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Abstract— Applications from manipulation to autonomous

vehicles rely on robust and general object tracking to safely

perform tasks in dynamic environments. We propose the first

certifiably optimal category-level approach for simultaneous

shape estimation and pose tracking of an object of known

category (e.g., a car). Our approach uses 3D semantic keypoint

measurements extracted from an RGB-D image sequence,

and phrases the estimation as a fixed-lag smoothing problem.

Temporal constraints enforce the object’s rigidity (fixed shape)

and smooth motion according to a constant-twist motion model.

The solutions to this problem are the estimates of the object’s

state (poses, velocities) and shape (paramaterized according

to the active shape model) over the smoothing horizon. Our

key contribution is to show that despite the non-convexity of

the fixed-lag smoothing problem, we can solve it to certifiable
optimality using a small-size semidefinite relaxation. We also

present a fast outlier rejection scheme that filters out incorrect

keypoint detections with shape and time compatibility tests,

and wrap our certifiable solver in a graduated non-convexity

scheme. We evaluate the proposed approach on synthetic and

real data, showcasing its performance in a table-top manipu-

lation scenario and a drone-based vehicle tracking application.

I. INTRODUCTION

Target tracking is a well-studied problem across multiple
research communities, including robotics, computer vision,
and aerospace. Early work models the target as a point
mass and is concerned with estimating its location from
measurements (e.g., bearing vectors) while resolving data
association, e.g., [1]. In modern robotics applications, robots
navigate in close proximity and possibly interact with nearby
objects. For those applications, the robot also needs to esti-
mate the object’s shape. This leads to the coupled problem
of shape estimation and pose tracking, which is crucial
for autonomous vehicles [2], table-top manipulation [3],
monitoring and surveillance [4], among other applications.

A significant body of work is dedicated to object pose and
shape estimation in the single-frame case [5–8]. However,
using a single image for detection and estimation sacrifices
temporal information which is readily available. A good
tracking algorithm leverages temporal consistency to operate
in noisy, occlusion-rich, or highly dynamic environments.
When the object shape is known exactly, instance-level track-
ing algorithms leverage known geometry [4, 9] or extensive
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Fig. 1. Overview of CAST#. We estimate the shape and track the pose
of an object from a sequence of images picturing the object. Given 3D
keypoint measurements obtained via a learning-based detector, we formulate
a non-convex fixed-lag smoothing problem where the shape is parametrized
using an active shape model and motion smoothness is enforced using a
constant-twist motion model. We solve this problem via a tight and small-
size semidefinite relaxation and wrap the method in an outlier rejection
scheme to robustly estimate shape and pose over a fixed time horizon.

training on the specific object instance [3, 10, 11]. However,
in practical applications the object is rarely known exactly.
Autonomous vehicles must track any of the thousands of car
models in their surroundings; even if all were to be cataloged,
the vehicle must still reason over intra-category variations.

Recent work has made considerable progress towards
category-level and category-free object tracking using end-
to-end learning [12, 13] or learning-based segmentation
combined with local solvers for estimation [14–16]. While
often effective in practice, learning-based approaches have
unpredictable failure modes when used outside their training
domain, while local-solver-based approaches are prone to
converge to local minima corresponding to poor estimates.
For safety critical applications, it is important to have in-
terpretable and predictable models that produce provably
optimal estimates.



Contribution. We propose the first certifiably optimal
algorithm for category-level shape estimation and pose track-
ing (Fig. 1). In our problem formulation (Section III), we
consider as input the 3D position of keypoints detected in an
RGB-D image sequence. These inputs are fed to a fixed-lag
smoother that performs estimation of the states over a reced-
ing horizon, while enforcing smoothness of the motion using
a constant-twist motion model. We parametrize the object’s
shape using an active shape model [17, 18], which describes
shape as a linear combination of 3D models from a library of
representative models. Our first key contribution (Section IV)
is to show that despite the non-convexity of the estimation
problem, we can develop an empirically tight semidefinite
relaxation that computes certifiably optimal object poses,
velocities, and shape without the need for an initial guess. We
name the resulting approach CASTω (Certifiable Algorithm
for Shape estimation and Tracking). Our second contribution
(Section V) is to extend CASTω to the practical case where
some of the keypoint measurements are outliers; we handle
this case by combining an outlier-pruning method with a
robust estimator based on graduated non-convexity [19].
We call the resulting outlier-robust approach CAST#. Our
final contribution (Section VI) is to evaluate our methods
in extensive experiments, and show they produce accurate
estimates when tested in simulation, on the YCBInEOAT
dataset [3], and in a drone-based vehicle tracking scenario.

II. RELATED WORK

Instance-Level Object Tracking. Traditional target track-
ing approaches circumvent shape estimation by assuming the
object to be a point mass [20] or assuming full knowledge
of the object shape [3, 4, 9–11, 21, 22]. Early approaches
used handcrafted features, such as points, edges [23], or
planes [24] to compute relative poses. The set of pose esti-
mates could then be smoothed via Kalman filtering [4, 21].
More recently, the use of handcrafted features has given way
to learned features [3] and edge detection [10], and new
approaches based on point cloud registration [9], particle
filtering [11], or unscented Kalman filters [22] have emerged.

Category-Level and Category-Free Object Tracking.

