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Abstract

This paper investigates runtime monitoring of perception systems. Percep-
tion is a critical component of high-integrity applications of robotics and au-
tonomous systems, such as self-driving cars. In these applications, failure of
perception systems may put human life at risk, and a broad adoption of these
technologies requires the development of methodologies to guarantee and mon-
itor safe operation. Despite the paramount importance of perception, currently
there is no formal approach for system-level perception monitoring. In this pa-
per, we formalize the problem of runtime fault detection and identification in
perception systems and present a framework to model diagnostic information
using a diagnostic graph. We then provide a set of deterministic, probabilis-
tic, and learning-based algorithms that use diagnostic graphs to perform fault
detection and identification. Moreover, we investigate fundamental limits and
provide deterministic and probabilistic guarantees on the fault detection and
identification results. We conclude the paper with an extensive experimental
evaluation, which recreates several realistic failure modes in the LGSVL open-
source autonomous driving simulator, and applies the proposed system monitors

to a state-of-the-art autonomous driving software stack (Baidu’s Apollo Auto).
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The results show that the proposed system monitors outperform baselines, have
the potential of preventing accidents in realistic autonomous driving scenarios,
and incur a negligible computational overhead.
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1. Introduction

The number of Autonomous Vehicles (AVs) on our roads is increasing rapidly,
with major players in the space already offering autonomous rides to the pub-
lic [1]. Self-driving cars promise a deep transformation of personal mobility and
have the potential to improve safety, efficiency (e.g., commute time, fuel), and
induce a paradigm shift in how entire cities are designed [2]. One key factor that
drives the adoption of such technology is the capability of ensuring and moni-
toring safe operation. Consider Uber’s fatal self-driving crash [3] in 2018: the
report from the National Transportation Safety Board states that “inadequate
safety culture” contributed to the fatal collision between the autonomous vehicle
and the pedestrian. In a recent survey [4], the American Automobile Associa-
tion (AAA) reports that vehicles with autonomous driving features consistently
failed to avoid crashes with other cars or bicycles. An analysis by Business In-
sider [5] found that the number of accidents involving AVs surged in 2021. This
is a clear sign that the industry needs a sound methodology, embedded in the
design process, to guarantee safety and build public trust.

Safe operation requires AVs to correctly understand their surroundings, in
order to avoid unsafe behaviors. In particular, AVs rely on onboard perception
systems to provide situation awareness and inform the onboard decision-making
and control systems. The perception system uses sensor data and prior knowl-
edge (e.g., high-definition maps) to create an internal representation of the
surrounding environment, including estimates for the positions and velocities of
other vehicles and pedestrians, or the presence of traffic signs and traffic lights.
Modern perception systems use both data-driven and classical methods. While

classical methods are well-rooted in signal processing and estimation theory and



have been extensively studied in robotics and computer vision, they may still
have unexpected failure modes in practice, e.g., local convergence in the Itera-
tive Closest Point for 3D object pose estimation [6] or premature termination
of robust estimation techniques as RANSAC [7], among many other examples.
The use of data-driven methods further exacerbates the problem of ensuring cor-
rectness of the perception outputs, since current neural network architectures
are still prone to creating unexpected and often unpredictable failure modes [8].

Ensuring and monitoring the correct operation of the perception system of
an AV is a major challenge. Industry heavily relies on simulation and testing to
provide evidence of safety. Although there is an increasing interest in the area of
safety certification and runtime monitoring, the literature lacks a system-level
framework to organize and reason over the diagnostic information available at
runtime for the purpose of detecting and identifying potential perception-system
failures. Reliable runtime monitoring would enable the vehicle to have a better
understanding of the conditions it operates in, and would give it enough notice
to take adequate actions to preserve safety (i.e., switch to fail-safe mode or
hand over the control to a human operator) in case of severe failures. In this
paper, we use the term “failure” (or “fault”) in a general sense, to also denote
failures of the intended functionality [9, 10]. For instance, a neural network can
execute correctly (e.g., without errors in the implementation or in the hardware
running the network) but can still fail to produce a correct prediction for out-
of-distribution inputs. Then, fault detection is the problem of detecting the
presence of a fault in the system, while fault identification is the problem of
inferring which components of the system are faulty. The latter is particularly
important since (i) not every fault has the same severity, hence understanding
which component is failing may lead to different responses, (ii) a designer can
use fault statistics to decide to focus research and development efforts on certain
components, and (iii) a regulator can use information about specific faults to
trace the steps or even determine responsibilities after an accident.

Most of the existing literature (which we review more extensively in Sec-

tion 2) has focused on detecting failures of specific modules or specific algo-



rithms, like localization [11, 12|, semantic segmentation [13], or obstacle detec-
tion [14]. These methodologies often use a white-box approach (the monitor
knows how the monitored algorithm works to some extent), and are sometimes
computationally expensive to run [13]. However, the literature still lacks a
framework for system-level monitoring of perception systems, which is able to
detect and identify failures in complex systems involving both classical and
data-driven (possibly asynchronous, multi-modal)! perception algorithms.

Contribution. This paper addresses this gap and provides methodolo-
gies for runtime monitoring (in particular, fault detection and identification) of
complex perception systems. Our first contribution is to formalize the problem
(Section 3) and to present a framework (Section 4) to organize heterogeneous
diagnostic tests of a perception system into a graphical model, the diagnostic
graph. In particular, we present different mathematical models (including both
deterministic and probabilistic models) to describe common diagnostic tests.
Then, we introduce the concept of diagnostic graph, and extend it to capture
asynchronous information over time (leading to temporal diagnostic graphs).
Our framework adopts a black-box approach, in that it remains agnostic to
the inner workings of the perception algorithms, and only focuses on collecting
results from diagnostic tests that check the validity of their outputs.

Our second contribution (Section 5) is a set of algorithms that use diagnostic
graphs to perform fault detection and identification. For the deterministic case,
we provide optimization-based methods that find the smallest set of faults that
explain the test results. For the probabilistic case, we transform a diagnostic
graph into a factor graph and perform inference to find the set of faulty modules.
Finally, we propose a learning-based approach based on graph neural networks
that learns to predict failures in a diagnostic graph.

Our third contribution (Section 6) is to investigate fundamental limits and

provide deterministic and probabilistic guarantees on the fault detection and

IModern perception systems rely on data from multiple sensors and are implemented in
multi-threaded architectures, where each algorithm may be executed at a different rate.



identification results. In the deterministic case, we draw connections between
perception system monitoring and the literature on diagnosability in multipro-
cessor systems, and in particular the PMC model [15]. This allows us to estab-
lish formal guarantees on the maximum number of faults that can be uniquely
identified in a given perception system, leading to the notion of diagnosability.?
In the probabilistic case, we develop Probably Approximate Correctly (PAC)
bounds on the expected number of mistakes our runtime monitors will make.
Finally, we show that our framework is effective in detecting and identifying
faults in a real-world perception pipeline for obstacle detection (Section 7).
In particular, we perform experiments using a realistic open-source autonomous
driving simulator (the LGSVL Simulator [16]) and a state-of-the-art autonomous
driving software stack (Baidu’s Apollo Auto [17]). Our experiments show that
(i) some of our algorithms outperform common baselines in terms of accuracy,
(ii) they allow detecting failures and provide enough notice to stop the vehicle
before an accident occurs in realistic scenarios, and (iii) their runtime is typically
below five milliseconds, incurring a negligible overhead in practice. A video
showcasing the execution of the proposed runtime monitors can be found at
https://www.mit.edu/ antonap/videos/AIJ22PerceptionMonitoring.mp4.
We have also released an open-source version of our code at https://github.

com/MIT-SPARK/PerceptionMonitoring.

2. Related Work

This section reviews related work on runtime monitoring and AV safety
assurance, spanning both industrial practice (Section 2.1) and academic research

(Section 2.2).

2As discussed in Section 6, diagnosability is related to the level of redundancy within the
system and provides a quantitative measure of robustness.



2.1. State of Practice

The automotive industry currently uses four classes of methods to claim the
safety of an AV [18], namely: miles driven, simulation, scenario-based testing,
and disengagement. Each of these methods has well-known limitations. The
miles driven approach is based on the statistical argument that if the probability
of crashes per mile is lower in autonomous vehicles than for humans, then AVs
are safer; however, such an analysis would require an impractical amount (i.e.,
billions) of miles to produce statistically-significant results [19, 18].3 The same
approach can be made more scalable through simulation, but unfortunately
creating a life-like simulator is an open problem, for some aspects even more
challenging than self-driving itself. Scenario-based testing is based on the idea
that if we can enumerate all the possible driving scenarios that could occur,
then we can simply expose the AV (via simulation, closed-track testing, or on-
road testing) to all these scenarios and, as a result, be confident that the AV will
only make sound decisions. However, enumerating all possible corner cases (and
perceptual conditions) is a daunting task. Finally, disengagement is defined as
the moment when a human safety driver has to intervene in order to prevent a
hazardous situation. However, while less frequent disengagements indicate an
improvement of the AV behavior, they do not give evidence of the system safety.

An established methodology to ensure safety is to develop a standard that
every manufacturer has to comply with. In the automotive industry, the stan-
dard ISO 26262 [20] is a risk-based safety standard that applies to electronic
systems in production vehicles. A key issue is that ISO 26262 mostly focuses on
electronic systems rather than algorithmic aspects, hence it does not readily ap-
ply to fully autonomous vehicles [21]. The recent ISO 21448 [9], which extends
the scope of ISO 26262 to cover autonomous vehicles functionality, primarily
considers mitigating risks due to unexpected operating conditions, and provides

high-level considerations on best-practice for the development life-cycle. Both

3Moreover, the analysis should cover all representative driving conditions (e.g., driving
on a highway is easier than driving in urban environment) and should be repeated at every
software update, quickly becoming impractical.



ISO 26262 and ISO/PAS 21448 are designed for self-driving vehicles supervised
by a human [22]. Koopman and Wagner [23] propose a standard called UL
4600 [24] specifically designed for high-level autonomy (levels 4 and 5). This
standard focuses on ensuring that a comprehensive safety case is created, but
it is technology-agnostic, meaning that it requires evidence of system safety

without prescribing the use of any specific approach or technology to achieve it.

2.2. State of the Art

Related work tries to tackle the problem of safety assurance using different
strategies. Formal methods [25, 26, 27, 28, 29, 30, 31, 32, 33] have been re-
cently used as a tool to study safety of autonomous systems. These approaches
have been successful for decision systems, such as obstacle avoidance [34], road
rule compliance [35], high-level decision-making [36], and control [37, 38], where
the specifications are usually model-based and have well-defined semantics [39].
However, they are challenging to apply to perception systems, due to the com-
plexity of modeling the physical environment [40], and the trade-off between
evidence for certification and tractability of the model [41]. One common ap-
proach is finding an example where the system fails (i.e., falsification). Current
approaches [42, 43, 44] consider high-level abstractions of perception [18, 45, 46]
or rely on simulation to assert the true state of the world [42, 43, 47]. Other
approaches focus on adversarial attacks for neural-network-based object detec-
tion [48, 49, 50]; these methods derive bounds on the magnitude of the perturba-
tion that induces incorrect detection result, and are typically used off-line [51].

Previous works on runtime fault detection and identification focused
on components of the perception system [52]. Miller et al. [14] propose a frame-
work for quantifying false negatives in object detection. Out-of-distribution
sample detection [53, 54, 55, 56] is a popular technique for detecting failures
due to shifts in the distribution of data in learning-based algorithms. For se-
mantic segmentation, Besnier et al. [13] and Oberdiek et al. [57] propose an
out-of-distribution detection mechanism, while Rahman et al. [58] propose a

failure detection framework to identify pixel-level misclassifications. Lambert



and Hays [59] propose cross-modality fusion algorithm to detect changes in high-
definition map. Liu and Park [60] propose a methodology to analyze the consis-
tency between camera image data and LiDAR data to detect perception errors.
Sharma et al. [61] propose a framework for equipping any trained deep net-
work with a task-relevant epistemic uncertainty estimate. Several GNSS/RTK
integrity monitors have been proposed [62, 63, 11, 12, 64, 65] to detect local-
ization errors (the interested reader should refer to [66, 67] for a comprehensive
survey). Another line of works leverages spatio-temporal information to detect
failures. You et al. [68] use spatio-temporal information from motion predic-
tion to verify 3D object detection results. Balakrishnan et al. [45, 69] propose
the Timed Quality Temporal Logic (TQTL) to reason about desiderable spatio-
temporal properties of a perception algorithm.

Kang et al. [70] use model assertions, which similarly place a logical con-
straint on the output of a module to detect anomalies. Fault-tolerant architec-
tures [71] have been also proposed to detect and potentially recover from a faulty
state, but these efforts mostly focus on implementing watchdogs and monitors
for specific modules, rather than providing tools for system-level analysis and
monitoring.

