®

Check for
updates

A Scalable Optimization Algorithm
for Solving the Beltway and Turnpike
Problems with Uncertain Measurements

C. S. Elder'®, Minh Hoang?®, Mohsen Ferdosi!, and Carl Kingsford!®)

! Ray and Stephanie Lane Computational Biology Department,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
{celder,mferdosi,carlk}@cs.cmu.edu
2 Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
ghoang@andrew.cmu. edu

Abstract. The BELTWAY and TURNPIKE problems entail the recon-
struction of circular and linear one-dimensional point sets from unordered
pairwise distances. These problems arise in computational biology when
the measurements provide distances but do not associate those distances
with the entities that gave rise to them. Such applications include molec-
ular structure determination, genomic sequencing, tandem mass spec-
trometry, and molecular error-correcting codes (since sequencing and
mass spec technologies can give lengths or weights, usually without
connecting them to endpoints). Practical algorithms for TURNPIKE are
known when the distance measurements are accurate, but both problems
become strongly NP-hard under any level of measurement uncertainty.
This is problematic since all known applications experience some degree
of uncertainty from uncontrollable factors. Traditional algorithms cope
with this complexity by exploring a much larger solution space, lead-
ing to exponential blowup in terms of both time and space. To allevi-
ate both issues, we propose a novel alternating optimization algorithm
that can scale to large, uncertain distance sets with as many as 100,000
points. This algorithm is space and time-efficient, with each step run-
ning in O(mlog(m)) time and requiring only O(y/m) working space for
a distance set of size m. Evaluations of this approach on synthetic and
partial digest data showcase improved accuracy and scalability in the
presence of uncertain, duplicated, and missing distances. Our implemen-
tation of the algorithm is available at https://github.com/Kingsford-
Group/turnpikesolvermm.

Keywords: Inverse Problem - Optimization - Beltway - Turnpike

1 Introduction

The TURNPIKE problem is to reconstruct n unknown points on a line from all (g)
pairwise distances between them provided without labels. The BELTWAY prob-
lem is a variant where the points lie on a circle instead of a line. These problems

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Ma (Ed.): RECOMB 2024, LNCS 14758, pp. 201-216, 2024.
https://doi.org/10.1007/978-1-0716-3989-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3989-4_13&domain=pdf
http://orcid.org/0009-0006-3818-3975
http://orcid.org/0000-0002-1053-6744
http://orcid.org/0000-0002-0118-5516
https://github.com/Kingsford-Group/turnpikesolvermm
https://github.com/Kingsford-Group/turnpikesolvermm
https://doi.org/10.1007/978-1-0716-3989-4_13

202 C. S. Elder et al.

arise frequently in computational biology applications when the measurement
(e.g. mass spectrometry or sequencing) provides distances but does not associate
those distances with the entities that gave rise to them. In the tandem mass spec
application, for example, when sequencing an unknown peptide ajas .. .a,, the
“points” are the weights of the fragments a;,a;a;41,a;0;110;42,... — recon-
structing those points would suggest the identity of each amino acid a; via its
weight. However, the MS/MS measurement provides the weights of every frag-
ment a; . ..a; (which can be treated as “distances” between points ¢ and j) with-
out associating that measurement with ¢ or j. Various heuristics for this problem
are applied to structure estimation of biomolecules [13], de novo sequencing of
linear and cyclic peptides [9,17], and reconstructing DNA sequences from their
partially digested fragments [20,22]. Some versions of the problem provide addi-
tional labeling information and reduced distance subsets, such as the labeled
partial digest problem that separates the endpoint distances from the all-pairs
distance set and the simplified partial digest problem [4] that returns only a
subset of the distances. Other variants of the TURNPIKE problem are applied
to quantum phase estimation [26] and molecular error-correcting codes used for
databases [11].

The ExacT TURNPIKE variant of the problem, where all distances are
observed without error, can be solved exactly via a backtracking algorithm that
alternates between placing the largest remaining distance and matching derived
and ground truth distances [21]. While there exist pathological cases for which
it incurs exponential runtimes [25], this algorithm is generally efficient in prac-
tice with an expected run time of O(n?logn) for random instances [20]. Various
extensions to the backtracking algorithm have been proposed to improve both
expected and worst case runtimes, including a variant based on breadth-first
search [1], that are empirically faster. One extension efficiently solves known
pathological instances [18]. In contrast, algorithms for BELTWAY are not efficient,
with a worst case runtime of O(n™logn) that is often realized in practice [9].
Other approaches to TURNPIKE include a fixed-parameter tractable algorithm
that works by factoring a polynomial and scales with the largest distance in
the set [14]. Regrettably, this approach is highly susceptible to numerical preci-
sion errors [15]. This restricts its practical applicability whenever floating point
arithmetic is used. A semidefinite relaxation also exists that is able to solve some
instances but is known to be numerically unstable and suffer from runtimes far
exceeding the backtracking algorithm in practice [13].

