
Near-Optimal Policy Optimization for Correlated Equilibrium in
General-Sum Markov Games

Yang Cai Haipeng Luo Chen-Yu Wei Weiqiang Zheng
Yale University University of Southern California University of Virginia Yale University

Abstract

We study policy optimization algorithms
for computing correlated equilibria in multi-
player general-sum Markov Games. Previous
results achieve Õ(T−1/2) convergence rate to
a correlated equilibrium and an accelerated
Õ(T−3/4) convergence rate to the weaker no-
tion of coarse correlated equilibrium. In this
paper, we improve both results significantly
by providing an uncoupled policy optimiza-
tion algorithm that attains a near-optimal
Õ(T−1) convergence rate for computing a
correlated equilibrium. Our algorithm is con-
structed by combining two main elements (i)
smooth value updates and (ii) the optimistic-
follow-the-regularized-leader algorithm with
the log barrier regularizer.

1 Introduction

How does a multi-agent system evolve when each agent
independently updates their policy based on their own
utility? Can the system converge to an equilibrium,
and if so, how quickly? These questions lie at the
heart of game theory, economics, and learning theory,
and have stimulated decades of research. For example,
in normal-form games, it is well-known that when each
agent employs a standard online learning algorithm
with low external regret or low swap regret, the em-
pirical distribution of their joint strategy profile con-
verges to a coarse correlated equilibrium (CCE) or a
correlated equilibrium (CE) respectively.

While
√
T (external/swap) regret is minimax optimal

after T interactions in the adversarial environment, it
is possible to achieve strictly better regret in a normal-
form game when each agent employs the same no-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

regret algorithm. For example, Syrgkanis et al. (2015)
show that T 1/4 external regret can be achieved by the
optimistic online mirror descent (OOMD) algorithm or
the optimistic follow-the-regularized-leader (OFTRL)
algorithm. Various improvements on this result have
been proposed over the past few years, with the most
recent one by Anagnostides et al. (2022a,b) achieving
a near-optimal log(T) bound for both the external and
swap regret. A direct corollary of this result is that
when all agents employ the corresponding algorithm,
the empirical distribution of their joint strategy profile
converges to a CCE or CE, respectively, at a rate of
Õ(T−1).

However, achieving similar results for the more gen-
eral setting of Markov games – the focus of this work,
is much more challenging. Importantly, unlike the
normal-form game setting, achieving o(T) regret has
been shown to be both statistically and computation-
ally intractable for Markov games (Tian et al., 2021;
Foster et al., 2023). This significant difference leads to
considerably different algorithms for Markov games,
the majority of which are aimed at finding an ap-
proximate equilibrium directly. We review this line of
work in Section 1.1 and only point out here that, with
an oracle access to the reward and transition func-
tion of the Markov game (see Remark 1), the state-
of-the-art uncoupled learning dynamic converges to a
CCE at a rate of T−3/4 (Zhang et al., 2022) and to
a CE at a rate of T−1/2 (Jin et al., 2021; Song et al.,
2021; Mao and Başar, 2023), both of which are sub-
stantially slower than the aforementioned Õ(T−1) rate
for normal-form games.

In this work, we close this gap by proposing an uncou-
pled policy optimization algorithm that converges to a
CE (thus also to the weaker notion of CCE) at a near-
optimal rate of log2(T)/T = Õ(T−1), significantly im-
proving existing results. Our algorithm builds upon
the OFTRL framework with smooth value updates
similar to Zhang et al. (2022), but importantly also in-
corporates the technique of using the log barrier as a
regularizer from the recent work of Anagnostides et al.
(2022b).

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

1.1 Related Work

Learning in normal-form games The connec-
tion between no-regret learning algorithms and find-
ing equilibria in games dates back to the seminal work
of Freund and Schapire (1999), which shows that in
a two-player zero-sum games, if both players have an
external regret bound of R after T rounds, then their
average strategy is an R/T -approximate Nash equi-
librium (NE). For general-sum games, similar con-
nections hold between the external regret and CCE,
and also between the stronger notion of swap regret
and CE (Stoltz and Lugosi, 2007; Blum and Mansour,
2007).

As mentioned, while in the worst case the best possi-
ble regret bounds are of order

√
T , the players could

enjoy even lower regret when all of them employ the
same algorithm, since this usually leads to an over-
all stable environment. Such results were pioneered
by Daskalakis et al. (2011); Rakhlin and Sridharan
(2013) for two-player zero-sum games, and extended
by Syrgkanis et al. (2015) for general-sum games. Var-
ious improvements have been made over the past few
years (Chen and Peng, 2020; Daskalakis et al., 2021;
Anagnostides et al., 2022a,b).

Learning in Markov games Markov game
(Shapley, 1953) is a general framework for modeling
multi-agent sequential decision making problems.
A line of earlier development has already focused
on designing decentralized learning algorithms that
offer better scalability (Littman, 1994; Littman et al.,
2001; Bowling and Veloso, 2001), but the convergence
guarantees are often only asymptotic. Inspired by
recent advances in online optimization and the em-
pirical success of multi-agent reinforcement learning
through self-play (Silver et al., 2017; Vinyals et al.,
2019; Bard et al., 2020), there is a surge of research
trying to sharpen the theoretical guarantees for
multi-agent learning in Markov games, especially in
the decentralized setting (Bai et al., 2020; Wei et al.,
2021; Sayin et al., 2021; Mao and Başar, 2023;
Jin et al., 2021; Song et al., 2021; Kao et al., 2022;
Leonardos et al., 2021; Ding et al., 2022; Erez et al.,
2023; Cui et al., 2023; Wang et al., 2023). Below, we
only highlight the most relevant ones.

As mentioned, Tian et al. (2021) show that no-regret
learning is generally impossible when against arbitrary
opponents. However, this does not preclude the pos-
sibility of enjoying low regret against Markov policies
when all players employ the same algorithm. Indeed,
Erez et al. (2023) design a policy optimization algo-
rithm (also using techniques from Anagnostides et al.
(2022b)) that achieves Õ(T 3/4) swap regret (a weaker
notion of swap regret that concerns only Markov pol-

icy deviations) assuming the same oracle access to
reward/transition as we do. This implies Õ(T−1/4)
convergence to a certain kind of CE that only allows
Markov policy deviation, a notion weaker than ours.

Recent findings by Foster et al. (2023) indicate that
the previously mentioned results by Erez et al. (2023)
is unlikely to hold when general deviations are permit-
ted. More explicitly, under standard computational
complexity assumptions,1 no polynomial-time algo-
rithm can be no-regret in general-sum Markov games
when executed independently by all players, even if
the algorithm designer knows the game.

Due to such impossibility results, most algorithms di-
rectly aim at finding CCE/CE without considering
the regret of the players. Specifically, the certified
policy output by the V-learning algorithm (Jin et al.,
2021; Song et al., 2021; Mao and Başar, 2023) has
been proven to converge to a CCE/CE at a rate of
T−1/2, which is optimal when the players need to learn
all the game parameters through interactions with the
environment. In the simpler scenario where an oracle
access to reward/transition is given, the best currently
known rate is T−3/4 for finding a CCE (Zhang et al.,
2022), and T−1/2 for finding a CE (still by V-learning).
In this work, we improve both rates to log2(T)/T .

2 Preliminaries

For a positive integer n, we denote the set {1, 2, . . . , n}
as [n]. For any set A, the probability simplex over A is
∆A := {x ∈ R|A| :

∑
a∈A x[a] = 1, x[a] ≥ 0,∀a ∈ A}.

Multi-player General-Sum Markov Games
In this paper, we focus on finite-horizon n-
player general-sum Markov games denoted as
M(H,S, {Ai}i∈[n],P, {ri}i∈[n]), where H is the length
of the horizon; S is the set of states with size |S| = S;
Ai is the the action set of player i with size |Ai| = Ai

and we denote a joint action profile of all players as
a = (a1, a2, . . . , an) ∈ Πn

i=1Ai; P = {Ph}h∈[H] is the
transition probabilities where Ph(s

′ | s,a) specifies
the probabilities of transition to state s′ in step h+ 1
if players take the joint action a at s in step h;
ri = {ri,h}h∈[H] are the reward function for player
i where ri,h(s,a) ∈ [0, 1] is the reward for player i
when players take the joint action a at s in step h.
In each episode, we assume the game starts at s1
without loss of generality. In each step h ∈ [H], each
player observes the current state sh and chooses an
action ai,h ∈ Ai, then each player receives reward
ri,h(sh,ah) and the game transits to the next state
sh+1 ∼ Ph(· | sh,ah). The episode ends after H steps.

1This is based on the assumption that PPAD-hard prob-
lems are not solvable in polynomial time.

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

Policies and Value Functions A (random) pol-
icy πi for player i is a collection of H maps {πi,h :
Ω × (S × Πn

i=1Ai)
h−1 × S → ∆Ai

}h∈[H] where πi,h

maps a random sample ω from a probability space,
a history of length h − 1, and the current state to a
probability distribution (mixed strategy) over Ai. To
execute policy πi, player i samples ω at the beginning
of the episode, then at each step h, supposing the his-
tory is τh := (s1,a, . . . , sj−1,ah−1), player i chooses
action ai,h ∼ πi,h(· | ω, τh, sh). We note that ω is
shared across all steps h ∈ [H]. A Markov policy for
player i is collection of H history independent maps
πi = {πi,h : S → ∆Ai

}, where πi,h(a | sh) specifies the
probability of taking action a ∈ Ai at (h, sh).