In practical settings, instance-level information is rarely
available. Recent approaches investigate pose and shape esti-
mation for objects within a known category [12–14, 16, 25]
or at least similar enough to the training data [15, 26]. These
approaches generally extract a sparse representation of the
object to estimate relative motion between frames. Wang
et al. [14] focus on an attention mechanism for extracting
frame-to-frame keypoints in a self-supervised manner, leav-
ing the work of relative pose estimation to point cloud regis-
tration, which is unable to use temporal information beyond
two frames. Wen and Bekris [25] use a similar architecture
but take a SLAM-inspired approach, using dense frame-to-
frame feature correspondences and multi-frame pose graph
optimization to refine the estimate. Other methods use
learned keypoint correspondences for the Iterative Closest
Point (ICP) method [13] or learning-based regression to
estimate relative motion in the small pose regime [12]. Even

with keyframe selection [15], frame-to-frame back-ends re-
quire a separate tool to obtain object pose relative to a camera
or world frame, which is often useful in applications. In
contrast, we propose an optimization back-end that produces
certifiably optimal shape and pose estimates from category-
level keypoints without relying on local solvers. This gives
useful world-frame poses directly and allows the use of a
motion model to mitigate the impact of measurement noise.

Certifiable Algorithms. Our work extends the body of
work on certifiable perception algorithms: a certifiable algo-
rithm solves an optimization problem and either provides a
certificate of optimality or a bound on the suboptimality of
the produced solution [9]. Certifiable algorithms are typically
derived using semidefinite relaxations, and are usually based
on Shor’s relaxation of Quadratically Constrained Quadratic
Programs (QCQP) or Lasserre’s relaxation of polynomial
optimization problems [27–29]. Certifiable algorithms have
been proposed for rotation averaging [30, 31], pose graph
optimization [32–34], 3D registration [9, 35], 2-view geom-
etry [36–38], perspective-n-point problems [39], and single-
frame pose and shape estimation [5]. Recent work has
extended certifiable solvers to cope with outliers [27] and
anisotropic noise [40]. Our approach extends [5] to tracking
over a receding time horizon using a motion model.

III. PROBLEM FORMULATION

This section formalizes the category-level shape estima-
tion and pose tracking problem. Given a sequence of RGB-
D images picturing an object of known category (e.g., a
car), and assuming the availability of a 3D semantic keypoint
detector, we seek an estimate of the time-independent shape
and time-dependent pose (i.e., position and orientation) of
the object. Below we describe our choice of motion model,
shape representation, and measurement model.

Object State and Motion Model. We represent the target
object’s state using its pose and velocity at a particular time
t. Denote the position and orientation of the target object in
the world frame as pt → R3 and Rt → SO(3), respectively.
Similarly, denote the target’s body-frame change in position
and change in rotation between time steps with vt → R3

and !t → SO(3). These state variables are the discrete time
analog to velocity and rotation rate. Any object’s motion
obeys the following discrete-time first-order dynamics:

pt+1 = pt +Rtvt, Rt+1 = Rt ·!t (1)

The model (1) is quite general, since by choosing suitable
values of vt, !t we can produce arbitrary trajectories.

Now, we assume that the velocities’ dynamics are approx-
imately constant twist; i.e., the body-frame velocity and the
rotation rate are constant during short time intervals up to
random perturbations vε

t → R3 and R
ε
t → SO(3):

vt+1 = vt + vε
t , !t+1 = !t ·Rε

t (2)

When vt and !t are exactly constant the dynamical system
in equations (1)-(2) models 3D spiral-shaped trajectories,
including the corner cases of a straight line, circular trajec-
tory, or in-place rotation. The random noise terms model



Fig. 2. Active Shape Model. Known 3D models in the bottle category
and their averages computed according to the active shape model. Vertices
are the original models and edges are the average of the two vertices. The
active shape model can represent any 3D geometry in the convex hull of its
shape library through a point-wise weighted average.

small deviations from these assumptions in the observed
trajectory. The proposed constant-twist model is a 3D version
of the popular constant-turn-rate model [21], generalizing
it to allow an arbitrary axis of rotation. Such a model is
expressive enough to capture the non-holonomic motion of
a car and the unpredictable motions of a manipulated object.

In the following, we assume that the velocity noise fol-
lows an isotropic zero-mean Gaussian distribution: vε

t ↑
N (0,”v

t ). Moreover, we assume that the relative rotation
noise follows an isotropic Langevin distribution about the
identity, following standard practice [32] for distributions
over SO(3): R

ε
t ↑ L(I3,ωt). In this equation, ωt is the

concentration parameter of the Langevin distribution (intu-
itively, this plays a similar role as the inverse of the variance).

Shape Parameterization We use the active shape model
to represent intra-category shape variations. Given an object
category (e.g.,bottle), we assume a library of 3D models
(e.g. specific bottle shapes) that span the category, where
the objects in the library are denoted as Bk, k = 1, . . . ,K.
Any instance, then, is just a pointwise linear combination of
the models in the shape library (see Fig. 2). More formally,
let xi be any point on the instance object that corresponds
to the point bk

i → Bk in each library shape, k = 1, . . . ,K.
The active shape model is:

xi =

K∑

k=1

ckb
k
i ↭ Bic (3)

where ck → [0, 1] and
∑

k ck = 1. Thus, the shape of
the target object is fully specified by its shape coefficient
c = [c1, . . . , cK ] and the shape library for each point Bi =

[b
1

i , . . . ,b
K
i ]. This representation is simple and expressive:

it captures any object in the convex hull of the shape library
(including the library shapes themselves) via a linear combi-
nation described by a single vector of coefficients [17, 18].
Further, measurements of a small number of semantic key-
points are enough to resolve the object shape.

Measurement Model. The inputs to our estimator are
measurements of the 3D positions of semantic keypoints on
the target object. These keypoints correspond to semantically

meaningful features common to a specific object category,
and are typically produced by a learning-based detector, as
in [5, 41]. For instance, a set of keypoints on a bottle might
be the locations of the cap, center-point of the base, label,
etc. Such keypoints may be detected by a model trained on
a category of bottles, not just a particular instance.

