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Abstract— Recent advancements in autonomous robotic as-
sembly have shown promising results, especially in addressing
the precision insertion challenge. However, achieving adaptabil-
ity across diverse object categories and tasks often necessitates
a learning phase that requires costly real-world data collection.
Moreover, previous research often assumes either the rigid
attachment of the inserted object to the robot’s end-effector
or relies on precise calibration within structured environments.
We propose a one-shot method for high-precision contact-rich
manipulation assembly tasks, enabling a robot to perform
insertions of new objects from randomly presented orientations
using just a single demonstration image. Our method incorpo-
rates a hybrid framework that blends 6-DoF visual tracking-
based iterative control and impedance control, facilitating high-
precision tasks with real-time visual feedback. Importantly, our
approach requires no pre-training and demonstrates resilience
against uncertainties arising from camera pose calibration
errors and disturbances in the object in-hand pose. We validate
the effectiveness of the proposed framework through extensive
experiments in real-world scenarios, encompassing various
high-precision assembly tasks.

I. INTRODUCTION

For decades, researchers have been captivated by the pur-
suit of autonomous robotic assembly, with a particular focus
on the insertion problem [1]–[10]. Commonly known as the
Peg-in-Hole Insertion (PIH) problem, it involves assembling
an insertion object into a stationary receptacle. Despite its
prevalence in industrial settings, achieving complex, high-
precision assembly in unstructured environments remains
a formidable challenge [11]. Uncertainties stemming from
variations in grasp alignment, object positions, discrepancies
in parts, and calibration errors can result in failures and
collisions with surfaces. In unstructured scenarios where
both grasping and insertion are required for assembly tasks,
particularly those with minimal tolerances, relying solely on
meticulous calibration often proves insufficient. Moreover,
these uncertainties evolve during the physical interactions
between the robot and the object. Incorporating feedback
systems can help mitigate uncertainties by providing real-
time information during physical interactions.

One approach to tackle the insertion problem involves
force sensing to determine the exact position of the recep-
tacle. Assuming both the insertion object and the receptacle
reside on a common plane, the object is navigated across the
plane of the receptacle in a search pattern to maintain contact
throughout the search. Measurements obtained from a force
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Fig. 1: Robotic setup for the insertion tasks. One object is
designated as a stationary receptacle while the other is an
insertion object placed randomly on a flat surface at the start.
Initially, the robot must visually perceive and securely grasp
the insertion object with its end-effector and then accurately
position it so that it snugly fits into the receptacle.

sensor allow for the deduction of the hole’s position using
contact space modeling [12], [13]. Nonetheless, methodolo-
gies that solely rely on force feedback require a successful
search pattern [14] and are limited to scenarios where the
alignment of the insertion object and the receptacle is initially
approximate. Many approaches assume a rigid connection
between the object being grasped and the robot [12], [15],
ignoring the complexities of the grasping process. This over-
sight can affect the accuracy and effectiveness in unstructured
settings, as it does not account for potential flexibility or
movement between the object and the robot.

One strategy to overcome the initial alignment challenge
is to utilize visual feedback [16]–[20]. While this approach
has demonstrated potential, many existing techniques rely
on conventional visual servoing with manually designed
features, which can result in instability. Recently, efforts
have been made to incorporate reinforcement learning [15],
[20]–[22] into insertion tasks, achieving better robustness.
However, these learning approaches can pose risks to the
robot and its equipment, especially in contact-intensive tasks.
Additionally, they often require complex learning setups, de-
tailed reward engineering, a large number of demonstrations,
and may struggle with generalizing to new objects, tasks, and
unstructured environments.



In this paper, we present Insert-One, addressing the chal-
lenges of performing insertion for novel objects in a one-shot
context, while accounting for errors stemming from grasping
and visual pose estimation. Our approach integrates zero-
shot model-based 6-DoF tracking [23], [24] into a two-stage
vision force servoing pipeline, enabling seamless adaptation
to new object categories. The key novelty behind our method
lies in the use of only one RGB-D image as a demonstration
of the task for visual alignment. Different from previous
work [21], our demonstration is a single static image. Dur-
ing the visual alignment phase, we deploy tracking-based
feedback control to synchronize the object’s pose within
the demonstration image. After achieving alignment, our
framework transition to utilizing impedance control for full
insertion of the object into the receptacle. We address the
practical challenge of managing camera calibration errors
and grasp pose disturbances simultaneously, a topic that has
received limited attention in prior research. We adopt an
object-centric approach to the visual servoing process and
aim to reduce reliance on precise camera and grasp poses
during computations. This strategy enhances the algorithm’s
robustness to uncertainties in these aspects.

