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Abstract

Designing ligand-binding proteins, such as enzymes and biosensors, is essential
in bioengineering and protein biology. One critical step in this process involves
designing protein pockets, the protein interface binding with the ligand. Current
approaches to pocket generation often suffer from time-intensive physical compu-
tations or template-based methods, as well as compromised generation quality due
to the overlooking of domain knowledge. To tackle these challenges, we propose
PocketFlow, a generative model that incorporates protein-ligand interaction priors
based on flow matching. During training, PocketFlow learns to model key types of
protein-ligand interactions, such as hydrogen bonds. In the sampling, PocketFlow
leverages multi-granularity guidance (overall binding affinity and interaction geom-
etry constraints) to facilitate generating high-affinity and valid pockets. Extensive
experiments show that PocketFlow outperforms baselines on multiple benchmarks,
e.g., achieving an average improvement of 1.29 in Vina Score and 0.05 in scRMSD.
Moreover, modeling interactions make PocketFlow a generalized generative model
across multiple ligand modalities, including small molecules, peptides, and RNA.

1 Introduction

Proteins are the fundamental building blocks of living organisms, often interacting with ligands (e.g.,
small molecules, nucleic acids, and peptides) to execute their functions. Recently, computational
methods have played critical roles in designing functional proteins binding with ligands with broad
applications in bio-engineering and therapeutics [76, 52, 50, 51, 67, 8, 58]. For example, Polizzi
et al., [65] leverage template-matching methods to design de novo proteins binding with the drug
apixaban [15]; Yeh et al., [83] use deep learning methods to generate efficient light-emitting enzyme
luciferases with selective substrate catalysis capabilities. To design such ligand-binding proteins,
an essential step is to design protein pockets, the protein interface interacting with binding ligands
[68, 39, 12, 28]. However, the complexity of ligand-protein interactions, the variability of protein
sidechains, and sequence-structure relationships pose great challenges for pocket design [25, 51, 48].

Traditional methods for pocket design mainly focus on physics modeling or template-matching [12, 28,
65, 19, 62]. However, the involved physical energy calculation or substructure enumeration could be
quite time-consuming. Recent advancements in pocket design have benefited a lot from deep learning-
based approaches [73, 92, 83, 47, 51, 48]. However, these innovative approaches often overlook
essential domain knowledge, such as the protein-ligand interactions and the geometric constraints
governing them. Though they can efficiently generate many candidates, further screening/optimization
is required to get valid and high-affinity pockets. Moreover, most methods are restricted to small
molecule ligands, omitting other important ligand types such as nucleic acids [8] and peptides [53].
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To tackle the aforementioned challenges, we propose PocketFlow, a protein-ligand interaction prior-
informed flow matching model for protein pocket generation. Firstly, we define conditional flows for
diverse data modalities in the protein-ligand complex including backbone frames, sidechain torsions,
and residue/interaction types. We choose flow matching as the generative framework because of its
efficiency and flexibility [17, 13, 57, 57]. Furthermore, PocketFlow explicitly learns the dominant
protein-ligand interaction types including hydrogen bonds [35], salt bridges [24], hydrophobic
interactions [61], and ω→ω stacking [36], which are crucial for strong binding stability and affinity of
protein-ligand pairs [2]. In the sampling process, binding affinity and interaction geometry guidance
are adopted to encourage generating pockets with high affinity and validity. Specifically, we leverage
a lightweight binding affinity predictor to predict the affinity of the generated complex and apply
distance and angle constraints to promote desirable protein-ligand interactions. To circumvent the
non-differentiability issues associated with residue type sampling, we employ a novel sidechain
ensemble method for interaction geometry calculations. Extensive experiments show that PocketFlow
provides a generalized framework for high-quality protein pocket generation across various ligand
modalities (small molecules, RNA, peptides, etc.,). Our main contributions are summarized as:

• Generalized tasks: Our study broadens the scope of protein pocket generation tasks to
include various ligand modalities such as small molecules, nucleic acids, and peptides.

• Novel method: PocketFlow combines the recent progress of flow-matching-based generative
models and physical/chemical interaction priors (affinity guidance and interaction geometry
guidance) to generate protein pockets with enhanced affinity and structural validity.

• Strong performance: PocketFlow outperforms existing methods on various benchmarks
of pocket generation, producing an average improvement of 1.29 in Vina score and 0.05
in scRMSD. Further interaction analysis highlights the model’s ability to foster benefi-
cial protein-ligand interactions, e.g., an average of 4.12 hydrogen bonds, while markedly
reducing steric clashes (an average of 1.21 in generated pockets v.s. 4.59 in the test set).

2 Related Works

2.1 Generative Models for Protein Generation

Recent advancements in deep generative models have significantly advanced the field of de novo

protein structure generation, enabling researchers to create proteins with specific desired properties
[81, 37, 84, 86, 13, 95, 94, 91]. For example, RFDiffusion [81] employs denoising diffusion proba-
bilistic models [33] in conjunction with RoseTTAFold [7] for de novo protein structure generation.
It achieved notable success by generating proteins validated in wet lab experiments. Chroma [37]
leverages a similar diffusion process with efficient neural architecture for molecular systems that
enables long-range reasoning with sub-quadratic scaling. It also demonstrates strong capabilities
to satisfy constraints including symmetries, substructure, shape, semantics, and simple natural-
language prompts. Recently, models leveraging flow matching frameworks have shown promising
results on protein generation [86, 13, 85, 40, 53]. For example, FoldFlow [13] proposed a series
of flow-matching-based generative models for protein backbones with improved training stability
and efficiency than diffusion-based models. FrameFlow [84, 85] further shows sampling efficiency
and achieves success on motif-scaffolding tasks with flow matching. However, these protein gener-
ation methods are not directly applicable to protein pocket generation that requires protein-ligand
interaction modeling.

2.2 Protein Pocket Generation

Protein pockets are the protein interface where the ligand binds to the protein and pocket design
is a critical task for bioengineering [68, 39, 12, 28]. Traditional methods for pocket design focus
on physics modeling or template-matching [12, 28, 65, 19, 62, 93]. For example, PocketOptimizer
[62] predicts mutations in protein pockets to increase binding affinity based on physical energy
calculation, which may bring a large time burden. The recent progress in protein pocket design has
been facilitated by deep generative models [73, 92, 83, 93, 48]. For instance, FAIR [92] co-designs
pocket structures and sequences using a two-stage coarse-to-fine refinement approach. RFDiffusion
All-Atom [48] extends RFDiffusion for joint modeling of protein and ligand structure to generate
ligand-binding protein and further leverages ProteinMPNN[21]/LigandMPNN[22] for sequence
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metric g. Instead, it is tractable to define conditional vector field ut(x|x1) and obtain the conditional
FM objective: LCFM (ϱ) = Et↑U [0,1],p1(x1),pt(x|x1)↗vε(x, t)→ ut(x|x1)↗2g. It has been proved that
↘εLFM (ϱ) = ↘εLCFM (ϱ) [57, 17]. In the inference, ODE solvers are applied to solve the ODE,
e.g., x1 = ODESolve(x0, vε, 0, 1) where x0 is the initialized data and x1 is the generated data.