At each time t we are given the 3D position of N
keypoints denoted y

1
t , . . . ,y

N
t . These measurements obey

the following generative model:

y
i
t = Rt · (Bic) + pt + ωit (4)

Each measurement yi
t is a rigid transformation (Rt,pt) of

the keypoint’s location in the object’s frame Bic (expressed
according to the active shape model) plus measurement noise
ωt. For now, we assume the measurement noise obeys an
isotropic zero-mean Gaussian distribution: ωit ↑ N (0,”i

t).
Simultaneous Shape Estimation and Tracking. We are

now ready to state the problem we tackle in this paper.
Problem 1 (Shape Estimation and Pose Tracking):

Consider an object of known category moving according
to the dynamics in eqs. (1)-(2). Given measurements of N
keypoints in the form (4) taken over T time steps, estimate
the time-varying state (Rt,pt,vt,!t) and time-independent
shape c of the object for t = 1, . . . , T .

Problem 1 may be interpreted as a fixed-lag smoother,
where our primary goal is to estimate the state at time T
using also the most recent T ↓ 1 measurements.

IV. CASTω: CERTIFIABLE SHAPE ESTIMATION AND
TRACKING IN THE OUTLIER-FREE SETTING

This section presents CASTω, a certifiably optimal estima-
tor solving Problem 1 in the outlier-free setting. CASTω is
also the basis for our outlier-robust extension in Section V.

We adopt a maximum a posteriori estimation framework
that represents Problem 1 as an optimization problem. This
framework minimizes the residual errors of the measurement
and motion models over the time horizon T , possibly includ-
ing priors. In our case, the only prior is that shape coefficients
c are distributed according to a Gaussian with covariance
1

ϑI3 about the mean shape c̄ ↭ 1

K1K . In practice, this prior
regularizes the problem when the shape library is larger than
the number of keypoints (K > N ); see e.g. [5].

The maximum a posteriori estimator takes the form:

min
Rt,!l→SO(3),

pt,vl→R3,
c→RK ,1T

Kc=1

t=1,...,T,
l=1,...,T↑1

s.t.

T∑

t=1

N∑

i=1

wi
t

∥∥yi
t ↓RtBic↓ pt

∥∥2 + ε↔!c↔2

+

T↑1∑

t=1

ϑt↔vt+1 ↓ vt↔2 + ωt↔!t+1 ↓!t↔2F

pt+1 = pt +Rtvt, Rt+1 = Rt!t

(5)
In the previous expession, we used the shorthand !c ↭ c↓c̄

and assumed isotropic covariances ”
i
t ↭ 1

wi
t
I3 and ”

v
t ↭

1

wt
I3. We also relaxed the constraint ck ↗ 0. We observe that

the objective is the sum of the shape prior with the negative
log-likelihoods of the measurements (4) and dynamics (2).
The constraints enforce the domains of the variables (e.g.



Rt → SO(3) or 1
T
Kc = 1) and the dynamics (1). We prove

that (5) is a maximum a posteriori estimator in Appendix A.
Notice that (5) is non-convex due to the constraint set

SO(3) and the quadratic equality constraints. Thus, local
search methods such as gradient descent or Gauss-Newton
are prone to local minima that result in bad estimates.

In the following we present our approach to solving (5)
to certifiable optimality via a semidefinite relaxation. In
Section IV-A we simplify the problem by analytically solving
for the optimal shape coefficient. Using a change of variables,
we rewrite (5) as a non-convex Quadratically Constrained
Quadratic Program (QCQP) in Section IV-B and apply a
semidefinite relaxation in Section IV-C. This relaxed prob-
lem can be solved using traditional convex optimization
techniques and is shown to be empirically tight (i.e., the
relaxation solves (5) to optimality) in Section VI.

A. Closed-Form Solution for Shape
Observe that (5) is a linearly constrained convex quadratic

program in the variable c. Thus, we can solve for the optimal
shape coefficient cω in closed form as a function of the other
unknown variables. We formalize this observation below.

Proposition 1 (Optimal Shape): For any choice of posi-
tions and rotations (pt,Rt), the optimal shape coefficient
solving (5) is

c
ω
= 2G



B
T

T∑

t=1

Wt




R

T
t (y

1
t ↓ pt)

...
R

T
t (y

N
t ↓ pt)



+ εc̄



+ g (6)

where we defined the following symbols:

Wt ↭ blkdiag(wt
1
I3, . . . , wt

NI3) → R3N↓3N

B ↭ [B
T
1
, . . . ,BT

T ]
T → R3N↓K

H ↭ 1

2


B

T
∑T

t=1
Wt


B+ εIK

↑1

→ RK↓K

(7)

G ↭ H↓ H1K1
T
KH

1
T
KH1K

, g ↭ H1K

1
T
KH1K

(8)

Proposition 1 is proven in Appendix B. This insight is similar
to the one used in [5] for the case of static object.

B. Change of Variables to Quadratic Program
Problem (5) remains non-convex in the state variables

(Rt,pt,vt,!t) due to quadratic equality constraints. We
aim to relax this problem into a convex semidefinite program.
Towards this goal, we show how (5) can be rewritten as a
quadratically constrained quadratic program (QCQP).

First, we observe that the constraint set is already
quadratic: the dynamics (1) are quadratic equalities and
SO(3) constraints on rotations can be written as quadratic
equality constraints, see, e.g., [42]. Moreover, the expression
of c

ω we found in (6) is also quadratic. Some of the terms
in the objective, however, are not quadratic. Particularly,
RtBic

ω is quadratic and appears in a squared norm, leading
to a quartic expression. Fortunately, the rotational invariance
of the ϖ2 norm allows a simple reparameterization of the
position variable as st ↭ R

T
t pt, turning the problem into a

QCQP. This result is summarized below.

