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Abstract. Three-dimensional chromosome structure plays an impor-
tant role in fundamental genomic functions. Hi-C, a high-throughput,
sequencing-based technique, has drastically expanded our comprehen-
sion of 3D chromosome structures. The first step of Hi-C analysis
pipelines involves mapping sequencing reads from Hi-C to linear refer-
ence genomes. However, the linear reference genome does not incorporate
genetic variation information, which can lead to incorrect read align-
ments, especially when analyzing samples with substantial genomic dif-
ferences from the reference such as cancer samples. Using genome graphs
as the reference facilitates more accurate mapping of reads, however, new
algorithms are required for inferring linear genomes from Hi-C reads
mapped on genome graphs and constructing corresponding Hi-C contact
matrices, which is a prerequisite for the subsequent steps of the Hi-C
analysis such as identifying topologically associated domains and calling
chromatin loops. We introduce the problem of genome sequence inference
from Hi-C data mediated by genome graphs. We formalize this problem,
show the hardness of solving this problem, and introduce a novel heuristic
algorithm specifically tailored to this problem. We provide a theoretical
analysis to evaluate the efficacy of our algorithm. Finally, our empirical
experiments indicate that the linear genomes inferred from our method
lead to the creation of improved Hi-C contact matrices, which are more
effective in accurately capturing the structures of topologically associated
domains.

Keywords: Hi-C · Genome Graph · Dynamic Program ·
NP-completeness

1 Introduction

The spatial arrangement of chromosomes plays an important role in many cru-
cial cellular processes including gene transcription [12,32], epigenetic modifica-
tion [17], and replication timing [28]. This complex structure can be discovered
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through Hi-C [25], a high-throughput variant of the chromosome conformation
capture technique [6], which has become a prevalent tool in the study of genomic
organization. The Hi-C process yields read pairs representing spatial contacts
between two genomic loci. These contacts can be identified by aligning each
end of a read pair to the reference genome. These aligned read pairs facili-
tate subsequent analyses, such as identifying topologically associated domains
(TADs) [5,7,10,23,26], which are contiguous regions on chromosomes with more
frequent contacts, and calling chromatin loops [33], which are pairs of genomic
loci that lie far apart along the linear genome but are in close spatial proximity.

Hi-C pipelines use a linear reference genome such as Genome Reference Con-
sortium Human Build 38 (GRCh38) as the template against which to align reads.
However, these linear references do not incorporate the genetic diversity within
populations. Consequently, aligning reads from genomes that diverge from the
linear reference genome can result in reads either not aligning at all or being
mapped to incorrect genomic locations. This issue is exacerbated when analyzing
Hi-C reads from cancer samples, which frequently exhibit structural variations,
including copy number variations and substantial translocations. The misalign-
ments, arising due to structural variations, can confound the interpretation of
Hi-C data, potentially producing features that may be mistaken for other bio-
logical signals, such as chromatin loops [39]. Given that read alignment is always
the initial step in Hi-C analysis, errors at this stage can proliferate, leading to
inaccuracies throughout the downstream analyses. To rectify the Hi-C analysis
of cancer cell lines, substantial efforts have been made to develop algorithms to
identify structural variations and rearrange the cancer genomes from Hi-C data,
sometimes with the help of other data types such as whole genome sequencing to
enhance accuracy and precision [34,39,42] of Hi-C analysis of cancer cell lines.
However, these steps still rely on the linear reference genome.

The concept of pan-genome has been introduced to address the shortcom-
ings of linear references. The pan-genome is a collection of DNA sequences that
incorporates both common DNA regions and sequences unique to each indi-
vidual [16,40]. These DNA sequences can be represented by genome graphs,
which are graph-based data structures amalgamating the linear reference along-
side genetic variations and polymorphic haplotypes [1]. Numerous computational
techniques have been published in the domain of genome graphs, addressing
various aspects such as efficient genome graph construction [14,15,20,27,29],
graph-based genome alignment [21,30,38] and graph-based structural variation
and haplotype analyses [4,9,19]. These studies have substantiated that genome
graphs can enhance the analysis of genome sequencing data. Moreover, Liao et
al. [24] has illustrated the potential of genome graphs in improving the analysis
of various other data types, including RNA-seq, ChIP-seq, and ATAC-seq. How-
ever, there has been no research exploring the enhancement of Hi-C analyses
through the use of genome graphs.