When the distance measurements are uncertain, we have the Noisy TURN-
PIKE and NOISY BELTWAY problems, which are both strongly NP-complete as
demonstrated by a reduction from the three-partition problem [6]. Skiena et al.
modified the backtracking approach to use intervals instead of points to accom-
modate measurement uncertainty [20], but these modifications lead to the con-
sideration of exponentially many paths, limiting the algorithm’s efficiency and
practical applicability [13]. Pandurangan et al. assumed that the partial digestion
results from both ends of the double stranded DNA sample are observed [19].
Fomin et al. performed the equivalent modifications for Noisy BELTWAY and

Scalable Optimization for the Turnpike Problem 203

reduce the running time by removing redundant measurements, but as with the
exact case, only very small NOISY BELTWAY instances can be solved with this
algorithm [10]. More recently, Huang et al. model both the NOi1sy TURNPIKE
and NoOISY BELTWAY problems as probabilistic inference of the point assign-
ments using discrete bins that quantize the input domain [13]. In this approach,
the bin size is set to be smaller than the smallest distance, and hence it was
assumed that no bin can contain more than one point. However, this only holds
true when the observation error is sufficiently small in magnitude relative to
the smallest distances. As such, the accuracy of this algorithm deteriorates in
noisier instances. In addition, it also struggles to efficiently solve larger problem
instances, with n > 500 out of reach at present.

In Sect.2, we propose a novel approach to solving the NOISY TURNPIKE
and NoOISY BELTWAY problems using a bilevel optimization scheme that alter-
nates between estimating the point-distance correspondence and recovering the
original point set given this assignment. Our formulation’s non-convex optimiza-
tion landscape contains many saddle points and local optima. We accommodate
for this by introducing a divide-and-conquer step to recursively correct small-
scale mistakes that lead to low-quality solutions. Our algorithm runs in time
O(n%logn) for each step, with time dominated by a low-cost sorting step.

In Sect. 3, we empirically demonstrate the performance of our Minorization-
Maximization algorithm (MM) in various synthetic and realistic biological set-
tings, such as the partial digestion task [13]. Our algorithm arrives at highly
accurate solutions even in extremely noisy observation conditions. We also
demonstrate that the proposed algorithm runs more efficiently than previous
approaches and empirically matches our theoretical runtime expectation. Most
notably, the proposed algorithm can efficiently process partial digestion instances
with up to a hundred thousand digested fragments, which is realistically on the
scale of a whole genome and has never been achieved by previous methods.
Moreover, we provide an extension of the method in Appendix C [8] to problem
variants that provide additional labeling information and reduced distance sets.
In summary, this algorithm advances the capacity to address both the Noisy
TURNPIKE and NoOIsy BELTWAY problems, and thereby improves the accuracy
and scalability of various biological tasks that make use of these formulations.

2 Method

2.1 Problem Setting

Let m = n(n —1)/2 and D € R™ be a vector of pairwise distances between n
points. We denote the ground truth vector containing the points to be recov-
ered as z € R”. Without loss of generality, we assume that z; < -+ < z,,
Sh_izk =0, and ||z]]2 = 1; that is, the unknown points are named in sorted
order, centered around zero, and have unit norm. These assumptions do not
fundamentally change the problem, but are nonetheless important as they pre-
vent trivial non-uniqueness. The first and second assumptions hold because the
distance set is invariant to translation and permutation of the points, allowing

204 C. S. Elder et al.

us to look for a centered, sorted solution vector z. The third assumption fol-
lows because we can construct a scaled distance set D = \/n || D|5* D from the
original distances that generates zZ = z/||z||2, using the fact that z is centered:

n

2
n n
IDI3 = (2 — z)* = nllzl3 + > 2z = nllzll5 + (Z Zk) = nl|z]l3 .
k=0

i<j]

Let Z be the set of vectors in R™ that satisfy all three assumptions above
(treating dimensions of vectors in Z as the point locations), and let S, denote
the set of all permutation matrices of m items. We use TURNPIKE to refer to
both the ExacT TURNPIKE and NoOISY TURNPIKE variants, when statements
apply to both. The EXACT TURNPIKE problem is formalized as finding a vector
%2 € Z such that QZ = PD for some P € S,,, and where Q € R™*" is a fixed
incidence matrix defined as follows. Each row in () corresponds to a pair of indices
j > 4. For convenience, we let the function «(i,j) map the index pair (i,7) to
its (arbitrary) row index in Q. The incidence matrix @ is constructed such that
Qafi,j),; = 1 and Q4 (i 5),; = —1 are the only non-zero entries in Q,(;,5)- It follows
that Qni,;)2 = £ — Z;, and Q% contains all the pairwise distances generated
by Z. Furthermore, if Z recovers the ground truth z, then)2 must also be a
permutation of D, which explains the role of P in the objective above. In the
Noisy TURNPIKE case, which is the focus of this paper, exact recovery is not
possible in general due to the corrupted observations. Therefore, the objective
can be written in the form of an optimization task:

A~ !/
Z = argmax max z',PD), 1
g mae (Q2/, PD) (1)
where (-, -) denotes the inner product of two vectors. This is equivalent to mini-
mizing the £y distance between Qz’ and PD because the norm of P, Q and D are
constant, 2’ is normalized based on our previous assumptions, and optimality in
the exact case will take place when Qz' = PD.

2.2 Minorization-Maximization Scheme for Solving Turnpike

We first observe that Eq. (1) is bilinear because fixing either P or z reduces the
problem to a linear function. This motivates a bilevel minorization-maximization
(MM) scheme [23] to optimize this objective. In particular, we relax our objec-
tive into two alternating subproblems. At iteration ¢ + 1, for ¢ > 0, the first
subproblem fixes an estimation z¢ and solves for

P, = argmax (Qz', PD), (2)
PeSny
which has a closed-form solution, as shown in Proposition 1 below. This closed
form is a variant of the rearrangement inequality [12] used in Lemma 1.