In summary, we introduce a one-shot framework that
seamlessly integrates 6-DoF visual tracking with a two-
stage vision-force servo control for precise insertion of novel
objects with just one static image demonstration of the
task. Through comprehensive real-world experiments, we
validate the effectiveness of our method across a variety
of challenging insertion tasks. Our vision-force perception
and servo system exhibits robust generalization capabilities,
accommodating variations in object poses, calibration dis-
crepancies, and previously unseen shapes.

II. RELATED WORK

The problem of robotic assembly involving insertion, has
been a focal point of research for many years [1]–[10],
[25]. Several proposed solutions can be classified accord-
ing to the sensory data they employ, encompassing force,
images, tactile, and laser inputs. In force-based servo meth-
ods, a common strategy involves estimating hole position
through contact state modeling [13], [26]. Planar search
techniques [14] assess the positional relationship between
the peg and the hole by analyzing the torque resulting from
their positional disparity. These methods commonly employ
approaches such as Archimedes spiral search, square spiral
search, windmill search, and raster search (Fig. 2). However,
this necessitates a dense and long search pattern, and restricts
its applicability to scenarios where the peg and hole are
already approximately aligned. Another avenue of research
explores tactile feedback policies for industrial insertion
tasks [25], albeit with restricted generalization capabilities.

Researchers have also examined visual servoing tech-
niques for insertion tasks, with recent advancements focusing
on combining deep learning with these methods. For exam-
ple, deep keypoint extraction can improve visual servoing
for intricate robotic manipulation tasks [27]. Although vi-
sual servoing presents advantages for accurate assembly, its

Fig. 2: Illustration of different search patterns [14] for
insertion tasks: (A) Archimedes spiral search; (B) square
spiral search; (C) windmill search; (D) raster search.

precision is inherently affected by inaccuracies in perception
and calibration. Prior studies have investigated a two-stage
methodology incorporating both vision and force inputs for
diverse applications [17], [19], [28]. But these methods either
can only apply to specific object shapes and are sensitive
to calibration errors. Pose estimation and tracking-based
servoing methods are also employed for precise manipu-
lation tasks [29]. Recent advancements in deep learning-
based object pose estimation [30], [31] have gained traction
for their ability to achieve better accuracy across various
datasets. However, these methods often require extensive of-
fline training for specific objects and categories. An alterna-
tive approach involves constructing a geometric model during
tracking, as seen in recent model-free techniques [32]–[34].
Another recent advancement involves zero-shot model-based
tracking, which compares current measurements against ren-
derings from a provided CAD model of the object. Many of
these methods are well-suited for tasks with broad workspace
domains and flexible tolerances, such as those in mobile
robotics and visual navigation. However, only a few studies
have examined the robustness of pose estimation in high-
precision tasks [29]. In this endeavor, we incorporate a
zero-shot tracking approach based on iterative corresponding
geometry [23] for precise insertion tasks, enabling gener-
alization capabilities for our framework. Nonetheless, our
framework remains versatile, not bound to any particular
tracking methodology.

It is also noteworthy to mention the increasing trend of
integrating reinforcement learning into insertion tasks [35],
[36]. While these methods have shown considerable suc-
cess, they often require complex learning setups, detailed
reward engineering, a large number of demonstrations, and
may struggle with generalizing to new objects, tasks, and
unstructured environments. Our approach introduce a single-
shot demonstration setting to mitigate the need for a training
phase, while also reducing calibration errors and disturbances
in in-hand object poses during the insertion process. The
idea of demonstration-based insertion is inspired by the
observation that humans do not require elaborate search
patterns for insertion tasks [37]. Some studies employ kines-
thetic teaching with force-feedback to gather demonstration
data [38], while others utilize tracking systems to capture
trajectories [21], [39] and replicate them for automated
insertion. In contrast, our framework streamlines the process
by requiring only a static image as demonstration of the task.



III. METHOD

In this section, we first introduce some preliminaries
notations, we then formalize the insertion problem, followed
by an explanation of our proposed Insert-One method.

