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ABSTRACT

We study the problem of fairly dividing indivisible goods among a
set of agents under the fairness notion of Any Price Share (APS).
APS is known to dominate the widely studied Maximin share (MMS).
Since an exact APS allocation may not exist, the focus has tradi-
tionally been on the computation of approximate APS allocations.
[4] studied the problem under additive valuations, and asked (i)
how large can the APS value be compared to the MMS value? and
(ii) what guarantees can one achieve beyond additive functions.
We partly answer these questions by considering valuations be-
yond additive, namely submodular and XOS functions, with binary
marginals.

For the submodular functions with binary marginals, also known
as matroid rank functions (MRFs), we show that APS is exactly equal
to MMS. Consequently, following [5] we show that an exact APS
allocation exists and can be computed efficiently while maximizing
the social welfare. Complementing this result, we show that it
is NP-hard to compute the APS value within a factor of 5/6 for
submodular valuations with three distinct marginals of {0, % 1}.

We then consider binary XOS functions, which are immediate
generalizations of binary submodular functions in the complement
free hierarchy. In contrast to the MRFs setting, MMS and APS values
are not equal under this case. Nevertheless, we can show that they
are only a constant factor apart. In particular, we show that under
binary XOS valuations, MMS < APS < 2 - MMS + 1. Further, we
show that this is almost the tightest bound we can get using MMS,
by giving an instance where APS > 2 - MMS. The upper bound on
APS, combined with [17], implies a 0.1222-approximation for APS
under binary XOS valuations. And the lower bound implies the non-
existence of better than 0.5-APS even when agents have identical
valuations, which is in sharp contrast to the guaranteed existence
of exact MMS allocation when agent valuations are identical.
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1 INTRODUCTION

Finding fair allocations of indivisible resources is a central problem
within economics, game theory, social choice theory, and computer
science. Given a set [n] of agents and a set [m] of indivisible items,
the problem asks to partition the items among the agents in a fair
manner. Preferences of each agent i € [n] for bundles of goods are
represented by monotone valuation functions v; : 2lml SR, A
formal study of fair division began with the work of [21]. Since
then, several notions of fairness like MMS, EF1 and Prop1 have
been introduced and are well-studied (See [1, 2] for surveys on
these).

Any Price Share (APS) is one of the more recently introduced [4]
notions, and has already garnered significant interest (See Section
1.1 for a brief review). The APS value of an agent is defined as the
maximum value she can obtain with a budget of 1/n, given any
vector of prices of goods that sums to 1. An allocation where every
agent gets at least her APS value is called an APS allocation. An
attractive feature of APS is that it is independent of the valuations
of the other agents. This is the same with the well-studied notion of
maximin share (MMS) [8, 13, 14, 17]. The APS value of any agent is
known to dominate their MMS value [4]. As MMS allocations are
known to not exist [18] even in the additive valuations case!, the
same holds for APS allocations. We, therefore, focus on the problem
of finding approximate APS, or a-APS allocations, which give every
agent a bundle of value at least « times their APS, for some « > 0.

The problem of finding approximate APS allocations has been
studied for the case of additive valuations [4] and more recently
for submodular valuations [9]. Numerous real world applications
of fair division, like public housing to ethnic minorities, assigning
kindergarten slots, course seat assignments for classes with capac-
ity constraints and where students can specify preferences for a
fixed maximum number of classes, require the valuation functions
to be beyond additive and capture a diminishing marginal returns
property: this essentially means that the marginal value of a good
over a set of goods diminishes over supersets of the set. Submodu-
lar functions capture this very natural property and are therefore

Ithe value of a set equals the sum of values of goods in the set.
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considered a fundamental class of valuations. Fractionally subaddi-
tive (XOS) functions are immediate generalizations of submodular
functions in the complement-free hierarchy. We study APS under
both these function classes, with the constraint that the marginal
values are binary, meaning the marginal value of any good over
any subset of goods is either zero or one. These classes have a rich
structure and have been well-studied for other fairness notions and
also in optimization theory (See Section 1.1 for a brief review). We
partly resolve the following questions posed in [4] for submodular
and XOS functions with binary marginal values.

Question 1: How far apart can the MMS and APS values of an
agent be in any instance?

Question 2: What guarantees for APS can we ensure beyond addi-
tive valuations?

Submodular functions with binary marginal values are equiv-
alently known as Matroid rank functions (MRFs), and are widely
studied, for instance [8, 10, 19, 20]. We show the following surpris-
ing result. Although the APS value is known to be strictly higher
than the MMS value even for general additive functions [4], we
show that for any MRF, these two notions are equivalent. This
immediately leads to polynomial time algorithms to obtain exact
APS allocations using the algorithms that obtain exact MMS allo-
cations [8]. In fact, the known algorithms also ensure economic
efficiency, by giving APS allocations that simultaneously maximize
social welfare (the total sum of values received by agents).