4 PocketFlow

PocketFlow is an interaction prior-informed flow-matching model for pocket design. In this section,
we first define PocketFlow for different components in the protein-ligand complex (backbone in Sec.
4.1, sidechain in Sec. 4.2, and residue/interaction types in Sec.4.3). Then we show the prior-informed
training and sampling in Sec. 4.4 and 4.5.

4.1 PocketFlow on SE(3)

As introduced in Sec. 3.1, each residue frame can be parameterized by a rigid transformation
T = (x(i)

,O
(i)) within SE(3) space. The backbone with Nr residues can thus be described by a

set of transformations [T (1)
, . . . , T

(Nr)] belonging to SE(3)Nr and constitutes a product space. The
following deduction focuses on a single frame but can be generalized to the whole protein backbone.
The Cω coordinates x

(i) are initialized with linear interpolation and extrapolation based on the
coordinates of neighboring scaffold residues following [92]. The prior distribution of O(i) is chosen
as the uniform distribution on SO(3). Following previous works [17, 84], the conditional flow for x(i)

and O
(i) are defined as x(i)

t = (1→ t)x(i)
0 + tx

(i)
1 and O

(i)
t = exp

O
(i)
0
(t log

O
(i)
0
(O(i)

1 )) respectively,
which are geodesic paths in R3 and SO(3). The exponential map expO0

can be computed using
Rodrigues’ formula and the logarithmic map logO0

is similarly easy to compute with its Lie algebra
so(3) [84]. The loss function of PocketFlow on SE(3) is the summation of the two losses below:

Lcoord(ϱ) = Et,p1(x1),p0(x0),pt(xt|x0,x1)
1

Nr +Nl

Nr+Nl∑

i=1

∥∥∥v(i)ε (x(i)
t , t)→ x

(i)
1 + x

(i)
0

∥∥∥
2

2
, (1)

Lori(ϱ) = Et,p1(O1),p0(O0),pt(Ot|O0,O1)
1

Nr

Nr∑

i=1

∥∥∥∥∥∥
v
(i)
ε (O(i)

t , t)→
log

O
(i)
t
(O(i)

1 )

1→ t

∥∥∥∥∥∥

2

SO(3)

, (2)

where we additionally consider Nl ligand atom coordinates in Lcoord(ϱ), for which we use Gaussian
distribution at the center of ligand mass as the prior distribution.

4.2 PocketFlow on Torus

As described in Sec. 3.1, the sidechain conformation of each residue can be represented as maximally
four torsion angles ω

(i) = {ϑi1
,ϑ

i2
,ϑ

i3
,ϑ

i4} ↑ [0, 2ω)4. In a pocket with Nr residues, the
sidechain torsion angles form a hypertorus T4Nr , which is the quotient space R4Nr/2ωZ4Nr with the
equivalence relation: ω = (ϑ1

, . . . ,ϑ
4Nr ) ≃ (ϑ1 + 2ω, . . . ,ϑ4Nr ) ≃ (ϑ1

, . . . ,ϑ
4Nr + 2ω) [41, 90].

Following [42], the prior distribution is chosen as a uniform distribution over T4Nr . We regard the
torsion angles as mutually independent and use interpolation paths as: ωt = (1→ t)ω0 + t(ω↓

1 →ω0)
where ω

↓
1 = (ω1 → ω0 + ω) mod (2ω)→ ω + ω0. The loss for the torsion angles is defined as:

Ltor(ϱ) = Et,p1(ω1),p0(ω0),pt(ωt|ω0,ω1)
1

Nr

Nr∑

i=1

∥∥∥v(i)ε (ω(i)
t , t)→ ω

↓(i)
1 + ω

(i)
0

∥∥∥
2

2
. (3)

4.3 PocketFlow on Residue Types and Interaction Types

Each residue is assigned a probability vector with 20 dimensions: c(i) ↑ R20. The prior distribution
is set as the uniform distribution and the conditional flow is defined as the Euclidean interpolation
between c0 and c1 (one hot vector indicating residue type). ct is a probability vector because its
summation over all types equals 1. We leverage the cross-entropy loss CE(·, ·) following [53, 73, 16]:

Lres = Et↑U(0,1),p1(c1),p0(c0),pt(c|c0,c1)

Nr∑

i=1

CE
(
c
(i)
t + (1→ t)v(i)ε (c(i)t , t), c(i)1

)
, (4)
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which measures the difference between the true probability and the inferred one ĉ
(i)
1 = c

(i)
t + (1→

t)v(i)ε (c(i)t , t). We also note the recent progress of the sequential flow matching methods [74, 16],
which can be seamlessly integrated into PocketFlow and are left for future works.

It has been shown that modeling Protein-ligand interactions explicitly in biomolecular generative
models can effectively enhance the generalizability [89, 97]. We used the protein–ligand interaction
profiler (PLIP) [69] to detect and annotate the protein-ligand interactions for each residue by analyzing
their binding structure. Following [97], 4 dominant interactions are considered including salt bridges,
ω–ω stacking, hydrogen bonds, and hydrophobic interactions. For simplicity, if a residue has more
than one interaction, we take the one with the highest rank, which considers both the contribution
to the binding affinity and the frequencies (see Appendix. B). Similar to residue types, interactions
are modeled as category data: I = {I(i)}Nr

i=1. Besides the 4 interaction types, we also consider an
unknown/none type. Similar to Equ. 4, we have the interaction loss:

Linter = Et↑U(0,1),p1(I1),p0(I0),pt(I|I0,I1)

Nr∑

i=1

CE
(
I
(i)
t + (1→ t)v(i)ε (I(i)t , t), I(i)1

)
. (5)

4.4 Model Training

Network Architecture. To design the binding protein pocket R = {c(i),x(i)
,O

(i)
,ω

(i)
, I

(i)}Nr
i=1

and update the binding ligand coordinates {x(i)}Nl
i=1, we utilize an architecture modified from the

FrameDiff [86] which incorporates Invariant Point Attention (IPA) from AF2 [43] to encode spatial
features combined with transformer layers [79] to encode sequence-level features. To achieve a
unified representation of both protein residues and ligand atoms, we follow the approach used in
RoseTTAFold All-Atom [49], where each ligand atom is treated as an individual residue. Initial
representations are based on atom element type embeddings, and the frame orientations are set as
identity matrices. To further model the covalent bonding information (single bond, double bond, triple
bond, or aromatic bond), we also add the bond embeddings to the 2D track. We use additional MLPs
based on the residue embeddings to predict the residue types, interaction types, and sidechain torsion
angles. Instead of directly predicting the vector field, we let the model predict the final structure at
t = 1 and interpolate to obtain the vector field. More details are introduced in the Appendix. C.