Proposition 2 (QCQP Formulation): The shape estima-
tion and tracking problem can be equivalently written as a
quadratically constrained quadratic program (QCQP):

min
Rt,!l→SO(3),

st,vl→R3,
t=1,...,T,

l=1,...,T↑1

s.t.

T∑

t=1

N∑

i=1

wi
t

∥∥RT
t y

i
t ↓Bic↓ st

∥∥2 + ε↔!c↔2

+

T↑1∑

t=1

ϑt↔vt+1 ↓ vt↔2 + ωt↔!t+1 ↓!t↔2F

!tst+1 = st + vt, Rt+1 = Rt!t
(9)

where c is defined as in (6) and is a linear function of Rt

and st.
The proof of the proposition is given in Appendix C.

We rewrite (9) in canonical form, separating the quadrat-
ically constrained variables (s,R,!) from the linearly con-
strained ones (v):

fω
= min

x→R21T→8

v→R3T→3

x
T
Qx+ v

T
Pv

s.t. x
T
Aix+ d

T
i v + fi = 0, i = 1, . . . ,m

(10)

In this equation, x is a vector in homogeneous form stacking
all the unknowns in (9) except for vt terms, which are
stacked in v; Q, P, and Ai are known symmetric matrices
governing the quadratic objective and constraints, and the
vectors di and scalars fi capture the linear and constant
portions of the m constraints, respectively.

C. Convex Semidefinite Relaxation
While the QCQP in (10) is still non-convex in the variable

x, it admits a standard semidefinite relaxation [32, 43, 44].
Instead of solving for x directly, we reparametrize the prob-
lem using X = xx

T (a rank-1 positive semidefinite matrix),
and drop the rank-1 constraint on X to obtain a convex
problem that may be solved by off-the-shelf solvers such as
MOSEK [45]. This is the well-known Shor’s relaxation [29].

Corollary 3 (Shor’s Semidefinite Relaxation): The
following semidefinite program (SDP) is a convex relaxation
of (10):

fω
SDP

= min
X→S21T→8

v→R3T→3

trace(QX) + v
T
Pv

s.t. trace(AiX) + d
T
i v + fi = 0,

X ↘ 0, i = 1, . . . ,m

(11)

Further, when the solution X
ω of (11) is rank-1 we can

recover exactly the solution to the non-convex QCQP (10)
by factorizing X

ω
= x

ω
(x

ω
)
T.

Similar to relaxations derived in related work [5, 32, 46]
the rank of Xω is a certificate for the optimality of the solu-
tion. Moreover, we can bound the suboptimality of a feasible
solution to (10) obtained from (11) using the objective. Given
a feasible solution (x̂, v̂) achieving objective f̂ in (10), we
bound its suboptimality using f̂ ↓ fω

SDP
↗ f̂ ↓ fω ↗ 0.

The condition f̂ = fω
SDP

also certifies the optimality of the
solution. The scalar d = fω↓fω

SDP is typically referred to as
the duality gap, while the difference f̂ ↓ fω

SDP is sometimes
called the relaxation gap.



Fig. 3. Outlier Pruning. Most outliers are easy to identify via shape or time
compatibility tests. Shape compatibility retains keypoints that are mutually
within the convex hull of the known shape library. Time compatibility
compares keypoint pairs over multiple observations and retains groups that
preserve 3D distance over time, up to a tolerance ω. We determine the largest
set of compatible measurements via a mixed integer linear program.

The relaxation (11) is relevant in practice because we
observe it to be empirically tight in the case of low-to-
moderate noise and no outliers; hence it can produce optimal
solutions without needing an initial guess. Moreover, the size
of the SDP (11) is independent of the size of the shape
library, hence the relaxation is relatively efficient to solve in
practice. We name the resulting approach CASTω: Certifiable
Algorithm for Shape estimation and Tracking.

V. ADDING OUTLIER ROBUSTNESS

Real-world measurements are often corrupted by outliers.
In particular, sparse keypoints are vulnerable to misdetections
and incorrect depth measurements. Without modifications,
outliers degrade the result of CASTω. To tackle this problem,
we propose a preprocessing step in which we quickly identify
and prune gross outliers, and a wrapper for CASTω that
iteratively converges to the inlier set. We name this approach
CAST# and show empirical robustness to 50-60% outliers.

A. Compatibility Checks to Remove Gross Outliers

Inspired by [5], we introduce compatibility tests to identify
gross outliers. These tests rely on the assumptions of rigid-
body motion of the object and the active shape model. The
most likely inlier set is thus the largest set of compatible
measurements, found via a fast mixed-integer linear program.

Shape Compatibility. Recall that any observed object
must lie within the convex hull of the shape library by as-
sumption. Framed as pairwise compatibility, the true distance
between any two keypoints i and j must lie somewhere
between the minimum and maximum distance between i and
j in the shape library models. Therefore, any two keypoint

measurements that are outside this bound cannot simulta-
neously be inliers; one or both must be outliers. Allowing
for keypoint noise expands these bounds as summarized in
Proposition 4. Refer to [46] for a full proof.

