Engaging CS1 Students with Audio Themed
Assignments*

Matthew McQuaigue Mack Larson Philip Smith
Sydney Melech Kalpathi Subramanian Erik Saule
Department of Computer Science
University of North Carolina at Charlotte
Charlotte, NC 28223

{mmcquaig,clarson9,psmit145, smelech,krs,esaule}@charlotte.edu

Abstract

Early computer science courses (CS1, CS2) are the cornerstone of
student understanding of computer science. These courses introduce the
foundational knowledge of computer science needed to understand more
complex topics and to be successful in follow-on courses. It is thus im-
portant to introduce CS concepts in an engaging and easy-to-understand
manner to increase student interest and retention. This paper presents a
new approach to teaching the Computer Science 1 (CS1) course through
our BRIDGES system. This approach aims to increase student engage-
ment and improve learning outcomes by using audio-based assignments
that they can manipulate and process audio signal information, as well as
visualize and play them. We explain how to design and implement audio-
based assignments and connect them to fundamental programming con-
structs such as variables, control flow, and simple data structures, such as
arrays. These assignments encourage and engage students by using au-
dio data they are interested in to write code, promoting problem-solving
and improvements in their critical thinking skills.

*Copyright (©)2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

158

1 Introduction

Early computer science courses are pivotal in teaching the foundations of com-
puter science in introducing topics that shape the future of students’ academic
journeys and careers. On top of foundational knowledge of computer science,
students learn computational literacy, problem-solving, and critical thinking
skills. As beginning courses in the field contain a lot of information, these
courses can be complex and frustrating for students, and for some students,
it could be the first time they are introduced to these topics. Even though
progress is being made in retention rates in computer science using a variety of
mechanisms and pedagogies, additional motivation and engagement is critical
in early CS courses to continue to increase retention, and equip students with
a strong foundation for future success. From establishing a strong base for ad-
vanced coursework to preparing students for the demands of the workforce, we
believe CS1 should emerge as a transformative experience that extends far be-
yond the confines of the classroom to ensure that they understand the potential
of computing to solve real-world problems.

Traditional programming courses often rely on text-based exercises, which
can make it difficult for students to stay interested and may not cater to their
diverse learning styles. In response to this challenge, our proposed curriculum
includes a series of programming tasks that use audio-based stimuli to create a
dynamic and multisensory learning experience. Using the BRIDGES system,
[10, 9, 5] we have created a database of assignments for introductory computer
science courses [4] and also demonstrate how they could be used in CS1/CS2.
The BRIDGES API is available in Java, C++, and Python, and provides
students with objects to load and manipulate real-world audio files in early CS
courses. It also creates visualizations and plays corresponding audio data to
demonstrate student-generated work while maintaining course rigor.

This paper contributes to the ongoing discourse on innovative teaching
methodologies in computer science education and provides practical insights
and tools for instructors seeking to enhance their students’ introductory pro-
gramming experience. By embracing audio-based assignments, educators can
create a more inclusive and interactive learning environment, ultimately prepar-
ing better novice programmers for the challenges of the digital era. These
assignments rely on the manipulation of wavefront audio information and the
generation of signals to create and edit audio data at a level that is appropriate
for novice programmers. The proposed assignments provide two advantages,
(1) they continue to provide highly engaging assignments with a visual and
audio output for CS1 students, and, (2) students’ output can be customized
based on different songs or around choices of their own interest. This gives
more flexibility to assignments and allows students to manipulate real-world
audio data that can be shared with other students outside the class.

159

2 Related Works

2.1 What Makes Students Engaged

In previous years, work has been done to better engage and motivate students
in early CS1 courses. According to Hendlesman et al. [21] engagement can
include the involvement of skills, participation, emotion, and/or performance.
The methods of implying engagement in the classroom are either content-based
or pedagogical activities. Content-based engagement focuses on making course
content or activities (assignments, lectures, videos, etc) meaningful and rele-
vant to student interests. A good resource for this type of learning engagement
can be assignment repositories such as Nifty assignments [29], EngageCSEdu
[26], and game-themed assignments [14]. These types of learning can tackle
real-world coding challenges in collaborative teams, fostering teamwork and
practical problem-solving skills. This allows for the inclusion of code reviews
and critiques to encourage a culture of constructive feedback, allowing students
to refine their coding practices through peer interaction. Engagement based
on activities includes active learning, lab-based instruction, flipped classrooms,
gamification, peer learning/coding, and multimedia content [30, 19, 22]. Gam-
ifying by incorporating elements like coding competitions or level progression
adds a competitive yet motivating dimension while using methods such as peer
learning models to provide hands-on, immediate experiences that solidify the-
oretical concepts.