A. Preliminaries

In this work, a coordinate transformation TSA → SE(3)
denotes a 4 ↑ 4 homogeneous transformation matrix that
describes the origin coordinates of a given frame {A} and
the orientation of its axes, relative to a given reference frame
{S}. The transformation matrix represents a combination of
rotation and translation in the 3D space, given by the rotation
matrix RSA → SO(3) and the translation vector tSA → R

3.
The transformation between the camera frame {C}, and

a robot base frame of interest {B} is denoted as TBC. This
transformation can be computed using the standard procedure
for base-eye calibration with a printed visual tag pattern.
The base frame is fixed to the robot frame (i.e. center of
the robot base). The tool pose refers to the end-effector
frame at each time-step t, denoted as TBE[t], that describes
the position of the end-effector’s origin and the orientation
of its axes relative to the reference base frame {B}. This
coordinate transformation can be automatically calculated
using the joint angles and known kinematic equations. We
define the distance between two transformations TA and TB

as the sum of their rotation and translation distances:

dist(TA,TB) =
Tr(RARB

T )↓1
2

+↔tA ↓ tB↔2. (1)

B. Problem Formulation

We consider the assembly-with-insertion tasks involving
two objects. For simplicity, one object is designated as a
stationary receptacle while the other serves as an insertion
object that is randomly positioned on a flat surface at the
start of the task. The robot is assumed to only know the
pose of the receptacle. Initially, the robot must perceive and
securely grasp the insertion object with its end-effector and
then reposition it so that it snugly fits inside the receptacle.
Unlike prior research, we eliminate certain assumptions.
Specifically, our settings are unstructured in that we do
not presume a rigid connection between the grasped object
and the robot. Unlike previous methods where the object is
firmly affixed to the robot’s gripper [15] or other fixtures,
we allow the object to translate and rotate during grasping
and manipulation. The robot relies on vision feedback for in-
hand object localization. The insertion process depends on
tracking the grasped object’s in-hand 6-DoF pose, estimated
from color and depth images captured by RGB-D cameras.
Furthermore, our goal is one-shot generalization with a single
image demonstration, eliminating the need for a training
phase for the insertion of novel objects.

C. Method Overview

To solve the previously outlined problem, we propose a
two-stage vision-and-force servoing process that we refer
to as Insert-One (Fig. 3). In the proposed mechanism, a
tracking-based feedback control is used to achieve pose

alignment while an adaptive search-based impedance control
is used to execute the appropriate contact forces during the
assembly. The first stage, that we call the visual-alignment

stage, involves picking up the insertion object and then
using a tracking-based feedback control to guide the object
towards the pre-insertion pose. This pre-insertion pose is
estimated from a single demonstration image of the task
in our framework. A zero-shot model-based 6D tracker is
deployed during this phase. The tracker returns the object’s
pose in the camera coordinates at each time-step. The object
may not be perfectly centered in the end-effector after
grasping. The visual alignment phase continues with visual
feedback until the grasped object pose is sufficiently close
to the pre-insertion pose.

After visual alignment, we transition to the second stage,
that we call the search stage. It consists of a local search for
performing an insertion into the receptacle with impedance
control. The first stage is responsible for maneuvering the
randomly presented insertion object accurately into a pose
above the receptacle that is suitable for insertion. This first
phase cannot ensure a successful insertion because of the
high level of precision that is required, and the complexities
associated with the contact-rich nature of the task. The search
stage in our pipeline addresses and resolves these challenges.

D. Visual-alignment Stage

The objective of this stage is to execute a grasp that
can effectively and dependably pick up the object from
a randomly presented position, and then guide the object
towards the pre-insertion pose above the receptacle.
6-DoF Object Pose Tracking: The object’s 6-DoF pose
is tracked to facilitate grasping, pre-insertion manipulation,
and final assembly with continuous post-grasp displacement
estimation. The challenge arises in industrial settings where
many objects may vary vastly in shapes and textures, posing
an extra training expense for object-level or category-level
pose trackers. To address this and facilitate generalization,
we employ a zero-shot model-based 6-DoF pose tracker,
based on iterative corresponding geometry (ICG) [23]. This
optimization-based tracker utilizes contour correspondences
to iteratively refine the pose, making it adaptable to various
novel objects without the need for pre-training in real-world
scenarios. To address occlusion challenges during robotic
assembly, we employ a dual-camera setup for effective pose
tracking. We select one of the two cameras (camera 1
in Fig. 1) as the major camera. All operations involving
camera coordinates are performed under the major camera’s
coordinates. Object pose TCO[t] and end-effector pose in the
camera’s coordinates TCE[t] are tracked at each time-step t,
using the object and the robot hand CAD models.
One-Shot Image Demonstration: We provide a single
image of the task to teach the robot where to position the
object before insertion and how the object should be grasped.
The object is moved into the pre-insertion pose right above
the receptacle, through kinesthetic teaching (Fig. 3). An
image Ig is taken from the major camera. Then, zero-shot
pose tracking is used to estimate the pre-insertion pose of the