Proposition 4 (Shape Compatibility Test): Let ϱ be the
maximum error for a measurement to be considered an inlier.
If a pair of measurements y

i
t and y

j
t are both inliers, then:

bmin

ij ↓ 2ϱ ≃ ↔yi
t ↓ y

j
t↔ ≃ bmax

ij + 2ϱ (12)

where b{min,max}
ij are the minimum and maximum distances

between keypoints i and j in the shape library:

b{min,max}
ij ↭ {min,max

c↔0,1T c=1

}↔(Bi ↓Bj)c↔ (13)

Time Compatibility. For a rigid body the distance be-
tween two points is constant over time. This forms the basis
for a compatibility test between pairs of points at two times.

Proposition 5 (Time Compatibility Test): Let ϱ be the
maximum error for a measurement to be considered an inlier.
Consider the measurements of keypoints i and j at times l
and m. If these measurements are all inliers then:

|↔yi
l ↓ y

j
l ↔ ↓ ↔yi

m ↓ y
j
m↔| ≃ 4ϱ (14)

We provide the proof in Appendix D
Outlier Pruning. Any set of inliers must satisfy the

compatibility conditions presented above. To prune gross
outliers, we select the largest set of compatible measure-
ments. Finding this set can be cast as a mixed-integer linear
program which we solve using COPT [47].

Proposition 6 (Largest Set of Compatible Measurements):
Let S be the set of measurement pairs that do not satisfy
the shape compatibility condition (12) and T be the
set of groups of four measurements that do not satisfy
the time compatibility condition (14). The largest set of
measurements that satisfy both shape and time compatibility
is given by the following mixed integer linear program:

argmin

ω→{0,1}N↑T

T∑

t=1

N∑

i=1

ςit

s.t. ςit + ςjt ≃ 1 ⇐ (t, i, j) → S
ςil + ςjl + ςim + ςjm ≃ 3 ⇐ (l,m, i, j) → T

(15)
where ςit = 1 denotes including measurement yi

t in the set.
The proof follows from Propositions 4 and 5.

B. Graduated Non-Convexity for Robustness.

While consistency checks can remove a significant pro-
portion of outliers, they may miss a number of difficult-to-
detect outliers. To remove these remaining outliers we use
CASTω as a non-minimal solver for graduated non-convexity
(GNC) [19]. We use the truncated least squares loss in GNC
and follow the implementation and parameter choices of [19].
In our experiments, we show the combination of GNC and
our compatibility checks is robust to 50-60% of outliers.



(a) Measurement noise robustness of CASTω with fixed process noise.

(b) Process noise robustness of CASTω with fixed measurement noise.

(c) Outlier robustness of CAST# and ablations.

Fig. 4. Performance of CAST
ω

and CAST# in Synthetic Experiments. Using the PASCAL3D+ aeroplane shape library, we generate synthetic
measurements to test the robustness of CASTω and CAST# to measurement noise, process noise, and outliers. Plots show median and IQR of 500 runs.

VI. EXPERIMENTS

This section characterizes CASTω and CAST# in synthetic
and real settings. Synthetic experiments (Section VI-A) show
that the semidefinite relaxation in CASTω is empirically tight
and returns accurate estimates in the presence of measure-
ment and process noise, while CAST# is robust to 50-60%
outliers. Section VI-B shows that CAST# is competitive
with other category-level approaches on YCBInEOAT [3], a
manipulation focused dataset for object tracking. Lastly, we
show that CAST# remains accurate in a real-world drone-
based vehicle tracking scenario (Section VI-C).

A. Optimality and Robustness in Synthetic Dataset
Dataset. We generate keypoint measurements according to

the measurements and motion models in Section III. Ground
truth trajectories follow the constant twist model (2) with
Gaussian velocity noise and Langevin rotation rate noise
(process noise). The ground truth trajectory and randomly
generated shape determine the measured keypoint positions
without regard for occlusion, subject to Gaussian perturba-
tions (measurement noise) and outliers. We use the realistic
PASCAL3D+ aeroplane shape library [48] (with character-
istic length l = 0.2 m) to generate a ground truth shape

vector. In each experiment, we fix measurement noise to 5%
of the characteristic length, and the process noise to 0.01m
and 0.01rad. For the measurement noise experiment, we set
the velocity weights ϑt = 1 to improve tightness; we provide
results with standard weights in Appendix E.

Baselines. We compare CASTω against PACE [5], a
certifiably optimal solver for single-frame pose estimation,
and PACE+EKF, an approach that filters the pose estimate
from PACE at each time using an extended Kalman filter
(EKF) while using a constant-twist motion model [49]. We
test CASTω with a time horizon of 4, 8, or 12 frames and
label the corresponding results as CAST-4, CAST-8, and
CAST-12; we also report CAST-U, which is a variant of
CAST-12 with no velocity or rotation smoothing (ϑt = 0,
ωt = 0). Finally, to test CAST#, we replace a fraction of
the measurements with random outliers normally distributed
about the centroid of the object with a standard deviation
equal to the characteristic length. For the tests with outliers,
we compare against ablations of CAST# with only GNC
or only compatibility-based (MILP) outlier rejection without
GNC and use T = 12. In each experiment we show
the median and interquartile range of the error of the last
estimated state over 500 runs.



