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ABSTRACT
We study the problem of fairly dividing indivisible goods among a

set of agents under the fairness notion of Any Price Share (APS).
APS is known to dominate thewidely studiedMaximin share (MMS).
Since an exact APS allocation may not exist, the focus has tradi-

tionally been on the computation of approximate APS allocations.

[4] studied the problem under additive valuations, and asked (𝑖)
how large can the APS value be compared to the MMS value? and

(𝑖𝑖) what guarantees can one achieve beyond additive functions.

We partly answer these questions by considering valuations be-

yond additive, namely submodular and XOS functions, with binary

marginals.

For the submodular functions with binary marginals, also known

asmatroid rank functions (MRFs), we show thatAPS is exactly equal
toMMS. Consequently, following [5] we show that an exact APS
allocation exists and can be computed efficiently while maximizing

the social welfare. Complementing this result, we show that it

is NP-hard to compute the APS value within a factor of 5/6 for

submodular valuations with three distinct marginals of {0, 1
2
, 1}.

We then consider binary XOS functions, which are immediate

generalizations of binary submodular functions in the complement

free hierarchy. In contrast to theMRFs setting,MMS andAPS values
are not equal under this case. Nevertheless, we can show that they

are only a constant factor apart. In particular, we show that under

binary XOS valuations, MMS ≤ APS ≤ 2 ·MMS + 1. Further, we
show that this is almost the tightest bound we can get using MMS,
by giving an instance where APS ≥ 2 ·MMS. The upper bound on

APS, combined with [17], implies a 0.1222-approximation for APS
under binary XOS valuations. And the lower bound implies the non-

existence of better than 0.5-APS even when agents have identical

valuations, which is in sharp contrast to the guaranteed existence

of exact MMS allocation when agent valuations are identical.
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1 INTRODUCTION
Finding fair allocations of indivisible resources is a central problem

within economics, game theory, social choice theory, and computer

science. Given a set [𝑛] of agents and a set [𝑚] of indivisible items,

the problem asks to partition the items among the agents in a fair
manner. Preferences of each agent 𝑖 ∈ [𝑛] for bundles of goods are
represented by monotone valuation functions 𝑣𝑖 : 2

[𝑚] → R+. A
formal study of fair division began with the work of [21]. Since

then, several notions of fairness like MMS, EF1 and Prop1 have

been introduced and are well-studied (See [1, 2] for surveys on

these).

Any Price Share (APS) is one of the more recently introduced [4]

notions, and has already garnered significant interest (See Section

1.1 for a brief review). The APS value of an agent is defined as the

maximum value she can obtain with a budget of 1/𝑛, given any

vector of prices of goods that sums to 1. An allocation where every

agent gets at least her APS value is called an APS allocation. An
attractive feature of APS is that it is independent of the valuations

of the other agents. This is the same with the well-studied notion of

maximin share (MMS) [8, 13, 14, 17]. The APS value of any agent is
known to dominate their MMS value [4]. As MMS allocations are

known to not exist [18] even in the additive valuations case
1
, the

same holds for APS allocations. We, therefore, focus on the problem

of finding approximate APS, or 𝛼-APS allocations, which give every

agent a bundle of value at least 𝛼 times their APS, for some 𝛼 > 0.

The problem of finding approximate APS allocations has been

studied for the case of additive valuations [4] and more recently

for submodular valuations [9]. Numerous real world applications

of fair division, like public housing to ethnic minorities, assigning

kindergarten slots, course seat assignments for classes with capac-

ity constraints and where students can specify preferences for a

fixed maximum number of classes, require the valuation functions

to be beyond additive and capture a diminishing marginal returns
property: this essentially means that the marginal value of a good

over a set of goods diminishes over supersets of the set. Submodu-

lar functions capture this very natural property and are therefore

1
the value of a set equals the sum of values of goods in the set.
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considered a fundamental class of valuations. Fractionally subaddi-

tive (XOS) functions are immediate generalizations of submodular

functions in the complement-free hierarchy. We study APS under

both these function classes, with the constraint that the marginal

values are binary, meaning the marginal value of any good over

any subset of goods is either zero or one. These classes have a rich

structure and have been well-studied for other fairness notions and

also in optimization theory (See Section 1.1 for a brief review). We

partly resolve the following questions posed in [4] for submodular

and XOS functions with binary marginal values.

Question 1: How far apart can the MMS and APS values of an
agent be in any instance?

Question 2: What guarantees for APS can we ensure beyond addi-
tive valuations?

Submodular functions with binary marginal values are equiv-

alently known as Matroid rank functions (MRFs), and are widely

studied, for instance [8, 10, 19, 20]. We show the following surpris-

ing result. Although the APS value is known to be strictly higher

than the MMS value even for general additive functions [4], we

show that for any MRF, these two notions are equivalent. This

immediately leads to polynomial time algorithms to obtain exact

APS allocations using the algorithms that obtain exactMMS allo-

cations [8]. In fact, the known algorithms also ensure economic

efficiency, by giving APS allocations that simultaneously maximize

social welfare (the total sum of values received by agents).

We then analyze the classic generalization of binary submod-

ular functions, namely fractionally subadditive functions (XOS)
with binary marginals. For this, we show that the APS value of

an agent with such a valuation function is at most 2𝜇 + 1, where
𝜇 is her MMS value. Using this fact together with 0.3666-MMS
allocation computing algorithm by [16] we obtain an efficient al-

gorithm for computing 0.1222-APS allocation. In contrast to the

relation between MMS and APS for MRFs, we show that there

exist instances with only two agents and identical valuations in this

setting such that APS ≥ 2MMS. As a consequence we get that even
under identical valuations with two agents, better than 0.5-APS
allocation may not exist. This is in sharp contrast toMMS where
by definition an exact MMS allocation exists when agents have

identical valuations. Finally, we show that if binary submodular

functions are generalized to allow three distinct marginal values,

in {0, 1/2, 1}, instead of the two values {0, 1} in MRFs, then the

problem of computing 𝛼-APS allocations, even among agents with

identical valuation functions, for any factor 𝛼 better than 5/6, is
NP-hard. Our results can be summarized as follows.

• APS =MMS for submodular functions with binary marginals.

Exact APS values and allocations that give APS along with

maximum social welfare can thus be efficiently computed.

• APS ≤ 2·MMS +1, for XOS functions with binary marginals.

A 0.1222-APS allocation can thus be efficiently computed.