A joint policy π is a set of policies denoted as π =
π1 ⊙ π2 ⊙ . . . ⊙ πn where the same random sample ω
is shared among all players. We denote π−i := π1 ⊙
. . . πi−1⊙πi+1⊙ . . .⊙πn the joint policy that excludes
player i. When the random sample has a special form
ω = (ω1, . . . , ωn) and for each i ∈ [n], πi only uses
the randomness in ωi that is independent of {ωj}j 6=i,
then the joint policy is a product policy and we denote
it as π = π1 × π2 × . . . × πn. We denote πh(a|s) the
probability of joint action a at state s. The value
function V π

i,h : S → R specifies the expected reward
for player i if all players follow policy π:

V π
i,h(s) := Eπ

[
H∑

h′=h

ri,h′(sh′ ,ah′) | sh = s

]
.

The goal of player i is to maximize their own value
function V π

1,h(s1). The Q function at step h is defined
as

Qπ
i,h(s,a) := Eπ

[
H∑

h′=h

ri,h′(sh′ ,ah′) | sh = s,ah = a

]
.

Strategy Modification and Correlated Equilib-
rium A strategy modification φi for player i is a col-
lection of maps φi = {φi,h : (S × Πn

i=1Ai)
h−1 × S ×

∆Ai
→ ∆Ai

} such that given history τh and state sh,
each map φi,h(τh, sh, ·) : ∆Ai

→ ∆Ai
is a linear trans-

formation.2 For any policy πi, the modified policy de-
noted as φi ⋄πi changes the strategy πi,h(ω, τh, sh) un-
der random sample ω and history τh to another strat-
egy φi,h(τh, sh, πi,h(ω, τh, sh)).

A correlated equilibrium is a joint policy where no
player can increase their value by any strategy modi-
fication. Formally, it is defined as

Definition 1 (Correlated Equilibrium). A joint
policy π is a correlated equilibrium (CE) if

2On the other hand, the set of strategy modifications
studied in (Erez et al., 2023) is {φi : S ×Ai → Ai}, which
is a strict subset of ours and thus induces a weaker notion
of correlated equilibrium.

maxi∈[n] maxφi
V

(φi⋄πi)⊙π−i

i,1 (s1) − V π
i,1(s1) ≤ 0. A

joint policy π is an ǫ-approximate CE if CEGap(π) :=

maxi∈[n] maxφi
V

(φi⋄πi)⊙π−i

i,1 (s1)− V π
i,1(s1) ≤ ǫ.

A coarse correlated equilibrium is a joint policy where
no player can increase their value by playing any other
independent policy. Formally, it is defined as

Definition 2 (Coarse Correlated Equilibrium). A
joint policy π is an ǫ-approximate coarse cor-

related equilibrium if maxi∈[n] maxπ′

i
V

π′

i×π−i

i,1 (s1) −
V π
i,1(s1) ≤ ǫ.

We remark that by definition a CE is also a CCE. In
the rest of the paper, we focus on CE only, but the
same results apply to CCE clearly.

Additional Notations Define Amax = maxi∈[n] Ai.
For any value function V : S → R, we define
[PhV](s,a) := Es′∼Ph(s,a)V (s′). For any Markov
policy πh(· | s) and any Q function Qi,h(·, ·) :
S × Πn

j=1Aj → R, we denote [Qi,hπh](s) :=
〈Qi,h(s, ·), πh(· | s)〉. Similarly, for any joint pol-
icy π−i,h(· | s) that excludes player i, we denote
[Qi,hπ−i,h](s, ai) := 〈Qi,h(s, ai, ·), π−i,h(· | s)〉.

2.1 Online Learning and Regret

In a (linear) online learning setting, at each day t ∈ N,
the learner chooses a strategy xt from a compact and
convex set X ⊆ Rd while the adversary picks a reward
vector ut ∈ Rd. Then the learner gets reward 〈ut, xt〉
and the reward vector ut as feedback. The goal of an
online learning algorithm is to minimize regret, or more
generally, Φ-regret. For a set of strategy modifications
Φ = {φ : X → X}, the Φ-regret of an algorithm R

over a time horizon T is defined as

regTΦ := max
φ∈Φ

T∑

t=1

〈
ut, φ(xt)− xt

〉
.

An algorithm is no Φ-regret if its Φ-regret is sublin-
ear in T . The (external) regret denoted as RegT is
Φ-regret when Φ includes only constant transforma-
tions. The swap regret denoted as SwapRegT is Φ-
regret when Φ includes all possible linear transforma-
tions. The swap regret is non-negative since we can
choose the identity transformation such that φ(x) = x
for all x ∈ X .

3 Algorithm and Main Results

In this section, we present a policy optimization al-
gorithm (Algorithm 1) for learning correlated equilib-
rium in multi-player general-sum Markov games. Al-
gorithm 1 is a single-loop algorithm where on each

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

Algorithm 1 Policy optimization in Markov games
with V value update

Require: step size η > 0, weights {αt} and {wt}, an
online learning algorithm R.

1: Initialize: For all (i, h, s), initialize V 0
i,h(s) = H−

h+ 1, Ri,h,s as an instance of R over decision set
∆Ai

, and π0
i,h(· | s) as Ri,h,s’s initial output

2: for t = 1, 2, . . . , T do
3: for all (i, s, h) do
4: Forward the utility vector ut−1

i,h,s :=
wt−1

H [(rh+

PhV
t−1
i,h+1)π

t−1
−i,h](s, ·) to Ri,h,s.

5: Update πt
i,h(· | s) according to Ri,h,s.

6: end for
7: for all (i, s,a) ∈ [n]×S ×A, from h = H to 1:

V t
i,h(s)

← (1− αt)V
t−1
i,h (s) + αt

[
(rh + PhV

t
i,h+1)π

t
h

]
(s).

8: end for

Output π̂T = π̂T
1 as defined in Algorithm 2.

Algorithm 2 Executing Policy π̂t
h

Require: Product policies πt′

h′(· | s′) = Πn
i=1π

t′

i,h′(· |
s′) for all (h′, s′, t′) ∈ [H]× S × [T].

1: Sample j ∈ [t] with probability Pr[j = i] = αi
j (see

Equation (2) for definition).
2: Play policy πj

h at the h-th step of the game.

3: Play policy π̂j
h+1 for step h+ 1.

step-state pair (h, s) ∈ [H]× [S], each player employs
a no-regret algorithm over its own action set following
the online learning protocol described in Section 2.1
with some reward vectors carefully constructed from
a smooth update. We explain both the value update
and the policy update below.

3.1 Value Update

Each player maintains V value function V t
i,h and con-

ducts smooth value update with the following learning
rates (Line 7 of Algorithm 1):

αt =
H + 1

H + t
. (1)

The choice of αt = O(1t) is proposed by
Jin et al. (2018) and adopted in many subsequent
works (Jin et al., 2021; Wei et al., 2021; Zhang et al.,
2022; Yang and Ma, 2023). This choice ensures con-
servative updates of value functions and hence stabi-
lizes the update of policies. We also define a group of
auxiliary weights:

αt
t = αt, αi

t = αiΠ
t
j=i+1(1− αj), ∀i ≤ t− 1, (2)

and

w0 = w1, wt =
αt
t

α1
t

, ∀t ≥ 1. (3)

After T ≥ 1 episodes, Algorithm 1 outputs a joint
policy π̂T as defined in Algorithm 2. The output pol-
icy is not a Markov policy and is defined recursively.
Specifically, at each step h, the policy π̂t

h randomly se-

lects a product policy from {πj
h}j∈[t] with probability

{αj
t}j∈[t] and plays policy π̂j

h+1 onward.

Remark 1. Algorithm 1 is an adaptation of
(Zhang et al., 2022, Algorithm 12), a policy optimiza-
tion algorithm originally designed for learning the
coarse correlated equilibrium. The original algorithm
performs Q value update, whereas our adaptation fo-
cuses on V value update. An equivalent version of
Algorithm 1 that employs Q value update is presented
in Algorithm 3, with its equivalence proven in Propo-
sition 1.

The main distinction between the two algorithms lies
in their function sizes. The Q(s,a) function has a size
of S ·Πn

i=1Ai, which grows exponentially with the num-
ber of agents, leading to the so-called curse of multi-
agents. In contrast, the V (s) function is significantly
more compact with a size of S, effectively bypassing
the curse of multi-agents (Jin et al., 2021).

Furthermore, Algorithm 1 offers a notable advan-
tage: it supports a decentralized implementation. This
means each player does not need explicit knowledge
of other players’ policies. The update steps in Algo-
rithm 1 only require (rh + PhVi)π−i,h for any value
function Vi and the policies of other players π−i,h.
This can be efficiently computed with access to:

1. A reward oracle that provides the expected reward
vector for player i based on the policies of other
players π−i,h(· | s) at (h, s).

2. A transition oracle that offers the distribution of
sh+1 based on player i’s action ai and the policies
of other players π−i,h(· | s) at (h, s).

While we directly assume access to such oracles, both of
them can be approximately implemented within ε > 0
error using poly(n,Amax, S,H, 1/ε) samples.

Given the equivalence between Algorithm 1 and Algo-
rithm 3, any guarantee for Algorithm 3 also holds for
Algorithm 1. We will thus focus on Algorithm 3 in the
rest of the paper.

Bounding Correlated Equilibrium Gap by Per-
State Regret We first show a general result that
the output policy π̂T of Algorithm 3 is an approxi-
mate correlated equilibrium as long as each player has

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

Algorithm 3 Policy optimization in Markov games
with Q value update (Zhang et al., 2022)

Require: step size η > 0, weights {αt} and {wt}, an
online learning algorithm R

1: Initialize: For all (i, h, s), initialize Q0
i,h(s,a) =

H −h+1, Ri,h,s as an instance of R over decision
set ∆Ai

, and π0
i,h(· | s) as Ri,h,s’s initial output

2: for t = 1, 2, . . . , T do
3: for all (i, s, h) do
4: Forward the utility vector ut−1

i,h,s ←
wt−1

H Qt−1
i,h πt−1

−i,h(s, ·) to Ri,h,s.