2.2 What CS1 Courses Typically Look Like

CS1 courses usually serve as the introductory course in computer science. This
course can teach the fundamentals of programming such as variables, data
types, control flow, functions, and algorithmic thinking. Algorithmic thinking
can help break down complex problems into smaller, more manageable compo-
nents. Some CS1 courses also introduce simple data structures in the form of
lists and strings. CS1 often uses programming languages such as Java, C++,
or Python. The curriculum heavily involves hands-on coding assignments that
range from simple exercises and projects, foster problem-solving skills, lan-
guage syntax and semantics. Exemplars of CS1 courses can be found in the
ACM 2013 Curriculum guidelines [23]. Due to the wide variations in learning
environments, tools, student population, and demographics, there is no one-
size-fits-all approach to teaching CS1. Additionally, there are strong opinions
regarding when and how object-oriented programming should be taught [6].
This is also true for discussion about IDEs [31] and languages [25] to use.
Many introductory courses now incorporate graphics, GUIs, and visualizations
[17, 10]. These are sometimes used as creative output in student projects, or

160

to illustrate key aspects of underlying objects or algorithms [13, 24, 7, 18, 32].

Furthermore, some institutions are experimenting with introductory com-
puter science courses to now incorporate other advanced topics at a beginner
level increasing multidisciplinary value. This includes games [2], robotics [12],
image processing and generations [3], and statistics and data science [20, 11].

2.3 Existing Educational Efforts incorporating Audio Related Con-
tent in CS Courses

Past audio-based learning tools have explored the CS foundations supporting
the integration of auditory learning in computer science education through
manipulating audio to reinforce concepts in CS courses. Burg et al. [8] created a
book and online learning supplements to make CS concepts more engaging and
relevant by using sound/music applications. The authors map their curricular
material to core CS courses, giving examples of programming assignments using
sound/music applications that teach fundamental CS skills. Adams et al. [1]
created a tool called Thread Safe Audio Library (TSAL) to explore the use
of algorithm sonification - representing algorithm behavior using sound - as
a pedagogical tool for computer science education. An assessment found that
sonification improved students’ long-term recall of the relative speeds of sorting
algorithms, providing evidence that sonification aids learning. Students also
rated sessions with visualizations as more engaging than non-visual sessions.
TuneScope [27] enabled using sound-based activities into Snap!.

EarSketch [15] developed by Freeman et al. is a free, web-based learning
environment that teaches introductory computer science through music. It pro-
vides an in-depth introduction to computer science and programming through
composing, producing, and remixing music with Python and JavaScript code.
Freeman et al. also found that using EarSketch showed statistically significant
gains in student attitudes across 7 constructs related to computing engagement
and motivation in underrepresented groups in high school [16].

3 A Set of Engaging and Scalable Audio Assignments

This section presents a set of assignments, all suitable for CS1/CS2 classes and
leveraging the BRIDGES toolkit. Table 1 presents the assignments, related
topics that they map to, and their engagement characteristics.

