) + dk+1∥+
∥∥∥F (zk+1)− F (zk+ 1

2
)
∥∥∥+ ∥F (zk+1) + ck+1∥

)
≤ 2ηL

∥∥∥zk+1 − zk+ 1
2

∥∥∥2 + 2η
∥∥∥zk+1 − zk+ 1

2

∥∥∥(∥F (wk+1) + dk+1∥+ ∥F (zk+1) + ck+1∥)

≤ 16000H2

(k + 1)2
+ 2η

√
8000H2

(k + 1)2
·

(
2∥z0 − z∗∥
η(k + 1)

+

√
20H2

η(k + 1)

)

≤ 17140H2

(k + 1)2
.

where in the second last inequality we use the last-iterate convergence rate of OHM and proj-EAG (Theorem E.4) as well as
the bound on ∥zk+1 − zk+ 1

2
∥2 (Corollary E.5).

For Ck, we have

Ck = 2η
〈
zk+1 − wk+1, F (zk+1)− F (zk+ 1

2
)
〉

≤ 2η∥zk+1 − wk+1∥
∥∥∥F (zk+1)− F (zk+ 1

2
)
∥∥∥

≤ 2∥zk+1 − wk+1∥
∥∥∥zk+1 − zk+ 1

2

∥∥∥ (F is L-Lipschitz and ηL ≤ 1)

≤ 400H
∥∥∥zk+1 − zk+ 1

2

∥∥∥,
where in the last inequality we use ∥zk+1 − wk+1∥ ≤ 90H is bounded by Corollary E.8.

For Dk, since F +NZ is ρ-comonotone, we have

Dk = 2η⟨zk+1 − wk+1, F (wk+1) + dk+1 − F (zk+1)− ck+1⟩

≤ −2ρη∥F (wk+1) + dk+1 − F (zk+1)− ck+1∥2

≤ −4ρη∥F (wk+1) + dk+1∥2 − 4ρη∥F (zk+1) + ck+1∥2

≤ −4ρ

η
· 4∥z0 − z∗∥2

(k + 1)2
− 4ρ

η
· 20H2

(k + 1)2
(convergence rate of OHM and Theorem E.4)

≤ 24H2

(k + 1)2
. ( ρη ≥ − 1

4 )

Combining the above bounds for Bk, Ck, Dk, we get

(k + 1)2Ak ≤ 17424H2 + 400H(k + 1)2
∥∥∥zk+1 − zk+ 1

2

∥∥∥.
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Since
∑∞

t=1(t+ 1)2∥zt+1 − zt+ 1
2
∥2 ≤ 3200H2, using Cauchy-Schwartz, we get

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥ ≤

√√√√( k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2) ·

(
k∑

t=1

(t+ 1)2

)
≤ 100H(k + 1)3/2.

Thus 1
(k+1)2

∑k
t=1(t+ 1)2∥zt+1 − zt+ 1

2
∥ ≤ 100H(k + 1)−

1
2 .

Hence we get

1

(k + 1)2

k∑
t=1

(t+ 1)2At =
17424H2

(k + 1)2
+

40000H2

(k + 1)
1
2

Combining all the above, we conclude that for all k,

∥zk+1 − wk+1∥2 ≤ ∥z1 − w1∥2

(k + 1)2
+

1

(k + 1)2

k∑
t=1

(t+ 1)2
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + 1

(k + 1)2

k∑
t=1

(t+ 1)2At

≤ 40000H2

(k + 1)
1
2

+
30000H2

(k + 1)2
.

This completes the proof.

Lemma E.7 (Bounded Iterates of proj-EAG). The iterates {zk}k≥0 of proj-EAG satisfies for all k ≥ 0

∥zk − z0∥2 ≤ 16040H2.