Fault identification and anomaly detection have been extensively stud-
ied in other areas of engineering. Bayesian networks, Hidden Markov Mod-
els [72, 73], and deep learning [74] have been used to enable fault identification,
but mainly in industrial systems instrumented to detect component failures.
Graph-neural networks have been used for anomaly detection (see [75] for a
comprehensive survey). In this context, “anomaly detection is the data mining
process that aims to identify the unusual patterns that deviate from the ma-
jorities in a dataset” [75]. In order to detect anomalies, objects (i.e., nodes,
edges, or sub-graphs) are usually represented by features that provide valuable
information for anomaly detection, and when a feature considerably differs from
the others (or the training data), the object is classified as anomalous. De Kleer
and Williams [76] propose a methodology to detect failures by comparing ob-

servations with a predicted output. The dissimilarities are then used to search



for potential failures that explain the measurements. The work assumes the
availability of a model that predicts the behavior of the system, and —after
collecting intermediate results of each component— it searches for the smallest
set of failing components that explains the wrong measurements. Preparata,
Metze, and Chien [15] study the problem of fault diagnosis in multi-processor
systems, introducing the concept of diagnosability; their work is then extended
by subsequent works [77, 78, 79]. Sampath et al. [80] propose the concept of
diagnosability for discrete-event systems [81, 82]. The system is modeled as a
finite-state machine, and is said to be diagnosable if and only if a fault can be
detected after a finite number of events.

The present paper extends this literature in several directions. First, we
take a black-box approach and remain agnostic to the inner workings of the per-
ception system we aim to monitor (relaxing assumptions in related work [76]).
Second, we develop a fault identification framework that reasons over the consis-
tency of heterogeneous and potentially asynchronous perception modules (going
beyond the homogeneous, synchronous, and deterministic framework in [15]).
Third, the framework is applicable to complex real-world perception systems
(not necessarily modeled as discrete-event systems [81, 82]). The present pa-
per also extends our previous work on perception-system monitoring [83], which

only focuses on the deterministic case and considers a simplified model.

3. Problem Statement: Fault Detection and Identification

in Perception Systems

8.1. Perception System: Modules and Outputs

A perception system S comprises a finite set of interconnected modules M =
{m1,ma,...mrq}; for instance, the perception system of a self-driving car
may include modules for lane detection, camera-based object detection, LIDAR-
based motion estimation, ego-vehicle localization, etc. Each module m € M
produces a finite set of outputs, and each output is produced by a single module.

For instance, the lane detection module may produce an estimate of the 3D



location of the lane boundaries, while the pedestrian detection module may
produce an estimate of the pose and velocity of pedestrians in the surroundings.
Some of these outputs provide inputs for other perception modules, while other
are the outputs of the perception system and feed into other systems (e.g.,
to planning and control). The set of modules’ outputs are disjoint (i.e., each
output is produced by a single module), and the set of all outputs is denoted

by O. We model the perception system as a graph of modules and outputs.

Definition 1 (Perception System). A perception system S is a directed graph
S=(MUOQO,E), where the set of nodes M U O describes modules and outputs
in the system, while the set of edges £ describes which module produces or con-
sumes a certain output. In particular, an edge (m;,0;) € € with m; € M and
0; € O models the fact that module m; produces output o;. Similarly, and edge
(0j,m;) € & with o; € O and m; € M models the fact that module m; uses

output 0.

We treat each module as a black-bor and remain agnostic to the algorithms
they implement. This allows our framework to generalize to complex perception
systems, possibly including a combination of classical and data-driven methods.

While we will consider more complex examples of perception systems in the
experimental section, Fig. 1 shows a simple example of perception system to
ground the discussion. The system comprises three modules: a LiDAR-based
obstacle detector, a camera-based obstacle detector, and a sensor fusion module.
Both the LiDAR-based and the camera-based obstacle detectors generate a set
of obstacles detected in the environment, namely, the LiDAR obstacles and
camera obstacles. The sensor fusion algorithm combines the two sets of obstacles

to produce a new set of objects, called fused obstacles.

Remark 2 (Modules vs. Outputs). Our system model treats modules and
outputs as separate modes. This is convenient for two reasons. First, fault
identification at the modules and outputs may serve different purposes: output
fault identification is more useful at runtime to identify unreliable information

from the perception system and prevent accidents; module fault identification

10
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Figure 1: A simple example of a perception system including 3 modules (rectangles) and
3 outputs (circles). Modules are connected by edges describing which module produces or
consumes a given output. The failure modes of each module (resp. output) are represented
by red dots. The LiDAR-based and the Camera-based obstacle detection modules are subject
to the out-of-distribution sample failure mode (i.e., they saw a sample far from the training
dataset), which might result in misdetections (e.g., missing obstacles) in their respective
outputs. The sensor fusion module is subject to the misassociation failure mode, which might
result in misdetections in its output.

is typically more informative for designers and regulators. Second, in practi-
cal applications we can rarely measure if a module is failing (indeed developing
algorithms that can “self-diagnose” their failures is an active area of research,
see work on certifiable algorithms [84]). On the other hand, we can directly
measure the outputs of the modules and develop diagnostic tests to check if an

output is plausible and consistent with other outputs in the system.

8.2. Fault Detection and Fault Identification

Fach module in & might fail at some point, jeopardizing the system per-
formance or even its safety. In particular, each module m € M is assumed
to have a set of failure modes. A failure of a module is the deviation from
its intended behavior. While the list of failures can include any software and
hardware failures, in this paper we particularly focus on failures of the intended
functionality. For example, a neural-network-based camera-based object de-
tection module might experience the failure mode “out-of-distribution sample”
when it processes an input image, which indicates that while the module’s code
executed successfully, the resulting detection is expected to be incorrect.

Similarly, each output o € O has an associated set of failure modes. A

failure of an output is an error of its value. For instance, the output of the
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camera-based object detector might experience a “mis-detection” failure mode
if it fails to detect an object, or a “mis-classification” failure mode if the object
is detected but misclassified. A module’s failure mode typically causes a failure
in one of its outputs. Examples of failure modes are given in Fig. 1. For each
module and output, the figure lists a potential failure mode: for instance, the
LiDAR-based obstacle detection output may fail if it misdetects an obstacle,
while the sensor fusion module may fail it it incorrectly associates the input

obstacles.

Definition 3 (Failure Modes). At each time instant, the i-th failure mode
fi € {INACTIVE, ACTIVE} = {0,1} is either ACTIVE (also 1) if such failure
is occurring, or INACTIVE (also 0). A module or an output is failing if at least
one of its failure modes is ACTIVE. Similarly, a system is failing if at least
one of its modules or outputs is failing. If we stack the status (ACTIVE/IN-
ACTIVE) of all failure modes into a single binary vector, the fault state vector
F € {0,1}"7 (where Ny is the number of failure modes), then f is all zeros if

there are no faults, or has entries equal to ones for the active failure modes.
The goal of this paper is then to address the following problems:

Fault Detection decide whether the system is working in nominal conditions
or whether a fault has occurred (i.e., infer if there is at least an active

failure mode in f);

Fault Identification identify the specific failure mode the system is experi-

encing (i.e., infer which failure mode is active in f).

Fault detection is the easiest between the two problems, as it only requires
specifying the presence of at least a fault, without specifying which modules or
outputs are incorrect. Mathematically, this reduces to identifying whether the
unknown vector f has at least an entry equal to 1. Fault identification goes one
step further by explicitly indicating the set of active failure modes. Mathemat-
ically, this reduces to identifying exactly which entries of the unknown vector f

are equal to 1. Identifying which module is faulty is particularly important to

12



inform regulators (e.g., to trace the steps that that led to an accident caused by
an autonomous vehicle) and system designers (e.g., to highlight modules that
are likely to fail and require further development). Moreover, not all faults are
equally problematic: for instance, a failure in localizing a car in the opposite
lane of a divided highway is less consequential that failing to detect a pedestrian
in front of the car. Note that solving fault identification implies a solution for
fault detection (i.e., whenever we declare one or more modules to be faulty, we
essentially also detected there is a failure), hence in the rest of this paper we

focus on the design of a monitoring system for fault identification.

Remark 4 (Assumptions and Terms of Use). We assume that the potential
failure modes of the system are known to the system designer. In practice, these
can be discovered using some form of hazard analysis, such as Failure Modes and
Effects Analysis (FMEA) [85] or Fault tree analysis (FTA) [86].  Moreover,
we can always add a generic “unknown failure mode” to capture any failure
modes of a module or output that we cannot characterize, so this assumption
18 not restrictive. ~ We also remark that our monitoring system’s objective is
to diagnose potential failures, while it does not prescribe what are the actions
that need to be taken in response to each failure (e.g., whether to stop the car,
provide a warning to the passenger, etc.), which is failure and system-dependent.

Investigation how to respond to or mitigate failures is left to future work.

4. Modeling Fault Identification with Diagnostic Graphs

This section develops a framework to model fault identification problems in
perception systems. In the previous section we have discussed how the goal is to
identify the set of active failure modes associated to modules and outputs in a
system. Here we introduce the concept of diagnostic graphs to study fault iden-
tification: diagnostic graph will allow developing fault identification algorithms
(Section 5) and understanding fundamental limits (Section 6).

The intuition is that in a perception system we can perform a number of

diagnostic tests that check the validity of the output of certain modules. For
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instance, we can compare the outputs of different modules to ensure they are
consistent (e.g., compare the obstacles detected by the LiDAR-based obsta-
cle detection against the camera-based obstacle detection), or inspect that the
output a certain module respects certain requirements (e.g., the vision-based
ego-motion module is tracking a sufficient number of features). Then, we can
model these checks as edges in a bipartite graph, the diagnostic graph, which
can be used for fault identification. In the following, we formalize the notions

of diagnostic tests and diagnostic graphs.

4.1. Diagnostic Tests

In our fault identification framework, the system is equipped with a set of
diagnostic tests that can (possibly unreliably) provide diagnostic information
about the state of a subset of failure modes. Each diagnostic test is a function
t:S — {PASS,FAIL}, where S C {1,..., Ny} is a subset of the failure modes
that the test is checking, called the scope of the test, and the test returns a
value z € {PASS,FAIL} = {0,1}, called the outcome of the test. A diagnostic
test returns PASS (also denoted with 0) if there is no active failure mode in its
scope, FAIL (also denoted with 1) otherwise. In general, tests can be unreliable,
meaning that they can both fail to detect active failures or incorrectly detect
failures as active (i.e., false alarms). Each diagnostic test can be tuned to be
more or less conservative, which affects the number of false alarms and missed
failures (i.e., precision and recall) of fault detection and identification, providing
additional flexibility to practitioners.

While in the experimental section we will describe more complex tests (and
provide an open-source framework? to easily code new tests), it is instructive
to consider a simple test between the outputs of the LiDAR-based obstacle de-
tection and the camera-based obstacle detection in Fig. 2. The test in Fig. 2
compares the two sets of objects detected by the two detectors; whenever an in-

consistency arises, the test returns FAIL. However, if both detectors are subject

4Code available at https://github.com/MIT-SPARK/PerceptionMonitoring.

14



to the same failure, e.g., they both misdetect an obstacle, the test might still
pass, thus exhibiting unreliable behavior. We remark that a single test does not
suffice for fault identification: for instance, if the test in Fig. 2 fails, we can only
conclude that one of the two detectors had a failure (or that the test was a false
alarm); therefore, we typically need to collect a number of tests and perform
some inference process to draw conclusions about which modules failed. The

collection of the outcomes of multiple diagnostic tests is called a syndrome.

Definition 5 (Syndrome). Assuming we have Ny diagnostic tests, the vector

collecting the test outcomes z € {PASS, FAIL}"* is called a syndrome.

In the following, we describe how to mathematically model the relation be-
tween the failure modes and the test outcomes; this will be instrumental in
solving the inverse problem of identifying the failure mode from a given syn-
drome. We provide a deterministic and a probabilistic model for the tests below.

Deterministic Tests. Deterministic diagnostic tests encode the set of
possible test outcomes, by establishing a deterministic relation between failure
modes in the test’s scope and the test outcome. We discuss potential models
for deterministic diagnostic test below.

Ideally we would like the test to return FAIL if and only if at least one
of the failure modes in its scope is active. This leads to the definition of a

“Deterministic OR” test.

Definition 6 (Deterministic OR). A diagnostic test t(fscope(t)) 95 a determin-

istic OR if its test outcome z is

PASS Zf fsco e =0
L= || P (t)Hl (1)

FAIL otherwise

This kind of tests can be hard to implement in practice. For example,
imagine a diagnostic test that compares the output of two object classifiers:
if one of them produces a wrong label, it is easy to detect there is a failure;

however, if both classifiers are trained on similar data and both report the
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incorrect label there is no way to detect the failure. In this case, the test
outcome is unreliable. The following definition introduces a type of unreliable

test.