Leveraging genome graphs as the reference can enhance the accuracy of map-
ping Hi-C reads. However, a challenge arises from the erroneous information in
the graphs post-read alignment, attributed to structural variations present in
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the genome graphs but absent in the actual linear genome of the Hi-C sample.
Besides, these graphs are not immediately applicable for subsequent standard
Hi-C analysis steps like TAD identification [10,41] and chromatin loop calling [2],
given their inherent dependence on linear genomes and the corresponding Hi-C
contact matrices, the two-dimensional matrices representing chromatin interac-
tions. A critical component to address this is to infer the appropriate, sample-
specific linear genome from Hi-C reads mapped on genome graphs. These inferred
genomes, which are more congruent with the Hi-C samples’ unknown ground
truth genomes than traditional linear reference genomes, account for polymor-
phisms and structural variations specific to the given sample. By using these
reconstructed genomes to create Hi-C contact matrices and incorporating these
matrices into subsequent analyses, we can enhance the precision of Hi-C studies.
This method offers a more sample-specific genomic representation, addressing
the shortcomings inherent in using standard linear reference genomes.

We investigate the problem of genome sequence inference from Hi-C data on
directed acyclic genome graphs. The problem of inferring genome sequences from
genome graphs and whole genome sequencing data was explored in previous work
such as Ebler et al. [8]. Yet, the challenge of addressing this problem using Hi-C
data remains unexplored. We propose a novel problem objective to formalize our
inference problem. To infer the genome, we choose the best source-to-sink path in
the directed acyclic graph that optimizes the confidence of TAD inference on the
genomes. We show that optimizing this objective is NP-complete, a complexity
that persists even with directed acyclic graphs. We develop a greedy heuristic
for the problem and theoretically show that, under a set of relaxed assump-
tions, the heuristic finds the optimal path with a high probability. We test our
processing pipeline and genome inference algorithms on cancer Hi-C samples
K-562. Results on these samples show that compared to using the traditional
linear reference genomes, the linear genomes inferred from our method create
improved Hi-C contact matrices, which are more effective in accurately captur-
ing the structures of TADs, attesting to the algorithm’s potential to enhance
the precision and reliability of genomic studies. The source code of our method
is available at https://github.com/Kingsford-Group/graphhic. More algorithmic
and experimental details are in Shen et al. [37].

2 Inferring the Sample Genome from Hi-C Data
with Genome Graphs

Typical Hi-C processing pipelines, such as HiC-Pro [35], mainly consist of two
steps: (i) aligning each end of raw read pairs to the linear reference genome;
(ii) constructing a two-dimensional contact matrix that describes the interac-
tions between pairs of genomic regions. A contact matrix is derived from the
alignment results, wherein each entry contains the number of read pairs between
two genomic bins—intervals with a fixed length such as 10 kilobases. This con-
tact matrix is used as an input for downstream analyses, such as TAD identifica-
tion. However, current Hi-C analysis pipelines are unable to process data when
genome graphs are used as the reference instead of linear reference.

https://github.com/Kingsford-Group/graphhic
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By using the graph-based Hi-C processing pipeline proposed in Shen et
al. [36], we are able to build a genome graph and a Hi-C contact matrix M .
Each dimension of this matrix represents nodes of the graphs, and each matrix
entry is the number of read pairs with ends mapped to the corresponding nodes.
The nodes are ordered in their topological order in the genome graph.

2.1 Problem Definition of Genome Inference

Given a directed acyclic genome graph G with a source node s and a sink node
t, and the contact matrix M derived from the graph-based Hi-C pipeline [36],
the objective of genome inference is to find a s-t path in G such that the con-
catenated DNA sequences represented by nodes in the selected path is the most
similar sequence to the actual genome of the Hi-C sample. Ideally, two primary
criteria should be fulfilled by this reconstructed path: (i) it should encapsulate
as many mapped Hi-C read pairs as feasible, and (ii) the distribution of these
mapped pairs ought to echo the distinctive spatial structures of chromosomes,
especially the topologically associated domains (TADs or “domains” for brevity).
Motivated by these prerequisites, our approach toward genome inference encom-
passes a simultaneous inference of the s-t path and the corresponding TADs
from G.

Let Pst be the collection of all s-t paths in G, and let Dp be a set of domains
along path p ∈ Pst. The i-th domain on path p is defined as a subpath dpi =
[api , b

p
i ] that starts at node api and ends at bpi , where api and bpi are nodes on p.