The assignments cover most of the introductory computer science class
topics, including function calls, control flow, conditionals, lists, and OOP. The
engagement strategies are all content-based. The most common engagement
characteristic is that the assignment produces a visual and audio output that
can be interpreted and played. Most of the assignments use real audio wave

161

Assignment Topics Engagement

Subsampling

Bitdepth Variables, Data Repr. Visual/Audio Output, Audio Choice
Thresholding Conditionals Visual/Audio Output, Real Data, Audio

Choice

Scaffolded Player

Strings, 10, Loops

Visual/Audio Output, Real Data Analy-
sis, Audio Choice

Effects

(Mixing, Fade,Volume 1D arrays Visual/Audio Output, Real Data, Real

Change, Clamping) Problem, Multiple Sounds

Visualize Volume Lev- 2D arrays Visual/Audio Output, Real Data, Real

els Problem, Audio Choice, New Visualiza-
tion

Full Frequency Player Functions Visual/Audio Output, Real Data Analy-

sis, Audio Choice, Tool Building, Fun

Instrument Types

Basic Objects

Visual/Audio Output, Simulation, Fun,
Create Unique Beats

Basic Compression

Project

Visual/Audio Output, Uses all topics,
Fun outputs, and Competitions for best

compression.

Table 1: A set of assignments using audio data to teach CS1.

data and perform a real analysis or solve a real-life problem. For all assign-
ments, instructors have the flexibility to scaffold what information and func-
tions to expose to the student.

The assignments are all downloadable online! and are scaffolded. Solutions
are shared with instructors on request. All assignments can be done in any
of the three programming languages supported by BRIDGES, namely, C+-+,
Java, and Python.

3.1 How Do Computers Encode Sound?

All our activities rely on the simple processing of sounds in a computer. Audio
signals can be represented in several ways in a computer. However, we are
mostly interested in manipulating the raw audio signal, similar to what would
be stored in an uncompressed wave file.

An audio clip is represented as several channels: 1 for mono, 2 for stereo,
6 for 5.1 systems. Each channel represents the movement that a membrane
has to make to play the signal back. The position of the membrane is sampled
at regular intervals and that information is encoded as a sampling rate. For
instance, a musical CD encodes the music sampled at 44.1KHz, while telephony
is often encoded at 8KHz. So a channel can be seen as a given number of

. . b 3 o l
samples that encode a particular clip that lasts = _of_sample oo0onds.
sampling _rate

Thttps://bridgesuncc.github.io/

162

Finally, each sample represents a displacement of the membrane compared
to its resting position which takes its most positive value when the membrane
should be the farthest outward from the resting position, and the most negative
value when the membrane should be the most inward to the resting position.
The samples can be represented in different formats. Usually, they are repre-
sented by signed integers, though the number of bits differs per quality level.
For instance, music CDs were encoded at 16-bit, while telephony is often en-
coded in 8-bit, and the master used in music production are often encoded in
24-bit or 32-bit.

In summary, an audio signal is essentially one or multiple array(s) of integers
that explicitly encode a sound wave. This representation is the one used by
BRIDGES which lets you load a WAV file in that format and manipulate it
with simple API calls. This is the format that students will use. Even though
advanced audio processing will require complex mathematics (such as Fourier
Transform to shift to the frequency domain), all our activities use the simpler
representation which is suitable for novice programmers while enabling multiple
assignments to span the content of a CS1 course.

3.2 How BRIDGES Works

The BRIDGES toolkit provides a simple API to create and manipulate an Au-
dioClip object as a collection of samples, which are numbers, each one repre-
senting a single part of the sound wave in the clip. Currently, you can generate
an AudioClip by setting the samples individually or by importing a WAV file.

The AudioClip object will also have a sample count, a channel count, a bit
depth, and a sample rate. These attributes can be custom-set and retrieved
through function calls from the object. The channel count is the number of
“channels”, or continuous streams of samples. With multiple channels, you can
play different sound waves simultaneously, which is used for things like stereo
audio (a different wave for each ear).

The WAV file can be passed in as a parameter to the AudioClip object
using a string that points to a WAV file. The AudioClip object will read and
parse the WAV file in a form for processing for the user. The BRIDGES API
provides a visualization function that can have an AudioClip attached to and
sent to the server for visualization. Students can then visit the website through
their account and playback the audio clip with visuals provided, as can be seen
in Figure 1. Their visual clips can also be shared with other students.

The BRIDGES API has multiple forms of documentation and tutorials on
how to manipulate and use the objects BRIDGES provides?. Due to the sim-
plicity of the API and the level of scaffolding provided in the assignments,

2https:/ /bridgesuncc.github.io/tutorials /AudioClip.html

163

minimal effort is needed to understand and use the API even for new program-
mers.