Overall Training Loss. The overall training loss of PocketFlow is the summation of Equ. 1, 2, 3,
4, and 5. To fully utilize the protein-ligand context information, we use the whole protein-ligand
complex structure at t, i.e., Ct = Pt ⇐ Gt as the inputs of vε(·, t).
Equivariance. Following [84, 53], we perform all training and sampling within the zero center
of mass (CoM) subspace by subtracting the CoM of the scaffold from the initialized structure.
PocketFlow has the ideal SE(3)-equivariance property of geometric generative models:
Theorem 1. Denote the SE(3)-transformation as Tg , PocketFLow pε(R,G|P \ R) is SE(3) equivari-

ant i.e., pε(Tg(R,G)|Tg(P \R)) = pε(R,G|P \R), where R denotes the designed pocket, G is the

binding ligand, and P \ R is the protein scaffold.

The main idea is that the SE(3)-invariant prior and SE(3)-equivariant neural network lead to an
SE(3)-equivariant generative process of PocketFlow. We give the full proof in the Appendix. D.

4.5 Pocket Sampling with Prior Guidance

To improve the binding affinity and structural validity of the generated protein pocket, we proposed a
novel domain-knowledge-guided sampling scheme. Generally, we use classifier-guided sampling [23]
and consider overall binding affinity guidance and interaction geometry guidance. To encourage the
generated protein-ligand complex to satisfy a specific condition y, we apply the Bayes rule [23, 30]:

↘Ct log p(Ct|y) = ↘Ct log p(Ct) +↘Ct log p(y|Ct), (6)

where ↘Ct log p(Ct) is the unconditional vector field vε(Ct, t) and ↘Ct log p(y|Ct) is the guidance
term to constrain the generated complex in a specific condition y.

Binding Affinity Guidance. To generate protein pockets with higher binding affinity to the target
ligand, we train a separate lightweight affinity predictor for guidance (More details of the predictor
in Appendix. E.1). Specifically, the data points in the training set are annotated 1 if their affinity is
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higher than the average score of the dataset, otherwise 0 [66]. Because the intermediate structure is
noisy, we take the expected structure at t = 1, i.e., Ĉ1(Ct) from the model output and feed it into the
predictor. Then we have the classifier-guided velocity field ṽε(Ct, t):

ṽε(Ct, t) = vε(Ct, t)→ ς↘Ct log pε(vb = 1|Ĉ1(Ct)), (7)
where we add a scaling factor ς > 0 that controls the gradient strength. pε is the affinity predictor
and vb ↑ {0, 1} is the binary label of binding affinity.

Interaction Geometry Guidance. Inspired by [97, 89], we considered 4 dominant non-covalent inter-
action types in PocketFlow, including salt bridges, ω–ω stacking, hydrogen bonds, and hydrophobic
interactions. The local geometries need to satisfy a series of distance/angle constraints to form strong
interactions [69]. For example, for hydrogen bonds, the distances between donor and acceptor atoms
need to be less than 4.1 Å and larger than 2 Å to reduce steric clashes [35]. The following inequality
is a necessary condition for residues in Ĉ1(Ct) with predicted interaction label Î1 as hydrogen bond:

lmin ⇒ min
i↔A(k)

hbond,j↔G

∥∥∥x(i) → x
(j)

∥∥∥
2
⇒ lmax, (8)

where lmin and lmax are distance constraints; A(k)
hbond denote the k-th residue in the set of residues

with predicted hydrogen bonds. With a little abuse of notations, x(i) and x
(j) denote the candidate

atom coordinates in the residue and ligand respectively. The distance guidance can be derived as:

→↘Ct

|Ahbond|∑

k=1

[
φ1 max

(
0, d(k) → lmax

)
+ φ2 max

(
0, lmin → d

(k)
)]

, (9)

where d
(k) = min

i↔A(k)
hbond,j↔G

∥∥x(i) → x
(j)

∥∥
2

and φ1, φ2 > 0 are constant coefficients that control
the strength of guidance. The detailed deduction is included in the Appendix. E.2. Besides the
distance constraint, the hydrogen bond needs to satisfy the acceptor/donor angle constraint [69], e.g.,
the donor/acceptor angle needs to be larger than 100↗. The angle guidance is presented as follows:

→φ3↘Ct

|Ahbond|∑

k=1

max(0,↼min → ↽
(k)), (10)

where ↽
(k) = max

i↔A(k)
hbond,j↔G hangle(x(i)

,x
(j)) and hangle(·, ·) calculates the acceptor/donor

angle in Figure. 4. φ3 > 0 is the guidance coefficient. The guidance for the other interactions is
discussed in Appendix. E. We note that the residue type/side chain structure of the pocket is not
determined during the sampling. Directly sampling from the residue type distribution makes the
model not differentiable [38]. We propose the Sidechain Ensemble for the interaction geometry
calculation, i.e., the weighted sum of geometric guidance with respect to residue types (Figure. 6).

Sampling. With the initialized data, the sampling process is the integration of the ODE dCt
dt =

vε(Ct, t) from t = 0 to t = 1 with an Euler solver [14]. ς, φ1, φ2, and φ3 are set as 1 in the default
setting. To apply the guidance, we use ṽε which is vε plus guidance terms (Equ. 7, 9, and 10):

ω
(i)
t+!t = reg

(
ω

(i)
t + ṽε(ω

(i)
t , t)!t

)
; (11)

x
(i)
t+!t = x

(i)
t + ṽε(x

(i)
t , t)!t; O

(i)
t+!t = O

(i)
t exp

(
ṽε(O

(i)
t , t)!t

)
; (12)

c
(i)
t+!t = norm

(
c
(i)
t + ṽε(c

(i)
t , t)!t

)
; I

(i)
t+!t = norm

(
I
(i)
t + ṽε(I

(i)
t , t)!t

)
; (13)

where !t is the time step; vε(·; t) denotes the subcomponent of the vector field for different variables.
norm(·) means normalizing the vector to a probability vector such that the summation is 1, and reg(·)
means regularizing the torsion angles by reg(⇀) = (⇀ + ω) mod (2ω)→ ω.

5 Experiments

5.1 Experimental Settings

Datasets. Following previous works [29, 71, 92] we consider two widely used protein-small molecule
binding datasets for experimental evaluations: CrossDocked dataset [27] is generated through cross-
docking and is split with mmseqs2 [75] at 30% sequence identity, leading to train/val/test set of
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Methods Clash (⇑) HB (⇓) Salt (⇓) Hydro (⇓) ω–ω (⇓)
Test set 4.59 3.89 0.26 5.89 0.32

DEPACT 6.72 3.10 0.14 5.70 0.16
dyMEAN 4.65 3.07 0.17 5.85 0.20

FAIR 4.90 3.30 0.18 5.47 0.15
RFDiffusionAA 3.58 3.76 0.22 5.65 0.31

PocketFlow 1.21 4.12 0.27 6.03 0.28

Table 3: Interaction analysis of the generated protein pockets on the CrossDocked dataset. We
measure the average number of steric clashes (Clash), hydrogen bonds (HB), salt bridges (Salt),
hydrophobic interactions (Hydro), and ω–ω stacking (ε → ε) per protein-ligand complex. More
results on the variants of PocketFlow are included in Appendix F.