We require that domains of a path do not overlap with each other. Furthermore,
the boundaries of two consecutive domains dpi and dpi+1, b

p
i and api+1, must be

two nodes connected with an edge on path p. The first and the last domain are
dp1 = [s, bp1] and dp|Dp| = [ap|Dp|, t].

We infer the s-t path representing the actual genome from a Hi-C sample by
solving the following problem:

Problem 1. We are given a directed, acyclic graph G = (V,E) with a source
node s and a sink node t, a pre-computed function µ : N → R≥0, a real number
γ ≥ 0, and a cost function c : V × V → R≥0 that maps every pair of nodes to a
non-negative cost. c is symmetric in a sense that c(v, v′) = c(v′, v). The goal is
to find a s-t path p = {v1, v2, . . . , v|p|} over all s-t paths and a set of consecutive
domains Dp on p that optimize

max
p∈Pst

max
Dp

∑

[ap
i ,b

p
i ]∈Dp

f([api , b
p
i ]), (1)

where f is defined as:

f(p′) :=
1

|p′|γ
∑

vi,vj∈p′,1≤i≤j≤|p′|

c(vi, vj) − µ(|p′|). (2)

The cost function c(vi, vj) can be defined as the values of entries in the
contact matrix M(vi, vj) for node vi and node vj . f quantifies the quality
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of a TAD as the normalized number of interactions within the subpath p′.∑
vi,vj∈p′,1≤i≤j≤|p′| c(vi, vj) in Eq. (2) is the total number of interactions between

nodes that are both in path p′.
The total number of interactions is normalized by two factors. First, the

total number is zero-centered by a pre-computed µ(|p′|), which is the expected
interaction frequency within a path with |p′| nodes. Then, it is normalized by the
number of nodes in p′ (|p′|) scaled by a factor of γ. This normalization prevents
the identification of TAD domains with excessively large sizes. Larger values of
γ typically lead to finding smaller domains.

2.2 The Hardness of the Problem

The objective function (1) of Problem 1 is derived from that of Filippova et
al. [10]. However, Filippova et al. [10] employs polynomial-time dynamic pro-
gramming to infer TADs based on reads mapped to a linear reference, while our
problem requires the concurrent inference of both the TAD domains (denoted as
Dp) and the sample’s linear genome (represented by the path p) directly from
G. We show that this increased complexity results in NP-completeness of Prob-
lem 1. This hardness results motivates the development of practical heuristics
for the problem.

Theorem 1. Problem 1 is NP-complete.

Proof. We prove Theorem 1 by reducing from the Path Avoiding Forbidden
Pairs (PAFP) problem, which has been confirmed to be NP-complete even in
directed acyclic graphs [13,22].

Problem 2 (Path avoiding forbidden pairs [22]). Given a graph G = (V,E)
with two fixed vertices s, t ∈ V and a set of pairs of vertices F ⊂ V × V , find
a path from s to t that contains at most one vertex from each pair in F , or
recognize that such path does not exist.

Gabow et al. [13] prove that the path avoiding forbidden pairs problem
(PAFP), introduced in Problem 2, is NP-complete in directed acyclic graphs.
We now reduce PAFP on DAGs to Problem 1. Suppose we are given an instance
of PAFP with a DAG G = (V,E), a source node s, and a sink node t. We define
a symmetric cost function c on G, such that:

c(v, v′) = c(v′, v) =

{
0 if (v, v′) ∈ F

1 otherwise.

We convert G to a new DAG G′ = (V ′, E′) such that every path from the source
node to the sink node in the new graph has the same length (same number of
nodes). We use Breadth-First-Search (BFS), starting from s to generate the new
graph. We first create G′ that only has a source node s̄, i.e. V ′ = {s̄} and E′ = ∅.
Let V0 = {s}. Given the node set Vi, via BFS on G we create a new node set
Vi+1 which are all child nodes of the nodes in Vi. For each node v ∈ Vi+1, we
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add a corresponding node v̄i+1 in G′. For each node pair (v′, v) such that v′ ∈ Vi