4 Audio Based Assignments

4.1 Subsampling/Bitdepth

In this assignment, students will conduct audio processing by manipulating the
sample rate, and bit depth of the signal through attributes of the AudioClip
object to analyze the differences between the original and modified audio signal.
Additionally, they are asked to analyze how these changes affect the file size and
quality. The assignment also focuses on the impact of changing variable types,
such as using 16-bit vs 32-bit integers, or floating point values on precision,
and compression.

Since this assignment requires the manipulation of arrays that contain sam-
ples and 1D arrays have not been a topic yet, scaffolded code is used that is
complete and takes the variables and uses them as needed. In later assignments,
more and more of this code can be exposed to the student for implementation
and follow-on assignments. The flexibility of what code and when it is exposed
to the student is up to the instructor.

Throughout the assignment, students will focus on the understanding of
audio processing while encouraging critical thinking about performance-based
trade-offs of selecting certain sample rates, bit depths, and variable types.
Instructors could grade for the correctness of implementation and clarity in the
explanation of parameter effects. Students could also choose different sound
files based on their interests to help boost engagement.

4.2 Thresholding

For conditionals, students can learn about thresholding to create a basic noise
gate for noise reduction. To start, the students will be given the task of loading
an audio file and visualizing its waveform using BRIDGES. After that, they will
be taught to go through the audio samples and apply a threshold to identify
portions of the signal that exceed a certain amplitude level. If arrays haven’t
been taught yet, a function can already be provided to loop through the array.

After identifying portions of the audio that fall within a certain threshold,
students would use a conditional statement to modify or remove those samples.
To learn more about thresholding and how it affects output quality, students
should be encouraged to experiment with different threshold levels and observe
how changing the conditional statements affects the audio output. They would
also explore how their approach handles various types of audio signals, such
as speech, music, or environmental sounds. Students can see how this form of

164

Figure 1: This is a sample audio signal visualized using BRIDGES. This visu-
alization has playback buttons along with an interactive window for analyzing
the signal.

noise reduction affects different types of audio. Different sound clips or songs
will have different levels of noise and thus be affected more.

From this assignment, students get an understanding of how conditionals
can be applied to real-world audio signals. This assignment also focuses on
the importance of proper parameter selection and the impact choices have on
audio quality.

4.3 Scaffolded Player

This assignment tasks the student to use a scaffolded song player program,
where a given set of notes and their corresponding durations are read from
a file and played sequentially. This assignment is an inspiration from Nifty’s
Melody assignment [28]. The assignment scaffold provides a pre-defined func-
tion responsible for playing a specific note for a specified duration of time.
Students are tasked with implementing the functionality to parse the input
file, and extract note-frequency pairs along with their durations.

The input file contains entries representing musical notes along with their
respective durations, structured as follows: each line contains a note (e.g., F#3)
followed by a duration (e.g., 200ms). The program reads this file, extracts note-
duration pairs, and plays each note using the provided function for the specified

165

duration.

Unlike a full-frequency player, which is a later assignment in section 4.6,
that encompasses the entire process of generating audio signals based on math-
ematical formulas (such as sine waves) and managing playback, this assignment
focuses solely on reading note-duration pairs from a file and using a scaffolded
function to handle adding the note to the AudioClip object. By completing
this task, students reinforce their understanding of file IO operations and string
manipulation.

4.4 Sound Effects (Mixing, Fade, Volume Change, Clamping)

In this assignment, students implement basic audio effects such as mixing,
fade, volume change, and clamping. For mixing, students would be tasked
with combining two or more audio files. Arrays are used as AudioClip objects
containing a list of channels and each channel contains a list of samples. For
this assignment, the audio to be created will use one channel. To mix two
samples you take the average (or a weighted sum) of the two values.

The fade effect could be introduced to teach students how to change the
amplitude of audio samples over time. The goal is to fade one audio source
out while another audio source fades in. Think about how song compilations
will fade a song out near the end while fading in the next song so that the
transition is smooth. As a sound is closer to the end, its amplitude will be
dampened, and the next sound amplitude with be increased.