5: Update πt
i,h(· | s) according to Ri,h,s.

6: end for
7: for all (i, s,a) ∈ [n]× S ×A, from h = H to 1:

Qt
i,h(s,a) ← (1− αt)Q

t−1
i,h (s,a)

+ αt(rh + Ph[Q
t
i,h+1π

t
h+1])(s,a).

8: end for

Output π̂T = π̂T
1 as defined in Algorithm 2.

low per-state weighted swap regret. Formally, we de-
fine the per-state weighted swap regret (per-state re-
gret for short) up to time t ≥ 1 with respect to weights
{αi

t}i∈[t] as reg
t
i,h(s) :=

max
φi

t∑

j=1

αj
t

〈
Qj

i,h(s, ·), ((φi ⋄ πj
i,h)⊙ πj

−i,h)(· | s)− πj
h(· | s)

〉
.

We also define regth as the maximum weighted regret
over all players and all states:

regth := max
s∈S

max
i∈[n]

regti,h(s). (4)

Theorem 1. Suppose that the per-state regret has up-
per bounds regth ≤ regth for all (h, t) ∈ [H]× [T] where
regth is non-increasing in t: regth ≥ regt+1

h . Then the
output policy of Algorithm 3 satisfies

CEGap(π̂T) ≤ 2H · 1
T

T∑

t=1

max
h∈[H]

regth.

for all T ≥ 2.

Theorem 1 states that CEGap(π̂T) can be bounded by

the average weighted regret O(1
T

∑T
t=1 maxh∈[H] reg

t
h).

Thus, for any algorithm R chosen in the policy update
step, as long as the weighted average regret is sublin-
ear, the output policy is an approximate correlated
equilibrium. However, we emphasize that minimizing
weighted swap regret regth with respect to {αi

t}i∈[t] re-
quires careful design and analysis of the algorithm.

Proof Overview For h ∈ [H], we define the reward
difference between policy π̂t

h and a best strategy mod-
ification over any player i ∈ [m] and state s ∈ S as:

δth := max
i∈[n]

max
s∈S

(
max
φi

V
(φi⋄π̂t

i,h)⊙π̂t
−i,h

i,h (s)− V
π̂t
h

i,h (s)

)
.

In Lemma 6, we establish bounds on δth using weighted
regret such that

δth ≤
t∑

j=1

αj
tδ

j
h+1 + regth.

Then Theorem 1 follows by applying the above in-
equality recursively to bound CEGap(π̂T) = δT1 .

3.2 Policy Update

We now turn to the design of the policy update,
with the goal of minimizing the weighted swap re-
gret regth. Each player i maintains a Markov policy
πt
i,h(· | s) for every pair step h and step s. Dur-

ing each episode t ∈ [T], player i updates πt
i,h using

an online learning algorithm R. Previous works such
as (Zhang et al., 2022; Yang and Ma, 2023) adopted
the optimistic follow-the-regularized-Leader (OFTRL)
algorithm (Syrgkanis et al., 2015) with entropy reg-
ularization, which is a no external regret algorithm.
However, inspired by recent breakthrough in normal-
form games (Anagnostides et al., 2022b), we select R
to be a specific no swap regret algorithm as out-
lined in Algorithm 4. Specifically, Algorithm 4 (1)
uses the template introduced by Blum and Mansour
(2007), which constructs a no swap regret algorithm
Rswap from several external regret minimizers Ra for
each action a ∈ Ai; (2) employ weighted OFTRL with
log barrier regularization for each external regret min-
imizer Ra. It is has been shown that with constant
step size, OFTRL with log barrier regularization guar-
antees O(log T) individual swap regret in general-sum
games (Anagnostides et al., 2022b). We extend their
analysis to the more challenging Markov games with
decreasing step size and provide bounds for weighted
swap regret. A detailed discussion and analysis of Al-
gorithm 4 are presented in Section 4.1.

3.3 Main Results

We present our main result on the convergence of Al-
gorithm 3 to correlated equilibrium in multi-player
general-sum Markov games.

Theorem 2. For an n-player general-sum Markov
game and any T ≥ 2, when R = Algorithm 4 with
step size η = 1

128n
√
HAmax

, the output policy π̂T of ei-

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

Algorithm 4 BM-OFTRL-Log-Bar

Require: Action set A, step size η, weights {wt}.
1: Initialization: Initialize Ra as an instance of

OFTRL-LogBar for each a ∈ A.
2: for t = 1, 2, . . . , T do
3: Get xt

a from Ra for all a ∈ A; Construct a (row)
stochastic matrix M t ∈ S

|A|×|A| where the row
that corresponds to a ∈ A is equal to xt

a; Output
strategy xt ∈ ∆A so that M txt = xt.

4: Get reward vector ut; Forward ut
a := xt[a] · ut

to Ra for each a ∈ A.
5: end for

ther Algorithm 1 or Algorithm 3 satisfies

CEGap(π̂T) ≤ 8192H3.5nA3
max ·

(log T)2

T
.

We remark again that the previous best rate
for finding CE is Õ(T− 1

2) achieved by the V-
learning algorithm (Jin et al., 2021; Song et al., 2021;
Mao and Başar, 2023), and Zhang et al. (2022) pro-

vides a faster convergence rate of Õ(T− 3
4) to the

weaker notion of CCE. Theorem 2 improves both
results significantly and for the first time, shows a
near-optimal Õ(T−1) convergence rates to CE/CCE in
multi-player general-sum Markov games using a single
loop and uncoupled policy optimization algorithm3.

4 Proof of the Main Result

In this section, we provide a sketch of our analysis
along with more explanation on the algorithm de-
sign. We first recall that Algorithm 4 applies the tem-
plate by Blum and Mansour (2007) that constructs a
swap regret minimizer Rswap from a set of external re-
gret minimizers {Ra}a∈A, one for each action a ∈ A.
The resulting algorithm Rswap ensures SwapRegT =∑

a∈A RegTa (Blum and Mansour, 2007).

4.1 Optimistic Follow the Regularized
Leader with Log Barrier Regularization

An important component of Algorithm 4 is the op-
timistic follow the regularized leader algorithm with
variable step size {ηt}. The optimistic follow the reg-
ularized leader (OFTRL) algorithm (Syrgkanis et al.,
2015) over strategy set X and with a regularizer R :
X → R is defined as follows: x0 := argminx∈X R(x)
and for t ≥ 1, the algorithm updates xt using step size

3After our paper is accepted and posted on Arxiv, a
concurrent work by Mao et al. (2024) was posted on Arxiv
which proves a similar result to Theorem 2.

ηt > 0

xt = argmax
x∈X

{
ηt

〈
x,mt +

t−1∑

τ=1

uτ

〉
−R(x)

}

(OFTRL)
Previous works (Zhang et al., 2022; Yang and Ma,
2023) choose R to be a strongly convex function
such as the entropy regularization. Here we fol-
low (Anagnostides et al., 2022b) and let R be a self-
concordant barrier. We first extend the RVU-bound
established in (Anagnostides et al., 2022b) for OFTRL
with a constant step size to the case of variable
step sizes.4 Before stating the result, we first intro-
duce some notations. We assume X has a nonempty
interior int(X). We say R is non-degenerate if
its Hessian ∇2R(x) is positive definite for all x ∈
int(X). For any vector u ∈ R

d, the primal lo-
cal norm with respect to x ∈ int(X) is defined as
‖u‖x :=

√
u⊤∇2R(x)u and the dual norm is de-

fined as ‖u‖∗,x :=
√

u⊤(∇2R(x))−1u when R is non-

degenerate. We also use gt to denote the sequence
produced by Be-the-Leader (BTL) algorithm.

Theorem 3 (RVU for Self-Concordant Barrier with
decreasing step size). Suppose that R is a non-
degenerate self-concordant barrier function for int(X)
and let ηt > 0 be such that ηt‖ut −mt‖∗,xt ≤ 1

2

and ‖ηtmt + (ηt − ηt−1)
∑t−1

τ=1 u
τ‖∗,gt−1 ≤ 1

2 for all

t ∈ [T]. Then, the regret of OFTRL with respect to
any x∗ ∈ int(X) and under any sequence of utilities
u1, . . . , uT can be bounded as

RegT (x∗) ≤ R(x∗)

ηT
+ 2

T∑

t=1

ηt
∥∥ut −mt

∥∥2
∗,xt

−
T∑

t=1

(
1

4ηt

∥∥xt − gt
∥∥2
xt +

1

4ηt−1

∥∥xt − gt−1
∥∥2
gt−1

)
.

Log Barrier Regularization Now we describe the
implementation of OFTRL in Algorithm 4. We choose
R to be the log barrier over the simplex X = ∆d

defined as R(x) = −
∑d

r=1 log x[r]. For t ≥ 1, the
step size is ηt = η

wt
(wt is defined in (3)) for some

η > 0. In order to minimize the weighted regret, we
also equip the utilities vectors with weights {wt} so
that ut = wtû

t and mt = wtm̂
t with ‖ût‖∞ ≤ 1

and ‖m̂t‖∞ ≤ 1. The prediction vector m̂t is cho-
sen to be ût−1. We denote the resulting algorithm
OFTRL-LogBar.

xt = argmax
x∈X

{
η

wt

〈
x,wtû

t−1 +
t−1∑

τ=1

wτ û
τ

〉
−R(x)

}

(OFTRL-LogBar)

4The term RVU is from Syrgkanis et al. (2015), which
stands for “Regret bounded by Variation in Utilities”.

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

Note that we can not directly apply Theorem 3 to
OFTRL-LogBar since the simplex ∆d has empty in-
terior. This can be addressed by a transformation on
the relative interior relint(∆d) which preserves the re-
gret (See Appendix C). The following lemma further
verifies that OFTRL-LogBar with any η ≤ 1

16 satisfies
the two stability conditions required by Theorem 3.