and v ∈ Vi+1, we add an edge from v̄′i to v̄i+1 in G′ if v′ is a parent node of
v in G. If t̄i is already added in G′, we add a node t̄i+1 in G′ and add an edge
from t̄i to t̄i+1. If additionally t is in Vi+1, meaning that t̄i+1 is already in G′,
we only add an edge from t̄i to t̄i+1 without adding the node t̄i+1 again. This
procedure is iteratively conducted until Vi+1 = {t} or Vi+1 = ∅. Figure 1 shows
an example of constructing G′ (Fig. 1(b)) from the original graph G (Fig. 1(a)).
Since |Vi| = O(|V |), we have that |V ′| = O(|V |3). Therefore, the construction
of G′ can be accomplished within polynomial time. In addition, it is easy to see
that G′ is a DAG. Let t̄n be the node in G′ that corresponds to the sink node
in G, which was added during the final iteration of the procedure. The set of s-t
paths in G has a one-to-one correspondence with the set of paths from s̄ and t̄n

in G′. Moreover, all the paths from s̄ to t̄n in G′ maintain equal lengths n + 1.
We define a symmetric cost function c′ on G′, such that:

c′(v̄′i, v̄j) = c′(v̄j , v̄′i) = c(v, v′).

Therefore, the instance of PAFP is a yes-instance if only if there exists a s̄ − t̄n

path in G′ such that the cost c′ of any node pair in this path is 1. The DAG
G′, combined with the source node s̄, the sink node t̄n, the cost function c′, the
value γ = 0 and the function µ(l) ≡ 0, becomes an instance of Problem 1.

Fig. 1. An example of converting G (a) to G′ (b) in the proof of Theorem 1.

We now prove that the instance of PAFP is a yes-instance if and only if there
exists a solution of Problem 1 with objective value (n+1)(n+2)

2 , hence Problem 1
is NP-complete.

Since γ = 0 and µ(l) ≡ 0, the objective of Problem 1 becomes:

max
p∈Ps̄t̄n

max
Dp

∑

[ap
i ,b

p
i ]∈Dp

∑

vi,vj∈[ap
i ,b

p
i ]

1≤i≤j≤|[ap
i ,b

p
i ]|

c′(vi, vj).

Since the cost function is non-negative, for any given s̄ − t̄n path, choosing the
whole path as one domain leads to the maximal:

max
p∈Ps̄t̄n

max
Dp

∑

[ap
i ,b

p
i ]∈Dp

∑

vi,vj∈[ap
i ,b

p
i ]

1≤i≤j≤|[ap
i ,b

p
i ]|

c′(vi, vj) ≤ max
p∈Ps̄t̄n

∑

vi,vj∈p,1≤i≤j≤|p|

c′(vi, vj).
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Moreover, since c′ is less than or equal to 1, and each s̄ − t̄n path has the same
length n+ 1, we have:

max
p∈Ps̄t̄n

∑

vi,vj∈p,1≤i≤j≤|p|

c′(vi, vj) ≤ (n+ 1)(n+ 2)
2

.

Therefore, there exists a solution of Problem 1 with objective value (n+1)(n+2)
2

if and only if there exists a s̄− t̄n path in G′ such that the cost of any node pair
in this path is 1, if and only if the instance of PAFP is a yes-instance. ⊓⊔

2.3 Computation of the µ Function

Filippova et al. [10] demonstrated a method for efficiently pre-computing µ on the
linear reference genome. Nevertheless, as we discuss in Shen et al. [37], calculating
µ in the context of genome graphs poses a more complex challenge. Consequently,
we propose a different strategy to estimate µ. Generally, samples from normal
cell types bear a greater resemblance to the linear reference genome compared
to those from cancer samples. Hence, we select Hi-C data from a normal sample,
process it using the linear reference genome, and calculate its µ function using
the same approach as Filippova et al. [10]. This function is denoted as µ0. It
is evident that the sequencing depth of the Hi-C data can influence the value
of the µ function. Therefore, when analyzing new Hi-C data, we estimate its µ
function as follows:

µ̂(l) = µ0(l)
Nnew

Nold
. (3)

Here, Nold refers to the total count of Hi-C read pairs from the original normal
sample, while Nnew indicates the total count of Hi-C read pairs from new Hi-C
data.