5.3 Generalization to Other Ligand Domains

Besides small molecules, the binding of protein with other ligand modalities such as peptides and
nucleic acids play critical roles in biomedicine [82, 8]. However, the available dataset size compared
with small molecules-protein complexes is quite limited (e.g., ≃ 100 in PPDBench v.s. over 100k
in CrossDocked). Here, we explore whether the pretrained PocketFlow on the combination of
CrossDocked and Binding MOAD can generalize to peptide and RNA-binding pocket design in
Table. 2. The peptide and RNA ligands are represented as molecules (atoms and covalent bonds) to
fit into the pretrained models. We have observed that PocketFlow achieves performance comparable
to the state-of-the-art baseline, RFDiffusionAA, with prior guidance significantly enhancing its
generalizability. Our hypothesis is that the protein-ligand interactions and fundamental physical laws
learned by PocketFlow are applicable universally across various biomolecular domains [89, 97]. By
explicitly incorporating physical and chemical priors into the generative model, PocketFlow not only
aligns with these universal principles but also gains a marked advantage of generalizability.

5.4 Interaction Analysis and Case Studies

We adopt PLIP [69] and posecheck [31] to detect the protein-ligand interactions in the generated
pockets. In Table. 3, we show the average number of steric clashes, hydrogen bond donors, acceptors,
and hydrophobic interactions (without redocking). We observe that PocketFlow can generate pockets
with fewer clashes and more favorable interactions. For example, the average steric clashes for
RFDiffusionAA and PocketFlow are 3.58 and 1.21 respectively. The average number of Hydrogen
Bonds for RFDiffusionAA and PocketFlow are 3.76 and 4.12 respectively. These improvements can
be attributed to the model’s affinity/geometry guidance and its enhanced modeling of pocket/ligand
flexibility, both of which promote the formation of advantageous protein-ligand interactions while
minimizing clashes. Some interaction types such as ω–ω stacking in PocketFlow are a little less than
the reference, which may be due to the low frequency of these interactions in the dataset.

Figure. 2 and 3 show examples of the generated pockets for small molecules, peptides, and RNA.
PocketFlow recovers most residue types and changes several key residues to achieve higher binding
affinity. The overall structure of the pocket, including the sidechains, is generally well-maintained.

5.5 Limitations and Broader Impacts

While PocketFlow is a powerful generative method for pocket generation, we find the following
limitations for further improvement. First, PocketFlow is only trained on protein-small molecule
datasets in the paper. In the future, incorporating protein-peptides/nucleic acids/metal datasets, even
the generated data from AlphaFold3 [2] would be promising directions. Second, the integration
of pretrained protein language models [55] and structure models [96] could significantly enhance
PocketFlow’s performance. Additionally, wet lab experiments to verify PocketFlow’s efficacy are
planned. Potential negative impacts may include the misuse of PocketFlow for creating harmful
biomolecules [32]. Rigorous oversight and screening access to the model should be considered.

6 Conclusion

In this paper, we proposed PocketFlow, a protein-ligand interaction prior-informed flow matching
model for protein pocket generation. We define multimodal flow matching for protein backbone
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frames, sidechain torsion angles, and residue/interaction types to appropriately represent the protein-
ligand complex. The binding affinity and interaction geometry guidance effectively improve the
validity and affinity of the generated pockets. Moreover, PocketFlow offers a unified framework
covering small-molecule, nucleic acids, and peptides-binding protein pocket generation.
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A Dataset Preprocessing

We consider two widely used datasets for benchmark evaluation: CrossDocked dataset [27] contains
22.5 million protein-molecule pairs generated through cross-docking. Following previous works
[59, 64, 92], we filter out data points with binding pose RMSD greater than 1 Å, leading to a refined
subset with around 180k data points. For data splitting, we use mmseqs2 [75] to cluster data at 30%
sequence identity, and randomly draw 100k protein-ligand structure pairs for training and 100 pairs
from the remaining clusters for testing and validation, respectively; Binding MOAD dataset [34]
contains around 41k experimentally determined protein-ligand complexes. Following previous work
[71], we keep pockets with valid and moderately ‘drug-like’ ligands with QED score ⇔ 0.3. We further
filter the dataset to discard molecules containing atom types /↑ {C,N,O, S,B,Br, Cl, P, I, F} as
well as binding pockets with non-standard amino acids. Then, we randomly sample and split the
filtered dataset based on the Enzyme Commission Number (EC Number) [9] to ensure different sets
do not contain proteins from the same EC Number main class. Finally, we have 40k protein-ligand
pairs for training, 100 pairs for validation, and 100 pairs for testing. For all the benchmark tasks in
this paper, PocketFlow and all the other baseline methods are trained with the same data split for a
fair comparison.

To test the generalizability of PocketFlow to other ligand modalities, we further consider PPDBench
[3], which contains 133 non-redundant complexes of protein-peptides and PDBBind RNA [80],
which contains 56 protein-RNA pairs by filtering the PDBBind nucleic acid subset with RNA
sequence lengths longer than 5 and less than 15.

B Considered Protein-ligand Interactions

Table 4: Key geometric constraints to define protein-ligand interactions [69]. Angles in degree and
distances in Ångström.

Variable Value Description Ref.
INTER_DIST_MIN 2.0 Å Min. distance to avoid steric clashes [31]
HYDROPH_DIST_MAX 4.0 Å Max. distance of carbon atoms for a hydrophobic interaction [69]
HBOND_DIST_MAX 4.1 Å Max. distance between acceptor and donor in hydrogens bonds [35]
HBOND_DON_ANGLE_MIN 100↑ Min. angle at the hydrogen bond donor (X-D. . . A) [35]
HBOND_ACC_ANGLE_MIN 100↑ Min. angle at the hydrogen bond acceptor (X-A. . . D) [35]
PISTACK_DIST_MAX 7.5 Å Max. distance between ring centers for stacking [26]
PISTACK_ANG_DEV 30↑ Max. deviation from optimum angle for stacking [69]
PISTACK_OFFSET_MAX 2.0 Å Max. offset between aromatic ring centers for stacking [69]
SALTBRIDGE_DIST_MAX 5.5 Å Distance between two centers of charges in salt bridges [10]

Following [97], we considered 4 dominant non-covalent interaction types in PocketFlow, including
salt bridges, ω–ω stacking, hydrogen bonds, and hydrophobic interactions (ranked based on their
contribution to affinity and reversed frequency). The frequency statistics are listed in Table.3.