Lemma 1. Let ηt =
η
wt

, ut = wtû
t, and mt = wtm̂

t

such that ‖ût‖∞, ‖m̂t‖∞ ≤ 1. Then the iterates of
OFTRL-LogBar satisfy ηt‖ut −mt‖∗,xt ≤ 2η and

∥∥∥∥∥ηtm
t + (ηt − ηt−1)

t−1∑

τ=1

uτ

∥∥∥∥∥
∗,gt−1

≤ 3η.

Proof. By definition, for any vector u ∈ Rd and x ∈
int(∆d), it holds that ‖u‖∗,x ≤ ‖u‖∞. Then we have

ηt
∥∥ut −mt

∥∥
∗,xt = η

∥∥ût − m̂t
∥∥
∗,xt ≤ η

∥∥ût − m̂t
∥∥
∞ ≤ 2η.

Using properties of {wt} (Lemma 4), we have

∥∥∥∥∥ηtm
t + (ηt − ηt−1)

t−1∑

τ=1

uτ

∥∥∥∥∥
∗,gt−1

≤ η
∥∥m̂t

∥∥
∞ + η

∥∥∥∥∥

(
1

wt−1
− 1

wt

) t−1∑

τ=1

wiûτ

∥∥∥∥∥
∞

≤ η + η

(
1

wt−1
− 1

wt

) t−1∑

τ=1

wi

≤ η + η · H + 1

H
≤ 3η.

Combining Theorem 3 and Lemma 1 with addi-
tional analysis, we have the following RVU bound for
OFTRL-LogBar.

Corollary 1. Let η ≤ 1
16 . Then, the regret

of OFTRL-LogBar under any sequence of utilities
u1, . . . , uT can be bounded as

RegT (x∗) ≤ R(x∗)

ηT
+ 2

T∑

t=1

ηt
∥∥ut −mt

∥∥2
∗,xt

−
T∑

t=1

1

16ηt−1

∥∥xt − xt−1
∥∥2
xt−1 ,

for any x∗ ∈ relint(∆d), where ‖xt − xt−1‖2xt−1 :=
∑d

r=1(
xt[r]−xt−1[r]

xt−1[r])2.

Swap Regret Applying Corollary 1 to each Ra,
then the swap regret SwapRegT =

∑
a∈A RegTa of Al-

gorithm 4 is upper bounded by

2|A|2 log T
ηT

+ 2
T∑

t=1

ηt
∥∥ut −mt

∥∥2
∞

−
T∑

t=1

∑

a∈A

‖xt
a − xt−1

a ‖2xt−1
a

16ηt−1
,

where we get a log T factor due to the diameter of the
log barrier regularizer. Following techniques developed
in (Anagnostides et al., 2022b), we show a key lemma

that lower bounds
∑

a∈A
1

16ηt−1
‖xt

a − xt−1
a ‖2xt−1

a
by

movement in the output strategies ‖xt − xt−1‖21.
Lemma 2. Suppose η < 1

28|A| . Then the iterates of

Algorithm 4 satisfies for any t ∈ [T],

∥∥xt − xt−1
∥∥2
1
≤ 64|A|

∑

a∈A

∥∥xt
a − xt−1

a

∥∥2
xt−1
a

.

Combining the above then gives a RVU bound for swap
regret of Algorithm 4 with variable step size.

Theorem 4 (RVU for swap regret). Let η < 1
28|A| .

Then for any t ∈ [T], the swap regret of Algorithm 4
is at most

2|A|2 log T
ηT

+
T∑

t=1

4ηt
∥∥ut −mt

∥∥2
∞ −

T∑

t=1

‖xt − xt−1‖21
1024|A|ηt−1

.

4.2 Bounding Per-State Regret

In this subsection, we prove upper bounds for regti,h(s),
the per-state regret for player i ∈ [n] and any (h, s, t) ∈
[H] × [S] × [T]. For simplicity of notation, through-
out this subsection, we fix (i, h, s) and omit the sub-
scripts (h, s) within the policies and Q-functions, i.e.,
πt
i,h(· | s) will be abbreviated as πt

i and Qt
i,h(s, ·) will

be abbreviated as Qt
i. We also overload T be any iter-

ation T ≥ 1.

Recall the policy update step in Algorithm 3 where
we feed ut

i = wt
1
H (Qt

i)
⊤πt

−i to BM-OFTRL-LogBar
(Algorithm 4). Thus we can relate regTi,h(s) to the
regret incurred by OFTRL-Log-Bar for any T ≥ 1 as
follows:

regTi,h(s) = max
φi

T∑

t=1

αt
T

〈
φi ⋄ πt

i − πt
i , Q

t
iπ

t
−i

〉

= Hα1
T ·max

φi

T∑

t=1

〈
φi ⋄ πt

i − πt
i , u

t
i

〉

︸ ︷︷ ︸
SwapRegT

i

, (5)

where the second equality holds since αt
T = α1

Twt (de-
fined in Equation (2) and Equation (3)). Now we apply

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

Theorem 4 and obtain that for any T ≥ 1,

SwapRegTi = max
φi

T∑

t=1

〈
φi ⋄ πt

i − πt
i , u

t
i

〉

≤ 2A2
i log T

ηT
+

T∑

t=1

2ηt
∥∥ut

i − ut−1
i

∥∥2
∞ −

T∑

t=1

‖πt
i − πt−1

i ‖21
1024Aiηt−1

≤ 2wTA
2
i log T

η
+

T∑

t=1

2ηwt

H2

∥∥Qt
iπ

t
−i −Qt−1

i πt−1
−i

∥∥2
∞

−
T∑

t=1

wt

1024AiηH

∥∥πt
i − πt−1

i

∥∥2
1
,

where we use ηt = η
wt

, ut
i = wt

1
H (Qt

i)
⊤πt

−i and

wt−1 = wt(t−1)
H+t−1 ≥ wt

H in the last equality. Using the

fact that ‖Qt
iπ

t
−i −Qt−1

i πt−1
−i ‖2∞ ≤ 2‖Qt

i −Qt−1
i ‖2∞ +

2‖Qt
i(π

t
−i − πt−1

−i)‖2∞ as well as ‖Qt
i −Qt−1

i ‖2∞ ≤
α2
tH

2 and ‖Qt
i(π

t
−i − πt−1

−i)‖2∞ ≤ H2‖πt
−i − πt−1

−i ‖2
1
,

we can further upper bound SwapRegTi as

2wTA
2
i log T

η
+ 4η

T∑

t=1

wt(αt)
2

︸ ︷︷ ︸
I

+4η

T∑

t=1

wt

∥∥πt
−i − πt−1

−i

∥∥2
1

︸ ︷︷ ︸
II

−
T∑

t=1

wt

1024AiηH

∥∥πt
i − πt−1

i

∥∥2
1
. (6)

Now we focus on upper bounding term I and II. From
Lemma 4, we know

∑T
t=1 α

t
T (αt)

2 ≤ 4H
T . This further

implies I ≤ 4H
α1

T
T

since αt
T = α1

Twt.

For term II, we have

II =
T∑

t=1

wt

∥∥πt
−i − πt−1

−i

∥∥2
1
≤

T∑

t=1

wt


∑

j 6=i

∥∥πt
j − πt−1

j

∥∥
1




2

≤ (n− 1)

T∑

t=1

wt

∑

j 6=i

∥∥πt
j − πt−1

j

∥∥2
1
,

where the first inequality holds since the total vari-
ational distance between two product distribution is
bounded by the sum of total variational distance be-
tween each marginal distribution.

Then the total swap regret
∑n

i=1 SwapReg
T
i can be

upper bounded by

n∑

i=1

SwapRegTi ≤ 2wTnA
2
max log T

η
+ 4ηn

T∑

t=1

wt(αt)
2

+

n∑

j=1

T∑

t=1

(
4ηwtn

2 − wt

1024AjηH

)∥∥πt
j − πt−1

j

∥∥2
1

≤ 2wTnA
2
max log T

η
+ 4ηn

T∑

t=1

wt(αt)
2

− 4ηn2
n∑

j=1

T∑

t=1

wt

∥∥πt
j − πt−1

j

∥∥2
1
,

since η = 1
128n

√
HAmax

. Since the swap regret is non-

negative, the above inequality implies

II ≤ n
n∑

j=1

T∑

t=1

wt

∥∥πt
j − πt−1

j

∥∥2
1

≤ 8192Hn2A4
maxwT log T +

T∑

t=1

wt(αt)
2

︸ ︷︷ ︸
=I

.

Now we can plug the above bounds on terms I and
II into the individual regret bound in Equation (6)
and multiply Hα1

T (Equation (5)) to bound regTi,h(s).

Since η = 1
128n

√
HAmax

and α1
TwT = αT ≤ 2H

T , we

finally get

regTi,h(s) = Hα1
T · SwapRegTi

≤ 2HA2
maxαT log T

η
+ 4ηHα1

T · (I+ II)

≤ 2048nH5/2A3
max

log T

T
. (7)

Since the above holds for all (i, s, h) ∈ [n] × [S] × [H]
and T ≥ 1, we conclude that the maximum weighted
regret over all players, all states, and all steps is
maxh∈[H] reg

t
h ≤ O(log t

t).

Proof of Theorem 2 Combining Theorem 1 and
the weighted regret upper bound in Equation (7), we
conclude that

CEGap(π̂T) ≤ 2H · 1
T

T∑

t=1

max
h∈[H]

regth

≤ 4096H3.5nA3
max ·

1

T

T∑

t=1

log t

t

≤ 8192H3.5nA3
max ·

(log T)2

T
.

This completes the proof.