• There exist instances with identical binary, XOS valuations

where 0.5-APS allocation does not exist.

• Submodular functions with ternary marginals: computing

APS values approximately to a factor better than 5/6 is NP-
hard.

1.1 Further Related Work
APS. APS was introduced in [4], who also prove that APS domi-

natesMMS for non-negative valuations. Further, they give 0.667-

APS allocation for goods, and a 2-APS allocation for chores, under

additive valuations. [15] study the connection of the known no-

tion of Propx with APS for chores, giving a 2-APS allocation here.

[11] compare APS with other share based notions for the case of

agents with asymmetric entitlements. [12] study group fairness

guarantees with APS, under additive valuations. [9] recently gave

a
1

3
-approximate algorithm for computing APS with submodular

valuations for asymmetric agents i.e., when agents have different

entitlements.

Matroid Rank Functions. Rank functions of matroid are one

of the fundamental set functions and the optimization of these

functions has been studied in detail, see [19]. [10] and [6] identify

multiple domains where matroid rank functions show up naturally

like fair allocation of public housing units. These functions have

been studied in context of fair division, for other fairness and ef-

ficiency like Nash Social Welfare
2
[3] EF1 3

[4, 10], MMS [6] and

combinations of these [22]. Notably, polynomial time algorithms

that output the optimal allocations under all these fairness notions

are known in the respective works.

Binary XOS valuations. Binary XOS valuations generalize ma-

troid rank functions and have been studied in fair division context.

[16] give an algorithm that gives a 0.3667-MMS. [7] give a 288-

approximation algorithm for maximizing Nash social welfare under

these valuations.

2 NOTATION AND PRELIMINARIES
Notation. [𝑘] denotes the set {1, 2, · · · , 𝑘 − 1, 𝑘}.
Model.We study the problem of fairly dividing a set of𝑚 indivisible

goods, among 𝑛 agents. Preferences of an agent 𝑖 ∈ [𝑛] is defined by
a valuation function 𝑣𝑖 : 2

[𝑚] → R≥0 over the set of goods. We use

𝑣 (𝑔|𝐴𝑖\{𝑔}) to denote the marginal increase in value when good

𝑔 is added to the set 𝐴𝑖 , i.e., 𝑣 (𝑔|𝐴𝑖\{𝑔}) = 𝑣 (𝐴𝑖 ∪ 𝑔) − 𝑣 (𝐴𝑖 ). We

represent a fair division problem instance by ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ).
Allocations. An allocation, A B (𝐴1, . . . , 𝐴𝑛) is a partition of

all the goods among the 𝑛 agents, i.e. for all 𝑖, 𝑗 ∈ [𝑛] with 𝑖 ≠ 𝑗 ,

𝐴𝑖∩𝐴 𝑗 = ∅ and∪𝑖∈[𝑛]𝐴𝑖 = [𝑚]. We denote the set of all allocations

by Π[𝑛] ( [𝑚]). We also define a partial allocation, denoted by P =

(𝑃1, . . . , 𝑃𝑛), as a partition of any subset of goods, that is, where

𝑃𝑖 ∩ 𝑃 𝑗 = ∅ for all 𝑖 ≠ 𝑗 and ∪𝑖∈[𝑛]𝑃𝑖 ⊆ [𝑚]. Finally, we use the
notion of non-wasteful allocations also defined in [6]. These are

allocations where the marginal utility of all the goods in every

bundle is non-zero, that is, for such an allocationA, 𝑣 (𝑔|𝐴𝑖\{𝑔}) >
0 for all 𝑖 ∈ [𝑛] and any 𝑔 ∈ 𝐴𝑖 . We now define the fairness notions

we use in this work.

2.1 Fairness Notions
Any Price Share (APS). Let P denote the simplex of price vec-

tors over the set of goods [𝑚], formally, P = {(𝑝1, . . . , 𝑝𝑚) ≥
2
Nash welfare is the geometric mean of agent’s valuations

3
An agent values her bundle more than other agent’s bundle up to removal of one

(some) good
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0 | ∑𝑖 𝑝𝑖 = 1}. Informally, Any Price Share is the value that an

agent can guarantee themselves at any price with the budget of

1

𝑛 . Formally, for an instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ), the APS value of

agent 𝑖 is defined as,

APS𝑛𝑖 ( [𝑚]) B min

𝑝∈P
max

𝑆⊆[𝑚],𝑝 (𝑆 )≤ 1

𝑛

𝑣𝑖 (𝑆) (1)

where𝑝 (𝑆) is the sumof prices of goods in 𝑆 .Wewill referAPS[𝑛]
𝑖
( [𝑚])

by APS𝑖 when the qualifiers 𝑛 and𝑚 are clear.

An alternate definition without using prices is as follows.

Definition 2.1 (Any Price Share). The APS value of an agent 𝑖
for an instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ) is the solution of the following
program.

APS𝑖 = max 𝑧

subject to:
∑︁

𝑇 ⊆[𝑚]
𝜆𝑇 = 1

𝜆𝑇 = 0 ∀𝑇 such that 𝑣𝑖 (𝑇 ) < 𝑧∑︁
𝑇 ⊆[𝑚]:𝑗∈𝑇

𝜆𝑇 ≤
1

𝑛
∀𝑗 ∈ [𝑚]

𝜆𝑇 ≥ 0 ∀𝑇 ⊆ [𝑚]

Essentially, an agent must decide the maximum value 𝑧 that

satisfies the following. They associate non-zero weights 𝜆𝑇 to all

the sets 𝑇 ⊆ [𝑚] such that any set with a value less than 𝑧 has

weight zero, the sum of the weights on all the sets is 1, and the

total weight on any good, defined as the sum of weights of the sets

containing the good, is at most
1

𝑛 . This maximum value of 𝑧 is their

APS value. Both of these definitions and their equivalence is stated

in [4].

Maximin Share (MMS). The Maximin share (MMS) value of an
agent 𝑖 for an instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ) is defined as the mini-

mum value they can guarantee while partitioning all the goods into

𝑛 bundles, assuming they pick the worst bundle in any allocation.

Formally,

MMS𝑛𝑖 ( [𝑚]) = max

(𝐴1,...,𝐴𝑛 ) ∈Π [𝑛] ( [𝑚] )
min

𝑘∈[𝑛]
𝑣𝑖 (𝐴𝑘 ) .