Lemma 1. Let y = (y1,Y2,---,Yn) € R™ such that y1 < yo < ... < y,. The

objective argmax (Px,y) is solved by P, such that Pyx is in sorted order.
PESm

Scalable Optimization for the Turnpike Problem 205

Algorithm 1. Minorization-Maximization (MM)

Input: Distance vector D, initial estimate z°, tolerance € > 0
1: t <0

D~ D' > Replace D with its sorted equivalent D'

while not converged do
P — ngt > Calculate and sort Qz" using Alg. 2
2t —QTPD > Estimate the next point vector
t—t+1
converged «— ||z'Tt — 2t < €

end while

return unit(z")

Proof. Let P € S, be a non-sorting permutation, meaning there exist indices
i < j where (Pz); > (Pxz);. Notice that transposing elements ¢ and j increases
the objective because

(Pz)j — (Px)i)(y; —vi) <0 = (Pz);y; + (Pz)iyi < (Pz)iy; + (Px);9;.

Thus the permutation that first applies P then transposes elements ¢ and j is
no worse than P. Iterating this argument leads to a sorting permutation that
is also no worse than P. As the initial permutation was arbitrary, this shows
that there exists a globally maximizing permutation that sorts x. To finish the
proof, notice that any two sorting permutations P, and P, must have the same
objective value since sortedness implies Pyjx = Pyx. a

Proposition 1. Let IIT be a permutation that puts Qz into sorted order. The
permutation I1 is a globally mazimizing solution to Eq. (2).

Proof. Without loss of generality, we assume that D is sorted as a preprocessing
step to the NOIsY TURNPIKE problem. We can rewrite the expression in Eq. (2)
as (Qz', PD) = (PT(Qz"), D). By Lemma 1, any permutation /7' that sorts
@z must be a global maximizer of the right-hand side. Notice the transpose IT
is the equivalent solution on the left-hand side, proving the claim. a

On the other hand, the second subproblem fixes an estimation for P;, which is
the closed-form solution derived above, and solves for:

2! = argmax (Q%, P,D) = argmax(%,Q" P.D) . (3)
2€2 sez
Since the inner product of two vectors is maximized when they are parallel
and ||Z||2 = 1 by assumption, the maximum objective value is obtained when
2 =unit(Q " P.D), where unit(-) scales a vector to unit norm.

As objectives (2) and (3) have closed-form solutions, they motivate a practical
bilevel optimization routine described in Algorithm 1. Note that the unit projec-
tion does not affect the permutation in the next iteration, so we omit it until the
vector is returned. We avoid storing both the incidence matrix and intermediate

206 C. S. Elder et al.

distance vector by using implicit matrix multiplication and a problem-specific
matching algorithm, Algorithm 2. The runtime of the optimization inner loop
is derived in Proposition 2. In the same proposition, we also derive a memory
efficient implementation that avoids storing intermediate values during optimiza-
tion.

Lemma 2. The priority queue in Algorithm 2 uses z' interval order, i.e.,

(i,7) < (7',5") <= (2'j] — 2'[i]) < (2'[5'] — 2'[7']). This ordering satisfies
i <i', j/ <j and implies (i,7) < (', ') when z' is sorted.

Proof. For i < i’ and j' < j, we have z![i] < 2![i'] and 2![j’] < 2%[j], which
implies that z'[j'] — 2[i'] < 2![j] — 2%[i]. This is the definition of (i’,j") < (3, 7).
O

Proposition 2. Upon termination of Algorithm 2, the vector z'™1' contains
QTlYgZ,,D. Moreover, the algorithm runs in O(n?logn) time and uses only O(n)
nonnegative integers for non-constant storage, where n is the number of points.

Proof. We first prove that the priority queue pops the t'" smallest distance
during iteration t. To that end, we define the sequences I* = (k,k 4 t)/—.
We note that the sequences I',...,I"! partition the (g) possible intervals.
Lemma 2 establishes that these chains are in interval sorted order, and thus
implies Algorithm 2 produces the smallest unseen interval at each iteration.
This holds because the queue holds the smallest element from each sequence,
and we add the next one until each sequence has been exhausted.

By the discussion above, during iteration ¢, (i,j) is the (potentially non-
unique) ¢™ smallest interval. Thus the sorting permutation will send interval
(i,7) to index t, and its transpose (i.e., inverse) will send index t to interval
(i,7), implying D[t] will be used as the (i, j) distance. When multiplying by QT,
the (i,) distance entry contributes only to the i*® and j*® points. Specifically,
the (i,) entry is subtracted from z!*1[i] and added to z!*1[j], which is imme-
diately performed in Algorithm 2’s loop. Thus the algorithm terminates with
21 = QT P,D since we initially zero it out and accumulate all the entries that
contribute to it.

The algorithm performs O(nlogn) work before the main loop, which takes
O(n%logn) time because the priority queue takes O(logn) time per iteration
using standard implementations. This is unaffected by the constant-time interval
comparison function. The priority queue uses the only non-constant memory, as
it needs to store O(n) non-negative integers for the intervals. O

Proposition 3. The outer loop of Algorithm 1 terminates within a finite num-
ber of steps. The inner-loop takes O(n?logn) time and O(n) non-constant stor-
age.

Proof. For the first claim, notice that the sorting permutation in each iteration
fully decides the point vector that is produced in the next step, meaning the set
of possible output vectors is finite. We also know that the permutation and point

Scalable Optimization for the Turnpike Problem 207

vector must improve the objective at each step. This means the algorithm cannot
continue to make progress indefinitely and will terminate when z! = zt*+1.