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

5 Conclusion and Future Directions

In this work, we propose a policy optimization algo-
rithm with near-optimal Õ(T−1) convergence rate to
correlated equilibrium in general-sum Markov games.
Our result improves the results and answers the
open questions in previous works (Zhang et al., 2022;
Yang and Ma, 2023).

A natural future direction is to further improve the
convergence rates with respect to the number of iter-
ations T . We remark that shaving the poly log T fac-
tors is challenging even in normal-form games. Other
directions include improving the dependence on the
horizon H and size of action set Amax, and generaliz-
ing our results in the setting with oracle access to re-
ward/transition to the sample-based setting where all
game parameters are unknown and have to be learned
from iteractions.

Acknowledgements HL is supported by NSF
award IIS-1943607 and a Google Research Scholar
Award. YC and WZ are supported by the NSF Award
CCF-1942583 (CAREER).

References

Anagnostides, I., Daskalakis, C., Farina, G., Fishelson,
M., Golowich, N., and Sandholm, T. (2022a). Near-
optimal no-regret learning for correlated equilibria
in multi-player general-sum games. In Proceedings
of the 54th Annual ACM SIGACT Symposium on
Theory of Computing (STOC).

Anagnostides, I., Farina, G., Kroer, C., Lee, C.-W.,
Luo, H., and Sandholm, T. (2022b). Uncoupled
learning dynamics with o(log t) swap regret in mul-
tiplayer games. In Advances in Neural Information
Processing Systems (NeurIPS).

Bai, Y., Jin, C., and Yu, T. (2020). Near-optimal rein-
forcement learning with self-play. Advances in neu-
ral information processing systems, 33:2159–2170.

Bard, N., Foerster, J. N., Chandar, S., Burch, N.,
Lanctot, M., Song, H. F., Parisotto, E., Dumoulin,
V., Moitra, S., Hughes, E., et al. (2020). The hanabi
challenge: A new frontier for ai research. Artificial
Intelligence, 280:103216.

Blum, A. and Mansour, Y. (2007). From external to
internal regret. Journal of Machine Learning Re-
search, 8(6).

Bowling, M. and Veloso, M. (2001). Rational and con-
vergent learning in stochastic games. In Interna-
tional joint conference on artificial intelligence, vol-
ume 17, pages 1021–1026. Citeseer.

Chen, X. and Peng, B. (2020). Hedging in games:
Faster convergence of external and swap regrets.

Advances in Neural Information Processing Systems
(NeurIPS), 33:18990–18999.

Cui, Q., Zhang, K., and Du, S. (2023). Breaking the
curse of multiagents in a large state space: Rl in
markov games with independent linear function ap-
proximation. In The Thirty Sixth Annual Confer-
ence on Learning Theory, pages 2651–2652. PMLR.

Daskalakis, C., Deckelbaum, A., and Kim, A. (2011).
Near-optimal no-regret algorithms for zero-sum
games. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms,
pages 235–254. SIAM.

Daskalakis, C., Fishelson, M., and Golowich, N.
(2021). Near-optimal no-regret learning in general
games. Advances in Neural Information Processing
Systems (NeurIPS).

Ding, D., Wei, C.-Y., Zhang, K., and Jovanovic, M.
(2022). Independent policy gradient for large-scale
markov potential games: Sharper rates, function ap-
proximation, and game-agnostic convergence. In In-
ternational Conference on Machine Learning, pages
5166–5220. PMLR.

Erez, L., Lancewicki, T., Sherman, U., Koren, T., and
Mansour, Y. (2023). Regret minimization and con-
vergence to equilibria in general-sum markov games.
In International Conference on Machine Learning,
pages 9343–9373. PMLR.

Foster, D. J., Golowich, N., and Kakade, S. M. (2023).
Hardness of independent learning and sparse equi-
librium computation in Markov games. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 10188–10221.
PMLR.

Freund, Y. and Schapire, R. E. (1999). Adaptive game
playing using multiplicative weights. Games and
Economic Behavior, 29(1-2):79–103.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I.
(2018). Is q-learning provably efficient? Advances
in neural information processing systems, 31.

Jin, C., Liu, Q., Wang, Y., and Yu, T. (2021). V-
learning–a simple, efficient, decentralized algorithm
for multiagent rl. arXiv preprint arXiv:2110.14555.

Kao, H., Wei, C.-Y., and Subramanian, V. (2022). De-
centralized cooperative reinforcement learning with
hierarchical information structure. In International
Conference on Algorithmic Learning Theory, pages
573–605. PMLR.

Leonardos, S., Overman, W., Panageas, I., and Pil-
iouras, G. (2021). Global convergence of multi-agent
policy gradient in markov potential games. arXiv
preprint arXiv:2106.01969.

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

Littman, M. L. (1994). Markov games as a framework
for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pages 157–163. Elsevier.

Littman, M. L. et al. (2001). Friend-or-foe q-learning
in general-sum games. In ICML, volume 1, pages
322–328.

Mao, W. and Başar, T. (2023). Provably efficient
reinforcement learning in decentralized general-sum
markov games. Dynamic Games and Applications,
13(1):165–186.

Mao, W., Qiu, H., Wang, C., Franke, H., Kalbar-
czyk, Z., and Başar, T. (2024). O(T−1) con-
vergence to (coarse) correlated equilibria in full-
information general-sum markov games. DOI:
10.13140/RG.2.2.33211.18728.

Nemirovski, A. (2004). Interior point polynomial time
methods in convex programming. Lecture notes,
42(16):3215–3224.

Nesterov, Y. (2003). Introductory lectures on convex
optimization: A basic course, volume 87. Springer
Science & Business Media.

Rakhlin, S. and Sridharan, K. (2013). Optimization,
learning, and games with predictable sequences. Ad-
vances in Neural Information Processing Systems,
26.

Sayin, M., Zhang, K., Leslie, D., Basar, T., and
Ozdaglar, A. (2021). Decentralized q-learning in
zero-sum markov games. Advances in Neural In-
formation Processing Systems, 34:18320–18334.

Shapley, L. S. (1953). Stochastic games. Proceedings of
the national academy of sciences, 39(10):1095–1100.

Silver, D., Schrittwieser, J., Simonyan, K.,
Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. (2017).
Mastering the game of go without human knowl-
edge. nature, 550(7676):354–359.

Song, Z., Mei, S., and Bai, Y. (2021). When can we
learn general-sum markov games with a large num-
ber of players sample-efficiently? arXiv preprint
arXiv:2110.04184.

Stoltz, G. and Lugosi, G. (2007). Learning correlated
equilibria in games with compact sets of strategies.
Games and Economic Behavior, 59(1):187–208.

Syrgkanis, V., Agarwal, A., Luo, H., and Schapire,
R. E. (2015). Fast convergence of regularized learn-
ing in games. Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Tian, Y., Wang, Y., Yu, T., and Sra, S. (2021). Online
learning in unknown markov games. In International
conference on machine learning, pages 10279–10288.
PMLR.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu,
M., Jaderberg, M., Czarnecki, W. M., Dudzik, A.,
Huang, A., Georgiev, P., Powell, R., et al. (2019).
Alphastar: Mastering the real-time strategy game
starcraft ii. DeepMind blog, 2:20.

Wang, Y., Liu, Q., Bai, Y., and Jin, C. (2023). Break-
ing the curse of multiagency: Provably efficient de-
centralized multi-agent rl with function approxima-
tion. arXiv preprint arXiv:2302.06606.

Wei, C.-Y., Lee, C.-W., Zhang, M., and Luo, H.
(2021). Last-iterate convergence of decentralized op-
timistic gradient descent/ascent in infinite-horizon
competitive markov games. In Conference on learn-
ing theory, pages 4259–4299. PMLR.

Yang, Y. and Ma, C. (2023). $o(tˆ{-1})$ conver-
gence of optimistic-follow-the-regularized-leader in
two-player zero-sum markov games. In The Eleventh
International Conference on Learning Representa-
tions.

Zhang, R., Liu, Q., Wang, H., Xiong, C., Li, N.,
and Bai, Y. (2022). Policy optimization for markov
games: Unified framework and faster convergence.
Advances in Neural Information Processing Sys-
tems, 35:21886–21899.

Checklist

The checklist follows the references. For each ques-
tion, choose your answer from the three possible op-
tions: Yes, No, Not Applicable. You are encouraged
to include a justification to your answer, either by ref-
erencing the appropriate section of your paper or pro-
viding a brief inline description (1-2 sentences). Please
do not modify the questions. Note that the Checklist
section does not count towards the page limit. Not
including the checklist in the first submission won’t
result in desk rejection, although in such case we will
ask you to upload it during the author response period
and include it in camera ready (if accepted).

In your paper, please delete this instructions
block and only keep the Checklist section head-
ing above along with the questions/answers be-
low.

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Supplementary Materials for Near-Optimal Policy Optimization for
Correlated Equilibrium in General-Sum Markov Games

Contents

1 Introduction 1

1.1 Related Work . 2

2 Preliminaries 2

2.1 Online Learning and Regret . 3

3 Algorithm and Main Results 3

3.1 Value Update . 4

3.2 Policy Update . 5

3.3 Main Results . 5

4 Proof of the Main Result 6

4.1 Optimistic Follow the Regularized Leader with Log Barrier Regularization 6

4.2 Bounding Per-State Regret . 7

5 Conclusion and Future Directions 9

A Properties of αi
t and wi 13

B Missing Proofs in Section 3.1 13

B.1 Equivalence between V update and Q update . 13

B.2 Proof of Theorem 1 . 14

C Background on Self-Concordant Barriers 15

C.1 Self-Concordant Functions . 15

C.2 Self-Concordant Barriers and the Log Barrier . 16

D Missing Proofs in Section 4.1 17

D.1 RVU for (OFTRL) with Decreasing Step Sizes . 17

D.2 Proof of Theorem 3 . 18

D.3 Proof of Corollary 1: RVU for (OFTRL-LogBar) . 19

D.4 Proof of Lemma 2 . 19

D.5 Proof of Theorem 4: RVU for Swap Regret . 19

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

A Properties of αi

t
and wi

We present several useful properties of the sequence {αi
t}t≥1,1≤i≤t and {wt}t≥1 in the following lemmas that are

known in previous works (Jin et al., 2018; Zhang et al., 2022). We first recall that αt =
H+1
H+t for all t ≥ 1. The

definitions of {αi
t}t≥1,1≤i≤t and {wt}t≥1 are

αt
t = αt, αi

t = αiΠ
t
j=i+1(1− αj), ∀i ≤ t− 1,

and

wt =
αt
t

α1
t

.