We refer to MMS𝑛
𝑖
( [𝑚]) by MMS𝑖 when the qualifiers 𝑛 and

𝑚 are clear. We will refer to the allocation that defines the MMS
value of any agent 𝑖 , that is, argmaxΠ [𝑛] ( [𝑚] ) min𝑘∈[𝑛] 𝑣𝑖 (𝐴𝑘 ), as
the MMS defining allocation of agent 𝑖 .

Note that both the APS andMMS values of an agent do not depend

on the valuation functions of the other agents, and depend only on

the number of agents in the fair allocation instance.

The following relation between the APS andMMS values of any

agent is known.

Claim 2.1. [4] For any monotone valuation function 𝑣𝑖 of agent 𝑖 ,
we have APS𝑖 ≥ MMS𝑖 .

At times we abuse notation, and refer as the APS (orMMS) value
of a function 𝑣 (·), which essentially is a value of an agent whose

valuation function is 𝑣 (·).

2.2 Valuation Functions
Binary marginals. For a valuation function 𝑣 (·), the marginal
utility of a good 𝑔 ∈ [𝑚] over a set 𝑆 ⊆ [𝑚], denoted by 𝑣 (𝑔|𝑆), is
defined as the increase in the total value of the bundle 𝑆 ∪ {𝑔} over
the set 𝑆, that is, 𝑣 (𝑔|𝑆) = 𝑣 (𝑆 ∪ {𝑔}) − 𝑣 (𝑆). We consider valuation

functions with binary marginals, defined as those for whom the

marginal utility of any good over any set is either 0 or 1, that is,

𝑣 (𝑔|𝑆) ∈ {0, 1} for every 𝑔 ∈ [𝑚] and 𝑆 ⊆ [𝑚] .
Submodular functions. A function is called submodular if it sat-
isfies the property of diminishing marginal returns, which specifies

that the marginal utility of any good 𝑔 over any subset of goods 𝑆

must not be larger than its marginal utility over any subset of 𝑆.

Formally, a function 𝑣 : 2
[𝑚] → R≥0 is called submodular if and

only if,

𝑣 (𝑔|𝑆) ≤ 𝑣 (𝑔|𝑆 ′), ∀𝑔 ∈ [𝑚], 𝑆′ ⊆ 𝑆 ⊆ [𝑚] .

XOS functions. A function 𝑣 : 2
[𝑚] → R≥0 is called additive, if

the value of a set of goods is equal to the sum of values of the goods

in the set, that is, 𝑣 (𝑆) = ∑
𝑔∈𝑆 𝑣 ({𝑔}) . A function 𝑣 : 2

[𝑚] → R≥0
is said to be XOS, or fractionally subadditive, if and only if there

exists a family of additive set functions F , such that the value of

each subset 𝑆 ⊆ [𝑚] is the maximum function value of 𝑆 from

the functions in F , that is, 𝑣 (𝑆) = max𝑓 ∈F 𝑓 (𝑆). Note that the

cardinality of the family F can be exponentially high in𝑚.

We focus on submodular andXOS functionswith binarymarginals.

In case of the submodular functions, these are equivalent to what

are called matroid rank functions (MRFs) (See Section 2.3 for a

matroid based definition of these functions).

For the submodular functions, we also study the case of ternary
marginals, where all the marginal values 𝑣 (𝑔 |𝑆) ∈ {0, 1/2, 1} for all
goods 𝑔 ∈ [𝑚] and 𝑆 ⊆ [𝑚] .

2.3 Matroid Preliminaries
Matroid. A matroid, denoted byM, is a tuple (𝐸,I) where 𝐸 is a

set of elements, called the ground set, and I ⊆ 2
𝐸
is a collection of

subsets of 𝐸 called the independent sets of the matroid, that satisfies

the following properties.

(1) If 𝑆 ∈ I then 𝑆 ∈ I for all 𝑆 ⊆ 𝑆 .

(2) If 𝐼 , 𝐽 ∈ I and |𝐼 | > |𝐽 | then there exists 𝑖 ∈ {𝐼 \ 𝐽 } such that

𝐽 ∪ {𝑖} ∈ I.

Bases of a matroid. Any independent set of the largest cardi-

nality, that is any set 𝐵 ∈ argmax𝐼 ∈I |𝐼 |, is called a base of the

corresponding matroid.

Rank of a matroid. Every matroidM = (𝐸,I) has what is called
a rank function associated with it, that maps any subset 𝑆 of the

ground set 𝐸 to a non-negative integer, equal to the size of the

largest independent set that is a subset of 𝑆 . We denote this function

by 𝑟M : 2
𝐸 → Z≥0 . Formally,

𝑟M (𝑆) := max

𝐼⊆𝑆,𝐼 ∈I
|𝐼 | (2)

The rank of a matroidM is the value 𝑟M (𝐸) .
Matroid rank functions and submodularity. It is well known
that the rank function of a matroidM = (𝐸,I) is equivalent to a
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submodular function on a set of |𝐸 | itemswith binarymarginals [19].

That is, any submodular function on a set of𝑚 items with binary

marginals corresponds to a matroid with a ground set of𝑚 elements,

one corresponding to each item, referred as the underlying matroid
hence forth. The submodular function’s value for any subset of the

items is equal to the value of the rank function of the underlying

matroid for the set of elements corresponding to the items.

Matroid Union. The union function applied to a collection of

matroids generates a matroid known as the union matroid. Let
M∪𝑘 = (𝐸∪𝑘 ,I∪𝑘 ) denote the union of a collection of matroids

M1 = (𝐸1,I1), . . . ,M𝑘 = (𝐸𝑘 ,I𝑘 ) .M∪𝑘 is defined as,

𝐸∪𝑘 = ∪𝑖∈[𝑘 ]𝐸𝑖 , I∪𝑘 = {∪𝑖∈[𝑘 ] 𝐼𝑖 |𝐼𝑖 ∈ I𝑖 }.
Essentially, for the union matroid, the ground set is the union of

the ground sets of the matroids in the collection, and the indepen-

dent sets are all possible sets formed by taking the union of one

independent set from each underlying matroid.

Rank function of a Union matroid. The rank function of a

union matroidM∪𝑘 , denoted by 𝑟M∪𝑘 (·) or simply 𝑟M (·) when
the underlying matroids are clear, has the following well known

formula.