For the second claim, notice that steps 4 and 5 take O(n?logn) time and
need only O(n) non-negative integers of non-constant storage by the result of
Proposition 2. We only need to keep two n-dimensional floating point vectors to
calculate step 7. a

In practice, we observed that Algorithm 1 converges quickly but is prone to
becoming trapped in local maxima. To prevent this, we further propose a divide-
and-conquer heuristic formally described in Algorithm 3. In particular, after each
pass of Algorithm 1, we partition the estimation Z into non-overlapping subsets
Z; and Z,.. In our implementation, the median is used to form the partitions, but
any rule works with this framework. No matter the choice, this segments the
distance set D into three portions: (a) D contains the distances among points
in 2;; (b) D, contains the distances among points in Z,; and (c¢) D, contains
the distances between pairs of points respectively in Z; and Z,.. Even though we
do not have the ground truth assignment of the point-distance correspondence,
we can use the estimated permutation matrix P to perform this segmentation.

Intuitively, if Z and P are the optimal TURNPIKE solution, then subsequent
applications of Algorithm 1 on (z;, Dy;) and (2, D) will not alter this solution.
Otherwise, the recursive sub-routines will likely not get trapped in the same local
maxima as the parent routine and will serve as a self-correcting mechanism for
Algorithm 1 by returning the adjusted permutations P, and P,. At this point,
we can adjust Z; and 2, by solving the following regression tasks:

2 = argmin ||Qz] — P.Dy| and PARIES argl/nin Q2. — P.D,..||

, T
Zl r

where @); and @), are the respective incidence submatrices corresponding to Z;
and Z,.. To avoid storing the incidence matrices, we can use any matrix-free solver
such as the conjugate gradient method [24] (see Alg. 4 in Appendix A [8] for the
matrix-free oracles). As the adjusted estimation 2+ = (37, 2;) breaks away from
potential local maxima, this routine is repeated until convergence, as described
in Algorithm 3 below. We provide a visualization of how this improves solutions

in Appendix B [8].

Remark. An alternative approach (which will be compared against our method
in Sect.3) to solving Eq. (1) applies Birkhoff’s theorem [3], which states that
the polytope B, of m x m doubly stochastic matrices is the convex hull of S,,.
This motivates a relaxation of Eq. (1) to optimize for P on B,

zZ= rgmln max (Qz PD) , (4)
ez PeB

which allows for a differentiable permutation learning framework that combines
(a) stochastic gradient descent over the space of square matrices; and (b) projec-
tion onto B, with the Sinkhorn operator [16]. In the case of the TURNPIKE and
Noisy TURNPIKE problems, this approach requires the algorithm to optimize
an m x m matrix, which holds an infeasibly large ©(n?) entries. We refer to this
alternative as the “gradient descent” method in the results below.

208 C. S. Elder et al.

Algorithm 2. QT applied to matched D

Input: m-Distance vector D; n-Point vectors z¢, z'*1
1: 2] —0 > Zero out the vector
2: 2 « sort(2") > Sort the incoming point vector
3: frontier « Min-Interval-Priority-Queue(n, z*) > 2% interval order, n interval
allocation

4: forie[l,...,n—1] do

5: enqueue(frontier, (7,7 + 1))
6: end for

7: fort € [1,...,m] do

8: (,4) < Min-Pop(frontier)
9: 2"i] «— 2" [i] — D[t]
10: 2] — 2] + DY)
11: if j < n then

12: enqueue(frontier, (i, 7 + 1))
13: end if
14: end for

1: procedure INTERVAL-COMPARE(z, (i1, j1), (i2,j2))
2: > Interval comparison function based on z

3: return (z[ji] — 2[i1]) < (z[j2] — z[i2])

4: end procedure

2.3 Extension to Other Variants

In the BELTWAY problem, we are given n(n—1) unlabeled arc lengths (distances)
between n points p1,...,p, on a circle. Note that we receive double the number
of distances as in the Turnpike case because there are two different arcs between
any two points (i.e., clockwise and counter-clockwise). The BELTWAY problem
can be solved within our framework (Sect.2.2) with minor modifications. We
also extend our method to a general variant of the TURNPIKE problem that
handles both labeled and missing distances. This extension captures the labeled
partial digest problem [19] and simplified partial digest problem [4]. We refer to
Appendix C [8] for the details of these extensions.

2.4 Initializer Sampling

The choice of an initializer for Algorithm 3 plays a critical role in achieving good
convergence and overall performance. A well-chosen initializer can lead to faster
convergence, improved stability, and a more accurate solution. Here, we consider
three practical initializing schemes. The first scheme samples a random Gaus-
sian vector and sorts it. Though efficient to implement, this scheme is unlikely
to produce a good initializer if the ground set exhibits pathological features
such as having spread-out point clusters. On the other hand, if the points are
well-spread, this scheme often finds a close starting point. The second scheme
provides a random permutation Py to the sub-problem in Eq. (2) and sets 20 as
its closed-form solution. This incorporates the combinatorial nature of TURN-
PIKE and potentially encourages more diverse exploration of the solution space.