To teach volume change, students can apply a scalar value to the entire au-
dio array, allowing them to understand how changing the amplitude uniformly
affects the overall volume of the audio signal.

Lastly, the clamping effect could be implemented to teach students about
limiting the amplitude values within a specific range. This is similar to the
threshold assignment, but the values are limited to the threshold rather than
being removed.

All assignments involving these effects include using conditional statements
and array iteration to identify and modify samples.

4.5 Visualize Volume Levels

Students will be tasked with visualizing the volume (amplitude) of an audio
signal over time. The goal is to introduce the concept of representing time-
varying data using a 2D array, where one axis represents time, and the other
represents amplitude. Students could read in the audio file with a 1D rep-
resentation of samples. Students then could create a BRIDGES ColorGrid
object, which supports the creation of 2D images and has methods for coloring
individual image cells.

166

For this image, the x-axis or columns correspond to time (time bins or
frames), and the y-axis or rows represent the amplitude values at each time
point. The idea is to separate the audio signal into frames to capture its change
over time. Divide the audio signal into consecutive time frames, and for each
frame, calculate the average amplitude level. Each frame/bin is represented
by the current image column with the average calculated amplitude plotted on
the y-axis.

Students can analyze the generated visualization to gain an understanding
of how the volume of the audio signal changes over time. They can begin to
recognize different parts of sounds and music that represent transitions from
loud and soft segments. They could also recognize repetition and see which
parts are similar to another.

4.6 Full Frequency Player

Students can create a basic frequency player through the implementation of
a sine wave generator that controls amplitude, frequency, and time of a note.
This is an extension of the scaffolded player in section 4.3. Students are tasked
with generating sample notes for specified durations that correspond to a sine
wave, utilizing a given mathematical formula. The notes are also read from an
external file describing notes and durations in the same way as the scaffolded
player.

Students are also tasked to adjust the start and end parameters of the sine
wave to correspond to specific time intervals measured in seconds, thus allowing
for the generation of sine wave samples over a defined duration. This enables
the creation of a sine wave audio clip spanning a specified time range playing
multiple notes, effectively serving as the foundation for a basic frequency player.
Students are encouraged tom implement smooth transitions between successive
samples enhancing the quality of the frequency player’s output.

Overall, students creating a basic frequency player develop proficiency in
several fundamental programming concepts. Firstly, it aims to increase under-
standing of modular programming by utilizing methods or functions to com-
partmentalize code, thereby enhancing code organization and reusability. The
task enhances proficiency in data type manipulation and conversion, particu-
larly through the casting between different data types.

4.7 Instrument Types

To teach the use of objects and encapsulation, students can create basic musi-
cal instruments that have their attributes. Students create an instrument class,
where they encapsulate attributes like pitch, amplitude, and waveform type.
Each class is structured to represent a distinct musical instrument, introduc-

167

NN/

Paak
Zero Crossing 2

/S —

. /
LN/ \

Figure 2: A sample illustration of compression one peak from a sin wave using
two zero crossing points and a local peak. This creates a linear signal between
the peaks and zero crossings.

ing students to the fundamental principles of object-oriented programming.
Students could create an Instrument base class with individual instrument
classes to teach polymorphism. Within these classes, students implement a play
method that generates the instrument’s sound based on specified attributes,
thereby delving into the concept of encapsulation and method definition within
objects. Students proceed to instantiate objects from these classes, creating
instances of various musical instruments and customizing their attributes. The
assignment advances to the concatenation of these objects into a single Au-
dioClip allowing for the playback of multiple instruments to create musical
compositions through mixing and adding to different channels. Students would
already know how to perform mixing from previous assignments.

4.8 Basic Compression

This audio-processing assignment is focused on wavefront compression through
zero crossings with activation thresholds,

Beginning with the loading and representation of audio data as a sequence
of samples, students conduct a detailed analysis of the waveform, pinpoint-
ing instances of zero crossings where the audio waveform intersects the zero
amplitude line, and marking significant signal transitions. The compression al-
gorithm, designed by the students, captures the audio data by storing only the

168

temporal positions of zero crossings and the peak values between zero crossings
(see Figure 2).