2.4 Graph-Based Dynamic Programming Algorithm

We use a dynamic program, computed in the topological ordering of the nodes,
to solve the Problem 1:

OPT (l) = max
k,Pkl ̸=∅

{
max

v∈PA(k)
OPT (v) + q(k, l)

}
, (4)

where OPT (l) is the optimal solution for objective (1), applied to the subgraph
induced by node l along with all nodes with a topological order less than that
of l within G. Pkl denotes the collection of all paths from node k to node l in G,
and PA(k) is the set of parent nodes of k. maxv∈PA(k) OPT (v) = 0 if k has no
parent node. q is a function that maximizes over all paths between k and l:

q(k, l) = max
p∈Pkl

f(p). (5)
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We use a standard backtracking strategy, shown in Shen et al. [37], to reconstruct
the optimal path popt from the dynamic program. The reconstructed path popt
is taken to be the inferred genome. We prove that OPT (t) is indeed the optimal
solution for Problem 1.

Proposition 1. OPT (t) = maxp∈Pst maxDp

∑
[ap

i ,b
p
i ]∈Dp

f([api , b
p
i ]).

The proof is in Shen et al. [37]. However, this does not provide a polynomial time
algorithm. As we show in Shen et al. [37], computing the function q in (5) is NP-
complete. Moreover, the NP-completeness of computing q is not attributable to
the particular definition of function f as outlined in (2). We show in Shen et
al. [37] that computing q remains NP-complete under various definitions of f .
Therefore, it is hard to solve the dynamic programming objective shown in (4),
which is consistent with the hardness conclusions in Sect. 2.2. This provides a
focus for developing heuristics.

2.5 Heuristics for Computing q

We propose a novel heuristic algorithm, detailed in Algorithm 1, to compute
the function q(k, l) for any node pair (k, l). The central principle behind this
algorithm is that a node situated between nodes k and l (in topological order)
that has more interactions with other nodes is more likely to be a part of the
path connecting k to l that maximizes the function f . Consequently, we sort
the nodes in descending order based on their cumulative interactions with other
nodes (line 6 of Algorithm 1) and progressively add nodes from the highest to
the lowest interactions until a k-l path is established.

Algorithm 1. q(k, l) computation
1: Input k,l, genome directed acyclic graph G = (V,E), nodes list T that contains all

nodes in G sorted by their topological order, contact matrix M , reachable matrix
Mr, the function f

2: if Mr[k, l] = 0 then
3: return
4: end if
5: Vsub ← {v ∈ V | T.index(v) ≥ T.index(k) and T.index(v) ≤ T.index(l)}
6: Sort vertices v in Vsub according to the sum

∑
v′∈Vsub

M [v, v′], arranging them

from the highest to the lowest value to form V ′
sub.

7: p ← {k, l}, q ← −∞
8: edges ← is edge(k, l)
9: for v ∈ V ′

sub do
10: p, edges ← insert(p,Mr, T, edges, v)
11: if edges = |p| − 1 then
12: q ← f(p)
13: return q, p
14: end if
15: end for
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Specifically, we employ the following functions and data structures within
Algorithm 1 to enhance the algorithm’s efficiency:

– reachable matrix Mr, where Mr[i, j] = 1 if there exists a path from node i to
node j in the directed acyclic genome graph G, otherwise Mr[i, j] = 0.

– is edge(k, l), which returns 1 if there is an edge from k to l in G, otherwise
it returns 0.

– insert(p,Mr, T, edges, v), of which the pseudo-code is provided in Algo-
rithm 2. This function contains the following steps:
• Given a node set p which encompasses all nodes already incorporated and
are topologically sorted, the function determines whether there exists a
path in G that includes all nodes in p ∪ {v}. Such a path may include
additional nodes that are not in p ∪ {v}. This step can be efficiently
achieved with the help of Mr and a balanced tree structure such as AVL
tree [11], of which the details are introduced in the proof of Theorem 2.

• If the aforementioned path exists, the node v is then inserted into p
according to the topological ordering (function update in line 7 of Algo-
rithm 2).

• The function also updates an integer variable edges (line 8 of Algo-
rithm 2), which keeps track of how many neighboring nodes in p have
edges in G.

The insert function yields a revised node set p and an updated value for edges
(line 10 of Algorithm 1). A legitimate path in graph G is formed by the nodes
in p if and only if the condition edges = |p| − 1 is met (line 11 of Algorithm 1).
Once a path is established, we compute the function value f(p) and use it as
the value of q (line 12 of Algorithm 1). We have the following result on the time
complexity of Algorithm 1:

Theorem 2. The total time complexity for Algorithm 1 and the dynamic pro-
gram using the heuristic Algorithm 1 are respectively O(|V |2) and O(|V |4), where
|V | is the number of nodes in the graph.