Scalable Optimization for the Turnpike Problem 209

Algorithm 3. Minorization-Maximization Divide-and-Conquer (MMDQ)

Input: Distance vector D, initial estimate z°, tolerance e

1: D~ D' > Replace D with its sorted equivalent D'
2:t—0

3: while not converged do

4 2T P — MM(D, 2t €) > Alg. 1
5: 21, 2r + PARTITION(2'T1) > as described above
6: Dy, Dyy, D <+ SEGMENT(21, 2r, D, Piy1) > as above
7 P, — MMDQ(Dy, z1, €) > recursive call on left set
8 P.,_— MMDQ(Dyr, zr,€) > recursive call on right set
9: 27 solve Eq. (4) > “consensus” point set
10: t—t+1
11: converged « ||z'Tt — 2! < €

12: end while
13: return Pt,zt

Nevertheless, selecting random permutations does not guarantee proximity to
the optimal solution or even proximity to a valid distance permutation. The
final scheme is a greedy-search method inspired by the classical backtracking
approach [20]. That is, we sequentially fit the largest distance in D onto a line
segment configuration (i.e., placing a new point to the left or to the right end of
the segment based on this distance). However, unlike the original formulation—
which uses backtracking to find the optimal placement—we make greedy choices
to generate an initializer that will be polished with our algorithm afterwards,
thus avoiding potentially exponential runtime.

3 Empirical Results

Experimental Design. We assessed the performance of our proposed algorithm
on the Turnpike, Beltway, and Labeled Partial Digest problems. As a baseline,
we used synthetic data to validate our proposed algorithm’s performance on
uncertain measurements and compared it to the backtracking method [20], the
distribution matching method [13], and our projected gradient descent baseline
using the Gumbel-Sinkhorn relaxation [16]. To evaluate the performance of our
method in genome reconstruction, we conducted a series of experiments that
simulated the reconstruction of a DNA sequence from fragments generated by
enzymes. All experiments were implemented in Python 3.10 using a C+420
library implementing the algorithm integrated with Python using PyBind11 and
conducted on a computer equipped with 1.0 TB of RAM, two Intel Xeon E5-
2699A v4 CPUs, and a GTX 3080 GPU.

Synthetic Data. Synthetic datasets were generated by sampling n points on the
real line from three distributions: the Cauchy distribution, the standard normal
distribution, and the uniform distribution on [0,1]. The uniform distribution
was chosen to align with the setting explored by Huang et al. [13]. The normal

210 C. S. Elder et al.

distribution was chosen to generate point sets with tightly-clustered points. The
Cauchy distribution was selected to generate point sets with varying scales, i.e.,
sets where some points are much larger than others. This is important to test
since outlying values often pose a challenge for ¢5 optimization methods [5].

We examined sample sizes ranging from 50 to 2,000 points (in increments
of 50) and three additional large sample sizes of 5,000, 10,000, and 100,000 to
demonstrate the method’s scalability. To simulate measurement uncertainty of
magnitude € = 107% for integer k € [1,12], we added a Gaussian noise vector
g ~ N(0,€eI) to the given vector of pairwise distances [7]. We rounded the
distance to zero when the amount of uncertainty exceeded the magnitude of the
distance, which simulates missing distances. We predicted the points for each set
of distribution, size, and uncertainty for 10 independent test cases. We run each
algorithm 10 times and output the best estimate, which we quantified with the
¢y distance between the estimated and uncertain distance sets (the algorithms
are deterministic, but the choice of initializer is random as described above). We
recorded the mean absolute error (MAE) and mean squared error (MSE) between
the estimated and ground point sets. The MAE is a continuous alternative to
the binning distance [13] and is more suitable for our method since we do not
explicitly assign points to bins. Since the distribution matching method produces
bins as its output, we use the midpoint of each bin as the predicted point.

Study of Different Initialization Schemes. We investigated the three ini-
tialization strategies (Sect.2.4) to select one for subsequent experiments. We
boosted the Gaussian point vector and permutation point vector initializer by
drawing n distinct samples that were scored by solving Problem 2 for each and
taking the maximum value. The sample with the maximum score from each
strategy was used as the initializer. We used the Gaussian initializer as the
starting point for the greedy-search initializer. We tested the strategies across
all settings described previously. Figurel shows the cosine distances between
the estimated and uncertain distance vectors. Among the three approaches, the
permutation strategy exhibited the worst similarity scores, with an average mag-
nitude 13 times larger than that of the greedy-search strategy. The Gaussian
strategy demonstrated an average error magnitude that was 8 times larger than
the greedy-search initialization.

A better initial score does not necessarily guarantee a better reconstruction
after optimization. To assess the efficacy of each initializer, we analyzed whether
lower pre-optimization errors translated to reduced post-optimization errors. The
cosine distance after optimization is also shown in Fig. 1. The permutation ini-
tialization had the highest errors and the greedy-search approach had the lowest
errors, which is consistent with the pre-optimization cosine distance. We used
the greedy-search initializer for our experiments since it exhibited the lowest
post-optimization distance. The greedy-search strategy’s lower error comes at a
computational cost. Table 1 shows the median runtime for the greedy-search ini-
tializer, Gaussian initializer, and optimization loop across a representative set of
problem sizes. For all sizes, the greedy-search initialization takes more time than
running the optimization, whereas the Gaussian initialization strategy runs in

Scalable Optimization for the Turnpike Problem 211

Table 1. Median runtimes (in
10° 10-*

seconds) for the MM optimizer
10-° . P
8 e . % (Opt.), Gaussian and Greedy ini-
o 107 10~
2 i o e t@hzatlons over different sample
£ _ sizes.
2 10”] 108
(&}
10 T
1072 10~ H
Greedy Normal Permutation Greedy Normal Permutation POlntS Opt. Gauss, Greedy

)))) 100 0.40 | 0.54 0.23
Fig. 1. Cosine distances between estimated dis- 500 840 | 2.54 1756

tance vectors (f)) and ground distance vectors
(D), before (left) and after (right) MM optimiza-
tion under three different initialization schemes.