Definition 7 (Deterministic Weak-OR [15, 87]). A test t(focope(r)) is a deter-

ministic Weak-OR if its test outcome z is

FAIL ZfO < ||.fscope(t)||1< |scope(t)|
z = PASS or FAIL  if || fscope(t)[[1= |scope(t)] (2)
PASS otherwise

This kind of test is consistent with the tests used in [87]. Intuitively, a
“Deterministic Weak-OR” may return PASS even if all failure modes are active,
since the test might fail to detect an inconsistency if all faults are consistent
with each others (again, think about two object classifiers failing in the same
way). Even though the Weak-OR test may pass or fail when all failure modes
are active, its outcome remains deterministic.

Finally, an even weaker type of deterministic test is what we call the Deter-

ministic Weaker-OR (this is the easiest test to implement in practice).

Definition 8 (Deterministic Weaker-OR). A diagnostic test t(fscope(r)) 5 @

Deterministic Weaker-OR if its test outcome z is

PASS or FAIL if || fucope(t) 1> 0
L (3)

PASS Zf ||.fsc0pe(t)H1: 0

In other words, the tested is designed to pass in nominal conditions (i.e.,
when no failure mode is active), but it can have arbitrary outcomes otherwise.
The types of deterministic tests presented above are not the only possible
deterministic tests. Other examples include, for instance, diagnostic tests that

fail to detect specific sets of failure modes. Deterministic tests can be designed
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using formal methods tools or certifiable perception algorithms [88, 89, 90,5 see

also Remark 10 below.
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{ 1 with prob. pa,1 + Pa,2 — Pa,1Pa,2

0 with prob. (1 — pa,1)(1 — p4.2)
Test 0|1 1 ; : ’
es { 1 with prob. ps,1 4+ pda,2 — Pa,1Pd,2

0 with prob. (1 —pg,1)(1 —pa,2)
Camera
Obstacles

1 with prob. pg 1 + pa,2 — Pd,1Pa,2
[fz Misdetection .}

0 with prob. (1 —pg,1)(1 —pag,2)
1 with prob. pg 1 + pa,2 — Pd,1P4,2

Figure 2: A test comparing Table 1: Table of possible outcomes for the Deterministic OR and
two outputs, LIDAR Obsta- the probabilistic Noisy-OR version of a test with scope f1 and fa.
cles and Camera Obstacles

Probabilistic Tests. Deterministic tests might not capture the complexity
of real world diagnostic tests. Most practical tests are likely to incorrectly detect
faults (i.e., produce false positive) or fail to detect faults (i.e., produce false
negatives) with some probability. For this reason, in this paper, we also allow
for an arbitrary probabilistic relationship between test outcomes and failure
modes in the test scope.

A simple-yet-expressive way to formalize a probabilistic test is to use what
we call a “Noisy-OR” model. In particular, the Noisy-OR model represents the
probability of a diagnostic test outcome as a conditional probability distribution

over the failure modes in its scope Pr(z | focope(t)) 6 as defined below.

Definition 9 (Noisy-OR [91]). A diagnostic test t(fcope(r)) i5 a probabilistic

5Certifiable perception algorithms are a class of model-based perception algorithms that
provide a soundness certificate at runtime, allowing one to directly measure the presence (or
absence) of certain failure modes, see [90, 84].

5We denote with Pr(A) the probability of event A, and with Pr(A | B) the conditional
probability of A given B.
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Noisy-OR if its test outcome z follows

Pr(z =PASS | fuopen)) = || Pr(z=PASS|f;) (4)
i€scope(t)
where Pr(z | f;) denotes the conditional probability of the test outcome (PASS/-
FAIL) conditioned on the status (ACTIVE/INACTIVE) of the failure mode f;.
Clearly, Pr(z = FAIL | focope(t)) = 1 — Pr(z = PASS | focope(t))-

Now suppose each test has a probability py; of correctly identifying failure
fi (detection probability), and a probability p, ; of false alarm for f;. Exploiting
the fact that f; € {0,1}, we can write Eq. (4) as:

Pr(z = PASS | focope(r)) = H (1= pai)’ (1 = pai)' (5)
i€scope(t)

An example of probabilistic test outcome is given in Table 1.

Similarly to the deterministic case, the Noisy-OR model is not the only pos-
sible model. However, Section 7 shows that this model is particularly effective
in modeling fault identification problems in practice. In Section 5, we discuss
how to learn the probabilities involved in probabilistic tests (i.e., pg; and pg
in Eq. (5)) given a training dataset, and how to use the test outcomes to infer
the most likely failure modes. Towards that goal, we need to group diagnostic
tests into a suitable graph structure, called a diagnostic graph, which we present
in the following section.

We conclude this section with a remark.

Remark 10 (From diagnostic tests to fault identification). The diagnostic tests
we introduced in this section are not dissimilar from the typical diagnostic tests
or watchdogs considered in prior work or used by practitioners. Our goal here
is to formalize these tests and use the test outcomes to infer the most likely
set of system-wide failures. In this sense, our fault identification framework is
designed to capitalize on (rather than replace) existing diagnostic tools used in

practice. For example the detection mechanism proposed by Liu and Park [60],
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which is based on the idea of projecting the 3D LiDAR points onto camera
images, and then checking whether objects detected from LiDAR and images
match each other, can be formulated as a diagnostic tests with the camera and
LiDAR misdetection in its scope, such that the test outcome is the output of
the algorithm in [60]. Also, out-of-distribution detection based on epistemic
uncertainty, e.g., [61], can be formulated as a diagnostic tests with the module’s
“out-of-distribution sample” failure mode in its scope, such that the test outcome
1s FAIL if the estimated uncertainty is above a threshold.  Finally, while not
explored in this paper, diagnostic tests can also return a severity measure, which
can be either discrete (e.g., low, medium, high) or continuous (e.g., real number
in [0,1]). Once the active failure modes are identified, the severity of each failure
mode can be determined using some operation on the collected severity (e.g.,

mazx, weighted sum, etc.).

4.2. Diagnostic Graph

A diagnostic graph is a structure defined over a perception system and has
the goal of describing the diagnostic tests (as well as more general relations

among failure modes) and their scope. We provide a formal definition below.

Definition 11 (Diagnostic Graph). A diagnostic graph is a bipartite graph
D = (V,R,E) where the nodes are split into variable nodes V, corresponding
to the failure modes in the system, and relation nodes R, where each relation
ox(f) € R is a function over a subset of failure modes f. Then an edge in &
exists between a failure mode f; € V and a relation ¢, € R, if f; is in the scope

of the relation ¢y (i.e., if the variable f; appears in the function ¢y ).

Relations capture constraints among the variables induced by the test out-
comes or from prior knowledge we might have about the failure modes. We
describe the two main types of relations below and for each we describe their

implementation in the deterministic and probabilistic case.

Definition 12 (Test-driven Relations). A test-driven relation ¢y describes

whether —for a test ty,— a given set of failure mode assignments might have

19



produced a certain test outcome zi. More formally, for a deterministic test ty,

a test-driven relation is a boolean function:

(bk(f) = (b(.fscope(tk); Zk) =1 [Zk =t (-fSCOPe(tk))] (6)

where 1 is the indicator function that returns 1 if the condition is satisfied or
0 otherwise. The function Eq. (6) checks if an assignment of failure modes
f may have produced the test outcome zp and where the notation ¢p(f) =
A (Fscope(ty)i 2k) clarifies that the function ¢p only involves a subset of failure
modes fscope(t,) (the ones in the scope of test ty) and depends on the (given)
test outcome zy. Similarly, for a probabilistic test ty, a test-driven relation is a

real-valued function:

(bk(.f) = (b(fscopc(tk); Zk:) = Pr(zk|fscopc(tk)) (7)

which returns the likelihood of the test outcome zi given an assignment f.

Definition 13 (A Priori Relations). An a priori relation describes whether
a given set of failure modes is plausible, considering a priori knowledge about
the system. More formally, in the deterministic case, an a priori relation is
a boolean function ¢ (f) that returns 1 if the assignment of f is plausible or
0 otherwise. Similarly, in the probabilistic case, an a priori relation is a real-

valued function ¢ (f) that returns the likelihood of a given assignment f.

In the following we will denote the set of Test-driven Relations as Riest While
the set of A Priori Relations as Rpyior. Therefore, R = Ryiest U Rprior-

The aim of a priori relationship is to model the interactions between differ-
ent modules, which includes interaction between modules of the same subsys-
tem (e.g., object detection) or interactions between different subsystems (e.g.,
object detection and localization modules). While we have provided several ex-
amples of diagnostic tests in the previous section, we now provide examples of
a priori relations. For instance, in the deterministic case, some failure modes

PREN14

of a module can be mutually exclusive (e.g., “too many outliers”, “not enough
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features” in the Lidar-based ego-motion estimation) or one can imply another
(e.g., if a module is experiencing an “out-of-distribution sample” failure mode,
then its outputs will have at least an active failure mode). Not all relations
are deterministic, for example in Fig. 3, the failure modes of the sensor fusion
algorithm may have a complex probabilistic relationship with the failure modes
of the lidar and camera obstacles failure modes. Note that the main difference
between test-driven relations and a priori relations is that the former provides
a measurable test outcome, while the latter relies on a priori knowledge about
the system (i.e., no outcome is measured).

We elucidate on the notion of diagnostic graph with two examples below.
Example 1: Multi-sensor Obstacle Detection. Consider the perception
system in Fig. 1. We can associate a diagnostic graph to the system where the
variable nodes of the diagnostic graph are the failure modes of modules and
outputs in the system. The diagnostic graph, shown in Fig. 3, also includes two
diagnostic tests and a priori relations encoding input/output relationship be-
tween modules and outputs. Each diagnostic test compares a pair of outputted
obstacles, namely LiDAR obstacles and camera obstacles (with failures f; and

f5), and camera obstacles and fused obstacles (with failures f4 and fg).

@3 (f1, f1) @2(f4, f6122)
QO = - |
b6(f3, f6)
$1(fof5i20) /3] .—(@
Ds(f3, f4. f5)

Ga(f2, f5)

Figure 3: A diagnostic graph for the perception system example in Fig. 1. Red circles rep-
resent variable nodes (failure modes) while squares represent relations. Test-driven Relations
are shown in blue, while a priori relations are shown in black.

Example 2: LiDAR-based Ego-motion Estimation. We provide a
second example that also includes singleton diagnostic tests (having a single
failure mode in their scope) and includes explicit tests over modules. The ex-
ample consists of a LiDAR-based odometry system that computes the rela-
tive motion between consecutive LiDAR scans using feature-based registration,

see e.g., [92, 93]. The system S comprises two modules, a feature extraction
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module and a point-cloud registration module, as depicted in Fig. 4(left). The
feature extraction module extracts 3D point features from input LiDAR data,
while the point-cloud registration module uses the features to estimate the rel-
ative pose between two consecutive LiDAR scans. Suppose that the feature
extraction module is based on a deep neural network and that it can experience
an “out-of-distribution sample” failure, which causes the corresponding output
to potentially experience “too-many outliers” or “few features” failures. Simi-
larly, the module point-cloud registration can experience the failure “suboptimal
solution”, which leads its outputs, the relative pose, to experience a “wrong rel-
ative pose” failure. Fig. 4(right) shows a diagnostic graph for the system. The
system is equipped with four diagnostic tests. A diagnostic test (¢;) detects
if the failure mode “few features” is active by checking the cardinality of the
feature set. If the point-cloud registration module is a certifiable algorithm [84],
we can attach a diagnostic test (¢2) to the point-cloud registration module that
uses the module’s certificate to detect if the module is experiencing a “subop-
timal solution” failure. Another diagnostic test (¢3) detects if the relative pose
is wrong by checking that the relative pose does not exceed some meaningful
threshold given the vehicle dynamics. Finally, another test (¢4) checks if under
the computed relative pose, the feature extractor has “too many outliers”. This
can be achieved by counting the number of features that are correctly aligned
after applying the estimated relative pose. The diagnostic graph also contains

a priori relations encoding constraints on the input/output relationships.

4.2.1. Temporal Diagnostic Graph

So far, we have considered a diagnostic graph as a representation of the di-
agnostic information available at a specific instant of time (e.g., the examples
above include tests and relations involving the behavior of modules and out-
puts at a certain time instant). However, perception systems evolve over time,
and considering the temporal dimension offers further opportunities for fault
identification, e.g., by monitoring the temporal evolution of the outputs.

Suppose we have a collection of diagnostic graphs T = {D(t), . ,D(t+K)},
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Out-of-distribution
sample

Too-many Outliers e m
Not enough features f3 @

Point-Cloud
Registration

Feature
Extractor

[ Suboptimal Solution fy .}

[ Wrong Relative Pose f5 .}

m

Figure 4: (Left) Example of the LiDAR-based ego-motion estimation system S. The system
is composed by two modules (rectangles), each producing one output (circles). (Right) The
corresponding diagnostic graph, where red circles represent variable nodes (failure modes)
while squares represent relations (test-driven Relations in blue, a priori relations in black).

collected over and interval of time. We could think of stacking these diagnos-

(K], The temporal graph

tic graphs, into a new temporal diagnostic graph D
preserves the failure mode, relations and edges of each sub-graph D*) e T.
However, since D includes outputs produced at multiple time instants, we
can also augment the graph to include temporal diagnostic tests and temporal
relationships. For example, we might check that an obstacle does not disappear
from the scene (unless it goes out of the sensor field of view), or that the pose
of the ego-vehicle does not change too much over time. As we will see, the
use of temporal diagnostic graph leads to slightly improved fault identification
performance. An example of temporal diagnostic graph is given in Fig. 5.