TABLE I
COMPARISON OF METHODS ON YCBINEOAT DATASET

Method
Cracker Sugar Mustard

ADD ADD-S ADD ADD-S ADD ADD-S
6-PACK - - - - 34.49 80.76

TEASER++ 84.76 92.14 83.26 91.27 86.02 93.43
MaskFusion 79.74 88.28 36.18 45.62 11.55 13.11
BundleTrack 85.07 89.41 85.56 90.22 92.26 95.35
BundleSDF 81.44 90.76 86.55 92.85 90.83 95.48

CAST#-8 86.93 93.14 81.97 89.45 84.67 92.41

CAST#-GT 89.00 94.09 91.05 95.27 92.18 96.17

Results. Fig 4 reports the median position error (as a
percent of length scale), rotation error (in degrees), shape
error, and suboptimality gap or solve time for increasing
measurement noise (normalized by length scale), process
noise (reported as a multiple of 5%), and outlier ratio. In all
experiments, CASTω and CAST# achieve the lowest median
position, rotation, and shape error. In Figs. 4(a) and 4(b),
CASTω is consistently tight (suboptimality gap < 10

↑4) in
low to moderate noise, and still gives an accurate estimate
when not tight. Interestingly, while CASTω outperforms its
unsmoothed variant CAST-U, the latter remains tight for
higher measurement noise. CAST-U benefits over PACE
from access to additional measurements, and CASTω benefits
over CAST-U from additional information about the object’s
motion. The primary cost of CASTω compared to PACE is
its runtime. In our tests, the runtime ranged from 0.1 to 7 Hz
depending on the time horizon (Appendix E). We also note
the poor performance of PACE-EKF in both experiments.
The EKF provides some benefit for very low noise but
quickly diverges for higher noise as the distribution of PACE
measurements deviates from Gaussian and the dynamics are
nonlinear. We provide a comparison to an EKF using per-
turbed ground truth poses for the update step in Appendix E.

The outlier experiment in Fig. 4(c) shows robustness to 50-
60% of outliers using CAST#. Compatibility tests alone are
robust to 40-50% of outliers, while GNC only tolerates 20-
30% of outliers. The data show GNC and MILP-based outlier
rejection are complimentary, with the fast MILP solve time
being unaffected by GNC in the low outlier regime.

B. YCBInEOAT Dataset

Dataset. The YCBInEOAT dataset [3] includes 9 RGB-
D videos of a robotic manipulator interacting with 5 YCB
objects [50]. It includes in-hand manipulation, pick-and-
place, and handovers. Because keypoint detection is not the
focus of this work, we train a simple RGB keypoint detector
for each object using their CAD models and pre-defined
semantic points. The detector has a ResNet18 backbone [51]
and is trained on the BOP YCB-V synthetic dataset [52].
We report the ADD and ADD-S area under the precision-
accuracy curve (AUC) scores at 0.1 m; see [53].

Baselines. We compare against state-of-the-art instance
and category-level tracking approaches for the cracker, sugar,
and mustard objects. We omit the small soup object and
bleach because it matches the background and gripper col-
ors and our simple keypoint detector is unable to detect
reasonable keypoints. TEASER++ [9] is the only instance-
level approach and uses the same keypoints given to CAST#.

TABLE II
QUANTITATIVE RESULTS OF DRONE EXPERIMENT

Method ADD → Rerr (deg) ↑ perr (cm) ↑ cerr ↑ FPS →
TEASER [9] 57.0 9.6± 23.2 4.3± 3.8 - 39.1

PACE [46] 52.0 12.1± 32.0 3.2± 2.4 0.79 3.94
CAST-4 56.6 7.6± 4.5 2.7± 1.3 0.84 3.65
CAST-8 58.0 7.0± 4.3 2.7± 1.4 0.76 1.44

CAST-12 58.8 6.5± 3.8 2.7± 1.4 0.71 0.67
CAST-U 58.2 8.8± 15.1 4.6± 20.0 0.71 0.91

For CAST#, we group mustard and bleach into the “bottle”
category along with a CAD model of a ketchup bottle [54] (3
shapes, 65 keypoints). Similarly, we group cracker and sugar
into the “box” category (2 shapes, 52 keypoints). Results
from 6-PACK [14], MaskFusion [16], and BundleTrack [25]
are taken from the results reported in [25]. BundleSDF [15]
results were replicated using the open source implementation
with ground truth segmentation masks. BundleSDF is the
only category-free method. Since our keypoint detector is
fairly simple, we also report CAST# evaluated on ground
truth pixel keypoints with true depth and occlusions. For all
methods we compute scores using the ground truth shape and
initialize with the first frame ground truth pose. For CAST#
and TEASER we do not use the ground truth to initialize.

Results. CAST# clearly outperforms baselines for the
cracker object but underperforms for sugar and mustard
(Table I). The results are encouraging: even with a simple
keypoint detector, CAST# outperforms elaborate learning-
based methods. The sugar and mustard results are not far be-
hind baselines and mostly reflect the quality of the keypoint
detector, which struggles with smaller objects (see video
attachment). Given ground truth pixel keypoints, CAST#
outperforms virtually all baselines, despite the low-quality
depth data in the YCBInEOAT dataset.

C. Drone-based Vehicle Tracking
We use the drone platform described in [55] to evaluate

CAST# under dynamic real-world conditions, see the video
attachment. During the experiment we remotely piloted a
mini racecar in an elliptical trajectory while the Soft Drone
autonomously followed using the centroid and heading de-
rived from raw keypoints estimated at 30 Hz. Our keypoint
detector, like the YCBInEOAT experiments, used a ResNet-
based architecture [51] with 7 keypoints, and was trained on
images of a similar racecar. Offline, we used motion capture
to transform the 3D position of each keypoint to the world
frame (to compensate for the known motion of the drone)
and ran CAST# to estimate the racecar’s shape and pose at
each time step. For the category-level shape library we used
scaled PASCAL3D+ car shapes and the racecar instance.