1000 16.49 | 4.63 36.49
1500 25.39 | 7.53 55.72
2000 42.38 | 18.53 | 84.06

an order of magnitude less time than the optimization. This is due to the inher-
ently serial nature of the greedy-search initializer, which requires all previous
steps to be considered first. This is in contrast to the optimization loop, which
has a runtime dominated by sorting, which is parallelized.

Evaluating Noisy Turnpike Solutions on Synthetic Instances. We tested
how accurately the MM (Sect. 2.2), backtracking, distribution matching [13], and
gradient descent methods were able to reconstruct point sets. Table 2 shows the
median MAE normalized by the uncertainty for a representative set of prob-
lem sizes and uncertainties. Each method had 1h to solve each instance, with
the exception of 10,000 and 100,000 point instances, which were given 90 and
6,000 min respectively. The backtracking method was able to solve instances with
1,000 or fewer points, but exhibited larger errors than our method. The gradient
descent method solved all instances with 500 or fewer points with residual error
that ranged between 10 and 1,000 times higher than the MM approach. The
distribution matching method performed similarly to our method but could not

10~! Uniform Cauchy Normal
10-4 e MAE ‘:‘ ® MAE ® MAE ¥33
10-7 ® MSE ® MSE ® MSE -

-

N 10—10
o
£ 10718
H o0 +*

1071 e - ®

L 3

10722 * 8

0= o - s

10—28

2 \} _3 _6 _A 2 2 0 2 2 \} _® _6 _A _2
10771077107 1070 107 10 1077107107 1070 107" 10 1074077107 1070 107" 10
Uncertainty Uncertainty Uncertainty

Fig. 2. Mean absolute error (blue) and mean squared error (orange) between the esti-
mated and ground vectors across all levels of measurement uncertainty for Uniform,
Cauchy and Normal data distributions. (Color figure online)

212 C. S. Elder et al.

scale past 100 points. Our method was able to solve instances with 2,000 points
with a median MAE that is 10 times lower than the uncertainty level up to a
magnitude of 10™4, after which the scaling becomes distribution dependent.

Table 2. Median MAE normalized by the magnitude of measurement uncertainty e
across different point set sizes and uncertainties. We compare our method (MM), dis-
tribution matching (DM), backtracking (BT), and gradient descent (GD) approaches.
A dash indicates that a method did not finish solving any instances of this size due to
either memory or runtime constraints.

n/100 107 107° 1074
MM | DM BT GD MM|DM | BT GD MM DM BT |GD
0.2 |0.4926.4 1270 0.19|0.51 26.6 186 2.09 0.68|56.7 | 1.54
0.1 |— |26.4/462 [0.14|— |26.5 39 |1.54 — |55.7|5.72
0.11|— [36.4/312 [0.09|— |31.5 40 [0.94 — |34.7|3.08
10 0.06 — [36.4 — 004 — 365 — 0.08 — |36.7 —
50 008 — |— |— 008 — — |— 086 — — |—
w0 008 — |— |— 011 — |— |— |0.82 — |— |—
1000 (012 — |— |— 1008 — |— |— |01 — |— |—

Table 3. Normalized MAE for 5 sizes and 4 uncertainty levels using the MM and
gradient descent (GD) algorithms on simulated partial digestions of a cDNA.

n |MM (10~7)| GD (10~7) | MM (10~ %)| GD (107%) | MM (107°) |GD (10~%) | MM (10~%) |GD (10~%)
10/0.148 0.087 0.159 0.096 0.168 0.145 0.232 0.284
15/0.157 0.072 0.150 0.078 0.140 0.160 0.202 0.274
20/0.214 0.031 0.186 0.032 0.123 0.068 0.224 0.231
38/0.113 0.043 0.128 0.094 0.135 0.112 0.178 0.243
54(0.101 0.053 0.102 0.078 0.186 0.203 0.146 0.581

Figure 2 shows our method’s MAE and MSE over all settings plotted with
respect to the magnitude of uncertainty. We observed that uncertainty in the
distances correlated with reconstruction error, but the MAE is an order of magni-
tude lower than the uncertainty on average when the uncertainty is 10~ or less.
Instance size also affects the method’s error scaling. As the sample size varied
between 50 and 100,000 points, the median MAE shown in Table 2 demonstrates
a downward trend for fixed error rates. This suggests the method scales at least as
well as it does on small point sets as the number of points grows. This is because
the distance measurement linear system is highly overdetermined, which makes
it resilient to uncertainty [24]. Last, we report the mean and standard deviation
of the runtimes of different solvers in Table 5. The MM mean runtime was lowest
across all point sizes and MM is the only method that successfully solved the
5,000, 10,000, and 100,000 point instances.