• Salt bridges [10], which are electrostatic interactions between oppositely charged cen-
ters, are often considered among the strongest interactions in protein structures and other
biomolecular complexes. They can significantly contribute to stability and binding affinity
due to their strong electrostatic nature. To form salt bridges, two centers of opposite charges
need to be below a distance of SALTBRIDGE_DIST_MAX.

• Hydrogen bonds [35] occur between a hydrogen atom covalently bonded to a more elec-
tronegative atom (like oxygen or nitrogen) and another electronegative atom. Their strength
is less than that of salt bridges but is significant in biological contexts.
A hydrogen bond is established between a hydrogen bond donor and acceptor (OpenBabel
[63] is used to detect hydrogen bond donor/acceptor). The distance between the donor and
acceptor needs to be less than HBOND_DIST_MAX. The donor and acceptor angle needs to
be larger than HBOND_DON_ANGLE_MIN and HBOND_ACC_ANGLE_MIN respectively. Since
PocketFlow only considers heavy atoms (no hydrogen atoms), we consider the geometry
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of hydrogen bonds without protonation [35] (see Figure. 4). For simplicity, we do not
differentiate donor/acceptor in the interaction geometry guidance.

• ω–ω stacking [69] involve the stacking of aromatic rings (like those found in phenylalanine,
tyrosine, or tryptophan) due to favorable van der Waals forces and sometimes electrostatic
interactions. ω–ω stacking is crucial in the structure of nucleic acids and proteins, especially
in the active sites of many enzymes, although they are generally weaker than hydrogen
bonds and salt bridges.
To form ω–ω stacking, we first need two aromatic rings (OpenBabel [63] is used to
detect aromatic rings). The distance between the two ring centers needs to be below
PISTACK_DIST_MAX. The angle between two normal vectors of ring planes needs to be
below PISTACK_ANG_DEV. Additionally, each ring center is projected onto the opposite ring
plane. The distance between the other ring center and the projected point (i.e., the offset)
has to be less than PISTACK_OFFSET_MAX. Figure. 5 shows the illustration.

• Hydrophobic Interactions [11] are caused by the tendency of hydrophobic side chains to
avoid contact with water, leading them to aggregate. While these are not strong interactions
on their own, they play a crucial role in the folding and stability of proteins by driving
the burial of nonpolar groups away from the aqueous environment, thereby contributing
significantly to the overall stability. To form hydrophobic interactions, the atom distance
needs to be less than HYDROPH_DIST_MAX.

Figure 4: Schematic representation of the geometry of a hydrogen bond (without protonation). D and
A denote the hydrogen bond donor and acceptor respectively. X1 and X2 are the neighboring atoms
of donor and acceptor. The hydrogen bond distance as well as donor/acceptor angles are illustrated.

Figure 5: Schematic representation of the geometry of ω–ω stacking. To form a ω–ω stacking, we
need two aromatic rings. The distance of ring centers, the angle between normal vectors, and the
projection offset of the ring centers need to satisfy a set of geometry constraints.

C Model Details

In PocketFlow, we adopt a neural network architecture modified from the FrameDiff [86]. This
architecture consists of Invariant Point Attention from AlphaFold2 [43] and transformer blocks
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[79]. In this section, we use superscripts to refer to the network layer and subscripts to indexes
or variables. In the network, each residue/ligand atom is represented by one embedding h ↑ RDx

and a frame T ↑ SE(3). For the ligand atoms, the orientation matrix of frame is set as identity
matrices. Overall, at the ⇁-th layer of the network, hϑ = [hϑ

1, . . . , h
ϑ
N ] ↑ RN↘Dx are all the node

embeddings where h
ϑ
i is the embedding for the i-th node and N = Np +Nl is the total number of

nodes; T ϑ = [T ϑ
1 , . . . , T

ϑ
N ] ↑ SE(3)N is the frames of every node at the ⇁-th layer; zϑ ↑ RN↘N↘Dz

are edge embeddings with z
ϑ
ij being the embedding of the edge between residues i and j. In the

following paragraphs, we introduce the details of feature initialization, node/edge update, backbone
update, and residue type/interaction type/sidechain torsion angle predictions.

Feature initialization. Following [86], node embeddings are initialized with residue indices and
timestep while edge embeddings additionally get relative sequence distances. Initial embeddings
at layer 0 for residues i, j are obtained with an MLP and sinusoidal embeddings ↽(·) [79] over the
features. Following [86], we additionally include self-conditioning of predicted Cω displacements.
Let x̃ be the Cω coordinates predicted during self-conditioning. 50% of the time we set x̃ = 0. The
binned displacement of two Cω is given as,

dispij =
Nbins∑

k=1

1{x̃i → x̃
j
< dk}, (14)

where d1, . . . , dNbins are linspace(0, 20) are equally spaced bins between 0 and 20 angstroms. In our
experiments we set Nbins = 22. The initial embeddings can be expressed as

h
0
i = MLP(↽(i),↽(t)), h

0
i ↑ RDh , (15)

z
0
ij = MLP(↽(i),↽(j),↽(j → i),↽(t),↽(dispij)), z

0
ij ↑ RDz , (16)

where Dh, Dz are node and edge embedding dimensions. For the initialization of Cω coordinates,
we use the interpolation and extrapolation strategy of FAIR [92].

Node update. The process of node update is shown below. Invariant Point Attention (IPA) is from
[43]. No weight sharing is performed across layers. We use the vanilla Transformer from [79]. We
use Multi-Layer Perceptrons (MLP) with 3 Linear layers, ReLU activation, and LayerNorm [6] after
the final layer.

hipa = LayerNorm(IPA(hϑ
, z

ϑ
,T

ϑ) + h
ϑ), hipa ↑ RN↘Dh (17)

hskip = Linear(h0), hskip ↑ RN↘Dskip (18)

hin = concat(hipa, hskip), hin ↑ RN↘(Dh+Dskip) (19)

htrans = Transformer(hin), htrans ↑ RN↘(Dh+Dskip) (20)

hout = Linear(htrans) + hϑ, hout ↑ RN↘Dh (21)

h
ϑ+1 = MLP(hout), hϑ+1 ↑ RN↘Dh (22)

Edge update. Each edge is updated with a MLP over the current edge and source and target node
embeddings. In the first line, node embeddings are first projected down to half the dimension.

h
ϑ+1
down = Linear(hϑ+1), h

ϑ+1
down ↑ RN↘Dh/2 (23)

z
↓
ij = concat(hϑ+1

down,i,h
ϑ+1
down,j , z

ϑ
ij), z

↓
ij ↑ RN↘(2Dh+Dz) (24)

z
ϑ+1 = LayerNorm(MLP(z↓)), z

ϑ+1 ↑ RN↘N↘Dz (25)