𝑟M (𝑆) = min

𝑇 ⊆𝑆

|𝑆 \𝑇 | +
∑︁
𝑖∈[𝑘 ]

𝑟M𝑖
(𝑇 ∩ 𝐸𝑖 )

 (3)

Here for each 𝑖 ∈ [𝑘], 𝑟M𝑖
(·) is the rank function of the underlying

matroidM𝑖 .

Union of copies of a matroid. Given a matroidM = (𝐸,I), let
M𝑛

denote the union of 𝑛 copies ofM . Let 𝑟 (·), 𝑟 (M) and 𝑟𝑛 (M𝑛)
respectively denote the rank function ofM, the rank ofM, and

the rank ofM𝑛 . The following properties relating these quantities

are well known [19].

Lemma 2.1. 𝑟𝑛 (M𝑛) = 𝑛 ·𝑟 (M) if and only if for all subsets𝑇 ⊆ 𝐸,

|𝐸 \𝑇 | ≥ 𝑛 · [𝑟 (𝐸) − 𝑟 (𝑇 )] . (4)

Lemma 2.2. If 𝑟𝑛 (M𝑛) = 𝑛 · 𝑟 (M), thenM has at least 𝑛 disjoint
bases.

3 SUBMODULAR VALUATIONS WITH BINARY
MARGINALS (MATROID RANK FUNCTIONS)

In this section, we will prove Theorem 3.1. As a corollary, we get

the computational result of Theorem 3.2.

Theorem 3.1. If the valuation function 𝑣𝑖 of agent 𝑖 is a submodular
function with binary marginals, a.k.a. matroid rank function, then
their APS and MMS values are equal, i.e., MMS𝑖 = APS𝑖 .

Proof Idea. Recall that such a 𝑣𝑖 is amatroid rank function. To prove
this theorem, we consider the underlying matroid of the valuation

function 𝑣𝑖 . We use the set based definition of APS𝑖 , Definition 2.1,

to show that equation (4) is true forM. This is the most crucial

and technically involved step in the proof. With this equation, it

then follows from Lemma 2.1 that the ranks ofM and the union

matroid of 𝑛 copies of M, say respectively 𝑟 (M) and 𝑟𝑛 (M𝑛),
satisfy 𝑟𝑛 (M𝑛) = 𝑛 · 𝑟 (M) . Lemma 2.2 then implies thatM has at

least 𝑛 disjoint bases. These bases translate to bundles of the goods

in the fair allocation instance such that the value of 𝑖 for each base is

at least equal to 𝑟 (M). From the definition of MMS, MMS𝑖 is thus
at least 𝑟 (M) . Finally we show 𝑟 (M) is equal to APS𝑖 . Combining

with Claim 2.1 proves the Theorem.

In the remaining section we discuss the proof in detail, using the

above notations.

A key notion towards establishing equation (4) is capping the
valuation function of 𝑖 . Using 𝑣𝑖 (·), we define a new function 𝑣̂𝑖 (·)
as,

𝑣̂𝑖 (𝑆) = min{𝑣𝑖 (𝑆),APS𝑖 } (5)

We first claim that capping 𝑣𝑖 maintains the matroid rank property.

Lemma 3.1. If 𝑣𝑖 is an MRF then 𝑣̂𝑖 as defined in Equation 5 is also
an MRF.

Proof. We will show that 𝑣̂𝑖 (·) is a submodular function with

binary marginals, hence equivalently is an MRF.

Consider any good 𝑔 ∈ [𝑚] and set 𝑆 ⊆ [𝑚]. We have,

𝑣̂𝑖 (𝑔 |𝑆) = 𝑣̂𝑖 (𝑔 ∪ 𝑆) − 𝑣̂𝑖 (𝑆)
= min{𝑣𝑖 (𝑔 ∪ 𝑆),APS𝑖 } −min{𝑣𝑖 (𝑆),APS𝑖 }.

Now ifmin{𝑣𝑖 (𝑆),APS𝑖 } = APS𝑖 , then by the monotonicity of 𝑣𝑖 (·),
min{𝑣𝑖 (𝑔 ∪ 𝑆),APS𝑖 } = APS𝑖 , implying their difference is zero, and

𝑣̂𝑖 (𝑔|𝑆) = 0.

Otherwise, if 𝑣𝑖 (𝑆) < APS𝑖 , then 𝑣𝑖 (𝑔 ∪ 𝑆) is at most 1 more

than 𝑣𝑖 (𝑆), as 𝑣𝑖 (·) has binary marginals. Therefore, min{𝑣𝑖 (𝑔 ∪
𝑆),APS𝑖 } is also at most 1 more than 𝑣𝑖 (𝑆) = min{𝑣𝑖 (𝑆),APS𝑖 },
their difference is at most one, hence 𝑣̂𝑖 (𝑔|𝑆) ≤ 1. This shows that

𝑣̂𝑖 (·) has binary marginals.

It is left to show that 𝑣̂𝑖 (·) is submodular. We consider any set 𝑆 ′

that is a superset of 𝑆, and show 𝑣̂𝑖 (𝑔|𝑆) ≥ 𝑣̂𝑖 (𝑔|𝑆 ′).
If𝑔 ∈ 𝑆, then both of these values are zero. Alsowhen 𝑣̂𝑖 (𝑔 |𝑆) = 1,

then as 𝑣̂𝑖 (·) has binary marginals, the inequality follows easily.

Finally, suppose 𝑔 ∉ 𝑆, and 𝑣̂𝑖 (𝑔 |𝑆) = 0. Similarly as 𝑣̂𝑖 (𝑔|𝑆), we
have,

𝑣̂𝑖 (𝑔|𝑆 ′) = min{𝑣𝑖 (𝑔 ∪ 𝑆 ′),APS𝑖 } −min{𝑣𝑖 (𝑆 ′),APS𝑖 }
Here if 𝑣𝑖 (𝑆) ≥ APS𝑖 , then from the monotonicity of 𝑣𝑖 , all the

terms 𝑣𝑖 (𝑆 ′∪{𝑔}), 𝑣𝑖 (𝑆 ′), 𝑣𝑖 (𝑆∪{𝑔}) ≥ APS𝑖 , and both the marginal

utilities 𝑣̂𝑖 (𝑔|𝑆) and 𝑣̂𝑖 (𝑔|𝑆 ′) are zero.
Otherwise, when 𝑣𝑖 (𝑆) < APS𝑖 , then as 𝑣̂𝑖 (𝑔|𝑆) = 0, we have

min{𝑣𝑖 (𝑔∪𝑆),APS𝑖 }−𝑣𝑖 (𝑆) = 0. Again as 𝑣𝑖 (𝑆) < APS𝑖 ,min{𝑣𝑖 (𝑔∪
𝑆),APS𝑖 } = 𝑣𝑖 (𝑔 ∪ 𝑆). Therefore, 𝑣̂𝑖 (𝑔|𝑆) = 𝑣𝑖 (𝑔|𝑆), and 𝑣𝑖 (𝑔|𝑆) is
also zero. As 𝑣𝑖 (·) is submodular, 𝑣𝑖 (𝑔|𝑆) ≥ 𝑣𝑖 (𝑔 |𝑆 ′) . As 𝑣𝑖 (·) has
binary marginals, 𝑣𝑖 (𝑔|𝑆 ′) = 0. We have,