Proof. For k = 1, the proof of Lemma E.1 gives ∥z1 − z0∥2 ≤ H2. By definitions of proj-EAG and ck+1, we have

∥zk+1 − z0∥2 =

∥∥∥∥ k

k + 1
(zk − z0)− η(F (zk+ 1

2
) + dk+1)

∥∥∥∥2
≤
(
1 +

1

k

)
k2

(k + 1)2
∥zk − z0∥2 + (1 + k)η2

∥∥∥(F (zk+ 1
2
) + dk+1)

∥∥∥2 (Young’s inequality)

≤ k

k + 1
∥zk − z0∥2 + 2(1 + k)η2

(∥∥∥F (zk+ 1
2
)− F (zk+1)

∥∥∥2 + ∥F (zk+1) + dk+1∥2
)

≤ k

k + 1
∥zk − z0∥2 +

1

k + 1
16040H2. (Corollary E.5 and Theorem E.4)

By induction, we get ∥zk+1 − z0∥2 ≤ 16040H2.

Corollary E.8. Let w0 = z0. The iterates {zk}k≥0 of proj-EAG and the iterates {wk}k≥0 of OHM satisfies for all k ≥ 0,

∥wk − zk∥ ≤
√

(32080 + 8)H2 ≤ 200H.

F. Auxiliary Propositions
Remark F.1. The proofs for our algorithms’ last-iterate convergence rates are all based on potential function arguments. The
core of these arguments is to prove the potential function’s (approximate) monotonicity. The three identities below simplify
tedious algebraic calculations and are useful to show the potential functions’ (approximate) monotonicity.

Proposition F.2. Let x0, x1, x2, x3, y1, y2, y3, u1, u3 be arbitrary vectors in Rn. Let q > 0, p > 0, and r ̸= − 1
2 be real

numbers.
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If u3 = x1 − y2 +
1

q+1 (x0 − x1)− x3, then the following identity holds:

q(q + 1)

2
· ∥y1 + u1∥2 + q · ⟨y1 + u1, x1 − x0⟩

−
(
(q + 1)(q + 2)

2
· ∥y3 + u3∥2 + (q + 1) · ⟨y3 + u3, x3 − x0⟩

)
− q(q + 1)

2p
·
(
p · ∥x2 − x3∥2 − ∥y2 − y3∥2

)
− q(q + 1) · ⟨y3 − y1, x3 − x1⟩

− q(q + 1) ·
〈
x1 − y1 − x2 +

1

q + 1
(x0 − x1), x2 − x3

〉
− q(q + 1) · ⟨u3, x3 − x1⟩
− q(q + 1) · ⟨u1, x1 − x2⟩

=
q(q + 1)

2
·
∥∥∥∥x2 − x1 + y1 + u1 +

1

q + 1
(x1 − x0)

∥∥∥∥2
+

(1− p)q(q + 1)

2p
· ∥y2 − y3∥2

+ (q + 1) · ⟨y2 − y3, y3 + u3⟩

(23)

If u1 = x1 − y1 +
1

q+1 (x0 − x1)− x2 and u3 = x1 − y2 +
1

q+1 (x0 − x1)− x3, then the following identity holds:

q(q + 1)

2
· ∥y1 + u1∥2 + q · ⟨y1 + u1, x1 − x0⟩

−
(
(q + 1)(q + 2)

2
· ∥y3 + u3∥2 + (q + 1) · ⟨y3 + u3, x3 − x0⟩

)
− q(q + 1)

2p
·
(
p · ∥x2 − x3∥2 − ∥y2 − y3∥2

)
− q(q + 1) · ⟨y3 + u3 − y1 − u1, x3 − x1⟩

=
(1− p)q(q + 1)

2p
· ∥y2 − y3∥2

+ (q + 1) · ⟨y2 − y3, y3 + u3⟩

(24)

If u1 =
x1+

1
q+1 (x0−x1)− q

q+1 (1+2r)y1−x2
q

q+1 (1+2r) and u3 = x1 + 1
q+1 (x0 − x1) − y2 − 2rq

q+1 (y1 + u1) − x3, then the following
identity holds: (

q2

2
(1 + 2r)− rq

)
· ∥y1 + u1∥2 + q · ⟨y1 + u1, x1 − x0⟩

−
(
(q + 1)2

2
(1 + 2r)− r(q + 1)