We then analyze the classic generalization of binary submod-
ular functions, namely fractionally subadditive functions (XOS)
with binary marginals. For this, we show that the APS value of
an agent with such a valuation function is at most 2y + 1, where
1 is her MMS value. Using this fact together with 0.3666-MMS
allocation computing algorithm by [16] we obtain an efficient al-
gorithm for computing 0.1222-APS allocation. In contrast to the
relation between MMS and APS for MRFs, we show that there
exist instances with only two agents and identical valuations in this
setting such that APS > 2MMS. As a consequence we get that even
under identical valuations with two agents, better than 0.5-APS
allocation may not exist. This is in sharp contrast to MMS where
by definition an exact MMS allocation exists when agents have
identical valuations. Finally, we show that if binary submodular
functions are generalized to allow three distinct marginal values,
in {0, 1/2, 1}, instead of the two values {0, 1} in MRFs, then the
problem of computing a-APS allocations, even among agents with
identical valuation functions, for any factor a better than 5/6, is
NP-hard. Our results can be summarized as follows.

APS = MMS for submodular functions with binary marginals.
Exact APS values and allocations that give APS along with
maximum social welfare can thus be efficiently computed.
APS < 2:MMS +1, for XOS functions with binary marginals.
A 0.1222-APS allocation can thus be efficiently computed.
There exist instances with identical binary, XOS valuations
where 0.5-APS allocation does not exist.

Submodular functions with ternary marginals: computing
APS values approximately to a factor better than 5/6 is NP-
hard.
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1.1 Further Related Work

APS. APS was introduced in [4], who also prove that APS domi-
nates MMS for non-negative valuations. Further, they give 0.667-
APS allocation for goods, and a 2-APS allocation for chores, under
additive valuations. [15] study the connection of the known no-
tion of Propx with APS for chores, giving a 2-APS allocation here.
[11] compare APS with other share based notions for the case of
agents with asymmetric entitlements. [12] study group fairness
guarantees with APS, under additive valuations. [9] recently gave
a %—approximate algorithm for computing APS with submodular
valuations for asymmetric agents i.e., when agents have different
entitlements.

Matroid Rank Functions. Rank functions of matroid are one
of the fundamental set functions and the optimization of these
functions has been studied in detail, see [19]. [10] and [6] identify
multiple domains where matroid rank functions show up naturally
like fair allocation of public housing units. These functions have
been studied in context of fair division, for other fairness and ef-
ficiency like Nash Social Welfare? [3] EF1 3[4, 10], MMS [6] and
combinations of these [22]. Notably, polynomial time algorithms
that output the optimal allocations under all these fairness notions
are known in the respective works.

Binary XOS valuations. Binary XOS valuations generalize ma-
troid rank functions and have been studied in fair division context.
[16] give an algorithm that gives a 0.3667-MMS. [7] give a 288-
approximation algorithm for maximizing Nash social welfare under
these valuations.

2 NOTATION AND PRELIMINARIES

Notation. [k] denotes the set {1,2,--- ,k — 1,k}.

Model. We study the problem of fairly dividing a set of m indivisible
goods, among n agents. Preferences of an agent i € [n] is defined by
a valuation function v; : olml R0 over the set of goods. We use
v(glAi\{g}) to denote the marginal increase in value when good
g is added to the set A;, i.e., v(glAi\{g}) = v(A; Ug) —v(A;). We
represent a fair division problem instance by ([n], [m], (vi);e[n))-
Allocations. An allocation, A = (Aj,...,Ap) is a partition of
all the goods among the n agents, i.e. for all i, j € [n] with i # j,
AiNAj = 0and U;jc [ A; = [m]. We denote the set of all allocations
by [, ([m]). We also define a partial allocation, denoted by P =
(P, ..., Pp), as a partition of any subset of goods, that is, where
PiNPj=0foralli# jand Ujc[pP; C [m]. Finally, we use the
notion of non-wasteful allocations also defined in [6]. These are
allocations where the marginal utility of all the goods in every
bundle is non-zero, that is, for such an allocation A, v(g|A;\{g}) >
0 foralli € [n] and any g € A;. We now define the fairness notions
we use in this work.

2.1 Fairness Notions

Any Price Share (APS). Let $ denote the simplex of price vec-
tors over the set of goods [m], formally, # = {(p1,....pm) =
2Nash welfare is the geometric mean of agent’s valuations

3An agent values her bundle more than other agent’s bundle up to removal of one
(some) good
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0| >;pi = 1}. Informally, Any Price Share is the value that an
agent can guarantee themselves at any price with the budget of
%. Formally, for an instance ([n], [m], (vi);e[n]), the APS value of
agent i is defined as,

APS?([m]) = min max

i(S
PEP SCm]p(S)<2 7(5)

1

where p(S) is the sum of prices of goods in S. We will refer APS [n] ([m

i
by APS; when the qualifiers n and m are clear.

An alternate definition without using prices is as follows.
Definition 2.1 (Any Price Share). The APS value of an agent i

for an instance ([n], [m], (vi);je[n]) is the solution of the following
program.