𝑣𝑖 (𝑔|𝑆 ′) = 𝑣𝑖 (𝑔 ∪ 𝑆 ′) − 𝑣𝑖 (𝑆 ′)
≥ min{𝑣𝑖 (𝑔 ∪ 𝑆 ′),APS𝑖 } −min{𝑣𝑖 (𝑆 ′),APS𝑖 }
= 𝑣̂𝑖 (𝑔|𝑆 ′) .

Thus 𝑣̂𝑖 (𝑔 |𝑆 ′) = 0, and therefore 𝑣̂𝑖 (𝑔|𝑆 ′) = 𝑣̂𝑖 (𝑔|𝑆) . □

Next, we relate the APS values of 𝑖 under 𝑣̂𝑖 to their correspond-

ing values under 𝑣𝑖 . Let APS value of 𝑖 under 𝑣̂𝑖 be APS𝑖 .

Claim 3.1. APS𝑖 = APS𝑖 .
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Proof. First note that since 𝑣̂𝑖 is capped at APS𝑖 , the value of
any set, in particular the best bundle she can afford at any price

vector, cannot be greater than APS𝑖 . Thus, from the price based

definition of APS shown in equation (1), APS𝑖 ≤ APS𝑖 .

To see the other direction, consider Definition 2.1 of APS. Since
the APS value of the function 𝑣𝑖 is APS𝑖 , there exist some 𝑘 sets S =

{𝑆1, . . . , 𝑆𝑘 } each of value at least APS𝑖 under 𝑣𝑖 , and corresponding
weights Λ = {𝜆1, . . . , 𝜆𝑘 } that satisfy the constraints in Definition

2.1. Now, even under 𝑣̂𝑖 , these sets have value at least APS𝑖 , in fact,

exactly APS𝑖 . We show that the sets S and their weights Λ form

a feasible solution to the program of Definition 2.1 for 𝑧 = APS𝑖 ,
even under 𝑣̂𝑖 .

The only constraints that depend on the valuation function are,

𝜆𝑇 = 0 for all𝑇 where 𝑣̂𝑖 (𝑇 ) ≤ 𝑧. As we have fixed 𝑧 = APS𝑖 , and as
𝑣̂𝑖 (𝑇 ) ≤ 𝑣𝑖 (𝑇 ) for any set 𝑇, these constraints hold. The remaining

constraints hold trivially. Therefore, APS𝑖 ≥ 𝑧 = APS𝑖 . □

Analogously, we relate the MMS values of 𝑖 under 𝑣̂𝑖 to their

corresponding values under 𝑣𝑖 . Let MMS value of 𝑖 under 𝑣̂𝑖 be

MMS𝑖 .

Claim 3.2. MMS𝑖 ≥ MMS𝑖 .

Proof. Consider anyMMS defining allocation𝐴𝜋
under 𝑣̂𝑖 . The

minimum valued bundle in this allocation has value MMS𝑖 accord-
ing to 𝑣̂𝑖 . By definition of 𝑣̂𝑖 , 𝑣𝑖 (𝑆) ≥ 𝑣̂𝑖 (𝑆) for every set 𝑆 ⊆ [𝑚].
Thus, the same allocation has a value at least MMS𝑖 even under

𝑣𝑖 . From the definition of MMS, MMS𝑖 is at least equal to the mini-

mum bundle’s value under 𝑣𝑖 from the allocation 𝐴𝜋 , hence at least

MMS𝑖 . □

LetM𝑣̂ denote the underlying matroid of the function 𝑣̂𝑖 , and

letM𝑛
𝑣̂
be the union matroid of 𝑛 copies ofM𝑣̂ .

Lemma 3.2. 𝑟 (M𝑣̂) = APS𝑖 .

Proof. As 𝑣̂𝑖 caps the valuations at APS𝑖 , no independent set

can have size more than APS𝑖 , hence the rank ofM𝑣̂ is at most

APS𝑖 . At the same time, from Claim 3.1, APS𝑖 = APS𝑖 . The set based
Definition 2.1 of APS then implies that there exist some sets of value

at leastAPS𝑖 under 𝑣̂𝑖 . This implies that the rank 𝑟M𝑣̂
( [𝑚]) ≥ APS𝑖 .

Together, we get 𝑟M𝑣̂
( [𝑚]) = APS𝑖 . □

We now prove the key lemma towards proving Theorem 3.1.

Lemma 3.3. For any subset 𝑇 ⊆ [𝑚],
| [𝑚] \𝑇 | ≥ 𝑛 · [APS𝑖 − 𝑟M𝑣̂

(𝑇 )] (6)

Proof. From Claim 3.1, the APS value under 𝑣̂𝑖 (·) is APS𝑖 . Defi-
nition 2.1 ofAPS shows that there exists an optimal feasible solution

to the program. Let the sets and their associated weights in the

solution be S = {𝑆1, . . . , 𝑆𝑘 } and Λ = {𝜆1, . . . , 𝜆𝑘 } respectively. We

have 𝑣̂𝑖 (𝑆 𝑗 ) ≥ APS𝑖 for all 𝑗 ∈ [𝑘], and the total weight on any par-

ticular good 𝑔, that is,
∑

𝑗 :𝑔∈𝑆 𝑗
𝜆 𝑗 , is at most

1

𝑛 . As 𝑟M𝑣̂
(𝑆 𝑗 ) = APS𝑖 ,

as 𝑣̂𝑖 (𝑆 𝑗 ) = APS𝑖 for all 𝑗 ∈ [𝑘]. That is, the sets 𝑆 𝑗 are bases of the
matroidM𝑣̂ .