The algorithms and results presented in the rest of this paper apply to both

regular and temporal diagnostic graph, unless specified otherwise.

Remark 14 (Temporal Diagnostic Tests). Temporal diagnostic tests are used to
monitor the evolution of the system over time. For example the Timed Quality
Temporal Logic in [46] can be implemented with a temporal diagnostic test that
spans multiple DY ’s.  More specifically, the test example considered in [46]
requires that “At every time step, for all the objects in the frame, if the object
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D(t+1)

Figure 5: Example of Temporal Diagnostic Graph composed by two identical sub-graphs.
We added temporal relations (both test-driven and a priori) between the two sub-graphs.

class is cyclist with probability more than 0.7, then in the next 5 frames the
same object should still be classified as a cyclist with probability more than 0.6”.
This can be modeled as a diagnostic test that spans 5 diagnostic graphs and that

returns FAIL if the predicate is false.

5. Algorithms for Fault Identification

This section shows how to perform fault identification over a diagnostic
graph. In particular, we present algorithms to infer which failure modes are
active, given a syndrome. We study fault identification with deterministic tests
in Section 5.1 and then extend it to the probabilistic case in Section 5.2. Fi-
nally, we present a graph-neural-network approach for fault identification in

Section 5.3.

5.1. Inference in the Deterministic Model

In the deterministic case, our inference algorithm looks for the smallest set
of active failure modes that explains a given syndrome. In Section 6, we will

show that such approach is guaranteed to correctly identify the faults as long
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as the tests provide a sufficient level of redundancy, an insight we will formalize
through the notion of “diagnosability”.

Looking for the smallest set of active failures that explains the test outcomes
(and more generally, the relations) in a diagnostic graph can be formulated as

the following optimization problem (given a syndrome z):

minimize || f|

Fe{0,1}N¢

SUbjeCt to ¢k<fscope(tk); Zk:) = 1, 7= 1, - 7Nt, (D_FI)
0;(F) =1, i=1....N,

where ¢ (fscope(ty); z)) are the N; test-driven relations in the diagnostic graph,
while ¢,(f) are the N, a priori relations in the graph. In words, Eq. (D-FI)
looks for binary decisions (ACTIVE/INACTIVE) for the failure modes f, and
looks for the smallest set of faults (the objective || f||1 counts the number of AC-
TIVE failure modes) such that the faults satisfy the relations in the diagnostic
graph. Eq. (D-FI) is our Deterministic Fault Identification algorithm.

The optimization in Eq. (D-FI) can be solved using standard computa-
tional tools from Integer Programming [94] or Constraint Satisfaction Program-
ming [95]. While integer programming is better suited to find the solution to
the minimization problem, constraint programming also allows finding all the
solutions in the feasible set. The choice between the two depends on the ap-
plication and the expression for the relations. In our experiments, we solve it
using Integer Programming. We remark that while Integer Programming is NP
complete, our problems typically only involve tens to hundreds of failure modes,
and can be solved efficiently in practice.

The model presented above is generic and valid for any deterministic test
and a priori relations. In the following, we provide an example to ground the
discussion and show how to instantiate the optimization problem in practice.

Example 3: Deterministic Inference with Weaker-OR and Module-

Output Relations. We consider a diagnostic graph with Deterministic
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Weaker-OR tests. Moreover, for a priori relations, we assume that whenever
the output of a module has a failure, then also the module itself must have at
least an active failure mode. This is also the setup we use in our experiments
in Section 7.

In Weaker-OR diagnostic tests, the PASS outcome is unreliable, meaning
that if a test returns PASS it might have 0 or more failure modes active in its
scope. However, when it the test returns FAIL, we know there must be at least
one failure mode active. This can be easily enforced in the optimization by

imposing the constraint:

Hfscope(ti) 1>1 Vt; € {1, R Nt} such that z; = FAIL,

We then have to enforce the relation that if an output has an active failure
mode, then the module that produced it must have at least one active failure
mode as well. Towards this goal, let F(0;) C {1,..., Ny} be the set of failure
modes associated to outputs of module m; and F(m;) be the set of failure modes

associated to m;; then the a priori relation can be enforced via the constraint:

1—|f<>

Intuitively, when there is no active failure in the outputs (i.e., || fr(o,)

1= 0)
the constraint is trivially satisfied, while when there is at least an output failure

(i-e; [[fF (o)

optimization problem finally becomes:

1> 0) then || fr(m,ll1 is forced to be at least 1. The resulting

minimize || f]1
fe{o.™s

subject to || focope(t,) 1> 1 Vt; € {1,..., N} such that z; = FAIL, (8)

m o VYm; € .
H-f]:( 1)”1— |f~( )|H.f.7:( z)”l m M
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5.2. Inference in the Probabilistic Model

This section shows how to use the formalism of factor graphs to find the
most likely active failure modes that explain a given syndrome in a diagnostic
graph with probabilistic tests.

Factor graphs are a powerful class of probabilistic graphical models. Prob-
abilistic graphical models allow describing relationships between multiple vari-
ables using a concise language. In particular, they describe joint or conditional
distributions over a set of unknown variables and a set of known observations,
and can be used to infer the values of the unknown variables. In this work we
limit ourselves to factor graphs over discrete (binary) variables. We start from

the definition of a factor graph.

Definition 15 (Factor Graph [96]). A factor graph is a bipartite graph F =
V,®,E) consisting of a set V of variable nodes, a set ® of factor nodes, and a
set E CVx P of edges having one endpoint at a variable node and the other at a
factor node. Let N'(¢) the set of variables to which a factor node ¢ is connected,
then, the factor graph defines a family of distributions that factorize according
to

pf 12)= 5 [T v 2) )

PeD
where the normalization factor Z, also known as the partition function, ensures

that p(f) is a valid distribution:”

Z(z) =Y _ [ ¢(fnviey: ) (10)

f ¢e®

The notation ¢(far(¢); 2) emphasizes the fact that each factor is a function of a

subset far(y) of the failure modes f, for given observed z.

The factor graph F' and the diagnostic graph D have a similar structure. In

fact we can choose the set of variables V in the factor graph to be the same

"The notation Zf means “sum over all possible values of f.”

27



as the set of variables in the diagnostic graph, namely the set of failure modes.
Then, we can choose the set of factors ® to be the relations R of D, and the set
of edges to be the same. Therefore, for a given diagnostic graph D, it is easy to

devise the corresponding factor graph as:

wf12= 5 II ol 11 o) (D
@k ERtest ¢ ERprior

where we have simply observed that the probability distributions induced by
the relations in the diagnostic graph naturally factorize into factors, each one

corresponding to a (test-driven or a priori) relation in the diagnostic graph.
Maximum a Posteriori Inference. Given a factor graph, a natural ques-
tion to ask is what is the most likely assignment of variables that maximizes the
probability distribution induced by the factor graph (e.g., in our case, this is the
most likely set of faults in the system). This leads to the concept of mazimum a
posteriori (MAP) inference, which —given a factor graph and a syndrome z—

looks for the most likely variables f*, that maximize the posterior distribution:

= argmax u(f|=z) (FG-FI)
Fe{0,1}Ns
Computing a MAP estimate is known to be NP-hard for general factor graphs [97],
therefore it is common to use approximate methods. In our experiments we used
belief propagation(Sec. 3 in [98]) to solve the MAP inference, which finds the
optimal solution for tree-structured factor graphs, and is known to empirically
return good approximations for the MAP estimate in general factor graphs.
Learning the Factor Graph Parameters. While in the deterministic
case we know the expression of the relations ¢y, in the probabilistic case the
probabilistic tests might depend on unknown parameters, cf. the expression in
Eq. (5) that requires specifying the parameters py; (probability that a fault is
not detected) and p, ; (probability of a false alarm). There are several paradigms
to learn the factor graph parameters. In our experiments we use a method called

structured support vector machine (SSVM) or maximum margin learning (Sec.
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19.7 in [99]).

5.3. Graph Neural Networks for Fault Identification

The factor graph framework introduced in the previous section learns the
factor graph parameters from training data, and then performs maximum a
posteriori inference at runtime for fault identification. In this section, we propose
a learning-based framework that is also trained on a dataset, but then learns
directly how to predict which failure mode is active at runtime. In particular,
we use Graph Neural Networks (GNN) to learn to identify active faults in a
diagnostic graph.

GNNs provide a general framework for learning using graph-structured data,
and have empirically achieved state-of-the-art performance in many tasks such
as node classification, link prediction, and graph classification [100]. The fault
identification problem considered in this paper can be phrased as a node clas-
sification problem. In node classification, given a undirected graph G = (V, &)
where each node i € V has an (unknown) label y;, the objective is to learn
a representation vector e; of node ¢ such that label y; can be predicted as a
function of the node embeddings e;.

In the following, we recall common GNN architectures (Section 5.3.1) and
then we discuss how to transform our diagnostic graph into a structure that can

be fed to a GNN to predict active faults (Section 5.3.2).

5.3.1. Graph Neural Network Preliminaries

A GNN is an extension of recurrent neural networks that operates on graph-
structured data. GNNs are based on the concept of neural message passing in
which real-valued vector messages are exchanged between nodes of a graph —
not dissimilarly to the belief propagation we used in Section 5.2— but were the
messages (and node updates) are built using differentiable functions encoded as
neural networks. To understand the basic idea of neural message passing con-
sider an undirected graph G = (V, £). At the beginning, each node is assigned a

feature vector ego) for each ¢ € V. Then, during each message-passing iteration
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k=1,2,..., the embedding el(-k) is updated by aggregating the embeddings of
node ’s neighborhood N (7)

egkﬂ) = update (egk),aggrega‘ce ({e§k) | je N(z)})) (12)

= update (egk), agk)) (13)

Where aggregate(-) and update(-) are two learned differentiable functions (i.e.,
neural networks). At each iteration k, the aggregate(-) function takes the embed-
dings of node i’s neighbors and generates a message agk). Then, the update(-)
function combines the message with the previous embedding of node ¢, generat-
ing the new embedding of node i. The final embedding is obtained by running
the neural message passing for K iterations. Finally, the node label is predicted

by a learned differentiable function of the node embeddings:
y; = READOUT(e!") (GNN-FI)

The literature on GNN offers a number of potential choices for the update(-)
and aggregate() functions. We review four popular choices below.

Graph Convolutional Networks (GCNs). One of the most popular
graph neural network architectures is the graph convolutional network (GCN) [101].

The GCN model implements the update and aggregate function as:

(k)
e§k+1):0 W (k+1) Z €j

4%
FEN(D)U{i} W (@[N]

(14)

where W +1) is a trainable weight matrix and o(-) is a nonlinear activation

function. Note that Eq. (14) can also be written in a matrix form
E*+D) — (pEw)W(kH))

where P = D=2(A 4+ I)D~2, the matrix A is the adjacency matrix of the

original graph, and D is its diagonal degree matrix.
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Graph Convolutional Network via Initial residual and Identity
mapping (GCNII). The GCN is affected by the over-smoothing problem [102],
where after several iterations of GNN message passing, the nodes’ embeddings
become very similar to each another; over-smoothing prevents the use of deeper
GNN models, which in turn prevents the GNN from leveraging longer-term de-
pendencies in the graph. To solve this problem, Chen et al. [103] propose the
GCNII, where the update of the embedding vectors becomes:

00— (0P ) (1 ) 9

and where «y and Sj are two hyper-parameters. GCNII improves on the basic
GCN by adding a smoothed representation PE®) with an initial residual con-
nection to the first layer E©) and adds an identity mapping to the k-th weight
matrix W),

Graph Sample and Aggregate (GraphSAGE). GraphSAGE is another

approach for node classification [104]. The aggregate function takes the form

"t =5 (W g ({eg@ L jeN()U {i}})) (16)

where g(-) is an aggregator function like the element-wise mean or max pool-
ing. Then, the update function is a function over the concatenation of the old

(k).

i

embedding and the message a

e o (Wie?. o) "

3

Graph Isomorphism Network (GIN). The Graph Isomorphism Network
(GIN) [105] is defined by the following aggregation function

al" ™ = (14 FHD)e® Z e;k) (18)
JEN (i)
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where €*) is a trainable (or fixed) parameter. The update function in GIN is

G (19)

i
where ((+) is also a neural network.