Quantitative results of TEASER, PACE, CAST#, and
variants are given in Table II. TEASER and PACE operate
on the same raw keypoint data as CAST# and are tuned for
optimal performance. Across metrics, CAST# achieves the
highest accuracy and lowest mean errors. In particular, the
batch approach with motion priors significantly decreases the
standard deviation of rotation and position errors. While the
frames per second is not competitive with TEASER, CAST-
4 is not significantly slower than PACE despite CAST# using
an unoptimized MATLAB implementation.

https://youtu.be/eTIlVD9pDtc
https://youtu.be/eTIlVD9pDtc
https://youtu.be/eTIlVD9pDtc
https://youtu.be/eTIlVD9pDtc


VII. CONCLUSION

We propose CASTω, a certifiably optimal approach to
simultaneously estimate the shape and track the pose of an
object of a given category. Our approach uses a semidefinite
relaxation to solve the tracking problem, avoiding assump-
tions of small motion and local minima from local solvers. In
the presence of outliers, CAST# uses GNC and a fast shape
and time compatibility scheme to reject gross measurements.
Our experiments show the relaxation is empirically tight and
is competitive against baselines on the YCBInEOAT dataset
and in a real-world drone tracking setting.
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APPENDIX A
MAXIMUM A POSTERIORI DERIVATION

Here we show that (5) is a maximum a posteriori (MAP)
estimator. We first restate the problem:

min
Rt,!l→SO(3),

pt,vl→R3,
c→RK ,1T

Kc=1

t=1,...,T,
l=1,...,T↑1

s.t.

T∑

t=1

N∑

i=1

wi
t

∥∥yi
t ↓RtBic↓ pt

∥∥2 + ε↔!c↔2

+

T↑1∑

t=1

ϑt↔!vt↔2 + ωt↔!!t↔2F

pt+1 = pt +Rtvt, Rt+1 = Rt!t

!vt = vt+1 ↓ vt, !!t = !t+1 ↓!t
(A16)

where we introduced auxiliary variables !vt and !!t

for the velocity changes. We now show that the
first summand in (A16) corresponds to the likelihood
of our keypoint measurements (4), while the other
terms describe our priors on the shape, velocity, and
rotation rates. Denote the quantities to estimate by
z ↭ [c, {pt,Rt}Tt=1

, {vt,!t}T↑1

t=1
, {!vt,!!t}T↑1

t=1
] be-

longing to the domain Z which includes all relevant con-
straints in (A16). The MAP estimator takes the form:

argmax
z→Z

P(z | {yi
t}

N,T
i,t=1

) = argmax
z→Z

P({yi
t}

N,T
i,t=1

| z)P(z)
(A17)

where we expanded using Bayes rule. Assuming independent
measurements, shape independence, and Markovian time-
independence, we can rewrite (A17) as:

argmax
z→Z

N,T

i,t=1

P(yi
t | z)

T↑1

t=1

P(!vt)P(!!t)P(!c) (A18)

For the posterior P(yi
t | z) we assume a zero-mean Gaussian

with covariance ”
i
t =

1

wi
t
I3. Hence, using (4) :

P(yi
t | z) = φi

t exp


↓wi

t

2

∥∥yi
t ↓RtBic↓ pt

∥∥2


(A19)

with normalization constant φi
t.

Similarly, for velocity and shape we assume a zero-mean
Gaussian prior with covariance 1

ϖt
I3 and 1

ϑI3 respectively:

P(!vt) = φv
t exp


↓ϑt

2
↔!vt↔2


(A20)

P(!c) = φc exp


↓ε

2
↔!c↔2


(A21)

We also assume that the rotation rate follows a Langevin
distribution with concentration parameter ωt:

P(!!t) = φo
t exp


↓ωt ↔!!t↔2F


(A22)

where φv
t , φc, and φo

t are suitable normalization constants.
Replacing the maximum of the posterior with the mini-

mum of the negative logarithm of the posterior and dropping
multiplicative and additive constants we arrive at the result.

APPENDIX B
PROOF OF PROPOSITION 1:

CLOSED-FORM OPTIMAL SHAPE

Holding all other variables constant, (5) is a linearly
constrained least squares program in c. Thus, the minimum
with respect to c is convex and admits a unique solution via
the KKT conditions. If we drop objective terms that do not
depend on c in (5), we get:

min
c→RK ,
1T
Kc=1

T∑

t=1

N∑

i=1

wi
t

∥∥yi
t ↓RtBic↓ pt

∥∥2 + ε↔!c↔2

(A23)
Expanding the summation over keypoint indices i and

moving the weights into the norm:

T∑

t=1

∥∥∥∥∥∥∥
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t I3

. . .
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...
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N
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
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↭ht
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
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...
BN





  
↭B

c





∥∥∥∥∥∥∥

2

+ ε↔!c↔2
(A24)

where we used the 2-norm rotational invariance to move R
T.

We can now write the stationarity condition. Using the
dual variable µ for the condition 1

T
c = 1 and simplifying:

0 = 2B
T


T∑

t=1

W 2

t


Bc↓2B

T


T∑

t=1

W 2

t ht


+2ε!c+1µ

(A25)
Putting this together with primal feasibility, we arrive at

the following linear system:

H

↑1
1K

1
T
K 0

 
c

µ


=


2


B

T
∑T

t=1
W

2
tht + εc̄



1


(A26)

where H ↭ 1

2


B

T
∑T

t=1
W

2
t


B+ εIK

↑1

.
Solving for c and substituting the definitions of G and g,

we arrive at the result. Cruicially, notice that the matrix we
must invert to get H is made up only of constants.