This approach aims to reduce the number of stored samples in the com-
pressed representation while retaining perceptually relevant features. Students
experiment with various activation threshold values, exploring the trade-offs
between compression efficiency and the preservation of audio information. De-
compressing the signal involves reconstructing the signal using the positions
of the zero crossings, the peaks between the zero crossing, and using a linear
function (line segment to approximate the original samples) removed during
the compression phase. Decompression and playback assess signal preservation
after compression.

Instructors can look at compression effectiveness, considering factors like
compression ratio, file size reduction, and perceptual quality, when grading
this work. Students gain a comprehensive understanding of the impact and
trade-offs associated with lossy compression, and see if certain signals are worth
the quality loss. Students could compete to see who can make the best audio
compression algorithm to help enforce engagement with that assignment and
other students. Instructors can also relate audio compression to image/video
compression (such as JPEG, MPEG) in their coverage of this topic.

5 Conclusion

We have presented a sequence of audio-themed assignments appropriate for
(CS1/CS2 level courses supported as part of our BRIDGES toolkit, that al-
lows for students to easily use and edit audio Wavefront files for content-based
learning that promotes engagement. These assignments are also easy to incor-
porate in the course for instructors with an already completed repository of
assignments along with the solutions and scaffolds needed. The assignments
map to the most commonly covered topics and learning objectives within CS1,
with flexibility to customize each assignment by student interests, and avail-
able for wider use in Java, Python, or C++-. Each assignment builds on prior
knowledge from the one before it with an end-of-class project incorporating all
knowledge.

Some limitations of this work is that it has not been incorporated into a
full CS1 course yet. The tool has been used with individual assignments by
current and past BRIDGES users for multiple semesters, with positive feedback
from both instructors and students. Also, currently, our tool only supports
the generation of our own signals from scratch or by importing files in WAV
formats. Extensions to other audio formats can be envisioned. In the future,
we also plan on adding additional assignments with more variations.

169

References

[1]

2]

3]

[4]

[5]

[6]

7]

8]

19]

[10]

170

J. C. Adams, B. D. Allen, B. C. Fowler, M. C. Wissink, and J. J. Wright.
The sounds of sorting algorithms: Sonification as a pedagogical tool. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education - Volume 1, SIGCSE 2022, page 189-195, New York, NY, USA,
2022. Association for Computing Machinery.

J. D. Bayliss and S. Strout. Games as a flavor of csl. In ACM SIGCSFE
Bulletin, volume 38, pages 500-504. ACM, 2006.

A. Beckman, M. Mcquaigue, A. Goncharow, D. Burlinson, K. Subrama-
nian, E. Saule, and J. Payton. Engaging Early Programming Students with
Modern Assignments Using BRIDGES. volume 35, page 74-83, Evansville,
IN, USA, apr 2020. Consortium for Computing Sciences in Colleges.

BRIDGES Development Team. BRIDGES Assignment Repository. http:
//bridgesuncc.github.io/newassignments.html, 2022.

BRIDGES Development Team. BRIDGES Website. http://
bridgesuncc.github.io, 2022.

K. B. Bruce. Controversy on how to teach cs 1: a discussion on the sigcse-
members mailing list. In ACM SIGCSE Bulletin, volume 36, pages 29-34.
ACM, 2004.

S. Buchanan, B. Ochs, and J. J. LaViola Jr. Cstutor: a pen-based tutor
for data structure visualization. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, pages 565-570. ACM, 2012.

J. Burg, J. Romney, and E. Schwartz. Computer science "big ideas" play
well in digital sound and music. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, SIGCSE 13, page 663-668,
New York, NY, USA, 2013. Association for Computing Machinery.

D. Burlinson, M. Mcquaigue, A. Goncharow, K. Subramanian, E. Saule,
J. Payton, and P. Goolkasian. Bridges: Real world data, assignments and
visualizations to engage and motivate cs majors. Fducation and Informa-
tion Technologies, 2023.