APS; = max z
subject to: Z Ar =1
TC[m]
Ar =0 VT such thatvi(T) < z
1
Z Ar<=  Vje[m]
n
TC[m]:jeT
Ar =0 VT C [m]

Essentially, an agent must decide the maximum value z that

satisfies the following. They associate non-zero weights At to all
the sets T C [m] such that any set with a value less than z has
weight zero, the sum of the weights on all the sets is 1, and the
total weight on any good, defined as the sum of weights of the sets
containing the good, is at most % This maximum value of z is their
APS value. Both of these definitions and their equivalence is stated
in [4].
Maximin Share (MMS). The Maximin share (MMS) value of an
agent i for an instance ([n], [m], (0i);c[n]) is defined as the mini-
mum value they can guarantee while partitioning all the goods into
n bundles, assuming they pick the worst bundle in any allocation.
Formally,

MMSE([m]) = max min v; (Ag).

(Ar,...An) €l ([m]) ke[n]
We refer to MMS?([m]) by MMS; when the qualifiers n and
m are clear. We will refer to the allocation that defines the MMS
value of any agent i, that is, argmaxyy . ([m]) minge(,) vi(Ag), as
the MMS defining allocation of agent i.

Note that both the APS and MMS values of an agent do not depend
on the valuation functions of the other agents, and depend only on
the number of agents in the fair allocation instance.

The following relation between the APS and MMS values of any
agent is known.

Claim 2.1. [4] For any monotone valuation function v; of agent i,
we have APS; > MMS;.

At times we abuse notation, and refer as the APS (or MMS) value
of a function v(-), which essentially is a value of an agent whose
valuation function is v(-).

D
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2.2 Valuation Functions

Binary marginals. For a valuation function o(-), the marginal
utility of a good g € [m] over a set S C [m], denoted by v(g|S), is
defined as the increase in the total value of the bundle S U {g} over
the set S, that is, v(g|S) = v(S U {g}) — v(S). We consider valuation
functions with binary marginals, defined as those for whom the
marginal utility of any good over any set is either 0 or 1, that is,
0(g|S) € {0, 1} for every g € [m] and S C [m].

Submodular functions. A function is called submodular if it sat-
isfies the property of diminishing marginal returns, which specifies
that the marginal utility of any good g over any subset of goods S
must not be larger than its marginal utility over any subset of S.
Formally, a function v : 2lml — R is called submodular if and
only if|

v(g|S) < u(g|S’), Vg € [m], s’cScm].

XOS functions. A function o : 2™ — R>y is called additive, if
the value of a set of goods is equal to the sum of values of the goods
in the set, that is, v(S) = X sesv({g}). A function v : 2lml Rxo
is said to be XOS, or fractionally subadditive, if and only if there
exists a family of additive set functions ¥, such that the value of
each subset S C [m] is the maximum function value of S from
the functions in ¥, that is, v(S) = maxsc# f(S). Note that the
cardinality of the family # can be exponentially high in m.

We focus on submodular and XOS functions with binary marginals.
In case of the submodular functions, these are equivalent to what
are called matroid rank functions (MRFs) (See Section 2.3 for a
matroid based definition of these functions).

For the submodular functions, we also study the case of ternary
marginals, where all the marginal values v(g|S) € {0,1/2,1} for all
goods g € [m] and S C [m].

2.3 Matroid Preliminaries

Matroid. A matroid, denoted by M, is a tuple (E, 7)) where E is a
set of elements, called the ground set, and 7 C 2F is a collection of
subsets of E called the independent sets of the matroid, that satisfies
the following properties.

(1) If S € I thenS € T forall S C S.
(2) If I, ] € I and |I| > |]| then there exists i € {I'\ J} such that
Ju{iter.

Bases of a matroid. Any independent set of the largest cardi-
nality, that is any set B € argmax;. 7 |I|, is called a base of the
corresponding matroid.

Rank of a matroid. Every matroid M = (E, I') has what is called
a rank function associated with it, that maps any subset S of the
ground set E to a non-negative integer, equal to the size of the
largest independent set that is a subset of S. We denote this function
by rpq : 28 — Zsg. Formally,

rm(S) = |11 )

max
IcSIel

The rank of a matroid M is the value r p((E).

Matroid rank functions and submodularity. It is well known
that the rank function of a matroid M = (E, I) is equivalent to a
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submodular function on a set of | E| items with binary marginals [19].
That is, any submodular function on a set of m items with binary
marginals corresponds to a matroid with a ground set of m elements,
one corresponding to each item, referred as the underlying matroid
hence forth. The submodular function’s value for any subset of the
items is equal to the value of the rank function of the underlying
matroid for the set of elements corresponding to the items.

Matroid Union. The union function applied to a collection of
matroids generates a matroid known as the union matroid. Let
MUk = (EYk TYKY denote the union of a collection of matroids
My = (Er, L), ..., My = (E, Ii.). MY¥ is defined as,

E¥ = Uiepiy B T9% = (Uie i) Lilli € Bi)-

Essentially, for the union matroid, the ground set is the union of
the ground sets of the matroids in the collection, and the indepen-
dent sets are all possible sets formed by taking the union of one
independent set from each underlying matroid.

Rank function of a Union matroid. The rank function of a
union matroid M"¥, denoted by 7 pqok (+) or simply rp(-) when
the underlying matroids are clear, has the following well known
formula.

() =min [[S\TI+ > raq(T0E) ®)

ie[k]

Here for each i € [k], r 54, (-) is the rank function of the underlying
matroid M;.