Backbone update. Our frame updates follow the BackboneUpdate algorithm in AlphaFold2 [43].
We write the algorithm here with our notation,

(bi, ci, di, x
update
i ) = Linear(hL

i ), (26)

(ai, bi, ci, di) = (1, bi, ci, di) /
√

1 + b2i + c2i + d2i , (27)

R
update
i =




a
2
i + b

2
i → c

2
i → d

2
i 2bici → 2aidi 2bidi + 2aici

2bici + 2aidi a
2
i → b

2
i + c

2
i → d

2
i 2cidi → 2aibi

2bidi → 2aici 2cidi + 2aibi a
2
i → b

2
i → c

2
i + d

2
i



 , (28)
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T
update
i = (Rupdate

i , x
update
i ), (29)

T
ϑ+1
i = T

ϑ
i · T update

i , (30)

where bi, ci, di ↑ R, xupdate
i ↑ R3. Equ. 27 constructs a normalized quaternion which is then

converted into a valid rotation matrix in Equ. 28. Following [84, 81], we use the planar geometry of
the backbone to impute the oxygen atoms. Note that we only update the pocket and ligand nodes in
PocketFlow while setting the scaffold nodes fixed.

Residue/Interaction Type and Torsion angle Prediction. We predict the residue/interaction types
and sidechain torsion angles based on node embeddings.

hc = MLP(hL), hI = MLP(hL), hω = MLP(hL), (31)

c = softmax(Linear(hc + h
L)), I = softmax(Linear(hϖ + h

L)), (32)

ω = Linear(hω + h
L)mod2ω (33)

where c ↑ RN↘20, I ↑ RN,5, and ω ↑ [0, 2ω)4N . In PocketFlow, the number of network blocks is set
to 8, the number of transformer layers within each block is set to 4, and the number of hidden channels
used in the IPA calculation is set to 16. The node embedding size Dh and the edge embedding size
Dz are set as 128. We removed skip connections and psi-angle prediction. For model training, we
use Adam [45] optimizer with learning rate 0.0001, β1 = 0.9, β2 = 0.999. We train on a Tesla A100
GPU for 20 epochs. In the sampling process, the total number of steps T is set as 50.

D Proof of Equivariance

Theorem 1. Denote the SE(3)-transformation as Tg , PocketFLow pε(R,G|P \ R) is SE(3) equivari-

ant i.e., pε(Tg(R,G)|Tg(P \R)) = pε(R,G|P \R), where R denotes the designed pocket, G is the

binding ligand, and P \ R is the protein scaffold.

Proof. The main idea is that the SE(3)-invariant prior and SE(3)-equivariant neural network lead to
an SE(3)-equivariant generative process of PocketFlow. By subtracting the CoM of the scaffold from
the initialized structure, we obtain an SE(3)-invariant prior distribution similar to [86, 29]. Moreover,
the neural network for structure update as shown in Appendix C is SE(3)-equivariant. Formally,
the two conditions to guarantee an invariant likelihood pε(R1,G1|P \ R) are as follows (we use
subscripts to denote the time steps from t = 0 to t = 1):

Invariant Prior: p(R0,G0,P \ R) = p(Tg(R0,G0,P \ R)), (34)

Equivariant Transition: pε(Rt+!t,Gt+!t|Rt,Gt,P\R) = pε(Tg(Rt+!t,Gt+!t)|Tg(Rt,Gt,P\R)),
(35)

We can obtain the conclusion as follows:

pε(Tg(R1,G1)|Tg(P \ R)) =

∫
p(Tg(R0,G0,P \ R))

T≃1∏

s=0

pε(Tg(R(s+1)!t,G(s+1)!t)|Tg(Rs!t,Gs!t,P \ R))

=

∫
p(R0,G0,P \ R)

T≃1∏

s=0

pε(Tg(R(s+1)!t,G(s+1)!t)|Tg(Rs!t,Gs!t,P \ R))

=

∫
p(R0,G0,P \ R)

T≃1∏

s=0

pε(R(s+1)!t,G(s+1)!t|Rs!t,Gs!t,P \ R)

= pε(R1,G1|P \ R),

where T is the total number of steps. We apply the invariant prior and equivariant transition conditions
in the derivation.
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E Classifier-guided Flow Matching

Here, we present the Bayesian approach to guide the flow matching with the affinity predictor. The
key insight comes from connecting flow matching to diffusion models to which affinity guidance
can be applied. Sampling a data point from the prior distribution p0, we have the following ordinary
differential equation (ODE) [72] that pushes it to data distribution:

dCt = v(Ct, t)dt =
[
f(Ct, t)→

1

2
g(t)2↘ log pt(Ct)

]
dt, (36)

where ↘ log pt(Ct) is the score function, f(Ct, t) and g(t) are the drift and diffusion coefficients
respectively. We modify Equ. 36 to be conditioned on the affinity label (vb = 1) followed by an
application of Bayes rule,

dCt =
[
f(Ct, t)→

1

2
g(t)2↘ log pt(Ct|vb = 1)

]
dt (37)

=

[
f(Ct, t)→

1

2
g(t)2 (↘ log pt(Ct) +↘ log pt(vb = 1|Ct))

]
dt (38)

=

[
v(Ct, t)→

1

2
g(t)2↘ log pt(vb = 1|Ct)

]
dt, (39)

where the first term is the unconditional vector field and the second term is the affinity guidance term.
In practice, we do not directly predict the affinity label based on Ct because the intermediate structure
is noisy. We use the following transformation:

pt(vb = 1|Ct) =
∫

p(vb = 1|C1)p(C1|Ct)dCt ↖ p(vb = 1|Ĉ1(Ct)), (40)

where Ĉ1(Ct) is the expected denoised protein-ligand complex structure based on Ct. Details of the
affinity predictor is introduced in the Appendix. E.1. We need to choose g(t) such that it matches the
learned probability path. Previous works [20, 86] showed g(t)2 = t

1≃t in the Euclidean setting. For
simplicity, we set g(t) as constant 1 and observe good performance in experiments.

E.1 Binding Affinity Predictor

In PocketFlow, we leverage a binding affinity predictor pε(vb|Ĉ1(Ct)) to guide the denoising process,
where vb ↑ {0, 1} is the binary label of binding affinity and Ĉ1(Ct) is the expected protein-ligand
structure at t = 1. Following [66, 29], we leverage a 3-layer EGNN [70] with the node initialized
embeddings and residue/ligand atom coordinates from Appendix C. Specifically, we take the Cω

coordinates for the residues and ligand atom coordinates and construct k-NN graphs (k set as 9). Let
h
ϑ
i and x

ϑ
i be denote the node representations and coordinates at the ⇁→th layer. The (⇁+ 1)→th layer

is computed as follows:
h
ϑ+1
i = h

ϑ
i +

∑

j↔N ,i ⇐=j

fh(d
ϑ
ij , h

ϑ
i , h

ϑ
j , eij), (41)

x
ϑ+1
i = x

ϑ
i +

∑

j↔N ,i ⇐=j

(xϑ
i → x

ϑ
j)fx(d

ϑ
ij , x

ϑ
i , x

ϑ
j , eij), (42)

where dϑij = ↗xϑ
i → x

ϑ
j↗ represents the Euclidean distance between node i and node j at the ⇁-th layer,

N denotes the k-NN neighbors, and eij indicates the direction of message-passing, including from
protein to protein, from protein to ligand, from ligand to protein, and from ligand to ligand. The
functions fh and fx are graph attention networks. Finally, we append an average pooling, one linear
layer, and softmax operation at the end to predict the binary label of affinity.