Consider any set 𝑇 ⊆ [𝑚]. Let the rank of 𝑇 be 𝑡𝑟 . As 𝑟 (M𝑣̂) =
APS𝑖 from Lemma 3.2, 𝑡𝑟 ≤ APS𝑖 . Therefore, using Property 2 of

Matroid definition 2.3, we can move APS𝑖 − 𝑡𝑟 elements from each

𝑆 𝑗 to 𝑇 . Let 𝑆
′
𝑗
be any set of APS𝑖 − 𝑡𝑟 elements that can be added

to 𝑇 , with a marginal utility of one for each element.

The total weight of all the distinct elements in the sets 𝑆 ′
𝑗
can be

expressed in two ways as,∑︁
𝑔∈∪𝑗𝑆 ′𝑗

∑︁
𝑗 :𝑔∈𝑆 ′

𝑗

𝑤 (𝑔, 𝑆′𝑗 ) =
∑︁
𝑗∈[𝑘 ]

∑︁
𝑔∈𝑆 ′

𝑗

𝑤 (𝑆 ′𝑗 ),

where𝑤 (𝑆 ′
𝑗
) is the weight of the set 𝑆 ′

𝑗
, and𝑤 (𝑔, 𝑆′

𝑗
) is the weight

on good 𝑔 due to it belonging in 𝑆 ′
𝑗
, in the solution (S,Λ) to the

program defining APS.

As the total weight on each good is at most 1/𝑛, the left expres-
sion can be evaluated as,∑︁

𝑔∈∪𝑗𝑆 ′𝑗

∑︁
𝑗 :𝑔∈𝑆 ′

𝑗

𝑤 (𝑔, 𝑆′𝑗 ) ≤
∑︁

𝑔∈∪𝑗𝑆 ′𝑗

1

𝑛
= | ∪𝑔∈[𝑘 ] 𝑆 ′𝑗 | ·

1

𝑛
.

As𝑤 (𝑆 ′
𝑗
) is equal to the weight of the set 𝑆 𝑗 , the right expression

can be evaluated as,∑︁
𝑗∈[𝑘 ]

∑︁
𝑔∈𝑆 ′

𝑗

𝑤 (𝑆 ′𝑗 ) =
∑︁
𝑗∈[𝑘 ]

|𝑆 ′𝑗 |𝜆 𝑗 .

Equating the two, we get,∑︁
𝑗∈[𝑟 ]

𝜆 𝑗 |𝑆 ′𝑗 | ≤
1

𝑛
· | ∪𝑗∈[𝑟 ] 𝑆 ′𝑗 |.

As |𝑆 ′
𝑗
| = APS𝑖 − 𝑡𝑟 , and

∑
𝑗∈[𝑟 ] 𝜆 𝑗 = 1,

| ∪𝑗∈[𝑟 ] 𝑆 ′𝑗 | ≥ 𝑛 · (APS𝑖 − 𝑡𝑟 ) (7)

Finally, as all the sets 𝑆 ′
𝑗
𝑗 ∈ [𝑘], add elements to 𝑇 that are not

already present in 𝑇 , we have that ∪𝑗∈[𝑘 ]𝑆 ′𝑗 ⊆ [𝑚] \ 𝑇 . Thus,
| ∪𝑗∈[𝑘 ] 𝑆 ′𝑗 | ≥ | [𝑚] \𝑇 |. Substituting in equation (7),

| [𝑚] \𝑇 | ≥ 𝑛 · (APS𝑖 − 𝑡𝑟 ) = 𝑛 · [APS𝑖 − 𝑟M𝑣̂
(𝑇 )] . □

Theorem 3.1 follows as a combination of all the lemmas.

Proof of Theorem 3.1. First, by substituting Lemma 3.2 in equa-

tion (3.3), and combining with Lemma 2.1 we immediately get the

following relation.

𝑟 (M𝑛
𝑣̂
) = 𝑛 · 𝑟 (M𝑣̂) . (8)

Combining this with Lemma 2.2, we get thatM𝑣̂ has at least 𝑛

disjoint bases. This means we can create a partition of [𝑚] where
each part has value 𝑟 (M𝑣̂𝑖

), which is equal to APS𝑖 from Lemma

3.2. Thus, MMS𝑖 ≥ APS𝑖 . Along with Lemma 3.2 we then have,

MMS𝑖 ≥ APS𝑖 . Finally, we know from Claim 2.1 APS𝑖 ≥ MMS𝑖 .
Therefore APS𝑖 = MMS𝑖 . □

Finally, we prove as a corollary of Theorem 3.1, the following

computational result.

Theorem 3.2. Given a fair allocation instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] )
where every agent’s valuation function is anMRF, there is an efficient
(polynomial time) algorithm to compute allocation that simultane-
ously guarantees every agent a bundle of value at least APS𝑖 and has
maximum social welfare among all allocations.
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Proof. We know from [8] that an allocation that gives every

agent a bundle of value at leastMMS𝑖 and maximizes social welfare

exists and can be computed efficiently. Theorem 3.1 implies the

same allocation guarantees an APS or higher valued bundle to each
agent. □

4 XOS VALUATIONS WITH BINARY
MARGINALS

In this section, we consider APS approximations when agents have

XOS valuations with binary marginals. Theorems 4.1, 4.2 and 4.3

are the main results of this section.

Theorem 4.1. If the valuation function of an agent 𝑖 in an instance
( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ) is an XOS function with binary marginals, then
their APS and MMS values satisfy, APS𝑖 ≤ 2 ·MMS𝑖 + 1.

Proof Idea. Recall the notions of partial and wasteful allocations

from Section 2. The crucial step in the proof is Algorithm 1, which

takes as input a fair allocation instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ), and
yields a non-wasteful, partial allocation where each of the allocated

bundles has value at most MMS𝑖 + 1, and the set of unallocated

goods has a value of at most MMS𝑖 . Using this allocation, we fix

prices on the goods such that for agent 𝑖 the highest value of any

affordable bundle of goods, that is one with total price at most 1/𝑛,
is at most 2MMS𝑖 +1. The price based definition shown in equation

(1) of APS, then implies the theorem.

Let us now discuss the details of the proof. Hence forth, we call

an allocation balanced for an agent, if the difference in the values of

the smallest and largest bundles according to the agent’s valuation

function is at most 1.