5.3.2. From Diagnostic Graphs to Graph Neural Networks

In order to apply GNNs to our diagnostic graph D, we need to convert
D = (Vp,Rp,Ep) into an undirected graph G = (Vg, Eq). Towards this goal,
we take the set of nodes Vg to be both the set of failure modes and diagnostic test
outcomes. Note that we add the diagnostic test outcomes as nodes in the graph
since this allows attaching the test outcomes as features to these nodes. For each
test t;, we form a clique® involving the set of nodes in the test’s scope and the
variable corresponding to the test zj, namely the set scope(tx) U {2z }. We then
form another clique for each a priori relation ¢; € Rprior using the set of failure
modes N (¢x) connected to ¢;. For example if we have a factor ¢(f1, fa; 22)
we add the following (undirected) edges to Eg: (f1, f2), (f1,22), (f2,22). We
attach a feature vector to each node in the graph. For the test nodes, we use a
one-hot encoding describing the test outcome as node feature. For the module
nodes, we use the failure probability (computed from the training data) as node

features. We provide more details on the node features in Section 7.

Figure 6: Example of conversion of the diagnostic graph in Fig. 3 into an undirected graph.

Learning to Identify Active Faults. In order to train the GNN to iden-

tify active faults, we use a supervised learning approach. In particular, we use

8 A clique is a subset of vertices of an undirected graph such that every two distinct vertices
in the clique share an edge.
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a softmax classification function and negative log-likelihood training loss, which

is available in standard libraries, such as PyTorch [106].

Remark 16 (Curate a balanced dataset). Datasets collected using real-world
operation of modern perception systems are typically often contain comparably
less failure than nominal data. In practice the dataset can be curated with one

(or more) of the following:

o Collecting real data from scenarios that have triggered a failure in the past
(e.g., resulted in the autopilot being disengaged by the safety driver/tester).

o Use of a simulator with a falsification engine that searches for scenarios
where the perception experienced a failure (e.g., [107]).

e Use of an offline perception system that uses both past and future informa-
tion to generate the world model (e.g., [108]); such perception systems are

more accurate, giving the possibility of identifying failure-prone scenarios.

All strategies (scenario-based, falsification-based and offline perception) are ex-
tensively used in industry and effective in generating a balanced dataset. If this
approach is not possible and only an unbalanced dataset is available, one com-
mon approach to deal with unbalanced dataset is to use undersampling, which
consists of down-sizing the majority class by removing observations at random
until the dataset is balanced. However, undersampling can induce a bias in the
posterior probabilities. This is a well known problem in literature, Dal Pozzolo
et al. [109] study the problem and propose a methodology to to reduce such biases.

We envision this framework to be used with fairly balanced datasets.

6. Fundamental Limits

Given a diagnostic graph it is natural to ask if there is a maximum number
of failure modes that can be correctly identified as active. In other words, for a
given system, can we guarantee that our algorithms are able to correctly identify
all faults? Under which conditions? We answer these questions in this section,

where we introduce the concept of diagnosability. We discuss the deterministic
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case (i.e., where the tests are assumed to be unreliable deterministic tests)
in Section 6.1. Then we obtain more general guarantees for the probabilistic

case (which also apply to our learning-based algorithms) in Section 6.2.

6.1. Deterministic Diagnosability

In this section, we assume diagnostic graphs with deterministic relations
and present theoretical results on the maximum number of faults that can be
correctly identified. Towards this goal, we borrow and extend results from fault
identification in multi-processor systems [15], which were partially presented in
our previous work [87]. In particular, Lemma 18 and Theorem 19 below are a
direct application of results in [15], while the others are our extensions.

We start with the definition of deterministic diagnosability.

Definition 17 (k-diagnosability [15, 87]). A diagnostic graph D is k-diagnosable
if, given any syndrome, all active failure modes can be correctly identified, pro-

vided that the number of active failure modes in the system does not exceed k.

The idea behind x-diagnosability is that the number of failures that can be
correctly identified is an intrinsic property of a system and its diagnostic graph,
and somehow it measures if the system has enough redundancy to unambigu-
ously identify the cause of certain failures.

Example 4: Multi-sensor Obstacle Detection (Fig. 1 and Fig. 3).
Consider the example in Fig. 1 and assume that an output fails if and only if the
module producing it fails. Also assume that the sensor fusion algorithm does
not necessarily fail if its inputs are wrong (thus removing ¢5(fs, fa, f5), or set-
ting it to be always TRUE). If both diagnostic tests behave like Deterministic
ORs, and they both return FAIL, we would not know if the state of the fail-
ure mode (f1, f2, f3, f4, f5, f6) was (0,1,0,0,1,0), (0,1,1,0,1,1), (1,0,1,1,0,1),
(1,1,0,1,1,0) or (1,1,1,1,1,1). In fact, all these failures would generate the
same syndrome (FAIL,FAIL). However, if we impose that the maximum number
of active failure mode is 2 (i.e., Kk = 2), the number of feasible candidates drops

to only one, namely (0,1,0,0,1,0). In other words, if we have at most two
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failures in the system, the two tests would allow us to uniquely identify which
failure mode is active without any doubt.

After defining the notion of diagnosability in Definition 17, we are left with
the question: can we develop an algorithm to compute the diagnosability of
a certain diagnostic graph? It has been noted in [110] that a system is k-
diagnosable if the set of possible syndromes uniquely encodes the set of active

failure modes. Such observation is formalized by the following lemma.

Lemma 18 (Diagnosability and Syndromes). Let syndrome(.A) be the set of all
possible syndromes produced by a set of active failure modes A C {1,...,Ns}.
A diagnostic graph D is k-diagnosable if and only if, given any Ay, Ao C
{1,...,N¢}, such that |Ay|,|A2|< K (with Ay # As), we have syndrome(A;) N
syndrome(Az) = 0.

Proof. We prove “k-diagnosability = syndrome(.A4;) N syndrome(As) = (” and
its reverse implication below. In both, we define X = {A C {1,..., N} | |A|<

k} to be the set of subsets of {1,..., Ny} of cardinality no larger than x.

= Suppose D is k-diagnosable. Suppose by contradiction that there exists a
syndrome z such that z € syndrome(A;) N syndrome(As), with A;, Ay € X
and A; # As. Since z € syndrome(A;) and z € syndrome(Az), we are unable
to say if the syndrome z is produced by the set of active failure modes is A; or

As, contradicting the definition of x-diagnosability of D.

< Call Y = (J cn syndrome(A) the set of all possible syndromes assuming
there are less than k active failure modes. From the assumptions we know that
any two Aj, A2 € X have syndrome(A; ) Nsyndrome(As) = (), which means that
we can uniquely map a syndrome to any set 4. This is exactly the definition of

k-diagnosability. 0

The lemma intuitively establishes that for a x-diagnosable system, two dif-
ferent sets of k faults must produce different syndromes, such that for any given
syndrome, there is no ambiguity on which set of active failure modes generated

it, and we can perform fault identification without any mistake.
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Lemma 18 suggests an algorithmic way to check if a diagnostic graph is
k-diagnosable, which however requires checking every subset of failure modes
of cardinality up to x (and their syndromes). In the following, we refine the
result, showing that, under technical assumptions, one can directly compute

the diagnosability by only looking at the topology of the diagnostic graph.

Theorem 19 (Characterization of k-diagnosability [77]). Let

H(f)={t|te{l,...,N.}, f €scope(t)}

be the set of tests involving a failure mode f, and let

r(f)= |J scope(t)\ {}
teH(f)
be the set of failure modes that share a test with f. Also define T'(X) =
Urex T(f)\X the extension of I' to a set of failure modes. Now assume that all
tests follow the Deterministic Weak-OR model and have scope of cardinality 2.

Then D is k-diagnosable if all the following conditions are satisfied:
i. k< (Ny—1)/2
i, Kk < mingeq, .~y [H(fi)

iii. for each ¢ € N with 0 < ¢ < &, and each X C {1,..., Ny} with |X|=
Ny — 2k + q we have [T'(X)|> ¢

Proof. The assumption on the cardinality allows us to transform our general
diagnostic graph into an undirected graph akin to the one used in [77, 83]. Then,
the conditions (%), (i) and (iii) are a straightforward application of Theorem 2

in [77] to the resulting graph. O

Theorem 19 also shows that the diagnosability of a system depends on the
amount of redundancy in the systems and how well the tests are able to cap-
ture it. The connection is particularly visible in condition (iii): for each set

of possible set X of active failure modes (of appropriate size), there must be
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a sufficient number the tests, that —using information coming from different
modules/outputs— give an opinion on the state of the failure modes in X.

Let us now move our attention to temporal diagnostic graphs. Denote with
k(D) the maximum value of k for the diagnostic graph D. Then the following

result characterizes the diagnosability of temporal diagnostic graphs.

Theorem 20 (Diagnosability in Temporal Diagnostic Graphs). Let DK ¢ tem-
poral diagnostic graph built by stacking a set of K regular diagnostic graphs
DU ... D), Then r(D¥]) > minge(r,.. k) k(DW).

Proof. Let z be a syndrome for the temporal diagnostic graph DU

, generated
by a set of active failure mode A, such that |A|= m < minjeqr,. xy K(DW).
Clearly, each element of A is a variable node of one of the regular diagnostic
graphs D ... D) that compose D] therefore we can split A into the
variables nodes of each regular diagnostic graph, obtaining A, ..., A (these
sets are non-overlapping and are such that UiKzlA(” = A). Similarly, we can
project the syndrome z into K sub-syndromes z(1), ..., 2(5) each containing
only the test outcomes of the corresponding regular diagnostic graphs (notice
that doing the projection we lose the temporal tests, if any). By construction
|A®| < m for each i = 1,..., K. From the assumption, we know that each
sub-graph D is m-diagnosable. Therefore, each sub-graph D®) will be able to
correctly identify the set of active failure modes A® from the syndrome z(*.

This means that DIE] is at least m-diagnosable, concluding the proof. O

As an immediate result we have the following corollary, which characterizes
the diagnosability of “homogeneous” temporal diagnostic graph, obtained by

stacking multiple identical diagnostic graphs over time.

Corollary 21 (Diagnosability in Homogeneous Temporal Diagnostic Graphs).
The diagnosability of the composition of identical diagnostic graph is monoton-

ically increasing.

This means that by stacking diagnostic graphs over time, we have the op-

portunity to increase the diagnosability, without any risk of harming it.
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6.2. Probabilistic Diagnosability

The deterministic notion of k-diagnosability introduced in the previous sec-
tion imposes a strong condition on D, as it requires that any syndrome un-
equivocally encodes all possible configurations of failure modes. When the
tests are probabilistic, such a condition becomes too stringent: intuitively, since
with some probability each test can produce different outcomes it is unlikely
that Lemma 18 will be satisfied for any x > 0. In other words, x-diagnosability
deals with the worst case over all possible test outcomes, which becomes too
conservative when every outcome is possible (with some probability). For this
reason, in this section, we extend the definition of diagnosability to deal with
the case where the diagnostic graph includes probabilistic tests.

Towards defining a probabilistic notion of diagnosability, we introduce the

Hamming distance h(f, f') between two binary vectors f and f’ as follows:

hf f) = Zn[fi # 1] (20)

where 1 is the indicator function. Assuming that f is the binary vector describ-
ing the active failures in the system, and that f’ is an estimated vector of the
fault states, the Hamming distance simply counts the number of mis-identified
faults. We are now ready to introduce the following probabilistic definition of

diagnosability.

Definition 22 ((Probably Approximately Correct) PAC-Diagnosability). Con-
sider a fault identification algorithm Y applied to a diagnostic graph D. The di-
agnostic graph D is (v, p)-PAC-diagnosable under Vp, if, for some 1 <~y < Ny

(zfc’)rN}_ h(Up(2),f)<~]>p (21)

where F is the joint distribution of potential failures and test outcomes.

This definition simply says that a given fault identification algorithm applied
to the diagnostic graph D is (v, p)-PAC-diagnosable if it expected to make less
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than ~ mistakes with probability at least p. We observe that Definition 22
depends on the diagnostic graph, but also on the fault identification algorithm.
Clearly, since the outcome of the tests is a random variable, so is the Ham-

ming distance h(¥p(z), f). Therefore, we can define its expected value as:

h]:(\I/D) = E(zj)w}' [h(\IlD(Z)v f)]

This quantity is the number of mistakes that the fault identification algorithm
Up is expected to make. Let us suppose we have a dataset W of i.i.d. samples

of the underlying faults distribution F. Let

(VD) = 5o 30 hUp(z). ) (22

(z,f)ew
be the empirical number of mistakes the fault identification algorithm ¥p makes
on W. For instance, if we are given a (labeled) dataset W describing the system
execution, with the corresponding ground truth failure modes states f, we can
test our algorithm Wp and calculate the empirical number of mistakes iLW(\I/D)
it makes. Then, we can use the following result to bound the expected number

of mistakes our algorithm will make in expectation over all future scenarios.