To train the binding affinity predictor, we first annotate the data points in the corresponding training
set: data points are annotated 1 if their affinity is higher than the average score of the dataset,
otherwise 0. We train the predictor separately instead of joint training with flow matching because
we find it can converge more quickly than the flow matching losses. We did not train the predictor on
the intermediate structures as we find they are noisy and deteriorate the predictor and PocketFlow’s
overall performance. In experiments, we use the Adam optimizer and train for 10 epochs.
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E.2 Geometry Guidance

Distance Guidance. For hydrogen bonds, the distances between donor and acceptor atoms need to
be less than 4.1 Å and larger than 2 Å to reduce steric clashes [35]. The following inequality is a
necessary condition for residues in Ĉ1(Ct) with predicted interaction label Î1 as hydrogen bond:

lmin ⇒ min
i↔A(k)

hbond,j↔G

∥∥∥x(i) → x
(j)

∥∥∥
2
⇒ lmax, (43)

where lmin and lmax are distance constraints; A(k)
hbond denote the k-th residue in the set of pocket

residues with predicted hydrogen bonds. With a little abuse of notations, x(i) and x
(j) denote the

atom coordinates in the residue and ligand respectively. We use the following derivations to obtain
the guidance term for the distance constraints:

↘Ct logP ({lmin ⇒ min
i↔A(k)

hbond,j↔G
↗x(i) → x

(j)↗2 ⇒ lmax, k = 1 : |Ahbond|}) (44)

= ↘Ct

|Ahbond|∑

k=1

logP (lmin ⇒ min
i↔A(k)

hbond,j↔G
↗x(i) → x

(j)↗2 ⇒ lmax) (45)

=

|Ahbond|∑

k=1

↘Ct [P (→min
i↔A(k)

hbond,j↔G ↗x(i) → x
(j)↗2 ⇒ →lmin) · P (min

i↔A(k)
hbond,j↔G ↗x(i) → x

(j)↗2 ⇒ lmax)]

P (lmin ⇒ min
i↔A(k)

hbond,j↔G ↗x(i) → x(j)↗ ⇒ lmax)

(46)

=

|Ahbond|∑

k=1

φ1↘CtP ( min
i↔A(k)

hbond,j↔G
↗x(i) → x

(j)↗2 ⇒ lmax) + φ2↘xtP (→ min
i↔A(k)

hbond,j↔G
↗x(i) → x

(j)↗2 ⇒ →lmin)

(47)

=

|Ahbond|∑

k=1

φ1↘CtI( min
i↔A(k)

hbond,j↔G
↗x(i) → x

(j)↗2 ⇒ lmax) + φ2↘CtI(→ min
i↔A(k)

hbond,j↔G
↗x(i) → x

(j)↗2 ⇒ →lmin),

(48)

where φ1 = 1/↘CtP (min
i↔A(k)

hbond,j↔G ↗x(i) → x
(j)↗2 ⇒ lmax) and φ2 =

1/P (→min
i↔A(k)

hbond,j↔G ↗x(i) → x
(j)↗2 ⇒ →lmin). Due to the discontinuity of the indicator

function I(·) that is incompatible with the gradient, we apply φ →max(0, φ → y) as a surrogate of
I(y < φ) in the above equation. Although φ1 and φ2 are dependent on Ct, we find setting them as
constant still works well in experiments. With these approximations, we can derive guidance term for
hydrogen bond distance constraints:

→↘Ct

|Ahbond|∑

k=1

[
φ1 max

(
0, d(k) → lmax

)
+ φ2 max

(
0, lmin → d

(k)
)]

, (49)

where d
(k) = min

i↔A(k)
hbond,j↔G

∥∥x(i) → x
(j)

∥∥
2
. Such distance guidance terms for hydrophobic

interactions, salt bridges, and ω → ω stackings are similar. The difference is to replace Ahbond with
Ahydro, Asalt, and Aϱ that denotes the residue sets with corresponding interactions. We modify the
functions in plip 2 for the ease of detecting interaction atom pair candidates. In practice, ↘Ct takes
gradients with each component in Ct, including ωt,xt,Ot, ct, and It.

Angle Guidance. Besides the distance constraint, the hydrogen bond needs to satisfy the accep-
tor/donor angle constraint [69], e.g., the donor/acceptor angle needs to be larger than 100↗. hangle(·, ·)

2https://github.com/pharmai/plip
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calculates the acceptor/donor angle in Figure. 4.

↘Ct logP ({↼min ⇒ max
i↔A(k)

hbond,j↔G
hangle(x(i)

,x
(j)), k = 1 : |Ahbond|}) (50)

= ↘Ct

|Ahbond|∑

k=1

logP (↼min ⇒ max
i↔A(k)

hbond,j↔G
hangle(x(i)

,x
(j))) (51)

=

|Ahbond|∑

k=1

↘CtP (↼min ⇒ max
i↔A(k)

hbond,j↔G hangle(x(i)
,x

(j)))

P (↼min ⇒ max
i↔A(k)

hbond,j↔G hangle(x(i),x(j)))
(52)

=

|Ahbond|∑

k=1

φ3↘CtP (↼min ⇒ max
i↔A(k)

hbond,j↔G
hangle(x(i)

,x
(j))), (53)

where φ3 = 1/P (↼min ⇒ max
i↔A(k)

hbond,j↔G hangle(x(i)
,x

(j))). The final guidance term is:

→φ3↘xt

|Ahbond|∑

k=1

max(0,↼min → ↽
(k)), (54)

where ↽
(k) = max

i↔A(k)
hbond,j↔G hangle(x(i)

,x
(j)). The angle constraint is similar for the ω → ω

stacking and the final guidance term is:

→φ4↘Ct

|Aω|∑

k=1

max(0,↽(k)
ϱ → ↼max), (55)

where ↽(k)
ϱ = min

i↔A(k)
ω ,j↔G piangle(x(i)

,x
(j)) and piangle(·, ·) calculates the ω→ ω stacking angle

in Figure. 4. All the operations and calculations used in geometry guidance are made differentiable
and can be plugged into the sampling process of PocketFlow.