Lemma 3 ((Jin et al., 2018)). The sequence {αi
t}t≥1,1≤i≤t satisfies the following:

∞∑

t=i

αi
t = 1 +

1

H
, ∀i ≥ 1.

Lemma 4 ((Zhang et al., 2022)). The sequence {αi
t}t≥1,1≤i≤t and {wt}t≥1 satisfies the following:

1.
∑T

t=1 α
t
T (αt)

2 ≤ 4H
T .

2. wt =
αt

T

α1
T

for all T ≥ t.

3. (1
wt−1

− 1
wt

)
∑t−1

i=1 w
i = H+1

H .

4. Given a sequence {∆t
h}h,t defined by

{
∆t

h =
∑t

i=1 α
i
t∆

i
h+1 + βt,

∆t
H+1 = 0,∀t,

where {βt} is non-increasing in t, then ∆t+1
h ≤ ∆t

h for all t ≥ 1 and h ∈ [H + 1].

B Missing Proofs in Section 3.1

B.1 Equivalence between V update and Q update

In this section, we prove the equivalence between Algorithm 1 and Algorithm 3.

Proposition 1 (Equivalence between V update and Q update). Algorithm 1 and Algorithm 3 are equivalent in
the sense that they produce the same sequence of policies {πt

h}(s, ·).

Proof. It suffices to prove that the Q value in Algorithm 3 and V value in Algorithm 1 satisfies the following:
for any (i, s, h,a) and t ∈ [T],

Qt
i,h(s,a) =

[
rh + PhV

t
i,h+1

]
(s,a). (8)

Note that the above holds for t = 0 according to the initialization step in both algorithms. Since αt = 1 and
Q1

i,H+1(s,a) = V t
i,H+1(s) = 0, we can also verify by induction that Equation (8) holds for t = 1:

Q1
i,h(s,a) =

[
rh + Ph[Q

1
i,h+1π

1
h+1]

]
(s,a) =

[
rh + PhV

t
i,h+1

]
(s,a).

Moreover, it is easy to see Qt
i,H(s,a) = rH(s,a) for all t ≥ 1. Now we conduct induction on both t and h. We

assume Equation (8) holds for (t− 1, h) and (t, h+ 1), then for (t, h), we have

Qt
i,h(s,a) = (1− αt)Q

t−1
i,h (s,a) + αt(rh + Ph[Q

t
i,h+1π

t
h+1])(s,a)

= (1− αt)
[
rh + PhV

t−1
i,h+1

]
(s,a) + αt(rh + Ph[(rh+1 + Ph+1V

t
i,h+2)π

t
h+1])(s,a)

(by induction hypothesis)

=
[
rh + Ph

(
(1− αt)V

t−1
i,h+1 + αt(rh+1 + Ph+1V

t
i,h+2)π

t
h+1

)]
(s,a)

=
[
rh + PhV

t
i,h+1

]
(s,a). (by update rule of V t

i,h+1(s) in Algorithm 1)

This completes the proof.

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

B.2 Proof of Theorem 1

We need the following two technical lemmas in the proof of Theorem 1. In Lemma 5, we show that the value

function V t
i,h(s) maintained in Algorithm 1 equals to V

π̂t
h

i,h (s) where the policy π̂t
h is defined in Algorithm 2. In

Lemma 6, we prove a recursive inequality that bounds the CEGap of π̂t
h by weighted regret (as defined in (4)).

Lemma 5. For all player i and (h, s) ∈ [H + 1]× S and V t
i,h(s) being the V values maintained in Algorithm 1,

it holds that

1. V t
i,h(s) =

∑t
j=1 α

j
t [(rh + PhV

j
i,h+1)π

j
h](s).

2. V t
i,h(s) = V

π̂t
h

i,h (s) while π̂t
h are defined in Algorithm 2.

Proof. Recall the update rule of V value in Algorithm 1:

V t
i,h(s) = (1− αt)V

t−1
i,h (s) + αt

[
(rh + PhV

t
i,h+1)π

t
h

]
(s).

Then the first claim holds by applying the above recursively for j ∈ [t].

Given the first claim and the equivalence between Algorithm 1 and Algorithm 3, the second claim follows from
(Zhang et al., 2022, Lemma G.1).

Lemma 6. For the policy π̂t
h defined in ..., we have for all (i, h, t) ∈ [n]× [H]× [T] that

max
s∈S

(
max
φi

V
φi⋄π̂t

i,h,π̂
t
−i,h

i,h (s)− V
π̂t
h

i,h (s)

)
≤

t∑

j=1

αj
t max
s′∈S

(
max
φ′

i

V
φi′⋄π̂j

i,h+1
×π̂j

−i,h+1

i,h+1 (s′)− V
π̂j

i,h+1

i,h+1 (s′)

)
+ regth.

Proof. Fix (i, h, t) ∈ [n]× [H]× [T]. We have for all state s ∈ S that

max
φi

V
φi⋄π̂t

i,h,π̂
t
−i,h

i,h (s)− V
π̂t
h

i,h (s)

≤ max
φi

〈
(φi ⋄ πj

i,h)(· | s),
t∑

j=1

αj
t

[
(rh +max

φi′

PhV
φi′⋄π̂j

i,h+1
×π̂j

−i,h+1

i,h+1)πj
−i,h

]
(s, ·)

〉

−
t∑

j=1

αj
t

〈
πj
i,h(· | s),

[
(rh + PhV

π̂j

i,h+1

i,h+1)πj
−i,h

]
(s, ·)

〉

≤
t∑

j=1

αj
t max
s′∈S

(
max
φ′

i

V
φi′⋄π̂j

i,h+1
×π̂j

−i,h+1

i,h+1 (s′)− V
π̂j

i,h+1

i,h+1 (s′)

)

+max
φi

t∑

j=1

〈
(φi ⋄ πj

i,h)(· | s)− πj
i,h(· | s),

[
(rh + PhV

π̂j

i,h+1

i,h+1)πj
−i,h

]
(s, ·)

〉

=

t∑

j=1

αj
t max
s′∈S

(
max
φ′

i

V
φi′⋄π̂j

i,h+1
×π̂j

−i,h+1

i,h+1 (s′)− V
π̂j

i,h+1

i,h+1 (s′)

)

+max
φi

t∑

j=1

〈
(φi ⋄ πj

i,h)(· | s)− πj
i,h(· | s),

[
(rh + PhV

j
i,h+1)π

j
−i,h

]
(s, ·)

〉

︸ ︷︷ ︸
regt

i,h
(s)

≤
t∑

j=1

αj
t max
s′∈S

(
max
φ′

i

V
φi′⋄π̂j

i,h+1
×π̂j

−i,h+1

i,h+1 (s′)− V
π̂j

i,h+1

i,h+1 (s′)

)
+ regth,

where in the first inequality we use the definition of the policy π̂t
h which plays πj

h with probability αj
t for j ∈ [t]

and then plays π̂j
h+1 afterwards; in the second inequality, we replace maxφ′

i
V

φi′⋄π̂j

i,h+1
×π̂j

−i,h+1

i,h+1 (s′) with V
π̂j

i,h+1

i,h+1 (s′)

and pay the difference; in the equality, we use V
π̂j

i,h+1

i,h+1 = V j
i,h+1 by Lemma 5; in the last inequality we use the

definition of weighted regret (Equation (4)).

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

Proof of Theorem 1 Define δth := maxi∈[n] maxs∈S (maxφi
V

φi⋄π̂t
i,h,π̂

t
−i,h

i,h (s)− V
π̂t
h

i,h (s)). Then by Lemma 6 we
have

δth ≤
t∑

j=1

αj
tδ

j
h+1 + regth.

Now let us define an auxiliary sequence {∆t
h}h,t such that ∆t

H+1 = 0 for all t and

∆t
h ≤

t∑

j=1

αj
t∆

j
h+1 + regth.

Note that ∆t
h ≥ δth for all (h, t) and ∆t+1

h ≤ ∆t
h (by Lemma 4). It implies that

∆t
h ≤ 1

t

t∑

j=1

∆j
h ≤ 1

t

t∑

j=1

j∑

k=1

αk
j∆

k
h+1 +

1

t

t∑

j=1

regjh

≤ 1

t

t∑

k=1

(

t∑

j=k

αk
j)∆

k
h+1 +

1

t

t∑

j=1

regjh

≤ (1 +
1

H
) · 1

t

t∑

j=1

∆j
h+1 +

1

t

t∑

j=1

regjh (Lemma 3)

≤ (1 +
1

H
)2 · 1

t

t∑

j=1

∆j
h+2 + (1 +

1

H
) · 1

t

t∑

j=1

regjh+1 +
1

t

t∑

j=1

regjh

≤ . . .

≤
(

H∑

h′=h

(1 +
1

H
)h

′−h

)
· 1
t

t∑

j=1

max
h′∈[H]

regjh′

≤ (e− 1)H · 1
t

t∑

j=1

max
h′∈[H]

regjh′

≤ 2H · 1
t

t∑

j=1

max
h′∈[H]

regjh′ .