APPENDIX C
PROOF OF PROPOSITION 2:

QUADRATICALLY CONSTRAINED QUADRATIC PROGRAM

We focus on the measurement terms, the constraints, and
the variable c. The remaining objective terms contain norms
of single-degree variables and are thus quadratic. The key
idea is to let st ↭ R

T
t pt. Then, the measurement term of the

objective may be rotated without changing its norm:
∥∥yi

t ↓RtBic↓ pt

∥∥2 =
∥∥RT

t y
i
t ↓Bic↓ st

∥∥2 (A27)

Similarly, the optimal solution c
↗ may be rewritten as:

c
ω
= 2G



B
T

T∑

t=1

Wt




R

T
t y

1
t ↓ st
...

R
T
t y

N
t ↓ st



+ εc̄



+ g (A28)

to complete the changes needed for the objective. Notice that
c is a linear function of R and s. Thus, every term of the
objective is quadratic in the new variables st, Rt, vt, !t.



Fig. 5. Performance of CAST
ω

in synthetic experiments with increasing measurement noise. Robustness to measurement noise with CASTω using
the inverse of the simulated velocity covariance for the velocity weights εt. The key difference between this plot and Fig. 4(a) lies in the suboptimality
gap figure, where CASTω loses tightness quickly. Despite losing its optimality certificate, CASTω maintains the lowest position, rotation, and shape errors.

The variable p still remains in the constraint pt+1 = pt+

Rtvt. Multiplying both sides by R
T
t :

R
T
t pt+1 = st + vt (A29)

From the rotation rate constraint, Rt+1 = Rt!t ⇒ R
T
t =

!tR
T
t+1

. Plugging this in gives the desired constraint.

APPENDIX D
PROOF OF PROPOSITION 5:
TIME COMPATIBILITY TEST

Compare the distance between keypoints i and j at each
time, rotating to align coordinates with the body frame:

↔RT
l (y

i
l ↓ y

j
l ))↔ ↓ ↔RT

m(y
i
m ↓ y

j
m)↔

 (A30)

Bound this using the reverse and forward triangle inequali-
ties, noting that noise is isotropic (Rω = ω):

(A30)≃↔(Bi ↓Bj + ωil ↓ ωjl )↓ (Bi ↓Bj + ωim ↓ ωjm)↔
= ↔ωi,ly ↓ ωi,ly ↓ ωi,my + ωi,my ↔ ≃ 4ϱ

(A31)
Since the 2-norm is invariant to rotations, we can remove
the rotations from (A30) and obtain the result.

APPENDIX E
ADDITIONAL EXPERIMENTAL RESULTS

Additional Synthetic Results. In Section VI-A we
showed the robustness of CASTω to measurement and pro-
cess noise, and the robustness of CAST# to outliers. Here we
give the runtimes of each method (Table III), show results for
the choice of weights resulting from MAP estimation (Fig. 5),
and address the EKF results (Fig. 6).

TABLE III
SYNTHETIC EXPERIMENT RUNTIMES

Runtime (s) PACE CAST-
4 8 12 U

Meas. Noise 0.0028 0.483 2.15 5.49 5.25
Proc. Noise 0.0040 0.857 4.05 10.6 10.2

From Table III we observe CASTω is the slowest of
the tested methods. The results are obtained with a non-
optimized MATLAB implementation and we expect com-
putational gains from further code optimization. This aside,
the variable horizon length allows a trade-off between com-
putational speed and accuracy. As computation improves,
the benefits of certifiable optimality and increased accuracy
make CASTω an attractive choice of tracking algorithm.

Recall that in the tests in Section VI we chose the velocity
weights to be ϑt = 1 instead of setting them as prescribed by

MAP estimation (where they should be taken as the inverse
of the variance of the prior). This is equivalent to increasing
the standard deviation of the velocity noise by a factor of 10;
in other words, it reduces the effect of motion smoothing.
Fig. 5 shows that using the true velocity covariance degrades
tightness, although it does not have any visible effect on the
accuracy results.

Lastly, we present additional results showing the perfor-
mance of the EKF using perturbed ground truth data instead
of PACE. Specifically, we perturb the ground truth poses
according to a zero-mean Gaussian with standard deviation
equal to 1/25th of the measurement noise for position and
1/50th for rotation (arbitrarily chosen as realistic values).
Fig. 6 shows the median EKF estimate consistently beats
the perturbed ground truth value (results are averaged over
500 independent trials for each noise value). The large
interquartile range is likely because of errors due to lin-
earization, particularly of the constant twist motion model.
The EKF likely struggled when using PACE’s poses in the
measurement update because of the high variance and heavy-
tailed distribution of the estimates.

Fig. 6. Extended Kalman Filter with perturbed ground truth measure-

ments. With Gaussian-perturbed ground truth measurements, the extended
Kalman filter outperforms the raw measurements in median error across
measurement noise values. This supports our claim that the EKF performs
poorly using pose estimate from PACE, likely due to the high variance and
heavy-tailed distribution of the estimates.

Results for Bleach and Soup on YCBInEOAT. Ta-
ble IV shows scores for all tested methods on the “soup”
and “bleach” objects. As mentioned in the text, the soup
object is particularly difficult because it is very small and
cylindrically symmetric, which CASTω is not designed to



TABLE IV
ADDITIONAL YCBINEOAT RESULTS

Method
Bleach Soup

ADD ADD-S ADD ADD-S
6-PACK 4.18 18.00 12.82 60.32

TEASER++ 35.39 46.40 65.85 81.53
MaskFusion 29.83 43.31 5.65 6.45
BundleTrack 89.34 94.72 86.00 95.13
BundleSDF 85.59 93.11 80.54 96.47

CAST#-8 47.53 45.82 27.61 41.70
CAST#-GT 62.19 75.14 37.07 63.29

handle (other approaches also achieve low scores, compared
to the other objects). The bleach object is larger but matches
the background color, making keypoint detection difficult.
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