Union of copies of a matroid. Given a matroid M = (E, 1), let
M denote the union of n copies of M. Let r(-), r(M) and r" (M™)
respectively denote the rank function of M, the rank of M, and
the rank of M"™. The following properties relating these quantities
are well known [19].

Lemma 2.1. r*(M") = n-r(M) if and only if for all subsetsT C E,
[E\T| =z n-[r(E) - r(T)]. 4

Lemma 2.2. Ifr"(M") =n-r(M), then M has at least n disjoint
bases.

3 SUBMODULAR VALUATIONS WITH BINARY
MARGINALS (MATROID RANK FUNCTIONS)

In this section, we will prove Theorem 3.1. As a corollary, we get
the computational result of Theorem 3.2.

Theorem 3.1. Ifthe valuation function v; of agent i is a submodular
function with binary marginals, a.k.a. matroid rank function, then
their APS and MMS values are equal, i.e., MMS; = APS;.

Proof Idea. Recall that such a v; is a matroid rank function. To prove
this theorem, we consider the underlying matroid of the valuation
function v;. We use the set based definition of APS;, Definition 2.1,
to show that equation (4) is true for M. This is the most crucial
and technically involved step in the proof. With this equation, it
then follows from Lemma 2.1 that the ranks of M and the union
matroid of n copies of M, say respectively r(M) and r" (M™),
satisfy r*(M") = n - r(M). Lemma 2.2 then implies that M has at
least n disjoint bases. These bases translate to bundles of the goods
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in the fair allocation instance such that the value of i for each base is
at least equal to r(M). From the definition of MMS, MMS; is thus
at least r(M). Finally we show r(M) is equal to APS;. Combining
with Claim 2.1 proves the Theorem.

In the remaining section we discuss the proof in detail, using the
above notations.

A key notion towards establishing equation (4) is capping the
valuation function of i. Using v;(-), we define a new function 7;(+)
as,

0;(S) = min{v;(S), APS;} (5)

We first claim that capping v; maintains the matroid rank property.

Lemma 3.1. Ifv; is an MRF then v; as defined in Equation 5 is also
an MRF.

Proor. We will show that 7j(-) is a submodular function with
binary marginals, hence equivalently is an MRF.

Consider any good g € [m] and set S C [m]. We have,
0;i(glS) =i(g U S) —i(S)
= min{v; (g U S), APS;} — min{v;(S), APS;}.
Now if min{v;(S), APS;} = APS;, then by the monotonicity of v;(-),
min{v;(gUS), APS;} = APS;, implying their difference is zero, and
0i(g1S) =0.

Otherwise, if v;(S) < APS;, then v;(g U S) is at most 1 more
than 0;(S), as v;(+) has binary marginals. Therefore, min{v;(g U
S), APS;} is also at most 1 more than v;(S) = min{v;(S), APS;},
their difference is at most one, hence v;(g|S) < 1. This shows that
0;(-) has binary marginals.

It is left to show that v;(-) is submodular. We consider any set S’
that is a superset of S, and show v;(g|S) > v;(g|S’).

If g € S, then both of these values are zero. Also when v;(g]S) = 1,
then as v;(-) has binary marginals, the inequality follows easily.
Finally, suppose g ¢ S, and v;(g|S) = 0. Similarly as v;(g|S), we
have,

2i(g|S") = min{v; (g U "), APS;} — min{v;(S"), APS;}
Here if v;(S) > APS;, then from the monotonicity of v;, all the
terms v; (S"U{g}),vi(S"),v:;(SU{g}) > APS;, and both the marginal
utilities 3 (g|S) and v;(g|S”) are zero.

Otherwise, when v;(S) < APS;, then as 9;(g|S) = 0, we have
min{v;(gUS), APS;}—v;(S) = 0. Again as v;(S) < APS;, min{v;(gU
S), APS;} = v;i(g U S). Therefore, ;(g|S) = vi(g|S), and v;(g|S) is
also zero. As v;(-) is submodular, v;(g|S) > v;(g|S’). As v;(-) has
binary marginals, v;(g|S”) = 0. We have,

0i(g1S") = 0vi(g U S) —v:i(S")
> min{v;(g U S’), APS;} — min{v;(S"), APS;}
=7;(g5").

Thus 9;(g|S’) = 0, and therefore v;(g|S”) = v;(g|S). O

Next, we relate the APS values of i under ; to their correspond-
ing values under v;. Let APS value of i under v; be APS;.

Claim 3.1. APS; = APS;.
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Proor. First note that since v; is capped at APS;, the value of
any set, in particular the best bundle she can afford at any price
vector, cannot be greater than APS;. Thus, from the price based
definition of APS shown in equation (1), APS; < APS;.

To see the other direction, consider Definition 2.1 of APS. Since
the APS value of the function v; is APS;, there exist some k sets S =
{S1,..., S} each of value at least APS; under v;, and corresponding
weights A = {A1, ..., A} that satisfy the constraints in Definition
2.1. Now, even under 9;, these sets have value at least APS;, in fact,
exactly APS;. We show that the sets S and their weights A form
a feasible solution to the program of Definition 2.1 for z = APS;,
even under ;.