Thus CEGap(πT) = CEGap(πT
1) = δT1 ≤ ∆T

1 ≤ 2H · 1
T

∑T
t=1 maxh∈[H] reg

t
h. This completes the proof.

C Background on Self-Concordant Barriers

In this section, we present the necessary background on self-concordant barriers and properties of the log barrier
that we use in Algorithm 4. We refer the readers to (Nesterov, 2003; Nemirovski, 2004) for a more comprehensive
overview of self-concordant barriers.

C.1 Self-Concordant Functions

Definition 3 (Self-Concordant Function). Let Q ⊆ Rd be a nonempty open and convex set. A convex function
f : Q → R in C3 is called self-concordant on Q if it satisfies the following two properties:

1. For every sequence {xi ∈ Q}∞i=1 converging to a boundary point of Q as i → ∞ it holds that f(xi) → ∞.

2. The functions f satisfies the inequality

|D3f(x)[u, u, u]| ≤ 2(D2f(x)[u, u])3/2,

for all x ∈ Q and u ∈ Rd. Here Dkf(x)[u1, . . . , uk] denotes the k-th-order differential of f at point x along
the directions u1, . . . , uk.

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

As an example, the log barrier for the non-negative ray, i.e., f : (0,∞) ∋ x → − log x, is self-concordant. In
the following, we assume f is non-degenerate, in the sense that the Hessian ∇2f(x) is positive definite for all
x ∈ domf . In this context, for any vector u ∈ Rd, we can define the primal local norm with respect to x ∈ int(X)
as ‖u‖x :=

√
u⊤∇2R(x)u and the dual norm as ‖u‖∗,x :=

√
u⊤(∇2R(x))−1u. We present some useful properties

of self-concordant functions below.

Lemma 7 ((Nesterov, 2003)). Let f be a self-concordant function. Then, for any x, x′ ∈ domf ,

f(x′) ≥ f(x) + 〈∇f(x), x′ − x〉+ ω(‖x′ − x‖x),

where ω(s) := s− log(1 + s).

Fact 1 ((Anagnostides et al., 2022b)). Let ω(s) = s− log(1 + s). Then,

ω(s) ≥ s2

2(1 + s)
.

In particular, for s ∈ [0, 1], it holds that ω(s) ≥ s2

4 .

Lemma 8 ((Nesterov, 2003)). Let f be a self-concordant function such that ‖∇f(x)‖∗,x < 1 for some x ∈ domf .
Then the optimization problem

min
x∈domf

f(x)

has a unique solution.

Lemma 9 ((Nemirovski, 2004)). Let X be a convex and compact set with nonempty interior and f : int(X) → R

be a self-concordant function with x∗ = argminx f(x). Then for any x ∈ domf such that ‖∇f(x)‖∗,x ≤ 1
2 , it

holds that
‖x− x∗‖x ≤ 2‖∇f(x)‖∗,x, ‖x− x∗‖x∗ ≤ 2‖∇f(x)‖∗,x.

C.2 Self-Concordant Barriers and the Log Barrier

Definition 4 (Self-Concordant Barrier). Let X ⊆ R
d be a convex and compact set with nonempty interior

int(X). A function f : int(X) → R is called a θ-self-concordant barrier for X if

1. f is a self-concordant function on int(X);

2. for all x ∈ int(X) and u ∈ Rd,

|Df(x)[u]| ≤ θ
1
2 (D2f(x)[u, u])1/2.

As an example, the log barrier for the non-negative ray, i.e., f : (0,∞) ∋ x → − log x, is a 1-self-concordant
barrier.

Next, we introduce the log barrier regularizer on the simplex. To address the issue that the simplex ∆d has
empty interior, we will restrict the problem to the domain ∆◦ := {x ∈ Rd−1

≥0 :
∑d−1

r=1 x[r] ≤ 1}. For notational

convenience, we also denote x[d] = 1−∑d−1
r=1 x[r]. The log barrier regularizer for ∆◦ is defined as follows.

Definition 5 (Log Barrier Regularizer for the Simplex). For x ∈ ∆◦, the log barrier regularizer is

R(x) := −
d−1∑

r=1

log(x[r])− log(1−
d−1∑

r=1

x[r]). (9)

It can be shown that R is a d-self-concordant barrier. Since the regualarizer R takes a (d−1)-dimensional vector
as input while the regret minimizer receives a d-dimensional utility vector u ∈ Rd, we first explain how the regret
minimizer operates on ∆◦. Upon receiving a utility vector u ∈ Rd, the algorithm first constructs ũ ∈ Rd−1 so
that ũ[r] = u[r]−u[d], for all r ∈ [d−1]. It is clear that the regret incurred is preserved after the transformation.
For the purpose of analysis, we also introduce an auxiliary regularizer R̃:

R̃(x) := −
d∑

r=1

log x[r]. (10)

The following claim characterizes and relates the local norm induced by R and R̃

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

Claim 1 ((Anagnostides et al., 2022b)). For any x, x′ ∈ int(∆◦).

‖x− x′‖2R,x =
d∑

r=1

(
x[r]− x′[r]

x[r]

)2

.

For any ũ ∈ Rd−1 and x ∈ int(∆◦),
‖ũ‖∗,R,x ≤ ‖u‖∗,R̃,x.

D Missing Proofs in Section 4.1

We recall the update rule of Optimistic Follow the Regularized Leader (OFTRL) algorithm. In this section, we

focus (OFTRL) with decreasing step size ηt =
η
wt

where wt =
αt

t

α1
t

for all t ≥ 1 (see Equation (1), (2) and (3) for

definitions). Moreover, we remark that we usually write the utility and prediction vectors in the form of ut = wtû
t,

and mt = wtm̂
t such that ‖ût‖∞, ‖m̂t‖∞ ≤ 1. We define η0 = η1, w0 = w1, and x0 := argminx∈X R(x).

xt = argmax
x∈X

{
Φt(x) := ηt

〈
x,mt +

t−1∑

τ=1

uτ

〉
−R(x)

}
(OFTRL)

We also define {gt} as the sequence produced by the conceptual algorithm Be-the-Leader (BTL), which updates
gt with the information of utility vector ut.

gt = argmax
g∈X

{
Ψt(g) := ηt

〈
g,

t∑

τ=1

uτ

〉
−R(g)

}
(BTL)

We remark that both (OFTRL) and (BTL) are well-defined if ηt‖ut −mt‖∗,xt ≤ 1
2 and

‖ηtmt + (ηt − ηt−1)
∑t−1

τ=1 u
τ‖∗,gt−1 ≤ 1

2 for all t ∈ [T], which can be verified using Lemma 8 and Lemma 10.

D.1 RVU for (OFTRL) with Decreasing Step Sizes

Theorem 5 (Adapted from Theorem B.1 in (Anagnostides et al., 2022b)). Suppose that R is a non-degenerate
self-concordant barrier function for int(X) and let η > 0. Then,the regret of OFTRL with respect to any x∗ ∈
int(X) and under any sequence of utilities u1, . . . , uT can be bounded as

R(x∗)

ηT
+

T∑

t=1

∥∥ut −mt
∥∥
∗,xt

∥∥xt − gt
∥∥
xt −

T∑

t=1

1

ηt
ω
(∥∥xt − gt

∥∥
xt

)
− 1

ηt−1
ω
(∥∥xt − gt−1

∥∥
gt−1

)

where the function ω(·) is defined in Fact 1.

Lemma 10 (Stability). Let ηt > 0 be such that ηt‖ut −mt‖∗,xt ≤ 1
2 and ‖ηtmt + (ηt − ηt−1)

∑t−1
τ=1 u

τ‖∗,gt−1 ≤ 1
2 .

Then we have
∥∥xt − gt

∥∥
xt ≤ 2ηt

∥∥ut −mt
∥∥
∗,xt ,

∥∥xt − gt−1
∥∥
gt−1 ≤ 2

∥∥∥∥∥ηtm
t + (ηt − ηt−1)

t−1∑

τ=1

uτ

∥∥∥∥∥
∗,gt−1

.

Proof. Fix any t ∈ [T]. We first note that xt − gt = xt − argmin{−Ψt} by the definition of Ψt in (BTL). We
also have Ψt(x) = Φt(x) + ηt〈x, ut −mt〉. Thus we have

∇Ψt(xt) = ∇Φt(xt) + ηt(u
t −mt) = ηt(u

t −mt),

where the second inequality holds since ∇Φt(xt) = 0 by the first order optimality condition of the optimization
problem associated with (OFTRL). By assumption, it further implies that ‖∇Ψt(xt)‖∗,xt = ηt‖ut −mt‖∗,xt ≤ 1

2 .
Now we can use Lemma 9 to get

∥∥xt − gt
∥∥
xt =

∥∥xt − argmin{−Ψt}
∥∥
xt ≤ 2

∥∥∇Ψt(xt)
∥∥
∗,xt = 2ηt

∥∥ut −mt
∥∥
∗,xt .

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

This finishes the proof of the first inequality.

The proof of the second inequality follows the same idea. We first note that xt − gt−1 = argmin{−Φt(x)}− gt−1

by the definition of Φt in (OFTRL). We also have Φt(x) = Ψt−1(x) + 〈x, ηtmt + (ηt − ηt−1)
∑t−1

τ=1 u
τ 〉. Thus we

have

∇Φt(gt−1) = ∇Ψt−1(gt−1) + ηtm
t + (ηt − ηt−1)

t−1∑

τ=1

uτ = ηtm
t + (ηt − ηt−1)

t−1∑

τ=1

uτ ,

where the second inequality holds since ∇Ψt−1(gt−1) = 0 by the first order optimality condition of the
optimization problem associated with (BTL). By assumption, it further implies that ‖∇Φt(gt−1)‖∗,gt−1 =

‖ηtmt + (ηt − ηt−1)
∑t−1

τ=1 u
τ‖∗,gt−1 ≤ 1

2 . Now we can use Lemma 9 to get

∥∥xt − gt−1
∥∥
gt−1 =

∥∥gt−1 − argmin{−Φt}
∥∥
gt−1 ≤ 2

∥∥∇Φt(gt−1)
∥∥
∗,gt−1 = 2

∥∥∥∥∥ηtm
t + (ηt − ηt−1)

t−1∑

τ=1

uτ

∥∥∥∥∥
∗,gt−1

.