The proof is in Shen et al. [37]. In practice, the time complexity is still
too high for long chromosomes. To address this, as detailed in Sect. 2.7, we
implement additional practical strategies to further decrease the algorithm’s time
complexity.

2.6 Accuracy of the Heuristic Algorithm

Let p̂ represent the path from node k to node l as predicted by Algorithm 1,
and let pgt denote the “ground truth” path, defined as pgt = argmaxp∈Pkl

f(p).
In an ideal scenario, a heuristic algorithm would ensure that, for any specified
DAG G and any interaction distribution present on G, the value f(p̂) closely
approximates f(pgt). However, as we demonstrate in Shen et al. [37], it is possible
to create an example where the discrepancy between f(p̂) and f(pgt) can be
infinitely large, indicating that our heuristic algorithm does not offer a bounded
approximation in the worst-case scenario.
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Algorithm 2. insert function
1: Input node set p in which nodes are topologically sorted, matrix Mr, nodes list

T that contains all nodes in G sorted by their topological order, integer variable
edges, node v

2: Find two adjacent nodes v1 and v2 in p such that T.index(v1) ≤ T.index(v) ≤
T.index(v2).

3: if v1 = v or v2 = v then
4: return p,edges
5: end if
6: if Mr[v1, v] = 1 and Mr[v, v2] = 1 then
7: p ← update(p, v)
8: edges ← edges+ is edge(v1, v) + is edge(v, v2) − is edge(v1, v2)
9: end if
10: return p,edges

However, within the scope of Hi-C analysis, the distribution of interactions
on a genome graph is not arbitrary. Conceptually, each interaction, represented
by a pair of nodes, stems from two primary sources: (a) The “ground truth”
source. Both nodes of the interactions from this source lie on the ground truth
path pgt. Interactions from this source are informative when constructing p̂.
(b) The “noise” source, which accounts for interactions arising due to various
systematic biases such as sequencing errors, mapping errors, etc. In this sce-
nario, the interactions are not necessarily confined to the path pgt. Under mild
assumptions, we propose a theoretical framework that more accurately reflects
the real-world Hi-C situation, and we demonstrate that with high probability
the output path p̂ is equivalent to pgt, as long as the number of mapped read
pairs is Ω(|pgt| log |V |). Although the number of total nodes |V | in the graph
can be large, the required number of read pairs for a successful inference is only
proportional to the logarithm of it. The details of this theoretical analysis can
be found in Shen et al. [37]. We observe that in practice, this criterion regarding
the number of read pairs is readily met. For instance, in our experiments, the
graph has approximately 5 × 105 nodes, and the total number of mapped read
pairs is around 3×108. This result provides some theoretical justification for the
choice of the heuristic in Algorithm 1.

2.7 Practical Improvements to Efficiency and Accuracy

In practice, we introduce two modifications to our heuristic algorithm to enhance
its accuracy and speed. First, given that the size of TADs typically does not
exceed 3Mb [3], we implement an additional heuristic adjustment to the dynamic
program. When calculating the function q, we restrict our consideration to paths
where the combined length of the DNA sequences on the nodes is under 3Mb.
That is, we replace Pkl in Eq. (4) and (5) with P̄kl, the collection of paths
from k to l that are no more than 3Mb. Let L denote the largest length of
the paths in P̄kl, where length here refers to the number of nodes; generally,
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L ∼ 3Mb
kbin

≪ |V |. Now the time complexity of the dynamic program when using
the heuristic algorithm for q becomes O(|E||V | + L4), where O(|E||V |) comes
from computing the reachable matrix Mr.

Second, our empirical observations suggest that for most node pairs (k, l),
computing q using Algorithm 1 is quite effective. Nonetheless, this method might
not adequately capture the signals of large deletions. To mitigate this, we have
refined Algorithm 1, as detailed in Algorithm 3. In this adjustment, for each
node pair (k, l), we initially execute a node-weighted shortest path algorithm
(where each node’s weight is determined by the length of its corresponding
DNA sequence) to identify a path pbase and calculate its score (lines 5–6 of
Algorithm 3). Subsequently, Algorithm 1 is applied; if the path p derived from
Algorithm 1 surpasses the score of pbase, p is returned, otherwise pbase is the
selected path.