The only constraints that depend on the valuation function are,
Ar = 0 for all T where 0;(T) < z. As we have fixed z = APS;, and as
v;(T) < v;(T) for any set T, these constraints hold. The remaining
constraints hold trivially. Therefore, APS; > z = APS;. |

Analogously, we relate the MMS values of i under 9; to their
corresponding values under v;. Let MMS value of i under v; be
MMS;.

Claim 3.2. MMS; > MMS;.

Proor. Consider any MMS defining allocation A” under v;. The
minimum valued bundle in this allocation has value MMS; accord-
ing to v;. By definition of v;, v;(S) > v;(S) for every set S C [m].
Thus, the same allocation has a value at least MMS; even under
v;. From the definition of MMS, MMS; is at least equal to the mini-
mum bundle’s value under v; from the allocation A”, hence at least
MMS;. O

Let Mz denote the underlying matroid of the function v;, and
let MZ be the union matroid of n copies of M.

Lemma 3.2. r(Mg) = APS;.

PROOF. As 0 caps the valuations at APS;, no independent set
can have size more than APS;, hence the rank of Mj is at most
APS;. At the same time, from Claim 3.1, APS; = APS;. The set based
Definition 2.1 of APS then implies that there exist some sets of value
at least APS; under ;. This implies that the rank rm;([m]) = APS;.

Together, we get rp(. ([m]) = APS;. O
We now prove the key lemma towards proving Theorem 3.1.
Lemma 3.3. For any subset T C [m],

[m]\T| 2 n- [APS; —rp;(T)] (©)

PRroOF. From Claim 3.1, the APS value under 9;(-) is APS;. Defi-
nition 2.1 of APS shows that there exists an optimal feasible solution
to the program. Let the sets and their associated weights in the
solution be S = {S1,...,S¢} and A = {Ay, ..., A} respectively. We
have 9;(Sj) > APS; for all j € [k], and the total weight on any par-
ticular good g, that is, Zj:gesj Aj, is at most % As "M (Sj) = APS;,
as 9;(Sj) = APS; for all j € [k]. That is, the sets S; are bases of the
matroid M.

Consider any set T C [m]. Let the rank of T be t,. As r(M3) =
APS; from Lemma 3.2, t, < APS;. Therefore, using Property 2 of
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Matroid definition 2.3, we can move APS; — t, elements from each
SjtoT.Let S;. be any set of APS; — t, elements that can be added
to T, with a marginal utility of one for each element.

The total weight of all the distinct elements in the sets S;. can be
expressed in two ways as,

DIEDIRICENEI WPIRICAL

gerSj j:geSj jelk] geSj

where w(S}) is the weight of the set S}, and w(g, S;.) is the weight
on good g due to it belonging in S}, in the solution (S, A) to the
program defining APS.

As the total weight on each good is at most 1/n, the left expres-
sion can be evaluated as,

S Y s Y =Yg Sl

geU_,-S} j:gES} geu_,-S}

As w(S;.) is equal to the weight of the set S, the right expression
can be evaluated as,

2, 2, W)= D ISy

jelk] ges) jeTk]

Equating the two, we get,
’ l ’
D Al < — e Sjl-
Jjelr]

As |5;| = APS; — t,, and Zje[r] A-j =1,

| Uje[r] Sl 2 n- (APS; — t;) ™)

Finally, as all the sets S;. j € [k], add elements to T that are not
already present in T, we have that Uje[k]S;. C [m] \ T. Thus,
[ Ujelk 5;.| > |[m] \ T|. Substituting in equation (7),

IImI\T| = n- (APS; =) = n- [APS; —rp.(T)]. O

Theorem 3.1 follows as a combination of all the lemmas.

Proor oF THEOREM 3.1. First, by substituting Lemma 3.2 in equa-
tion (3.3), and combining with Lemma 2.1 we immediately get the
following relation.

FOMZ) = n - r(Mg). (®)

Combining this with Lemma 2.2, we get that Mg has at least n
disjoint bases. This means we can create a partition of [m] where
each part has value r(Mg,), which is equal to APS; from Lemma

3.2. Thus, MMS; > APS;. Along with Lemma 3.2 we then have,
MMS; > APS;. Finally, we know from Claim 2.1 APS; > MMS;.
Therefore APS; = MMS;. O

Finally, we prove as a corollary of Theorem 3.1, the following
computational result.

Theorem 3.2. Given a fair allocation instance ([n], [m], (vi)ie[n])
where every agent’s valuation function is an MRF, there is an efficient
(polynomial time) algorithm to compute allocation that simultane-
ously guarantees every agent a bundle of value at least APS; and has
maximum social welfare among all allocations.



Full Research Paper

Proor. We know from [8] that an allocation that gives every
agent a bundle of value at least MMS; and maximizes social welfare
exists and can be computed efficiently. Theorem 3.1 implies the
same allocation guarantees an APS or higher valued bundle to each
agent. ]

4 XOS VALUATIONS WITH BINARY
MARGINALS

In this section, we consider APS approximations when agents have
XOS valuations with binary marginals. Theorems 4.1, 4.2 and 4.3
are the main results of this section.

Theorem 4.1. If the valuation function of an agent i in an instance
([n], [m], (vi)ie[n]) is an XOS function with binary marginals, then
their APS and MMS values satisfy, APS; < 2- MMS; + 1.