Fig. 3: Overview of Insert-One: Offline, we collect a single demonstration of a pre-insertion pose TCOp
of the object. During

testing, the object is placed in a random initial pose, and a 6-DoF real-time tracking is used to get the object pose TCO[t] at
each time t. Then, a object in-hand pose TEO of the object in the end-effector’s frame is computed and the object is grasped.
During the visual alignment stage, a tracking-based feedback control is used by the robot to continuously synchronize the
object’s pose TCO[t] with the demonstrated pose TCOp

. Finally, the robot uses an impedance control-based search along a
windmill pattern to successfully insert the object.

object TCOp
in the camera’s coordinates. We also estimate

the end-effector’s pose from the image as TCEp
.

Grasping: At test time, the object is presented in a random
pose on a flat surface. According to coordinate transforma-
tions, if we know both of the object’s 6-DoF pose TCO[t] and
the robotic end-effector’s pose TCE[t] in the same camera
coordinates, we can compute the object in-hand pose as:

TEO[t] = TCO[t] ·TCE
↓1[t]. (2)

The object in-hand pose TEO[t] in Eq. 2 refers to the
pose of the object in the end-effector’s frame. From the
demonstrated object pose TCOp

and end-effector pose TCEp
,

we compute an initial object in-hand pose TEOp
. The current

end-effector’s pose for grasping at t is then given as:

TBE = TBCTCO[t]T↓1
EOp

. (3)

We use position control to move the end-effector to TBE and
then conduct grasping. After grasping, we need to re-estimate
the achieved object in-hand pose using Eq. 2 because sliding
and other types of disturbance can occur during grasping.
Tracking-based Feedback Control: After picking up object
O, we aim to move it to the demonstrated pre-insertion pose
TCOp

. The control goal in this step is to minimize the error:

eC = dist(TCO[t],TCOp
). (4)

We know the object’s pose TCO[t] in the camera’s co-
ordinates from tracking. TBE [t] is the pose of the robot’s
end-effector, which we can measure and control directly.
According to the problem formulation, we also have a
roughly calibrated camera pose TBC. By inserting the pre-
insertion pose TCOp

into this transformation chain, we can
derive the desired end-effector pose at this stage as:

TBEp
= TBCTCOp

[t](TEO[t])
↓1, (5)

where TBEp
is the estimated end-effector pose for pre-

insertion. We use position control to move the end-effector
to a reference position TBEr

. First, we set TBEr
= TBEp

. We
name the control strategy until this step Direct Control.

In our framework, we follow a tracking-based feedback
control for visual alignment. The reference control position,
TBEr

is updated in its rotation RBEr
and translation tBEr

separately using the following formula:

RBEr
[t +1] = !(RBCRCOp

R↓1
CO

[t],KR)RBE [t] (6)
tBEr

[t +1] = Kt ·RBC(tCOp
↓ tCO[t])+ tBE [t] (7)

Here, Kt and KR are feedback gains for rotation and transla-
tion separately. !(·,KR) : SO(3)↗ SO(3) is a mapping that
scales the rotation by KR.

!(R,KR) = exp(KR log(R)),R → SO(3). (8)

Here, exp and log are matrix exponential and logarithm. In
practice, we set Kt = 1 and KR = 0.3. Intuitively, we track the
current pose of the object in the camera coordinates TCO[t] =
(RCO[t], tCO[t]). Then, we compute the difference between
TCO[t] and the pre-insertion pose in the camera’s coordinates
TCOp

= (RCOp
, tCOp

). Since this residual is defined in the
camera’s coordinates, we transfer them back to the robot’s
frame using the robot-camera calibration TBC. We then apply
this movement to the end-effector’s current pose, TBE [t] =
(RBE [t], tBE [t]).