Scalable Optimization for the Turnpike Problem 213

Table 4. Normalized MAE for 10 sizes and 4 uncertainty magnitudes using the MM and
gradient descent (GD) algorithms on simulated partial digestions of a linear genome. A
dash indicates that the algorithm did not finish due to memory constraints or runtime
constraints.

n MM (10~7)|GD (10~7) | MM (10~ %) |GD (10~%)|MM (10=°) |GD (10~5)|MM (10~%) |GD (10—%)
10 |0.152 2.31 x 10% |0.148 1.54 x 10° |0.163 1.70 x 10* |0.142 1.34 x 103
64 |0.213 1.89 x 10° |0.219 6.42 x 10% |0.220 1.87 x 10 |0.232 4.20 x 102
142 0.358 8.22 x 10° |0.359 3.44 x 10* |0.357 9.28 x 10° |0.365 6.12 x 102
183 |0.282 1.28 x 109 |0.268 1.75 x 10° |0.288 9.37 x 102 0.290 1.34 x 103
530 |0.071 — 0.070 — 0.080 — 0.066 —
959 |0.119 — 0.121 — 0.125 — 0.139 —
1209(0.119 — 0.132 — 0.127 — 0.115 —
1451/0.059 — 0.061 — 0.043 — 0.072 —
2669 | 0.048 — 0.039 — 0.050 — 0.048 —

Table 5. Runtime (in seconds) across point sizes for various Turnpike solvers.

n/100 | MM DM BT GD

1 0.8 + 3.9 1680.3 £ 32.1|2.8 £ 10.2 16.3 £ 0.4

2 21.2 + 13.0 — 53. £ 32.3 114.9 £ 0.5
5 2043 £ 744 | — 304.9 £ 20.3 |4366.6 £ 8.6
10 552.3 £ 1124 | — 1052.5 £ 50.9 | —

50 1992.1 £51.2 | — — _
100 3543.8 £ 712.3 | — — -
1000 |5912.3 £ 524 | — — _

Partial Digestion Experiments. We tested the effectiveness of our algorithms
for reconstructing genomes via data generated by an enzyme that digests DNA
into fragments at restriction sites [2]. The fragment lengths give the distances
between all restriction sites, which are at unknown positions. The genome is
assembled from the fragments after inferring the restriction site locations from
the distances, a process equivalent to solving the TURNPIKE problem for linear
genomes and the BELTWAY problem for circular genomes [13]. We simulated
partial digestion instances to test our algorithms. For TURNPIKE instances, we
used the human X chromosome’s centromere, and for BELTWAY instances, we
used the full genome of the bacteria Carsonella ruddii. In both cases, we used
15-base-long enzymes and simulated the digestion process by sampling the DNA
sequence such that each restriction site occurred between 10 and 500 times. We
obtained digested DNA fragments by splitting the sequence at all of its occur-
rences. We added a signed Poisson random vector to simulate when enzymes cut
too many or too few bases, both frequent occurrences in practice [6].

The TURNPIKE experiments were performed with our method and the gra-
dient descent baseline due to runtime constraints. The BELTWAY experiments
were performed with our algorithm and the distribution matching algorithm, as

214 C. S. Elder et al.

they are the only ones designed for uncertain BELTWAY instances. Table 4 shows
normalized MAE for the TURNPIKE experiments on instances with 10-2,669
fragments. Our method recovered fragment locations with an MAE that scaled
linearly to the uncertainty present in the measurements, performing orders of
magnitude better than the gradient descent baseline. Table 3 shows normalized
MAE for the BELTWAY experiments, which were performed on instances with
10-54 fragments. Our method performed competitively with the gradient descent
approach.

Labeled Partial Digestion Experiment. Pandurangan et al. [19] performed a
labeled partial digestion problem (LPDP) recovery experiment using the restric-
tion sites of the enzyme HindIII on the bacteriophage A. For each distance d,
they simulated relative uncertainty of order r € [0, 1] by replacing d with a uni-
formly sampled integer in [(1 — r)d, (1 + r)d]. They varied r between 0% and
5% to mimic experimental settings, where 2% to 5% is expected.

Each experiment was repeated 100 times. papble 6. Recovery success rate of
A success is reported when the recovered our base solver (MM), our partition
distances were within the relative uncer- solver (PMM), and Pandurangan et
tainty of the ground truth set. We repeated al.’s solver [19] at various relative
this experiment using our base algorithm error levels.
(MM) and our partition-update formula-

tion (PMM) given in Appendix C [8]. Our r |MM | PMM LPDP
base algorithm does not use additional label- 0% | 100% | 100% | 100%
ing information. The results are shown 1% 199% |99% | 98%
in Table6. We observe that our method 2% | 96% | 97% | 96%

performs competiti.vely without a-dd-itional 3% 95% | 96% | 94%
labels and further improves when it is pro-

vided with the labels. All instances ran in 4% 92% |94% |91%
less than 1s across all uncertainty levels and 5% 89% | 92% | 87%
across all solvers.

4 Conclusion

Noisy BELTWAY and Noisy TURNPIKE are NP-hard problems that aim to
recover a set of one-dimensional points based on a corrupted pairwise distances.
These problems find application in widespread biological contexts. We intro-
duced a novel optimization formulation and an alternating algorithm built from
sorting and implicit matrix multiplication. This leads to an asymptotic runtime
of O(n?logn) time per iteration with O(n) auxiliary memory. To escape low-
quality local optima, we introduced a divide-and-conquer step to fix common
errors. We performed large-scale experiments with approximately 25 billion dis-
tances (equivalent to 100,000 points) to showcase the efficiency of our method.
In contrast, previous methods are infeasible with as few as 125,000 distances
(equivalent to 500 points). We also demonstrated the method’s robustness and
scalability in a variety of challenging situations, including large-scale uncertainty
and distance duplication. Our algorithm efficiently solves large distance sets with

Scalable Optimization for the Turnpike Problem 215

realistic levels of uncertainty, opening up new avenues of research into biological
applications of TURNPIKE and computational geometry problems.