Algorithm 1: Non-wasteful balanced MMS allocation

Input : ( [𝑛], [𝑚], 𝑣𝑖 (·)) where 𝑣𝑖 is a binary XOS valuation

function

Output :A non-wasteful, balanced MMS allocation

according to 𝑣𝑖 , where the leftover goods also have

value at most MMS𝑖 + 1.
1 Initialize A = (𝐴1, 𝐴2, . . . , 𝐴𝑛) to be any MMS-defining

allocation for agent 𝑖

2 Initialize R ← ∅
3 for 𝑗 ∈ [𝑛] do
4 if 𝑣𝑖 (𝐴 𝑗 ) ≥ MMS𝑖 + 1 then
5 Let 𝐺 ∈ {𝐴 ⊆ 𝐴 𝑗 |𝑣𝑖 (𝐴) = |𝐴| = MMS𝑖 }
6 Set 𝐴 𝑗 ← 𝐺

7 R ← R ∪ {𝐴 𝑗 \𝐺}

8 R ← [𝑚] \ ∪𝑗∈[𝑛]𝐴 𝑗

9 while 𝑣𝑖 (R) ≥ MMS𝑖 + 1 do
10 Let 𝐴′ ⊆ R with 𝑣𝑖 (𝐴′) = |𝐴′ | = MMS𝑖 + 1
11 Let 𝑘 ← argmin𝑗∈[𝑛] 𝑣𝑖 (𝐴 𝑗 )
12 R ← R ∪𝐴𝑘

13 A𝑘 ← 𝐴′

14 return A

Algorithm. The algorithm starts by computing anyMMS-defining
allocation A for agent 𝑖, and performs two phases. First, while

any bundle 𝐴 𝑗 ’s value in A is more than MMS𝑖 + 1, it considers
any subset 𝐺 of 𝐴 𝑗 that has both size and value exactly MMS𝑖 ,
leaves 𝐺 with agent 𝑗 and removes the remaining goods. All goods

removed in this way are added to a bundle called R . In the second

phase, while the value of R is higher thanMMS1 + 1, it considers
any subset 𝐴′ of R of both size and value exactly MMS𝑖 + 1. The
algorithm takes away the bundle of the smallest valued agent, adds

this to R, and gives 𝐴′ to this agent instead.

We use two results that will be useful in establishing that this

algorithm converges in the special kind of allocation desired. Claim

4.1 is a technical property of XOS valuations, followed by Lemma

4.1 which shows a key property of Algorithm 1.

Claim 4.1. Given an XOS valuation function 𝑣 : 2
[𝑚] → R≥0 with

binary marginals, and any set 𝑆 ⊆ [𝑚], we can find a subset 𝑆 ′ ⊆ 𝑆

such that 𝑣 (𝑆 ′) = 𝑣 (𝑆) = |𝑆 ′ |.

Proof. Since 𝑣 is an XOS function, there is a family F of additive

functions such that for all S ⊆ [𝑚], there is an additive function

𝑓 ∈ F with 𝑣 (S) = 𝑓 (S). Given the set 𝑆 consider any such

function 𝑓 . As 𝑓 is additive, 𝑓 (𝑆) = ∑
𝑔∈𝑆 𝑓 (𝑔) . Further, as 𝑣 has

binary marginals, 𝑓 (𝑔) ∈ {0, 1} for all 𝑔. We define the set 𝑆 ′ B
{𝑔 ∈ 𝑆 |𝑓 (𝑔) = 1}. Thus we have, 𝑣 (𝑆) = 𝑓 (𝑆) = 𝑓 (𝑆 ′) = |𝑆 ′ |.

Finally, as 𝑓 (𝑆 ′) = |𝑆 ′ |, 𝑣 (𝑆 ′) ≥ |𝑆 ′ |, but as 𝑣 has binarymarginals,

𝑣 (𝑆 ′) ≤ |𝑆 ′ |, thus 𝑣 (𝑆 ′) = |𝑆 ′ |. □

Remark 4.1. We note here that while Claim 4.1 seems obvious, it is
not true for binary subadditive valuations which are the immediate
generalisation of binary XOS valuations. To see this, consider a func-
tion on𝑚 = 3 goods where the entire set of goods is valued at 2 and
any strict subset of the three goods has a value 1. One can verify that
this function is subadditive and that Claim 4.1 does not hold for this
function.

We next prove the following lemma.

Lemma4.1. Algorithm 1 terminates, and the output allocationA is a
non-wasteful, balanced,MMS allocation according to 𝑣𝑖 . Furthermore,
𝑣𝑖 (R) ≤ MMS𝑖 .

Proof. Consider the first For loop (Steps 3 to 7). This loop ac-

cesses every bundle 𝐴 𝑗 at most once, and if its value is more than

MMS𝑖 + 1, finds a subset 𝐺 ⊆ 𝐴 𝑗 of valueMMS𝑖 . From Claim 4.1,

such a set 𝐺 always exists. Since the algorithm is not required to

execute in polynomial time, let us assume that the algorithm finds

the set by enumeration. Thus, at the end of this loop, we have

𝑣𝑖 (𝐴 𝑗 ) = MMS𝑖 for each 𝑗 ∈ [𝑛].
Let us now look at the While loop (Steps 9 to 13). If this loop has

𝑛 or more iterations, then after 𝑛 iterations it replaces more than 𝑛

bundles, and finds a new (partial) allocation where every bundle has

value equal to MMS𝑖 + 1. From the definition of MMS, this means

MMS𝑖 > MMS𝑖 +1, a contradiction. Therefore, this loop is executed
at most 𝑛 − 1 times and in the end, we have 𝑣𝑖 (𝐴 𝑗 ) ≤ MMS𝑖 + 1
for all 𝑗 . After the loop terminates, the condition for staying in the

loop is falsified, hence 𝑣𝑖 (R) ≤ MMS𝑖 .
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Therefore, in at most𝑂 (𝑛) iterations of the For and While loops,

the algorithm terminates, and yields an allocation where MMS𝑖 ≤
𝑣𝑖 (𝐴 𝑗 ) ≤ MMS𝑖 + 1 for all 𝑗 ∈ [𝑛], and 𝑣𝑖 (R) ≤ MMS𝑖 , that is, a
non-wasteful, balanced and MMS allocation. □

Proof of Theorem 4.1. Consider the partial allocation A and

the set of remaining goods R obtained at the end of Algorithm 1.