Proof Idea. Recall the notions of partial and wasteful allocations
from Section 2. The crucial step in the proof is Algorithm 1, which
takes as input a fair allocation instance ([n], [m], (vi);e[n]), and
yields a non-wasteful, partial allocation where each of the allocated
bundles has value at most MMS; + 1, and the set of unallocated
goods has a value of at most MMS;. Using this allocation, we fix
prices on the goods such that for agent i the highest value of any
affordable bundle of goods, that is one with total price at most 1/n,
is at most 2MMS; + 1. The price based definition shown in equation
(1) of APS, then implies the theorem.

Let us now discuss the details of the proof. Hence forth, we call
an allocation balanced for an agent, if the difference in the values of
the smallest and largest bundles according to the agent’s valuation
function is at most 1.

Algorithm 1: Non-wasteful balanced MMS allocation

Input :([n], [m],v;(-)) where v; is a binary XOS valuation
function
Output: A non-wasteful, balanced MMS allocation
according to v;, where the leftover goods also have

value at most MMS; + 1.
1 Initialize A = (A1, Az, ..., Ap) to be any MMS-defining
allocation for agent i
2 Initialize R <« 0
3 for j € [n] do
4 if Z)i(Aj) > MMS; + 1 then

5 Let G € {A C Ajloi(A) = |A| = MMS;}
6 SetAj — G
7 R «—RU{A;\ G}

8 R [m]\Uje[mAj
9 while v;(R) > MMS; + 1 do
Let A’ € R witho;(A”) = |A’| = MMS; +1
Let k « argmin ¢ ] 0i(Aj)
R —R U Ag
A — A

14 return A

10

11

12

13
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Algorithm. The algorithm starts by computing any MMS-defining
allocation A for agent i, and performs two phases. First, while
any bundle A;’s value in A is more than MMS; + 1, it considers
any subset G of A; that has both size and value exactly MMS;,
leaves G with agent j and removes the remaining goods. All goods
removed in this way are added to a bundle called R. In the second
phase, while the value of R is higher than MMS; + 1, it considers
any subset A’ of R of both size and value exactly MMS; + 1. The
algorithm takes away the bundle of the smallest valued agent, adds
this to R, and gives A’ to this agent instead.

We use two results that will be useful in establishing that this
algorithm converges in the special kind of allocation desired. Claim
4.1 is a technical property of XOS valuations, followed by Lemma
4.1 which shows a key property of Algorithm 1.

Claim 4.1. Given an XOS valuation function v : 2lml 5 Ry with
binary marginals, and any set S C [m], we can find a subset S’ C S
such thatv(S’) = v(S) = |5’|.

ProoF. Since v is an XOS function, there is a family ¥ of additive
functions such that for all S C [m], there is an additive function
f € F with 0(S) = f(S). Given the set S consider any such
function f. As f is additive, f(S) = X4es f(g). Further, as v has
binary marginals, f(g) € {0,1} for all g. We define the set §’ :=
{g € S|f(g) = 1}. Thus we have, v(S) = f(S) = f(S') = |5

Finally, as f(S’) = |S’],0(S") > |S’|, butas v has binary marginals,
v(S") < |S], thus o(S") = |5]. o

Remark 4.1. We note here that while Claim 4.1 seems obvious, it is
not true for binary subadditive valuations which are the immediate
generalisation of binary XOS valuations. To see this, consider a func-
tion on m = 3 goods where the entire set of goods is valued at 2 and
any strict subset of the three goods has a value 1. One can verify that
this function is subadditive and that Claim 4.1 does not hold for this
function.

We next prove the following lemma.

Lemma 4.1. Algorithm 1 terminates, and the output allocation A is a
non-wasteful, balanced, MMS allocation according to v;. Furthermore,
vi(R) < MMS;.

Proor. Consider the first For loop (Steps 3 to 7). This loop ac-
cesses every bundle A; at most once, and if its value is more than
MMS; +1, finds a subset G C A; of value MMS;. From Claim 4.1,
such a set G always exists. Since the algorithm is not required to
execute in polynomial time, let us assume that the algorithm finds
the set by enumeration. Thus, at the end of this loop, we have
0i(Aj) = MMS; for each j € [n].

Let us now look at the While loop (Steps 9 to 13). If this loop has
n or more iterations, then after n iterations it replaces more than n
bundles, and finds a new (partial) allocation where every bundle has
value equal to MMS; + 1. From the definition of MMS, this means
MMS; > MMS; +1, a contradiction. Therefore, this loop is executed
at most n — 1 times and in the end, we have v;(A;) < MMS; +1
for all j. After the loop terminates, the condition for staying in the
loop is falsified, hence v;(R) < MMS;.
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Therefore, in at most O(n) iterations of the For and While loops,
the algorithm terminates, and yields an allocation where MMS; <
vi(Aj) < MMS; + 1 forall j € [n], and v;(R) < MMS;, that is, a
non-wasteful, balanced and MMS allocation. m]

ProoF oF THEOREM 4.1. Consider the partial allocation A and
the set of remaining goods R obtained at the end of Algorithm 1.
We define a price vector p = (pj) je[m] for the goods based on A
as follows.