Acknowledgements. This work was supported in part by the US National Sci-
ence Foundation [DBI-1937540, II1-2232121], the US National Institutes of Health
[RO1HGO012470] and by the generosity of Eric and Wendy Schmidt by recommendation
of the Schmidt Futures program. Disclosure of interests: C.K. is a co-founder of Ocean
Genomics, Inc.

References

10.

11.

12.

13.

14.

. Abbas, M.M., Bahig, H.M.: A fast exact sequential algorithm for the partial digest

problem. BMC Bioinform. 17(19), 510 (2016)

Alizadeh, F., Karp, R.M., Weisser, D.K., Zweig, G.: Physical mapping of chromo-
somes using unique probes. J. Comput. Biol. 2(2), 159-184 (1995)

Birkhoff, G.: Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser.
A 5, 147-151 (1946)

Blazewicz, J., Burke, E., Kasprzak, M., Kovalev, A., Kovalyov, M.: Simpli-
fied partial digest problem: enumerative and dynamic programming algorithms.
IEEE/ACM Trans. Comput. Biol. Bioinf. 4, 668-680 (2007)

Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univer-
sity Press, Cambridge (2004)

Cieliebak, M., Eidenbenz, S.: Measurement errors make the partial digest problem
NP-hard. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 379-390.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_42
Dokmanic, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean Distance Matrices:
essential theory, algorithms, and applications. IEEE Signal Process. Mag. 32(6),
12-30 (2015)

Elder, C.S., Hoang, M., Ferdosi, M., Kingsford, C.: A scalable optimization algo-
rithm for solving the beltway and turnpike problems with uncertain measurements.
bioRxiv (2024)

Fomin, E.: Reconstruction of sequence from its circular partial sums for cyclopep-
tide sequencing problem. J. Bioinform. Comput. Biol. 13(1), 1540008 (2015)
Fomin, E.: A simple approach to the reconstruction of a set of points from the
multiset of pairwise distances in n? steps for the sequencing problem: III. Noise
inputs for the beltway case. J. Comput. Biol. 26(1), 68-75 (2019)

Gabrys, R., Pattabiraman, S., Milenkovic, O.: Mass error-correction codes for
polymer-based data storage. In: 2020 IEEE International Symposium on Infor-
mation Theory (ISIT), pp. 25-30, June 2020. ISSN 2157-8117

Hardy, G.H., Littlewood, J.E., Pélya, G.: Inequalities. Cambridge University Press,
Cambridge (1952)

Huang, S., Dokmanié, I.: Reconstructing point sets from distance distributions.
IEEE Trans. Signal Process. 69, 1811-1827 (2021)

Lemke, P., Skiena, S.S., Smith, W.D.: Reconstructing sets from interpoint dis-
tances. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Compu-
tational Geometry: The Goodman-Pollack Festschrift. Algorithms and Combina-
torics, pp. 597-631. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-55566-4_27

https://doi.org/10.1007/978-3-540-24698-5_42
https://doi.org/10.1007/978-3-642-55566-4_27
https://doi.org/10.1007/978-3-642-55566-4_27

216

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C. S. Elder et al.

Lenstra, A.K., Lenstra, HW., Lovész, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515-534 (1982)

Mena, G., Snoek, J., Linderman, S., Belanger, D.: Learning latent permutations
with Gumbel-Sinkhorn networks. In: International Conference on Learning Repre-
sentation, vol. 2018 (2018)

Mohimani, H., et al.: Multiplex de novo sequencing of peptide antibiotics. J. Com-
put. Biol. 18(11), 1371-1381 (2011)

Nadimi, R., Fathabadi, H.S., Ganjtabesh, M.: A fast algorithm for the partial
digest problem. Jpn. J. Ind. Appl. Math. 28, 315-325 (2011)

Pandurangan, G., Ramesh, H.: The restriction mapping problem revisited. J. Com-
put. Syst. Sci. 65(3), 526-544 (2002)

Skiena, S.S., Sundaram, G.: A partial digest approach to restriction site map-
ping. In: Proceedings. International Conference on Intelligent Systems for Molec-
ular Biology, vol. 1, pp. 362-370 (1993)

Skiena, S.S., Smith, W.D., Lemke, P.: Reconstructing sets from interpoint dis-
tances (extended abstract). In: Proceedings of the Sixth Annual Symposium on
Computational Geometry, SCG 1990, pp. 332-339, New York, NY, USA, May
1990. Association for Computing Machinery (1990)

Smith, H.O., Birnstiel, M.L.: A simple method for DNA restriction site mapping.
Nucleic Acids Res. 3(9), 2387-2398 (1976)

Sun, Y., Babu, P., Palomar, D.P.: Majorization-minimization algorithms in signal
processing, communications, and machine learning. IEEE Trans. Signal Process.
65(3), 794-816 (2017)

Wendland, H.: Numerical Linear Algebra: An Introduction. Cambridge University
Press, Cambridge (2017)

Zhang, Z.: An exponential example for a partial digest mapping algorithm. J.
Comput. Biol. 1(3), 235-239 (1994)

Zintchenko, 1., Wiebe, N.: Randomized gap and amplitude estimation. Phys. Rev.
A 93(6), 62306 (2016)