Figure 6: Superposition of 20 residue-type sidechains. When calculating the geometry guidance, we
use the expected sidechain conformations with respect to the estimated residue type probability ĉ

(i)
1

to avoid the non-differentiability issue of residue type sampling.

Sidechain Ensemble. PocketFlow takes the co-design scheme, where the residue type/side chain
structure of the pocket is not determined during sampling. Directly sampling from the residue type
distribution makes the model not differentiable [38]. We propose to use the sidechain ensemble for
the interaction geometry calculation, i.e., the weighted sum of geometric guidance with respect to
residue types. For example, for Equ. 54, we have:

→φ3↘Ct

|Ahbond|∑

k=1

20∑

n=1

ĉ
(i)
1 [n] ·max(0,↼min → ↽

(k)), (56)

where ĉ(i)1 [n] denote the n-th residue type probability and ↽
(k) calculates the angle with the n-th type

residue side chain.
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Figure 7: Average Generation time for 100 pockets by different models on CrossDocked (the error
bars show the standard deviations over different runs).

(a) (b) (c)

Figure 8: The influence of Affinity Guidance Strength ς on the pocket metrics.

F More Results

Here, we show additional results on efficiency analysis (Figure. 7), hyperparameter analysis of ς
(Figure. 8), and ablation studies on the interaction analysis (Table. 6).

Figure. 7 shows that the PocketFlow is much more efficient than stat-of-the-art diffusion-based
models such as RFDiffusionAA. Considering the high quality of the generated pockets, the slight
time overhead over models based on iterative refinement (e.g., dyMEAN and FAIR) is acceptable.
We find that Affinity and Interaction Geometry Guidance do not add much overhead to the generation
process. Therefore, these prior guidance are efficient tools for pocket optimization.

In Figure. 8, we explore the impact of Affinity Guidance Strength (ς) on various generation metrics.
As ς is scaled up, the Vina Score significantly improves and quickly stabilizes; AAR initially increases
before gradually decreasing; scRMSD, on the other hand, increases with higher ς. These observations
underscore the importance of selecting an appropriate ς to effectively balance the guidance and
unconditional terms. While Affinity Guidance promotes the generation of high-affinity pockets, an
excessively high ς can result in less valid pocket sequences or structures. In the default configuration,
ς is set to 1.

To evaluate the validity of the generated sidechain structure, we compute the Mean Absolute Error
(MAE) of sidechain angles (degrees) following [90] in Table. 5. We mainly compare PocketFlow
with RFDiffusionAA [48]+LigandMPNN [22] on the recovered residues. In the table, we report
the average MAE and can observe that PocketFlow achieves better performance in generating valid
sidechain structures.

Method ϑ1 ϑ2 ϑ3 ϑ4

RFDiffusionAA 21.56 27.92 48.76 52.88
PocketFlow 19.40 26.22 44.57 50.10

Table 5: The MAE of RFDiffusionAA + LigandMPNN and PocketFlow on sidechain torsion
angles(degrees).
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In Table. 6, we supplement further results of interaction analysis (Table. 3 in the main paper). We
can observe that the guidance terms effectively improve the number of favorable interactions while
reducing steric clashes, which lay the foundation for generating high-affinity pockets.

Methods Clash (⇑) HB (⇓) Salt (⇓) Hydro (⇓) ω–ω (⇓)
PocketFlow 1.21 4.12 0.27 6.03 0.28

w/o Aff Guide 2.58 3.84 0.25 5.84 0.27
w/o Geo Guide 3.27 3.96 0.24 5.90 0.27

w/o Geo & Aff Guide 3.56 3.68 0.23 5.73 0.26
w/o Inter Learning 3.34 3.74 0.22 5.80 0.26

Table 6: Ablation studies on the interaction analysis. The best results are bolded and the runner-up is
underlined.
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G Baseline Implementation

DEPACT [19] 3 is a template-matching method that follows a two-step strategy for pocket design.
Firstly, it searches the protein-ligand complexes in the template database with similar ligand fragments
and constructs a cluster model (a set of pocket residues). The template databases are constructed
based on the corresponding training datasets for fair comparisons. Secondly, it grafts the cluster
model into the protein pocket with PACMatch. It works by placing residues from the cluster model
on protein scaffolds by matching the atoms of residues with atoms of the protein scaffold. The
backbone coordinates of the pocket residues are also modified in the process. The qualities of the
generated pockets are evaluated and ranked based on a statistical scoring function. We take the
top 100 designed pockets for evaluation. The output of DEPACT+PACMatch is complete protein
structures with redesigned pockets. In the paper, we only use DEPACT to represent the whole method
of DEPACT+PACMatch for conciseness.

RFDiffusionAA [48] 4 is the latest version of RFDiffusion which combines a residue-based rep-
resentation of amino acids and atomic representations of all other groups to model protein-small
molecules/metals/nucleic acids/covalent modification complexes. Starting from random distributions
of amino acid residues surrounding target small molecules, RFDiffusionAA can directly generate the
small molecule binding protein backbone. Furthermore, with LigandMPNN [22], the latest version
of ProteinMPNN[21], we can assign residue types and predict sidechain conformations considering
the protein-ligand interactions. Experiments in RFDiffusionAA [48] show that the generated protein
by RFDiffusionAA has better binding affinity than those obtained by RFDiffusion with auxiliary
potential. We use the provided checkpoints of RFDiffusionAA for all the experiments since the
training code is unavailable.

dyMEAN [47] 5 is an end-to-end full-atom model for E(3)-equivariant antibody design given the
epitope and the incomplete sequence of the antibody. Its previous version, MEAN [46], only considers
the backbone atoms, while dyMEAN considers the complete atom structure and performs better on
downstream tasks. Generally, dyMEAN co-designs antibody sequence and structure via a multi-round
progressive full-shot refinement manner, which is more efficient than auto-regressive or diffusion-
based approaches. An adaptive multi-channel equivariant encoder is used in dyMEAN, which can
process protein residues of variable sizes when considering full atoms. To adapt dyMEAN to our
pocket design task, we replace the antigen with the target ligand molecule to provide the context
information for pocket generation. We set the hidden size as 128, the number of layers as 3, and the
number of iterations for decoding as 3.

FAIR [92] 6 is our previous method for full atom pocket sequence-structure co-design. FAIR operates
in two steps, proceeding in a coarse-to-fine manner (backbone refinement to full atoms refinement,
including side chains) for full-atom generation. In FAIR, residue types and atom coordinates are
updated using a hierarchical graph transformer composed of a residue-level and atom-level encoder.
The number of layers for the atom and residue-level encoder are 6 and 2, respectively. Ka and Kr

are set as 24 and 8 respectively. The number of attention heads is set as 4; The hidden dimension d is
set as 128.

3https://github.com/chenyaoxi/DEPACT_PACMatch
4https://github.com/baker-laboratory/rf_diffusion_all_atom
5https://github.com/THUNLP-MT/dyMEAN
6https://github.com/zaixizhang/FAIR
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