Theorem 23 (Fault Identification Error Bound). Consider a dataset W of
i.i.d. samples of the underlying faults distribution F, and a fault identification
algorithm Yp over D. Then, for any § > 0, the following inequality holds with
probability at least 1 — J:
. log(2/6
hr(¥p) < ho () + Ny | 220 (28)
2[W|
Proof. For each sample (z(i), f(i)) in W, the result of each Hamming distance

will less or equal than N;. From the Hoeffding’s inequality we have that

Pr ||hx(Pp) — ilw(‘l’D>|Z 6} < 2exp (_Qi/.'fygv') (24)
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Setting the right-hand side of Eq. (24) to be equal to ¢ and solving for e yields:

log(2/9)
=N 25
After setting the right-hand side to J, Eq. (24) can be rewritten as:
Pr [|hz(¥p) — hw(¥p)|< €] =6 (26)

Combining (25) and (26) and removing the absolute value we get:

B (W) — oy (W) < Nf,/l"gfjm > (27)

from which the result easily follows. O

Pr

The previous result essentially says that the expected number of mistakes
the algorithm Wp makes stays close to the empirical mean iLW(\IJD), and the
distance from the empirical mean gets smaller when the training dataset gets
larger (i.e., for larger [W|), but gets larger for larger number of failure modes

(i.e., for larger Ny). The following corollary easily follows.

Corollary 24 (Characterization of PAC-diagnosability). For a given dataset W
of i.i.d. samples of the underlying faults distribution F, and a fault identification
algorithm ¥p over D, the diagnostic graph D is (v, p)-PAC-diagnosable with p
satisfying the following inequality:

2w )

p>1—2e20 (28)

Proof. Let v = hg(¥p) and p = 1 — 4, substituting into Eq. (23), and solving
for p yield the result. O

Remark 25 (Diagnosability over Subgraphs). Given a diagnostic graph D, we
might be interested in running fault identification algorithms over a subgraph

D C D. Analyzing the diagnosability of certain subgraphs of D might suggest
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weaknesses of the perception pipeline. For example the system might have suffi-
cient redundancy to be able to correctly identify the faults in the obstacle detec-
tion subgraph with low errors and high confidence, but might lack of redundancy
to detect and identify faults in the traffic light recognition.

Similarly, to avoid diagnostic tests with very low reliability (which might in-
crease the false alarm rate), or to reduce the computational workload of executing
tests, we may want to use a subset of the available diagnostic tests. Diagnos-
ability is a handy tool to help the designer identify the most effective diagnostic
tests. To minimize the number of diagnostic tests, a good rule of thumb is to
choose a subset of diagnostic tests that covers the most failure modes, to avoid
making the diagnostic graph overly dependent on a priori relationships. Then,
more diagnostic tests can be added if they increase the diagnosability of the sys-
tem. New diagnostic tests can be selected using some form of exhaustive (e.g.,

branch-and-bound), greedy algorithms or heuristic search.

The construction of the diagnostic graph relies on expert knowledge, in case
of limited knowledge, it might occur that the diagnostic graph contains wrong
or missing edges. In the case of wrong (extra) edges, the probabilistic diag-
nostic graph is generally able to learn to ignore wrong edges (i.e., the values
of the relation converge to zero). In the case of missing edges, however, the
system designer must rely on diagnosability to recognize that the performance
is unacceptable. In such cases, however, it is possible to add extra-edges (over-
approximate the diagnostic graph) and leverage the training process to filter
out the incorrect edges. It is worth noting that it is generally straightforward
to add edges between diagnostic tests and failure modes because the diagnostic
tests is either designed to detect a specific failure mode (e.g., uncertainty esti-
mation [61]) or explicitly uses a subset of the data produced by the system (e.g.,
consistency-based tests) to detect the failure, so it is connected to any failure

mode that affects the outputs used.
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7. Experimental Evaluation

This section shows that diagnostic graphs are an effective model to de-
tect and identify failures in complex perception systems. In particular, we
show that the proposed monitors (i) outperform baselines in terms of fault
identification accuracy, (ii) allow detecting failures and provide enough notice
to prevent accidents in realistic test scenarios, and (iii) run in milliseconds,
adding minimal overhead. A video showcasing the execution of the proposed
runtime monitors can be found at https://www.mit.edu/~antonap/videos/
AIJ22PerceptionMonitoring.mp4.

We test our runtime monitors in several scenarios, specifically designed to
stress-test the perception system. The scenarios are simulated using the LGSVL
Simulator [16], an open-source autonomous driving simulator. The simulator
also generates ground-truth data, e.g., ground-truth obstacles and active failure
modes, and seamlessly connects to the perception system through the Cyber RT
Bridge interface [16]. We apply our monitors to a state-of-the-art perception
system. In particular, we use Baidu’s Apollo Auto [17] version 7 [111]. Baidu’s
Apollo is an open-source, sate-of-the-art, autonomous driving stack that includes
all the relevant functionalities for level 4 autonomous driving.

Section 7.1 provides more details about Apollo Auto and its perception sys-
tem. Section 7.2 describes the diagnostic tests we design for Apollo Auto’s per-
ception system. Section 7.3 discusses implementation details for the proposed
monitors. Section 7.4 describes our test scenarios. Section 7.5 provides quan-
titative fault detection and identification results, including an ablation study
of the different GNN architectures. Section 7.6 provides qualitative results and

discussion for a key test scenario.

7.1. Apollo Auto

Baidu’s Apollo Auto [17] uses a flexible and modularized architecture for
the autonomy stack based on the sense-plan-act framework. The stack includes

seven subsystems: (i) the localization subsystem provides the pose of the ego
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vehicle; (ii) the high-definition map provides a high-resolution map of the en-
vironment, including lanes, stop signs, and traffic signs; (iii) the perception
subsystem processes sensory information (together with the localization data)
and creates a world model; (iv) the prediction subsystem predicts future evolu-
tion of the world state; (v) the motion planning subsystems and (vi) the routing
subsystem generate a feasible trajectory for the ego vehicle, and finally, (vii)
the control subsystem generates low-level control signals to move the vehicle.
In our experiments, we focus on the perception subsystem, to which we apply
our runtime monitors. In the following, we briefly review the key aspects of the

Apollo Auto perception system.

7.1.1. Apollo Auto Perception System

Apollo Auto’s perception system is tasked with the detection and classi-
fication of obstacles and traffic lights.? The perception module is capable of
using multiple cameras, radars, and LiDARs to recognize obstacles. There is
a submodule for each sensor modality, that independently detects, classifies,
and tracks obstacles. The results from each sub-module are then fused using a
probabilistic sensor fusion algorithm.

Obstacle Detection. Obstacles such as cars, trucks, bicycles, are detected
using an array of radars, LIDARs, and cameras. Each obstacle is represented
by a 3D bounding-box in the world frame, the class of the object, a confidence
score, together with other sensor-specific information (e.g., the velocity of the

obstacle). Each sensor is processed as follows:

Camera: The camera-based obstacle detection network is based on the monoc-
ular object detection SMOKE [112] and trained on the Waymo Open
Dataset [113]. The network predicts 2D and 3D information about each
obstacle, and then a post-processing step predicts the 3D bounding box of

each obstacle by minimizing the reprojection error of available templates

9Note that our monitors can be also applied to other perception-related subsystems, such
as the localization and high-definition map subsystem, see [83] for an example.
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Figure 7:  Vehicle configuration and sensor field-of-view (FOV). LiDAR FOV is shown in
green, the camera FOV in blue and the radar FOV in orange.

for the predicted obstacle class;

LiDAR: The LiDAR-based obstacle detection network, called Mask-Pillars is
based on PointPillars [114], but enhanced with a residual attention module

to improve detection in case of occlusion;

Radar: Apollo Auto uses directly the obstacles detections reported by the radar
(assumed to have an embedded detector [115]), that are post-processed to

be transformed to the world frame.

7.1.2. Vehicle Configuration

The simulated vehicle is a Lincoln MKZ with one Velodyne VLS-128 LiDAR,
one front-facing camera with a field-of-view of 50°, one front-facing telephoto
camera (pointed 4° upwards) for traffic light detection and recognition, one
Continental ARS 408-21 front-facing radar, GPS, and IMU.

We ran the Baidu’s Apollo AV stack on a computer with an Intel i9-9820X
(4.1 GHz) processor, 64 GB of memory and two NVIDIA GeForce RTX 2080T1.
The simulator ran on a computer with 11th Generation Intel i7-11700F (4.8 GHz)
processor, 16 GB of memory, and an NVIDIA GeForce RTX 3060. The two com-

puters were connected using a Gigabit Ethernet cable.
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7.2. Diagnostic Graph

We focused our attention on the obstacle detection pipeline. The system we
aim to monitor, together with the failure modes considered, is shown in Fig. 8

The system is composed of four modules:

e Lidar-based Obstacle detector, based on a deep learning algorithm, subject
to out-of-distribution sample failure mode;

e Camera-based Obstacle detector, based on a deep learning algorithm, sub-
ject to out-of-distribution sample failure mode;

e Radar-based Obstacle detector subject to misdetection failure mode;

e Sensor Fusion subject to misassociation failure mode.

Each module produces a set of detected obstacles. We identified three failure

modes for each set of detected obstacles:

e misdetection: the module detected a ghost obstacle or is missing an ob-
stacle in the scene;

e misposition: the module detected the obstacle correctly, but its position
is incorrect (i.e., more than 2.5m error in our tests);

e misclassification: the module detected the obstacle correctly but the ob-

stacle’s semantic class is incorrect.

We equipped the obstacle detection system with 18 diagnostic tests. For each
pair of modules’ outputs, namely (Lidar, Camera), (Radar, Camera), (Lidar,
Sensor Fusion), (Radar, Sensor Fusion), (Lidar, Radar), and (Camera, Sen-
sor Fusion), there is a test that compares the outputs to diagnose each of the
output’s failure modes (i.e., misdetection, misposition, and misclassification).
Intuitively, each test compares the two sets of obstacles coming from the cor-
responding modules, and if they are different, it reports if the inconsistency
was due to a misdetection, misposition, or misclassification. Moreover, we in-
cluded a priori relation between every module and its output. In particular,
the modules are assumed to fail if their outputs have at least one active failure

mode. In the probabilistic diagnostic graph we also added an a priori relation
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for each module’s failure mode, indicating the prior probability of that failure
mode being active.
Misdetection @

Misposition @

Misclassification @

LiDAR
Obstacles

Misdetection @

[ Out-of-distribution ¢ J LiDAR-based

sample Obstacle detector

Misposition @

Misclassification ®
Out-of-distribution g Camera-based
Obstacle detector
sample
Radar-based Radar
Obstacle detector Obstacles

Misdetection @

[ Misassociation .J

Sensor Fusion
Algorithm

Misdetection @
Misposition @

Misclassification @

[ Misdetection @ J

Misposition @

Misclassification @

Figure 8: Perception system considered in our experiments. Modules are shown as rectangular
blocks, outputs are shown as rounded boxes, while failure modes are denoted with red dots.

7.2.1. Diagnostic Tests

We now describe the logic for the diagnostic tests we implemented. Consider
two sets of synchronized detected obstacles'®, say A and B, produced by two
modules, using some sensor data. Let €2 be the region defined by the intersection
of both sensor fields of view and a region of interest (e.g., a region close to a
drivable area'!). Denote by Aq and Bgq the set of obstacles restricted to the
region ), namely Ao C A such that for each obstacle o in A, o is in Agq if and
only if o is inside the region defined by 2. The same relation holds for Bg. Then

the diagnostic test checking for misdetections is defined as follows:

FAIL  if |Aq| # |Bol
tmisdetection =

PASS otherwise

10By synchronized we mean that the two outputs are produced at the same time instant.
n our experiments, the region of interest is the area within 5 meters from a drivable lane.
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Note that if the two sets of obstacles have a different cardinality —when re-
stricted to the area co-visible by both sensors— it means that one of the two
sets contains a ghost obstacle or one of the two sets is missing an obstacle. From
a single test, we are not able to say which of the two sets is experiencing the
misdetection, but we know at least one output did.

Let us now move our attention to the misposition failure mode. Let C be
the set of matched obstacles, that is, a pair of obstacles (I,7) —with | € Aq and
r € Bo— is in C, if [ and r represent the same obstacles. A common approach
for finding the set of matches is to select all the pairs that are closest to each
other (i.e., solving an assignment problem)!2. The diagnostic test checking for

mispositioned obstacles is defined as follows:

FAIL 3(l,r) € C such that |pos(l) — pos(r)|> 6
tmisposition =

PASS otherwise

where pos(+) is the position of an obstacle and 6 is an error threshold, chosen
as § = 2.5m in our experiments.

Finally, the test checking for misclassified obstacles is defined as follows:

FAIL 3(l,r) € C such that cls(l) # cls(r)
tmisclassification =

PASS otherwise

where cls(+) is the class of the obstacle, i.e., the test fails if associated obstacles

are assigned different semantic classes.