)
· ∥y3 + u3∥2 − (q + 1) · ⟨y3 + u3, x3 − x0⟩

− (q + 1)2

2
·
(
p · ∥x2 − x3∥2 − ∥y2 − y3∥2

)
− q(q + 1) ·

(
⟨y3 + u3 − y1 − u1, x3 − x1⟩ − r∥y3 + u3 − y1 − u1∥2

)
=
(1− p)(q + 1)2

2
· ∥x2 − x3∥2.

(25)

Proof. We verify the three identities using MATLAB. Readers can find the verification code at https://github.com/
weiqiangzheng1999/Accelerated-Comonotone-Inclusion.
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Proposition F.3. Let {ak ∈ R
+}k≥2 be a sequence of real numbers. Let C1 ≥ 0 and p ∈ (0, 1

3 ) be two real numbers. If the
following condition holds for every k ≥ 2,

k2

4
· ak ≤ C1 +

p

1− p
·
k−1∑
t=2

at, (26)

then for each k ≥ 2 we have

ak ≤ 4 · C1

1− 3p
· 1

k2
. (27)

Proof. We prove the statement by induction.

Base Case: k = 2. From Inequality (26), we have

22

4
· a2 ≤ C1 ⇒ a2 ≤ C1 ≤ 4 · C1

1− 3p
· 1

22
.

Thus, Inequality (27) holds for k = 2.

Inductive Step: for any k ≥ 3. Fix some k ≥ 3 and assume that Inequality (27) holds for all 2 ≤ t ≤ k − 1. We slightly
abuse notation and treat the summation in the form

∑2
t=3 as 0. By Inequality (26), we have

k2

4
· ak ≤ C1 +

p

1− p
·
k−1∑
t=2

at

≤ C1

1− p
+

p

1− p
·
k−1∑
t=3

at (a2 ≤ C1)

≤ C1

1− p
+

4p · C1

(1− p)(1− 3p)
·
k−1∑
t=3

1

t2
(Induction assumption on Inequality (27))

≤ C1

1− p
+

2p · C1

(1− p)(1− 3p)
(
∑∞

t=3
1
t2 = π2

6 − 5
4 ≤ 1

2 )

=
C1

1− 3p
.

This complete the inductive step. Therefore, for all k ≥ 2, we have ak ≤ 4·C1

1−3p · 1
k2 .

Proposition F.4. Let {ak ∈ R
+}k≥2 be a sequence of real numbers and C1 ≥ 0. If the following condition holds for every

k ≥ 2,

k2

4
· ak ≤ C1 +

1

2
·
k−1∑
t=2

at, (28)

then for each k ≥ 2 we have

ak ≤ 20C1

k2
(29)

Proof. We prove the statement by induction.

Base Case: k = 2, 3, 4. From Inequality (28), we can directly calculate that a2, a3, a4 ≤ C1. Thus, Inequality (29) holds
for k = 2, 3, 4.
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Inductive Step: for any k ≥ 5. Fix some k ≥ 5 and assume that Inequality (29) holds for all 2 ≤ t ≤ k − 1. We slightly
abuse notation and treat the summation in the form

∑4
t=5 as 0. By Inequality (28), we have

k2

4
· ak ≤ C1 +

1

2
·
k−1∑
t=2

at

≤ 5

2
C1 +

1

2
·
k−1∑
t=5

at (a2, a3, a4 ≤ C1)

≤ 5

2
C1 + 10C1 ·

k−1∑
t=5

1

t2
(Induction assumption on Inequality (27))

≤ 5C1. (
∑∞

t=5
1
t2 =≤ 1

4 )

This complete the inductive step. Therefore, for all k ≥ 2, we have ak ≤ 20C1

k2 .

36