VjeA, VAL € A
VjeR.

Let us see the maximum value that an agent with a budget 1/n can
afford with this price vector. First, they can get all of R for free.
From Lemma 4.1, R has value at most MMS; for i. Further, each
bundle Ay has value under v; at most MMS; + 1.Therefore, each
good in A has price at least 1/(n - (MMS; + 1)). Even if agent i
picks all the lowest priced goods and gets a marginal increment of
one for each of them, at a budget of % they can receive a value of
at most MMS; + 1 from A. By subadditivity of v;, their total value
from A and R together is at most 2 - MMS; + 1 value. From the
price based definition of APS, APS; < 2- MMS; + 1. O

1
;= n'lAkl’
pj { 0,

Next, we prove that Theorem 4.1 is almost the tightest relation
between MMS and APS values for this setting.

Theorem 4.2. There exists a fair allocation instance with three
agents and six goods, where all the agents have an identical XOS
valuation function with binary marginals, and their APS and MMS
values satisfy APS > 2 - MMS.

Proor. The instance ([n], [m], (0i)ic[n]) is as follows. There
are three agents and six goods, i.e. n = 3 and m = 6. Let the goods
be denoted by g;, i € [6]. The identical XOS valuation function of
all the agents has two additive functions in the family ¥, say fi
and f;.

The first three goods have value 1 under f; and the remaining
have value 0, that is, fi(g;) = 1, for i € [3], and fi(g;) = 0 for
i € [6] \ [3]. Under f7, the opposite is the case, i.e., f2(g;) = 0, for
i € [3],and f2(gi) = 1fori e [6] \ [3].

As the agents are identical, they have the same APS and MMS
values. Now, as there are three agents, if MMS was more than one,
each agent must get at least two goods. Note that under v, an agent
can get a value of two if they receive two goods from {g1, g2, g3}
or two goods from {g4, g5, g¢ }. But to create three bundles of size
two each, at least one bundle would have one good from each
set {g1, 92,93} and {g4, gs, g6 }. This bundle however would have a
value of 1 under v. Thus, the MMS cannot be more than 1.

On the other hand, consider the set of 6 sets {g;, gi+1} for i € [3]
and i € {4,5,6}. Assign a weight of 1/6 to each of these sets. The
total weight assigned is 1. Also, each good belongs in exactly two
sets, hence the total weight on any single good is 1/3. Each set has
value 2. Therefore, this is a feasible solution to the Linear program
in the APS definition 2.1 for z = 2. Thus, APS > 2. Therefore, in
this instance, APS > 2 - MMS. m]

Theorems 4.1 and 4.2, along with the known computational
results for MMS, yield the following results for APS.
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Theorem 4.3. Given a fair allocation instance ([n], [m], (vi)ic[n])
where every agent has a binary XOS valuation function,

(1) A 0.1222-APS allocation, meaning one that gives every agent
a bundle of value at least 0.1222 times their APS, can be com-
puted in polynomial time.

(2) Even when agents have identical valuations, no better than
0.5-APS allocation may exist.

To prove this theorem, we first prove the following lemmas to
separate the agents with APS = 0 and MMS = 0.

Lemma 4.2. Given an instance ([n], [m], (vi);e[n]) with XOS bi-
nary marginal valuations, one can check in polynomial time if any
agent has MMS = 0.

Proor. To check if MMS; = 0 for some agent i, we form a
complete weighted bipartite graph where one side has n vertices,
and the goods correspond to vertices on the other side. The weight
of each edge is the value of the agent i for the good adjacent to the
edge. We compute one maximum weight matching of the goods.
If each of the n vertices in the left part gets assigned a good of
value 1, then one can form an allocation with the matched goods in
separate bundles. The remaining goods can be allocated arbitrarily.
By subadditivity, each bundle has value at least 1, hence MMS; >
0. O

Lemma 4.3. For an agent with a binary XOS valuation function in
a fair allocation instance, APS = 0 if and only if MMS = 0.

Proor. If MMS; > 0, then from Claim 2.1, APS; > 0. Otherwise
when MMS; = 0, the allocation returned by Algorithm 1 has the
following properties according to Lemma 4.1. The value of R = 0,
and the value of each bundle in A is either 0 or 1. Further, there are
at most (n — 1) bundles with value 1, else MMS; > 1. Also, each of
the 1 valued bundles have exactly 1 good in them, and the 0 valued
bundles have no goods in them. We assign prices to the goods as
follows. Assign a price of 1/(n — 1) to each good in the highest
valued n — 1 bundles of A, assign a price of 0 to all the remaining
goods (in R).

At a budget of 1/n, the agent cannot afford any 1 valued bundle.
As the remaining goods together have a value 0, APS = 0. O

Proor oF THEOREM 4.3. From Lemmas 4.2 and 4.3, we remove
all the agents with APS = 0 by giving them no goods in polyno-
mial time. For the remaining agents, we know APS > MMS > 1.
Combined with APS < 2 - MMS + 1 from Theorem 4.1, we have
APS < 3 - MMS for all the remaining agents.