7.2.2. Temporal Diagnostic Graph
To build a temporal diagnostic graph we stack 2 regular diagnostic graphs
into a temporal diagnostic graph. In the probabilistic case, each module failure

mode is connected to its successive (in time) via a priori relationships, which

12We matched obstacles using a generalization of the Hungarian algorithm [116], with the
cost of each match being the Euclidean distance between obstacles.
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represent the transition probability between states in consecutive time steps. No
temporal a priori relations are added in the deterministic case. We also added
temporal tests. The logic of the tests presented in Section 7.2 is applicable to
temporal tests with small changes. In temporal tests, the sets A and B are not
time-synchronized anymore (e.g., they are obstacles detected by the same sensor
at consecutive time stamps), therefore the position of each obstacle in each set
must be adjusted for the distance the obstacle traveled between consecutive
detections. To use the tests described earlier in the temporal domain we used
the following approach. If the obstacle is equipped with an estimated velocity
vector, since the time difference between detections is usually below 30 ms, we
assume constant speed and integrate the speed over the time interval to find an
approximate position of each obstacle. When the velocity is not available, we
use the average speed of an obstacle (for a given obstacle’s class) and adapt the

misposition threshold 6 to account for the uncertainty.

7.8. Fault Identification: Implementation Details

Deterministic Fault Identification. For the tests with the deterministic
model, we assumed the Weaker-OR model for the diagnostic tests as described
in Eq. (3). We used this model for both the regular diagnostic graph and the
temporal diagnostic graph, and solved the optimization problem in Eq. (8) using
Google OR-Tools [117] Integer Programming Solver.

Probabilistic Fault Identification. To perform probabilistic inference
on the diagnostic graph, we transformed it into a factor graph and trained
the potentials for each relation using the maximum margin learning algorithm
described in Section 5.2 on the training dataset. We used the Hamming distance
defined in Eq. (20) as the loss function £. We set the regularization parameter
to A = 10; see [98].13 For each diagnostic graph, we perform inference using

the max-product algorithm for a fixed number of iteration (100 iterations). In

13In our experiment we noticed that the performance of the learning algorithm are not
sensitive to the choice of .
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our implementation, we use the Grante library [118] to perform learning and
inference over the factor graph.

Graph-Neural-Network-based Fault Identification. In Section 5.3 we
saw that a graph neural network requires a feature for each node in the graph to
perform neural message passing. We now discuss how we set the feature vector
for each node in the graph. Recall that the GNN uses a pairwise undirected
graph, where a node is either a failure mode or a test outcome. The feature
x, € R? for a test t; is set as the one-hot encoding of the test outcome (i.e.,
[1 0] if the test passed, [0 1] if it failed). For the failure mode nodes we do not
have any measurable quantity at runtime; we therefore use the training dataset
to compute the feature vectors. In particular the feature vector xy, € R? for
a failure mode f; is computed as follow: let p; be the empirical probability
that f; is ACTIVE, i.e., p; = ﬁ > (2. frew Lfi = ACTIVE]; then the feature
vector is chosen as xy, = [1 — p;, pi]T. Intuitively, the feature describes the prior
probability of the failure mode f;’s state.

We now discuss the architecture of the GNN. Our GNN is composed by a
linear layer that embeds the feature vectors in RS, followed by a ReLU function.
The output is then passed to a stack of graph convolution layers interleaved with

ReLU activation functions. We tested four different graph convolution layers

e in the case of GCN, we stack 3 layers with 16 hidden channels each;

e in the case of GCNII, we stack 64 layers with 16 hidden channels each
with « = 0.1, 5 =0.4;

e in the case of GIN, we stack 3 layers with 16 hidden channels each with the
function ¢*)(-) (¢f. Eq. (19)) being a 2-layer perceptron for k = 1,...,3;

e in the case of GraphSAGE, we stack 3 (and 6 for temporal diagnostic

graphs) layers with mean aggregator and 16 hidden channels each.

Finally, the readout function that converts the graph embedding to node labels
is a linear layers followed by a softmax pooling. We perform an ablation of the
different GNN architectures in Section 7.5.

We implemented the GNNs in PyTorch [106] and trained them on the train-
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ing dataset for 100 epochs using the Adam optimizer. To reduce the amount
of guesswork in choosing an initial learning rate, we used the learning rate
finder available in the PyTorch Lightning library [119]. The procedure is based
on [120]: the learning rate finder does a small training run where the learn-
ing rate is increased after each processed batch and the corresponding loss is
logged. Then, the learning rate is chosen to be the point with the steepest
negative gradient.

Baselines. We compared the proposed monitors against two simple base-
lines. In the first baseline (label: “Baseline”), whenever a diagnostic test returns
FAIL, all failure modes in its scope are considered active. In the second baseline
(label: “Baseline (w/rel. scores)”), modules are ordered by a reliability score de-
fined by the system designer. In our experiments we considered the radar to be
more reliable than the sensor fusion, which is more reliable than the LiDAR,
which in turn is more reliable than the camera. When a diagnostic test fails,
this second baseline labels all the failure modes in the test scope associated to
the least reliable module (and its outputs) as ACTIVE. For example if a diag-
nostic test comparing camera and LiDAR obstacles returns FAIL, the failure
modes associated with the camera are the ones that are labeled active because
the camera is considered less reliable than the LiDAR. Both baselines label a

module’ failure modes as active if at least one of the module’s outputs is failing.

7.4. Scenarios

We designed a set of challenging scenarios to stress-test the Apollo Auto
perception system. These scenarios were created using the LGSVL Simula-
tor Visual Scenario Editor, which allows the user to create scenarios using a
drag-and-drop interface. The vehicle behavior is tested on each scenario in a
multitude of situations including different time of day (noon, 6 PM, 9 PM) or

weather condition (rain and fog). The scenarios are described in Table 2.
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Table 2: Scenarios. (Left) Snapshot of the scenario, (Right) Top-
view of the trajectory, color-coded by fault detection results. The
motion of the vehicle is represented by an arrow with the tail of
the arrow representing the start location and the head of the arrow
representing the stop location (the direction of motion is always
left-to-right or bottom-to-top).

[[] Fault-free (TN) [ Fault Detected Correctly (TP)

[ False Alarm (FP)  [] Missed Fault (FN)

Scene Fault Detection Results

T D

Hidden Pedestrian. A pedestrian, initially occluded by a track parked on the
right-hand side of the street, steps in front of the ego vehicle.

= —-._,-rmm\\\\:itff\\\\ e e S e e e et — g

Overturned Truck. The ego vehicle encounters an overturned truck occupying the
lane it is driving in. The scenario recreates an accident occurred in Taiwan where a

Tesla hit an overturned truck on a highway [121].
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Stopped Vehicle. While driving, the car in front of the ego vehicle makes a lane
change to avoid the stationary car that is in their lane. This leaves the ego vehicle

with little to no time to react to the stationary car.

Cut Off Left. While driving in the right lane on a three-lane road, a vehicle from
the left lane cuts the ego vehicle off.

il e ] 2

Cut Off Right. While driving in the left lane on a two-lane road, a vehicle from the

right lane cuts the ego vehicle off while turning into a parking lot.
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School Bus Intersection. The ego vehicle drives through an intersection. A school
bus crosses the intersection coming from the left-hand side. As the ego vehicle crosses

the intersection, a pedestrian steps into the intersection from the left-hand side.

Cones in the Lane. The ego vehicle is driving on a lane partially delimited by traffic
cones, while another vehicle is driving in the opposite lane. After passing traffic cones,

another vehicle exits a parking lot and merges right in front of the ego vehicle.

Cyclist. The ego vehicle is stopped at an intersection and as it starts driving through
the intersection, a cyclist enters the field of view from the left-hand side of the inter-

section and rides right in front of the ego vehicle.
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Turkeys. While driving on a straight road, the ego vehicle must avoid a collision

with two turkeys that suddenly walk in front of the ego vehicle.

7.4.1. Dataset generation

We executed the diagnostic tests described in Section 7.2 every 0.3s, and
used the corresponding test outcomes to perform fault identification. Time syn-
chronization of the modules’ output is achieved by pairing outputs that are clos-
est in time to each other. Ground-truth labels for the outputs’ failure modes are
generated using the ground-truth detections provided by the simulator. In par-
ticular, to generate the label for each failure mode of an output, we used the
three diagnostic tests described in Section 7.2.1 comparing the set of obsta-
cles to the ground-truth detections. For a module m instead, since all modules
have only one failure mode, the associated failure mode f,, is labeled as AC-
TIVE if and only if any failure mode if its output is ACTIVE. We collected
1650 regular diagnostic graphs from different deployments of the agent in the
scenarios described in Table 2. The samples are randomly split them into 1320
(80%) training samples, 165 (10%) testing samples, and 165 validation sam-
ples. Of the 1320 samples used for training, 675 (51.13 %) contain a failure and
645 (48.86 %) do not. The dataset is therefore balanced for the purpose of train-
ing the diagnostic graph. To create the temporal diagnostic graph, we used a
sliding window that stacks 2 consecutive regular diagnostic graphs into a single
temporal diagnostic graph. Using this approach, we collected 1590 temporal
diagnostic graphs, randomly split into 1272 (80%) training samples, 159 (10%)
test samples, and 159 validation samples. As a result of the random splitting,

both the temporal and regular diagnostic graph datasets may contain samples
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. Regular Temporal
Algorithm All Outputs | Modules All Outputs | Modules
Factor Graph 93.30 96.72 83.03 93.60 96.88 83.74
Deterministic 91.06 93.69 83.18 89.26 92.33 80.06
Baseline (w/rel. scores) 92.39 94.65 85.61 90.18 92.69 82.67
Baseline 84.85 89.09 72.12 83.90 87.73 72.39
GCN 92.27 96.01 81.06 91.79 96.06 78.99
GCNII 87.61 93.94 68.64 92.60 96.01 82.36
GIN 91.89 96.06 79.39 93.21 96.47 83.44
GraphSage 92.84 96.46 81.97 92.71 96.42 81.60

Table 3: Fault identification accuracy. Best accuracy is highlighted in green, second-best is
highlighted in yellow.

that are 0.3 s apart.

7.5. Fault Detection and Identification Results

We used three metrics to evaluate the performance for both the fault detec-

tion and identification problems:

Accuracy is the percentage of correctly detected (resp. identified) failures over

the total number of samples;

Precision measures the percentage of correct identifications over the number
of failures the fault identification system reported; a monitor achieves high

precision if it has a low rate of false alarms;

Recall measures the percentage of correct identifications over the number of
failures the system experienced; a monitor has high recall if it is able to

catch a large fraction of failures occurring in the perception system;

7.5.1. Fault Identification Results

Table 3 reports the accuracy of all compared techniques, averaged across all
test scenarios in Table 2. The first and fourth columns report the overall ac-
curacy (“All”) when using regular and temporal diagnostic graphs, respectively.
The remaining columns report a breakdown of the accuracy in terms of mod-
ules and outputs. The overall accuracy results suggest that factor-graph-based

probabilistic fault identification outperforms all other algorithms and achieves
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Figure 9: Precision/Recall for regular diagnostic graphs. (Left) Modules, (Right) Outputs.
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Figure 10: Precision/Recall for temporal diagnostic graphs. (Left) Modules, (Right) Outputs.

96.72 % accuracy when using regular diagnostic graphs and 96.88 % with tempo-
ral diagnostic graphs. GNNs architectures achieve the second-best performance
(GraphSAGE in the regular case, GIN in the temporal case). If we now look at
the breakdown of the fault identification results between modules and outputs,
we notice two trends. First, the factor graph still performs the best across the
spectrum, but it is slightly slightly inferior than a baseline in the regular case.
As we will see shortly, the baselines tend to make quite conservative decisions
(i.e., they tend to detect more failures than the ones actually present in the sys-
tem), which increases accuracy (and recall) at the expense of precision. Second,
output fault identification has higher accuracy than module fault identification;
this is expected, since most of our tests directly involve outputs, while we can
only indirectly infer module failures via the a priori relations. Note that the

two statistics (output fault identification vs. module fault identification) are
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typically used for different purposes, as discussed in Remark 2.

Fig. 9 shows precision-recall trade-offs when using regular diagnostic graphs.
Best results are near the top-right corner of each figure, where both precision
and recall are high. The figure confirms that while the baselines have large recall
(due to the fact that are conservative in detecting failure modes as active), their
precision is relatively low (i.e., they have a large number of false alarms). On the
other side of the spectrum, GNN architectures (with the exception of GCNII)
achieve high prediction (87.25% for GraphSAGE) but low recall (60.96 % for
GraphSAGE). The deterministic fault identification struggles to mark failure
modes as active, achieving low precision and recall in the output space; this is
due to the fact that it disregards PASS results (which do not even appear in
the optimization Eq. (8)). Factor graph inference again achieves a reasonable
trade-off, with 85.22 % precision and 67.12 % recall.

Fig. 10 shows precision-recall trade-offs when using temporal diagnostic
graphs. Compared to the regular diagnostic graph we see a steep increase in
precision in the output space. The best-performing model goes from around
90 % precision of the regular graph to 97 % of the temporal diagnostic graph.