D. Burlinson, M. Mehedint, C. Grafer, K. Subramanian, J. Payton,
P. Goolkasian, M. Youngblood, and R. Kosara. BRIDGES: A System
to Enable Creation of Engaging Data Structures Assignments with Real-
World Data and Visualizations. In Proceedings of ACM SIGCSE 2016,
pages 18-23, 2016.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. Dahlby Albright, T. H. Klinge, and S. A. Rebelsky. A functional ap-
proach to data science in csl. In Proceedings of the 49th ACM Techni-
cal Symposium on Computer Science Education, pages 1035-1040. ACM,
2018.

A. Delman, A. Ishak, L. Goetz, M. Kunin, Y. Langsam, and T. Raphan.
Development of a system for teaching csl in c¢/c+-+ with lego nxt robots.
In FECS, pages 396—400, 2010.

P. Dewan. How a language-based gui generator can influence the teaching
of object-oriented programming. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, pages 69-74. ACM, 2012.

P. Drake and K. Sung. Teaching introductory programming with popular
board games. In Proceedings of ACM SIGCSE, SIGCSE ’11, pages 619—
624, 2011.

J. Freeman, B. Magerko, D. Edwards, and L. Ikkache. Earsketch, a web-
application to teach computer science through music (abstract only). pages
640-640, 03 2017.

J. Freeman, B. Magerko, T. McKlin, M. Reilly, J. Permar, C. Summers,
and E. Fruchter. Engaging underrepresented groups in high school intro-
ductory computing through computational remixing with earsketch. In
Proceedings of the 45th ACM Technical Symposium on Computer Science
Education, SIGCSE 14, page 85-90, New York, NY, USA, 2014. Associ-
ation for Computing Machinery.

I. Greenberg, D. Kumar, and D. Xu. Creative coding and visual portfolios
for csl. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education, pages 247-252. ACM, 2012.

P. J. Guo. Online python tutor: embeddable web-based program visualiza-
tion for cs education. In Proceeding of the 44th ACM technical symposium
on Computer science education, pages 579-584. ACM, 2013.

M. Guzdial. A media computation course for non-majors. In Proceedings
of the ITICSE 2003, pages 104—108, 2003.

O. A. Hall-Holt and K. R. Sanft. Statistics-infused introduction to com-
puter science. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, pages 138-143. ACM, 2015.

M. Hendelsman, W. Briggs, N. Sullivan, and A. Towler. A measure
of college student course engagement. Journal of Educational Research,
98(3):166-175, 2005.

171

[22]

[23]

[24]

[25]

[26]
[27]

28]

[29]
[30]

[31]

[32]

172

D. Horton, M. Craig, J. Campbell, P. Gries, and D. Zingaro. Comparing
outcomes in inverted and traditional CS1. In Proceedings of the ITICSE
2014, pages 261-266, 2014.

Joint Taskforce on ACM Curricula. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer
Science (Page 513). ACM/IEEE Computer Society, 2013.

A. N. Kumar. The effectiveness of visualization for learning expression
evaluation. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, pages 362-367. ACM, 2015.

W. M. Kunkle and R. B. Allen. The impact of different teaching ap-
proaches and languages on student learning of introductory programming
concepts. ACM Transactions on Computing Education (TOCE), 16(1):3,
2016.

NCWIT, 2018. https://www.engage-csedu.org/.

N. R. Nguyen, H. Padhye, E. Stein, and G. Bull. Tunescope: Engaging
novices to computational thinking through music. In Proceedings of the
58rd ACM Technical Symposium on Computer Science Education V. 2,
SIGCSE 2022, page 1181, New York, NY, USA, 2022. Association for
Computing Machinery.

A. Obourn and M. Stepp. Melody. http://nifty.stanford.edu/2015/
obourn-stepp-melody-maker/.

N. Parlante. Nifty assignments, 2018.

J. Pirker, M. Riffnaller-Schiefer, and C. Giitl. Motivational active learning:
Engaging university students in computer science education. In Proceed-
ings of ITICSE, pages 297-302, 2014.

C. Reis and R. Cartwright. Taming a professional ide for the classroom.
In ACM SIGCSE Bulletin, volume 36, pages 156-160. ACM, 2004.

S. Schaub. Teaching java with graphics in csl. ACM SIGCSE Bulletin,
32(2):71-73, 2000.