A numerical simulation performed in Sec. IV-A shows
that the visual alignment with feedback control is able to
converge even in the presence of considerable errors in TBC

and TEO. The tracking stage converges when eC < ! , where
! is a pre-defined parameter (set to 1e↓5).

E. Search Stage

Once the object has been moved to its pre-insertion
position TCOp

, the fine-tuned search process commences.
Although in the previous stage the robot has tried to move
the object to TCOp

, which is right above the receptacle, a
straightforward push down in practice cannot always suc-
ceed. There are two main reasons behind this failure: (1) The
pre-insertion pose TCOp

is estimated from the demonstration
image Ig. Thus, TCOp

includes a pose estimation error. (2)



The tracking-based feedback control has a control error. With
these two combined, the initial position of the object at this
stage has a small misalignment with the receptacle. The
misalignment can be too small to be overcame by visual
servoing alone. Therefore, instead of trying to predict the
exact object’s pose, the robot follows a search-based strategy
for insertion with an impedance-control search method.
Task Space Impedance Control: A task space impedance
controller (TSI) is used to make sure the object and the recep-
tacle are being in contact during the search. The impedance
controller formula can be written as follows:

F = Md(ẍd ↓ ẍ)+Dd(ẋd ↓ ẋ)+Kd(xd ↓ x) (9)

Here F is the force applied by the robot. x, ẋ, ẍ are the
desired position, velocity, and acceleration in the task space.
Md ,Dd ,Kd are the desired mass, damping, and stiffness
matrices. In practice, we set the damping and stiffness
matrices as follows:

Kd =

[
K

t

d
0

0 K
R

d

]
, K

t

d
= 500 · I3x3, K

R

d
= 100 · I3x3, (10)

Dd = 2.0 ·
√

Kd . (11)

Here, K
t

d
is the stiffness for translation and K

R

d
is the

stiffness for rotation. We set the rotation stiffness K
R

d
to be

smaller than the translation stiffness K
t

d
to make the end-

effector’s orientation easier to change so that the object and
receptacle surface are in full contact. Md is dependent on
system identification. Here we use the default Md in the
Franka robot’s official control library.
Search Strategy: There are many different search patterns as
shown in Fig. 2. For our application, we select the windmill
search pattern. This search strategy is chosen because the
first stage of our approach has already roughly aligned the
object to the center of the receptacle, so we need to select
a symmetrical search pattern. In practice, if the object is
cylindrical, one can also follow a spiral search. Here, we set
the frame of reference’s origin on the upper surface of the
receptacle, with the z-axis pointing up. The goal value of the
z coordinate for the controller is set to 1mm lower than the
receptacle’s upper surface in order to ensure that the object
and the receptacle maintain contact during the search. In the
meantime, the z-value of the end-effector’s pose TBE [t] is
continuously monitored. Whenever a significant drop (larger
than 2mm) in that z-value is detected, the object is assumed
to be already partially inserted. Subsequently, the target z-
value of the control is reset to 5mm below the current z-value,
which results in a full insertion.

IV. EXPERIMENTS

We conducted a series of experiments to validate our
proposed framework’s effectiveness. The goal was to assess
the feasibility of addressing autonomous assembly challenges
involving a variety of industrial insertion tasks with novel
objects, while considering grasping and visual estimation
errors. Our experimental framework encompasses both sim-
ulated scenarios and real-world robotic trials.

Fig. 4: Control error eC as a function of iteration n, under
different levels of injected camera pose noise (left) and object
in-hand pose noise (right).

Fig. 5: Objects used in the experiments. From left to right,
the objects are: AMP Connector PLUG (15-pin), AMP
Connector HEADER, Power PLUG Adapter (NEMA 1-15P),
Power PLUG Receptacle (NEMA 1-15R), Shaft (14.6 mm
dia.), and Spur Gear (GEABDM2.0-30-20, 15 mm hole dia.).