PAC-Diagnosability. Fig. 11 and Fig. 12 show the PAC-Diagnosability
bound defined in Eq. (23) for each of the compared techniques. The bound
represents the number of fault identification mistakes each algorithm is expected
to make with a given confidence (4 in Eq. (23)). The plots show that with high
probability, most of the algorithms are expected to make less than 1 mistake in
the fault identification (i.e., false alarms or false negatives). The factor graph
has the lowest bound of all methods in both the regular and temporal diagnostic
graphs; the only exception is Fig. 11(right), where the baseline with reliability
score has the lowest bound for module fault identification.

rk-diagnosability. Let us now discuss the deterministic diagnosability of
the perception system considered in our experiments (Fig. 8). If the tests be-
have as a Deterministic OR, the diagnostic graph used in our experiments is
5-diagnosable. This means that if there are up to 5 active failure modes the

deterministic fault identification will be able to correctly identify them. If we
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Figure 11: PAC-diagnosability bounds for regular diagnostic graphs. (Left) Modules, (Right)
Outputs. Lower is better.
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Figure 12: PAC-diagnosability bounds for temporal diagnostic graphs. (Left) Modules,
(Right) Outputs. Lower is better.

instead assume the tests behave as a Weak-OR, which might fail when all the
failure modes in its scope are active, the diagnostic graph is 3-diagnosable. It’s
worth noticing that this does not mean that if there are more than 3 (or 5)
active failure modes the fault identification will surely fail, but rather that we
do not have the guarantee that it will not make any mistake. When using De-
terministic Weaker-OR tests, the diagnosability drops to zero, meaning that the
fault identification guarantees vanish.

Extra diagnosability results. To show the effectiveness of the deter-
ministic and probabilistic diagnosability we generated a random 4-diagnosable
diagnostic graph with 10 independent failure modes and Weak-OR tests and col-
lected the fault identification results (using the deterministic model) for every

syndrome and every possible fault assignment. The results are shown in Fig. 13.
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The figure reports the average number of incorrect fault identification results
(i.e., the Hamming distance between the estimated and actual vector of active
faults) for increasing number of active faults. The vertical dashed line represents
the deterministic diagnosability value: by Definition 17, the fault identification
is guaranteed to correctly identify the active failure modes provided that there
are less than 4 active failure modes. In fact, from the plot we see that the fault
identification algorithm does not make any mistake in the fault identification
when there are less than 4 faults. The horizontal dashed line instead represents
the probabilistic diagnosability value, in particular it is the ceiling of the bound
in Eq. (23), computed with very high confidence (1—1x10712). The bound
guarantees that with high probability the average number of mistakes (the av-
erage Hamming distance) the fault identification algorithm is going to make is

less that 2; this is again consistent with the numerical results.

— — o
o o o
T T

e
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T

Average Hamming Distance
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o
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Number of Active Failure Modes

Figure 13: Average Hamming distance between the estimated and actual vector f of fault
states in a randomly generated 4-diagnosable diagnostic graph with 10 independent failure
modes and Weak-OR tests. The vertical dashed line represents the deterministic diagnosability
bound: if the system is experiencing less than 4 active failure modes, the fault identification
is guaranteed to be correct (0 Hamming distance). The horizontal dashed line represents the
ceiling of the PAC-diagnosability bound in Eq. (23): with very high probability the average
number of mistakes (average Hamming distance) is less than the PAC-diagnosability bound.

Timing. The runtime of each method is shown in Table 4. All algorithms
perform inference in less than 4 ms, except for GCNII which averages at around
20ms. This is likely due to the fact that GCNII uses a deep architecture, which
incurs an increased computational cost. The best performing algorithm, i.e.,

the factor graph, can be executed in real-time as its runtime averages around

0.8 ms for regular graphs and 3.8 ms for temporal graphs.
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Std.  (0.04) (0.46) (0.17)  (0.16) (0.01) (0.33) (0.01) (0.01)

TemporalRegular

Table 4: Average runtime (“Avg.”) and standard deviation (“Std.”) for fault identification, in
milliseconds.

. Regular Temporal
Algorithm All Outputs | Modules All Outputs | Modules
Factor Graph 76.67 88.48 64.85 81.60 91.41 71.78
Deterministic 89.09 89.09 89.09 93.25 93.25 93.25
Baseline (w/rel. scores) 89.09 89.09 89.09 85.28 85.28 85.28
Baseline 89.09 89.09 89.09 85.28 85.28 85.28
GCN 71.82 86.06 57.58 80.06 90.18 69.94
GCNII 68.48 87.88 49.09 78.83 85.89 71.78
GIN 83.94 86.06 81.82 83.13 92.64 73.62
GraphSage 76.67 89.09 64.24 79.14 89.57 68.71

Table 5: Fault detection accuracy. Best accuracy is highlighted in green, second-best is
highlighted in yellow.

7.5.2. Fault Detection Results

Recall that fault detection is the problem of deciding whether the system is
working in normal conditions or whether at least a fault has occurred. Table 5
and Fig. 14 show accuracy, precision, and recall. Fig. 14 shows that most of
the algorithms for inference presented in this paper (as well as the baselines)
attain similar performance with precision above 90 % and recall above 80 %; this
confirms that fault detection is a somewhat easier problem compared to fault
identification. Table 5 shows that the deterministic approach and the baselines
do particularly well for fault detection: they both detect failure as soon as a
single test fails, which makes their accuracy high. On the other hand, the factor
graph approach may prefer explaining a failed test as a false alarm. Therefore,
while factor graphs would be the go-to approach for fault identification, a simpler

baseline approach suffices for fault detection.

60



Temporal Regular

T Baseline (w/rel. scores) 100 *\GCNII Baseline
95 Deterministid
GIN 95
_%0r Factor Graph 1 - A
S T N S of Deterministi
g 851 ] L2 3 Baseline (w/rel. scores)
& Base‘y& € g5l ]
80 GraphSage )hSagej
80 F Factor Graph GIN
75 GCNI
. . . * . . . . GCNf-—t
80 85 90 95 50 60 70 80 90
Precision (%) Precision (%)

Figure 14: Fault detection in diagnostic graphs. (Left) Regular, (Right) Temporal.

The results of the fault identification experiments show that the factor graph
can achieve the best accuracy for fault identification, and all the proposed ap-
proaches achieve similar performance for fault detection.

The choice between model-based (factor graph or deterministic factor graph)
and deep-learning-based (graph neural networks) depends on the specific appli-
cation. Model-based approaches have the advantage of being more interpretable,
but the inference time increases with the number of failure modes (or timesteps),
while deep-learning-based approaches have the advantage of having an almost
constant inference time (e.g., GCN and GIN), but are not interpretable. De-
terministic diagnostic graphs and factor graphs have clear advantages when it
is not possible to curate a dataset for the purpose of training a model, because
the system designer can directly encode the expected system behavior. Finally,
the deterministic diagnostic graph provides stronger guarantees (i.e., determin-
istic diagnosability) compared to factor graphs and graph neural networks (i.e.,
PAC-diagnosability).

Table 6 shows the results of fault identification for temporal diagnostic
graphs for each scenario class. Similar to Table 3, we see that the factor graph
is more likely to outperform the other in the output space. The deterministic
diagnostic graph, on the other hand, is most likely to outperform the other ap-
proaches in terms of recall in module space, due to the fact that it conservatively

estimates failure modes as active when a test fails (due to the specific choice of
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diagnostic tests used, i.e., WeakerOR) and propagates the failure to modules.
No clear pattern emerges from the scenario-based analysis that would justify
choosing one graph neural network architecture over another, even with more

information about the failure distribution.
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7.6. Example Scenario: Using Monitoring to Prevent Accidents

We conclude the experimental section by showing how fault detection and
identification can be effectively used to prevent dangerous situations. To this
aim, we developed an additional scenario (not included in Table 2) where a deer

crosses the road while the ego vehicle cruises on a straight road (Fig. 15).

Figure 15: Example scenario involving a deer crossing the road in front of the ego vehicle.

The scenario is novel to the identification algorithm, i.e., not used for train-
ing, test, or validation. The results of the failure identification are shown

in Fig. 16, where we used the probabilistic fault identification. Initially, the

i’i@ﬂﬂ\”\.‘ﬂ?m = ; : ,

_

Figure 16: Fault identification results for the example scenario in Fig. 15. The car travels
from right to left. Initially, the monitor detects no failure (rightmost, green section). As the
ego vehicle gets closer to the obstacle, the LIDAR-based and camera-based obstacle detectors
fail to detect the deer while the radar-based obstacle detector correctly locates the obstacle;
as a result the fault identification/detection triggers an alarm (red sections).

monitor detects no failure (rightmost green section). As the ego vehicle gets
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closer to the undetected obstacle, the radar detects the obstacle but the camera
does not. The inconsistency between the two sets of obstacles causes the test
between camera and radar to return FAIL. Given the test’s outcomes, the factor
graph correctly detects and identifies the failure, triggering an alarm (rightmost
red section). As the ego vehicle gets even closer, the deer goes out of the field-
of-view of the radar while entering the LiDAR field-of-view. For a few meters,
both camera and LiDAR fail to detect the deer Fig. 17, but since it is out of
the field-of-view of the radar, the diagnostic test fails to report the failure'4.
As the obstacle re-enters the field-of-view of the radar, the diagnostic test again

returns FAIL, signaling the presence of a failure.

Figure 17: Camera Image for the scenario in Fig. 15. Blue bounding box is the ground truth
detection. The camera fails to detect the deer crossing the road (misdetection failure).

The first alarm is raised 7.19s before the collision, flagging the camera mis-
detection as an active failure mode. Before the collision, the AV has a speed of
8.43m/s. The car can reach a maximum deceleration of 6 ms™2. As result, the
car would need 1.4s to come to a complete stop. We note that after detecting

the fault, for a short interval of time the monitor detects no failure: this is

14This could be solved by improving the logic of the diagnostic test; for instance, it could
predict that —while the obstacle moved outside the field-of-view— it is unlikely it disappeared.
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The radar detects the obstacle, S
but the camera fails to do so e -

C S Camera_and_ LiDAR fail to
2! detect the obstacle while it is
outside the radar field-of-view

Figure 18: Two snapshots from the example scenario of Fig. 15. Shaded areas represent the
sensor field-of-view (FOV): green, blue, and orange represent the LiDAR, camera, and radar
FOVs, respectively. On the left, the deer is outside the LIDAR FOV (so the LiDAR obstacle
detector is not supposed to detect the obstacle); the radar detects the obstacle, while the
camera fails to detect it even if it is inside its FOV. Since the corresponding diagnostic test
fails, our monitors can detect the failure. On the right, the deer is outside the radar FOV;
in this case, both the camera and the LiDAR fail to detect the obstacles (even though it is
within their FOVs), hence no diagnostic test fails and our monitor fails to detect the fault.

due to the fact that the deer goes out of the radar field-of-view, and no other
obstacle detector is capable of detecting it, thus lacking redundancy to diagnose
the failure; see the visualization and explanation in Fig. 18.

To gather statistical evidence of the effectiveness of the fault detection, we
run the same scenario 10 times at different times of the day (sun, twilight, and
night) and different weather conditions (including fog and rain). The proba-
bilistic fault detection approach never raised false alarms in these tests, and the
average time between the alarm and the collision was 7.54s. The car traveled
at an average speed of 6.16 m/s, requiring 1.03s to come to a complete stop.

The fault identification exhibited an average accuracy of 93.75 %.

8. Conclusions

This paper investigated runtime monitoring of complex perception systems
and presented a novel framework to collect and organize diagnostic information
for fault detection and identification in perception systems. Toward this goal,

we formalized the concept of diagnostic tests, a generalization of runtime mon-
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itors, that return diagnostic information about the presence of failure modes.
We then introduced the concept of diagnostic graph, as a structure to organize
diagnostic information and its relations with the monitored perception system.
We then provided a set of deterministic, probabilistic, and learning-based algo-
rithms that use diagnostic graphs to perform fault detection and identification.
In addition to the algorithms, we investigated fundamental limits and provided
deterministic and probabilistic guarantees on the fault detection and identifica-
tion results. These include results about the maximum number of faults that
can be correctly identified in a given perception system as well as PAC-bounds
on the number of mistakes our fault identification algorithms are expected to
make. We conclude the paper with an extensive experimental evaluation, which
recreates several realistic failure modes in the LGSVL open-source autonomous
driving simulator, and applies the proposed system monitors to a state-of-the-
art autonomous driving software stack (Baidu’s Apollo Auto). The results show
that the proposed system monitors outperform baselines in terms of fault identi-
fication accuracy, have the potential of preventing accidents in realistic scenarios,
and incur a negligible computational overhead.

This work opens a number of avenues for future work. First, we plan to test
our monitors on real-world datasets (rather than realistic simulations) and to
provide more examples of the proposed approach applied to other perception
subsystems (e.g., localization, lane segmentation). Second, we plan to add a risk
metric to the fault identification process that could help the decision layer to
make more informed decisions. Finally, in this paper, we used simple diagnostic
tests. Moving forward, it would be desirable to use more advanced diagnostic

tests available in the literature.
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