This finishes the proof of the second inequality.

D.2 Proof of Theorem 3

Proof. Combining Theorem 5 with the fact that ‖xt − gt‖xt ≤ 2ηt‖ut −mt‖∗,xt (by Lemma 10) gives

RegT (x∗) ≤ R(x∗)

ηT
+

T∑

t=1

2ηt
∥∥ut −mt

∥∥2
∗,xt −

T∑

t=1

1

ηt
ω
(∥∥xt − gt

∥∥
xt

)
− 1

ηt−1
ω
(∥∥xt − gt−1

∥∥
gt−1

)
.

Moreover, by Lemma 10, we know ‖xt − gt‖xt ≤ 1 and ‖xt − gt−1‖gt−1 ≤ 1. Then by Fact 1, we get

RegT (x∗) ≤ R(x∗)

ηT
+ 2

T∑

t=1

ηt
∥∥ut −mt

∥∥2
∗,xt −

T∑

t=1

(
1

4ηt

∥∥xt − gt
∥∥2
xt +

1

4ηt−1

∥∥xt − gt−1
∥∥2
gt−1

)
.

The following corollary is useful to apply the RVU property to (OFTRL) with the log barrier regularization.

Corollary 2. Suppose that R is a non-degenerate self-concordant barrier function for int(X) such that ∇2R(x̃) �
2∇2R(x) for any x, x̃ ∈ int(X) with ‖x− x̃‖x̃ ≤ 1

4 . Moreover, let ηt > 0 be such that ηt‖ut −mt‖∗,xt ≤ 1
8

and ‖ηtmt + (ηt − ηt−1)
∑t−1

τ=1 u
τ‖∗,gt−1 ≤ 1

2 for all t ∈ [T]. Then, the regret of OFTRL with respect to any

x∗ ∈ int(X) and under any sequence of utilities u1, . . . , uT can be bounded as

RegT (x∗) ≤ R(x∗)

ηT
+ 2

T∑

t=1

ηt
∥∥ut −mt

∥∥2
∗,xt −

T∑

t=1

1

16ηt−1

∥∥xt − xt−1
∥∥2
xt−1 .

Proof. By Lemma 10, we have ‖xt−1 − gt−1‖xt−1 ≤ 2ηt−1‖ut−1 −mt−1‖∗,xt−1 ≤ 1
4 for all t. Thus by assumption,

we have∇2R(˜xt−1) � 2∇2R(gt−1). It further implies ‖xt − gt−1‖xt−1 ≤ 2‖xt − gt−1‖gt−1 . Thus we have

∥∥xt − xt−1
∥∥2
xt−1 ≤ 2

∥∥xt − gt−1
∥∥2
xt−1 + 2

∥∥xt−1 − gt−1
∥∥2
xt−1

≤ 4
∥∥xt − gt−1

∥∥2
gt−1 + 4

∥∥xt−1 − gt−1
∥∥2
xt−1 .

Since the step size {ηt} is non-increasing, we have

T∑

t=1

(
1

4ηt

∥∥xt − gt
∥∥2
xt +

1

4ηt−1

∥∥xt − gt−1
∥∥2
gt−1

)
≥

T∑

t=1

(
1

4ηt−1

∥∥xt − gt
∥∥2
xt +

1

4ηt−1

∥∥xt − gt−1
∥∥2
gt−1

)

≥
T∑

t=1

1

16ηt−1

∥∥xt − xt−1
∥∥2
xt−1 .

Combining the above with Theorem 3 finishes the proof.

Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng

Corollary 3. Suppose that R is a non-degenerate self-concordant barrier function for int(X) such that ∇2R(x̃) ≤
2∇2R(x) for any x, x̃ ∈ int(X) with ‖x− x̃‖x̃ ≤ 1

4 . Moreover, let ηt > 0 be such that ηt‖ut −mt‖∗,xt ≤ 1
8 and

‖ηtmt + (ηt − ηt−1)
∑t−1

τ=1 u
τ‖∗,gt−1 ≤ 1

2 for all t ∈ [T]. Then

∥∥xt − xt−1
∥∥
xt−1 ≤ 14η.

Proof. Similar to the proof of Corollary 2, we have

∥∥xt − xt−1
∥∥
xt−1 ≤

∥∥xt − gt−1
∥∥
xt−1 +

∥∥gt−1 − xt−1
∥∥
xt−1

≤ 2
∥∥xt − gt−1

∥∥
gt−1 +

∥∥gt−1 − xt−1
∥∥
xt−1

≤ 4

∥∥∥∥∥ηtm
t + (ηt − ηt−1)

t−1∑

τ=1

uτ

∥∥∥∥∥
∗,gt−1

+ 2ηt−1

∥∥ut−1 −mt−1
∥∥
∗,xt−1

≤ 14η. (by Lemma 1)

D.3 Proof of Corollary 1: RVU for (OFTRL-LogBar)

Combining Corollary 2 and Claim 1 directly leads to the RVU bound in Corollary 1.

D.4 Proof of Lemma 2

Proof. The proof follows from the proof of Lemma 4.2 in Anagnostides et al. (2022b), which shows that it suffices
to prove

∑
a∈A µt

a ≤ 1
2 where µt

a is defined as

µt
a := max

a′∈A

∣∣∣∣1−
xt
a[a

′]

xt−1
a [a′]

∣∣∣∣ .

Recall the local norm induced by the log barrier regularization (Claim 1): ‖x− x′‖2x =
∑d

r=1 (
x[r]−x′[r]

x[r])
2
. Thus

µt
a = max

a′∈A

∣∣∣∣1−
xt
a[a

′]

xt−1
a [a′]

∣∣∣∣ ≤

√√√√∑

a′∈A

(
xt−1
a [a′]− xt

a[a
′]

xt−1
a [a′]

)2

=
∥∥xt

a − xt−1
a

∥∥
xt−1
a

.

Now combining Corollary 3 and η < 1
28|A| , we get

∑

a∈A
µt
a ≤ |A|max

a∈A

∥∥xt
a − xt−1

a

∥∥
xt−1
a

≤ 14|A|η ≤ 1

2
.

D.5 Proof of Theorem 4: RVU for Swap Regret

Proof. Applying Corollary 2 and to each regret minimizer ℜa gives the following regret guarantee for all η ≤ 1
28m :

RegTa (x
∗
a) ≤

R(x∗
a)

ηT
+ 2

T∑

t=1

ηt
∥∥utxt[a]−mtxt[a]

∥∥2
∗,xt

a

−
T∑

t=1

1

16ηt−1

∥∥xt
a − xt−1

a

∥∥2
xt−1
a

≤ R(x∗
a)

ηT
+ 2

T∑

t=1

ηt(x
t[a])2

∥∥ut −mt
∥∥2
∞ −

T∑

t=1

1

16ηt−1

∥∥xt
a − xt−1

a

∥∥2
xt−1
a

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

for any x∗
a ∈ relint(∆A). Following the same argument in (Anagnostides et al., 2022b, Lemma 4.2), we can also

bound the diameter term R(x∗
a) and get

RegTa ≤ |A| log T
ηT

+
2

T

T∑

t=1

xt[a]
∥∥ut

∥∥
∞ + 2

T∑

t=1

ηt(x
t[a])2

∥∥ut −mt
∥∥2
∞ −

T∑

t=1

1

16ηt−1

∥∥xt
a − xt−1

a

∥∥2
xt−1
a

≤ |A| log T
ηT

+ 2wt + 2

T∑

t=1

ηt(x
t[a])2

∥∥ut −mt
∥∥2
∞ −

T∑

t=1

1

16ηt−1

∥∥xt
a − xt−1

a

∥∥2
xt−1
a

≤ 2|A| log T
ηT

+ 2

T∑

t=1

ηt(x
t[a])2

∥∥ut −mt
∥∥2
∞ −

T∑

t=1

1

16ηt−1

∥∥xt
a − xt−1

a

∥∥2
xt−1
a

,

where we use wT = η
ηT

≤ 1
ηT

in the last inequality. Summing the above inequality for all a ∈ A and applying
Lemma 2 gives

SwapRegT ≤
∑

a∈A
regTa ≤ 2|A|2 log T

ηT
+ 2

T∑

t=1

ηt
∥∥ut −mt

∥∥2
∞ −

T∑

t=1

1

1024|A|ηt−1

∥∥xt − xt−1
∥∥2
1
.

	Introduction
	Related Work

	Preliminaries
	Online Learning and Regret

	Algorithm and Main Results
	Value Update
	Policy Update
	Main Results

	Proof of the Main Result
	Optimistic Follow the Regularized Leader with Log Barrier Regularization
	Bounding Per-State Regret

	Conclusion and Future Directions
	Properties of ti and wi
	Missing Proofs in sec:value update
	Equivalence between V update and Q update
	Proof of thm:cegap<= regret

	Background on Self-Concordant Barriers
	Self-Concordant Functions
	Self-Concordant Barriers and the Log Barrier

	Missing Proofs in sec:bounding regret
	RVU for (OFTRL) with Decreasing Step Sizes
	Proof of thm: RVU-stable
	Proof of corollary: RVU-logbar: RVU for (OFTRL-LogBar)
	Proof of lemma: l1norm
	Proof of thm:RVU for swap regret: RVU for Swap Regret