A. Numerical Simulations

We performed numerical simulations for evaluating the
convergence of our proposed visual alignment method under
varying levels of injected object in-hand pose noise and
camera pose noise. This provided a robustness analysis of
our method. We generated the pose of insertion object in
camera coordinates as,

TCO[t] = T↓1
BC

TBE [t]TEO. (12)

We use ground-truth values for TBC and TEO to simulate
the ground-truth TCO[t] at each time-step. Then we perform
the visual-alignment process as described in Sec. III-D
numerically. The TBC and TEO we use during control is
injected with Gaussian noise with variance ∀ , because we
want to verify if the control can converge with existence of
calibration error and object in-hand pose disturbance. We
graphically represent the variation of the average control
error eC of 100 different goal poses as a function of control
iterations n under different levels of object in-hand pose
errors and camera pose errors, as illustrated in Fig. 4. As
depicted in the results, both camera pose error and object in-
hand pose estimation error significantly increase the initial
control error eC. However, with the progression of our
tracking-based feedback control, we observe a gradual and
steady reduction in this error.

B. Baseline & Ablation

Direct Control: Direct Control refers to a method that
only use the estimated pre-insertion pose TBEp

without the
following tracking-based feedback control during the visual
alignment stage. After end-effector is moved to TBEp

, we



follow the same impedance control search strategy as we
use in Insert-One.
Insert-One w/o ICS: To investigate importance of the search
stage, we test a variant of Insert-One without the impedance
control search (ICS). After the first visual alignment stage,
we only perform a push-down during the second stage.

C. Real-world Experiments

In this section, we describe the real-world experiments
conducted to validate our methodology, in which we focus to
assess the generalization, spatial invariance, and robustness
of our approach.
Experimental Settings: The setup consists of a Franka
Emika Panda robotic arm with 7 revolute joints and its
control software running on a Desktop computer with
Ubuntu 20.04. Two Intel RealSense D405 Depth Cameras
are mounted for the multi-camera setup to facilitate 6-DoF
visual tracking with RGB-D inputs. The experimental con-
figuration is depicted in Fig. 1. The components featuring ex-
truded characteristics (insertion objects) are positioned atop
an optical breadboard and possess freedom of movement.
Conversely, components with mating features (receptacles)
are securely fastened to the breadboard to mimic indus-
trial fixturing. The objective entails perceiving, tracking,
grasping, transporting, and inserting all insertion objects
into their respective receptacles. The tasks incorporate six
distinct types of components, as illustrated in Fig. 5. These
components vary in size, utility, number of pins, and visual
appearance, offering a diverse range for assessment. The pre-
cision required for insertion tasks operates at sub-millimeter
tolerances. Unlike prior studies that typically rigidly mount
a test connector to the robot gripper or secure it in fixtures,
our approach addresses the broader challenge of autonomous
assembly with randomly positioned insertion object. This
dynamic scenario accounts for handling uncertainty due to
manipulation dynamics, with changes in object pose during
grasping and manipulation.
Insertion Experiments: In the first set of experiments,
distinct insertion tasks were conducted to test spatial in-
variance and generalization, wherein the insertion object was
placed flat on a table in varying initial configurations. The
tasks encompassed the insertion of a standard AMP 15-pin
connector, an electrical adapter, and a Spur Gear (Misumi
GEABDM2.0-30-20). Each configuration underwent testing
from five distinct poses of the insertion object. For the first
two objects, we set an offset angle # set to 0↘, 30↘, 45↘,
-30↘, or -45↘. Since the spur gear is a symmetric object, we
do not present offset in the initial gear pose, but instead, we
manually introduce an in-hand perturbation to the gear pose
after grasping, as shown in Fig. 6. The external perturbations,
ranging approximately ±1cm in translation and ±10 degrees
in rotation from the initial in-hand grasp. We conduct 10
trials for each task. An insertion is deemed successful only
if the insertion object is fully seated in the receptacle. The
outcomes of these experiments are summarized in Table I.

We compare our proposed method, Insert-One, against
two alternatives: Direct Control combined with Impedance

TABLE I: Results of insertion experiments on a variety of
tasks. The test objects are shown in Fig. 5.

Task Offset (↘) Method

Direct Control Insert-One
(w/o ICS)

Insert-One
(Ours)

AMP
Connector

0 2/2 2/2 2/2
30 1/2 0/2 2/2
45 2/2 0/2 2/2
-30 2/2 0/2 1/2
-45 2/2 0/2 2/2

Plug
Adapter

0 1/2 2/2 2/2
30 0/2 2/2 2/2
45 0/2 2/2 2/2
-30 0/2 2/2 2/2
-45 1/2 2/2 2/2

Gear - 0/10 8/10 10/10

Overall - 11/30 20/30 29/30

TABLE II: Results of experiments on noise resistance. TEO

noise refers to object in-hand pose estimation noise. TBC

noise refers to camera pose noise. This experiment is per-
formed with the AMP 15-pin Connector.