The shortest path algorithm for directed graphs with nonnegative weights
has a time complexity of O(|E| + |V | log(|V |)). Consequently, the overall time
complexity for Algorithm 3 to estimate q remains O(|V |2) (or O(|L|2) if we use
the heuristic above), equating to that of Algorithm 1. Additionally, given that
the path generated by Algorithm 3 will always yield a higher score compared to
that from Algorithm 1, all the theoretical results in Sect. 2.6 are applicable to
Algorithm 3 as well.

Algorithm 3. q(k, l) computation v.2
1: Input k,l, genome directed acyclic graph G = (V,E), nodes list T that contains all

nodes in G sorted by their topological order, contact matrix M , reachable matrix
Mr, the function f

2: if Mr[k, l] = 0 then
3: return
4: end if
5: pbase ← shortest path from k to l
6: qbase ← f(pbase)
7: q, p ← Algorithm 1
8: if q > qbase then
9: return q, p
10: else
11: return qbase, pbase
12: end if

3 Experimental Results

3.1 Construction of a Genome Graph with Hi-C Reads Mapped

We construct the genome graph with structural variations from the K-562 cancer
cell line reported by Zhou et al. [43] and the linear reference genome GRCh37,
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against which the SVs were called. We primarily use the VG toolkit [15] to
incorporate simple variants and further process the variant file and the resulting
graph so that the final genome graph is a directed acyclic graph. Details on the
construction of the genome graph can be found in Shen et al. [37].

We apply the graph-based Hi-C pipeline [36] to process the raw Hi-C reads of
the K-562 cancer cell line from Rao et al. [31] (accession number: SRR1658693).
Subsequently, we employed our graph-based heuristic dynamic programming
algorithm to infer the sample genome. Finally, all raw Hi-C reads were remapped
to the newly inferred linear genome to generate chromosome-specific contact
matrices with bin size 10 kb. Detailed descriptions of our algorithmic imple-
mentations, including hyper-parameter configurations, are provided in Shen et
al. [37].

3.2 Graph Hi-C Workflow Improves TAD Identification

Table 1. The comparisons of three metrics reflecting CTCF or SMC3 enrichments near
TAD boundaries across different genomes. Linear reference: linear reference genome;
Reconstruction: genome inferred by our algorithm. TADs are called by Armatus with
hyper-parameter γAr = 0.5. Hi-C sample: SRR1659693.

Average peak Boundary tagged ratio Fold change

CTCF Linear reference 0.172 0.346 0.019

Reconstruction 0.202 0.387 0.144

SMC3 Linear reference 0.091 0.194 0.044

Reconstruction 0.115 0.237 0.249

We assess the quality of the new contact matrices from the inferred genome
by their ability to exhibit biologically sound TAD structures. We use Arma-
tus [10] to identify TADs from these matrices. The detected TADs are then
compared with those identified from contact matrices created from the linear
reference using HiC-Pro. We evaluate the quality of TADs against the enrich-
ment of regulatory elements CTCF and SMC in K-562 cell lines around detected
TAD boundaries.

We measure the enrichment of CTCF and SMC3 around TAD bound-
aries with three metrics: average peak, boundary tagged ratio, and fold change
(Table 1). Average peak measures the average occurrence frequency of peaks
within 30 kb range centered on TAD boundaries. Boundary tagged ratio mea-
sures the frequency of TAD boundaries that are enriched for regulatory elements.
Fold change measures the change of enrichment of regulatory elements between
regions around and far away from TAD boundaries. Since the TAD boundaries
identified using our method are situated along a path within the genome graph,
we use Graph Peak Caller [18] for calling and comparing CTCF and SMC3 peaks
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on the graphs. Further details on graph peak calling and these metrics can be
found in Shen et al. [37].

Both CTCF and SMC3 peaks are more concentrated around TAD bound-
aries identified based on the inferred genomes than linear reference. Figure 2
graphically presents these peak signals around TAD boundaries, clearly show-
ing that the signals from the inferred linear genome are more pronounced than
those from the linear reference. Table 1 shows that, relative to the linear refer-
ence, there is a higher enrichment of CTCF and SMC3 signals near the TAD
boundaries identified from the new contact matrices.