[17] show that there exists an efficient algorithm to compute a
0.3666-MMS allocation, that is, an allocation where every agent
receives a bundle of value at least 0.3666 times their MMS value.
As APS < 3 - MMS, this implies that an allocation that gives every
agent a bundle of value at least 0.1222 times their APS can be
computed in polynomial time.

Finally, Theorem 4.2 shows an instance where the agents have
identical valuation functions, and their APS is at least twice their
MMS. By definition of MMS, no allocation can have the smallest
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bundle’s value more than MMS. Therefore, in every allocation,
at least the smallest bundle’s agent receives a bundle of value at
most half their APS, and a better than 0.5-APS allocation does not
exist. m]

5 SUBMODULAR VALUATIONS WITH
TERNARY MARGINALS

In this section, we show the following hardness result.

Theorem 5.1. In an instance ([n], [m], (vi)ic[n)), it is NP-hard to
compute the MMS value of an agent approximately up to a factor
better than 5/6, when the agent has a submodular valuation function,
even when all the marginal utilities are in {0,1/2,1}.

An immediate corollary, using Claim 2.1, is that computing the
APS value approximately up to a factor better than 5/6 is also NP-
hard for such an agent. The proof of the theorem has three parts.
First, we show a reduction from the known NP-complete problem
3-D-MATCHING to a fair allocation instance with agents with
identical valuations. We then show that this valuation function in
the reduced instance is submodular with all the marginal values
in {0,1/2,1}. Finally, we show the correctness of the reduction,
establishing the factor of the hardness of approximation.

Reduction. The 3-D-MATCHING problem is as follows. Given are
three disjoint sets X, Y, Z, having m elements each, and a set 7~ of
triples (a, b, c), where a € X, b € Y and ¢ € Z. The problem is to
answer if there is a subset of m triples in 7~ called a 3-D-MATCHING
of X, Y, Z, that cover all of X, Y and Z, meaning foralls € XUYUZ,
s € 3-D-MATCHING.

Given an instance of 3-D-MATCHING, we form a fair allocation
instance as follows. There are m agents, and a set M of 3m goods,
one good corresponding to each element of X,Y and Z. All the
agents have the following identical valuation function o for the
goods. For any subset S of M, v(S) is defined as follows.

1,  if|S|=1
2, if S| =2

o(S)=1{ 25 if|S|=3andS¢T
3, if[S|=3and S € T
3, if|S] >4

Function v is submodular with ternary marginals. First, let
us compute the marginal utility of a good g over sets of different
sizes. From the definition of v(S), one can verify that,

1, if|S| <1
0.5, if|S|=2andSU{g} ¢ T
)1 if|S|=2andSU{g} € T
2919 =1 o5, if|S|=3andS¢ T
0, if|S|=3andSeT
0, if |S] > 4.

Therefore, v(g|S) € {0,1/2,1} for all g and S.

Also v(g|S) < v(g|S’), for any two sets S, S” with |S| > |S’|,
hence also when 8’ C S. This establishes submodularity.
Correctness. Finally, we prove that the MMS value of any agent
is 3 if and only if the 3-D-MATCHING instance has a solution, and
is at most 2.5 otherwise.
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Suppose a 3-D-MATCHING exists. Then one can divide the 3
goods from each triple in the solution to every agent. Each agent
receives a bundle of value 3. As the highest value under v of any
set of goods is 3, MMS < 3. Therefore, in this case, MMS = 3.

Alternatively, suppose the MMS value of the reduced instance
is 3. Then every agent must receive exactly 3 goods. Otherwise,
some agent will receive at most 2 goods, and have value at most
2. A bundle of 3 goods has value 3 only when the corresponding
elements form a triple in the 3-D-MATCHING instance. Also, the
bundles of goods in the MMS-defining allocation are disjoint, hence
the triples allocated to all the agents are disjoint. Therefore, the
allocation consists of goods corresponding to m disjoint triples, that
cover all the elements, hence form a solution of 3-D-MATCHING.
Now;, if there was an algorithm that computed the MMS value
within a factor better than 5/6 for such instances with submodular
functions and ternary marginals, then given the reduced instance,
the algorithm would output a value higher than 2.5 if and only if a
3-D-MATCHING existed. This proves Theorem 5.1.

6 CONCLUSION

We analyzed the fairness notion of APS for indivisible goods under
submodular and XOS functions with binary marginals, a rich and
expressive class of valuation functions [6, 7, 10, 16]. Under binary
submodular valuations, we give a rather surprising result that APS
=MMS. This is not true for even additive valuations (with non-
binary marginals.) On the other hand for fractionally subadditive
functions with binary marginals, we show a gap of 2 between APS
and MMS and show that is almost tight.

It would be interesting to study the relations between APS and
MMS for other valuation functions, and in particular for binary
subadditive valuations. Subadditive functions generalizes both frac-
tionally subadditive and submodular functions, and remains rela-
tively less explored. We note that, most of Section 4 can be extended
to work for binary subadditive functions, except Claim 4.1. A gener-
alization of this claim for subadditive valuations will be helpful in
determining the gap between MMS and APS under these valuations.

Finally, a study of APS for the case when agents are heteroge-
neous, i.e. each agent has a weight or endowment, under valuations
beyond-additive with binary marginals is the next natural question.
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