Direct Control Insert-One (w/o ICS) Insert-One (Ours)

TEO Noise 0/10 3/10 7/10
TBC Noise 4/10 0/10 9/10

Control Search (ICS), and Insert-One without ICS. Results
indicate that, although Direct Control and Insert-One without
ICS each perform well in some trials, these methods are not
stable to maintain performance across the variety of tasks,
achieving 36.6% and 66.6% overall success rate, respectively.
Direct control although accompanied by impedance search in
the baseline, may not always minimize eC sufficiently since
the camera calibration TBC is not accurate. The performance
gain by our method (Insert-One) is significant, achieving
overall 96.6% success. Ours consistently accomplishes the
task regardless of the object category and initial conditions.
The results highlights the importance of the visual alignment
and impedance search module of Insert-One, for generaliza-
tion and robustness in the proposed one-shot settings.

Robustness: We further investigated the noise resistance of
our proposed approach in real-world conditions. As discussed
in Sec III-D, the system inputs include the camera pose,
TBC, and the object in-hand pose, TEO. To assess robustness
in real-world settings, we manually introduced a translation
noise with a standard deviation of 8mm and a rotation noise
with a standard deviation of 8 degrees to TBC and TEO

separately in two experiments. Subsequently, we ran our
proposed system and other baseline methods under these
disturbances. The results, as detailed in Table II, demonstrate
that our proposed Insert-One framework effectively resists
disturbances, unlike the baseline methods.



Fig. 6: Real-world experiments. From top to bottom, the inserted objects are: (1) AMP connector, (2) Plug Adapter, and
(3) Gear. We showcase five key frames from each experiment: (1) beginning of tracking, (2) grasping, (3) visual alignment
stage, (4) search stage, and (5) insertion completion. The gear insertion experiment evaluated robustness, wherein the gear
pose is disturbed externally after its grasped by the robot. The two zoomed insert pictures show the difference between the
gear’s poses before and after external disturbance. Insert-One effectively withstands disturbances and demonstrates successful
performance in insertion tasks.

D. Remarks

The major strength of our proposed framework lies in
that using only a single image demonstration of the task,
it excels in inserting new objects with high accuracy in
precise manipulation tasks. Moreover, it showcases resilience
to uncertainties stemming from calibration and disturbances
in object pose, rendering it highly effective for practical ap-
plications. We don’t compare to learning-based approaches,
as our focus lies in generalization within one-shot settings,
devoid of any pre-training on objects and tasks. While we
show the effectiveness of the proposed method for insertion
tasks, it can also be readily adapted for other applications,
including object re-orientation. Relaxing certain assumptions
outlined in this study could open up avenues for future
research directions. While achieving zero-shot 6-DoF pose
tracking necessitates a clear understanding of the geometry of
the tracked objects, and to some extent their distinction from
the background, this becomes notably more intricate with
smaller objects. Although geometric information is typically
accessible for numerous industrial parts, it highlights a
limitation that could be mitigated through the development of

more advanced tracking methods. Nevertheless, integrating
additional sensor modalities, such as tactile sensing, along
with improved search strategies based on contact informa-
tion, holds potential for advancements.

V. CONCLUSION
We have presented Insert-One — a novel hybrid frame-

work designed for the robotic insertion of new objects in a
single-shot scenario, utilizing just a single image demonstra-
tion of the task. It integrates 6-DoF visual tracking-based iter-
ative control and impedance control to facilitate the insertion
of objects. Extensive experiments conducted across various
high-precision assembly tasks highlight the effectiveness of
the proposed framework. Demonstrating resilience against
uncertainties stemming from camera pose calibration errors
and disturbances in object in-hand pose, this framework
enables seamless insertion of new objects—from grasping
to transport and insertion into a receptacle with just one
demonstration, unlike existing methods that typically require
extensive training in controlled environments. Future efforts
will focus on multi-modal sensory feedback and extending
the method to cover multi-stage tasks.
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