Fig. 2. (a), (b) CTCF peak signals around TAD boundaries from the linear reference
genome (a) and the inferred linear genome (b). (c), (d) SMC3 peak signals around
TAD boundaries from the linear reference genome (c) and the inferred linear genome
(d). TADs are called by Armatus with hyper-parameter γAr = 0.5.

4 Discussion

In this study, we establish a novel connection between Hi-C analysis and genome
graphs and explore a novel application domain in pan-genomics. We develop the
first algorithm that leverages genome graphs for inferring genome sequences from
Hi-C reads. The experimental results demonstrate that the genomes inferred via
our algorithm facilitate the creation of superior Hi-C contact matrices compared
to those derived using a linear reference. These promising outcomes highlight the
ability of genome graphs to enhance Hi-C analysis, especially for cancer samples
that contain large-scale structural variations.

There are several avenues for future research stemming from this work. First,
our dynamic programming algorithm, despite its reliance on heuristics, is not
exceptionally fast. For instance, processing chromosome 1 with our algorithm
requires around two days, even with some parallelism techniques applied. Accel-
erating our algorithm could be a fruitful area of exploration. Second, currently
the normalization method for Hi-C data mapped onto graphs is lacking, which
is crucial for correcting inherent biases. As a result, to ensure equitable com-
parisons, all contact matrices presented in the experimental section are unnor-
malized. Developing new methodologies for normalizing graph-based Hi-C data
could be a vital and intriguing direction for future research. Third, our current
approach is applicable only to DAGs. This limitation prevents us from testing
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these methods on more complex non-directed acyclic graphs, such as the human
pangenome graphs created by Liao et al. [24]. Therefore, adapting our method-
ology for use with general graphs represents a significant and necessary direction
for future research. Additionally, given that our algorithm is applicable not only
to cancer cell lines, it would be interesting to test it on more cell types, partic-
ularly normal ones, to evaluate its performance. Finally, while there has been
research like that by Wang et al. [42] focusing on identifying structural variations
from Hi-C data and rearranging contact matrices accordingly, we choose not to
benchmark our method against theirs. This is because our primary aim in this
work is to introduce the use of genome graphs in Hi-C analysis for the first time,
while the method of Wang et al., although it can create improved Hi-C contact
matrices, is not able to be used on genome graphs. In the future, it would be
interesting to explore the integration of these two approaches, potentially leading
to even more substantial improvements in Hi-C analysis.
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34. Schöpflin, R., et al.: Integration of Hi-C with short and long-read genome sequenc-
ing reveals the structure of germline rearranged genomes. Nat. Commun. 13(1),
6470 (2022)



130 Y. Shen et al.

35. Servant, N., et al.: HiC-Pro: an optimized and flexible pipeline for Hi-C data pro-
cessing. Genome Biol. 16(1), 1–11 (2015)

36. Shen, Y., Yu, L., Qiu, Y., Zhang, T., Kingsford, C.: Improving Hi-C contact matri-
ces using genome graphs. bioRxiv, 2023–11 (2023)

37. Shen, Y., Yu, L., Qiu, Y., Zhang, T., Kingsford, C.: Technical report: graph-based
genome inference from Hi-C data (2023). https://github.com/Kingsford-Group/
graphhic/blob/main/technicalreport.pdf

38. Sirén, J., et al.: Pangenomics enables genotyping of known structural variants in
5202 diverse genomes. Science 374(6574), abg8871 (2021)

39. Wang, S., et al.: HiNT: a computational method for detecting copy number varia-
tions and translocations from Hi-C data. Genome Biol. 21, 1–15 (2020)

40. Wang, T., et al.: The human pangenome project: a global resource to map genomic
diversity. Nature 604(7906), 437–446 (2022)

41. Wang, X.T., Cui, W., Peng, C.: HiTAD: detecting the structural and func-
tional hierarchies of topologically associating domains from chromatin interactions.
Nucleic Acids Res. 45(19), e163–e163 (2017)

42. Wang, X., et al.: Genome-wide detection of enhancer-hijacking events from chro-
matin interaction data in rearranged genomes. Nat. Methods 18(6), 661–668 (2021)

43. Zhou, B., et al.: Comprehensive, integrated, and phased whole-genome analysis of
the primary ENCODE cell line K562. Genome Res. 29(3), 472–484 (2019)

https://github.com/Kingsford-Group/graphhic/blob/main/technicalreport.pdf
https://github.com/Kingsford-Group/graphhic/blob/main/technicalreport.pdf