We define a price vector p = (𝑝 𝑗 ) 𝑗∈[𝑚] for the goods based on A
as follows.

𝑝 𝑗 =

{
1

𝑛· |𝐴𝑘 | , ∀𝑗 ∈ 𝐴𝑘 ,∀𝐴𝑘 ∈ A
0, ∀𝑗 ∈ R .

Let us see the maximum value that an agent with a budget 1/𝑛 can

afford with this price vector. First, they can get all of R for free.

From Lemma 4.1, R has value at most MMS𝑖 for 𝑖 . Further, each
bundle 𝐴𝑘 has value under 𝑣𝑖 at most MMS𝑖 + 1.Therefore, each
good in A has price at least 1/(𝑛 · (MMS𝑖 + 1)) . Even if agent 𝑖

picks all the lowest priced goods and gets a marginal increment of

one for each of them, at a budget of
1

𝑛 , they can receive a value of

at most MMS𝑖 + 1 from A. By subadditivity of 𝑣𝑖 , their total value

from A and R together is at most 2 · MMS𝑖 + 1 value. From the

price based definition of APS, APS𝑖 ≤ 2 ·MMS𝑖 + 1. □

Next, we prove that Theorem 4.1 is almost the tightest relation

between MMS and APS values for this setting.

Theorem 4.2. There exists a fair allocation instance with three
agents and six goods, where all the agents have an identical XOS
valuation function with binary marginals, and their APS andMMS
values satisfy APS ≥ 2 ·MMS.

Proof. The instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ) is as follows. There
are three agents and six goods, i.e. 𝑛 = 3 and𝑚 = 6. Let the goods

be denoted by 𝑔𝑖 , 𝑖 ∈ [6] . The identical XOS valuation function of

all the agents has two additive functions in the family F , say 𝑓1
and 𝑓2.

The first three goods have value 1 under 𝑓1 and the remaining

have value 0, that is, 𝑓1 (𝑔𝑖 ) = 1, for 𝑖 ∈ [3], and 𝑓1 (𝑔𝑖 ) = 0 for

𝑖 ∈ [6] \ [3] . Under 𝑓2, the opposite is the case, i.e., 𝑓2 (𝑔𝑖 ) = 0, for

𝑖 ∈ [3], and 𝑓2 (𝑔𝑖 ) = 1 for 𝑖 ∈ [6] \ [3] .
As the agents are identical, they have the same APS andMMS

values. Now, as there are three agents, if MMS was more than one,

each agent must get at least two goods. Note that under 𝑣 , an agent

can get a value of two if they receive two goods from {𝑔1, 𝑔2, 𝑔3}
or two goods from {𝑔4, 𝑔5, 𝑔6}. But to create three bundles of size
two each, at least one bundle would have one good from each

set {𝑔1, 𝑔2, 𝑔3} and {𝑔4, 𝑔5, 𝑔6}. This bundle however would have a

value of 1 under 𝑣 . Thus, the MMS cannot be more than 1.

On the other hand, consider the set of 6 sets {𝑔𝑖 , 𝑔𝑖+1} for 𝑖 ∈ [3]
and 𝑖 ∈ {4, 5, 6}. Assign a weight of 1/6 to each of these sets. The

total weight assigned is 1. Also, each good belongs in exactly two

sets, hence the total weight on any single good is 1/3. Each set has

value 2. Therefore, this is a feasible solution to the Linear program

in the APS definition 2.1 for 𝑧 = 2. Thus, APS ≥ 2. Therefore, in

this instance, APS ≥ 2 ·MMS. □

Theorems 4.1 and 4.2, along with the known computational

results for MMS, yield the following results for APS.

Theorem 4.3. Given a fair allocation instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] )
where every agent has a binary XOS valuation function,

(1) A 0.1222-APS allocation, meaning one that gives every agent
a bundle of value at least 0.1222 times their APS, can be com-
puted in polynomial time.

(2) Even when agents have identical valuations, no better than
0.5-APS allocation may exist.

To prove this theorem, we first prove the following lemmas to

separate the agents with APS = 0 and MMS = 0.

Lemma 4.2. Given an instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ) with XOS bi-
nary marginal valuations, one can check in polynomial time if any
agent has MMS = 0.

Proof. To check if MMS𝑖 = 0 for some agent 𝑖 , we form a

complete weighted bipartite graph where one side has 𝑛 vertices,

and the goods correspond to vertices on the other side. The weight

of each edge is the value of the agent 𝑖 for the good adjacent to the

edge. We compute one maximum weight matching of the goods.

If each of the 𝑛 vertices in the left part gets assigned a good of

value 1, then one can form an allocation with the matched goods in

separate bundles. The remaining goods can be allocated arbitrarily.

By subadditivity, each bundle has value at least 1, henceMMS𝑖 ≥
0. □

Lemma 4.3. For an agent with a binary XOS valuation function in
a fair allocation instance, APS = 0 if and only if MMS = 0.

Proof. IfMMS𝑖 > 0, then from Claim 2.1, APS𝑖 > 0. Otherwise

when MMS𝑖 = 0, the allocation returned by Algorithm 1 has the

following properties according to Lemma 4.1. The value of R = 0,

and the value of each bundle inA is either 0 or 1. Further, there are

at most (𝑛 − 1) bundles with value 1, else MMS𝑖 ≥ 1. Also, each of

the 1 valued bundles have exactly 1 good in them, and the 0 valued

bundles have no goods in them. We assign prices to the goods as

follows. Assign a price of 1/(𝑛 − 1) to each good in the highest

valued 𝑛 − 1 bundles of A, assign a price of 0 to all the remaining

goods (in R).
At a budget of 1/𝑛, the agent cannot afford any 1 valued bundle.

As the remaining goods together have a value 0, APS = 0. □

Proof of Theorem 4.3. From Lemmas 4.2 and 4.3, we remove

all the agents with APS = 0 by giving them no goods in polyno-

mial time. For the remaining agents, we know APS ≥ MMS ≥ 1.

Combined with APS ≤ 2 · MMS + 1 from Theorem 4.1, we have

APS ≤ 3 ·MMS for all the remaining agents.

[17] show that there exists an efficient algorithm to compute a

0.3666-MMS allocation, that is, an allocation where every agent

receives a bundle of value at least 0.3666 times their MMS value.

As APS ≤ 3 ·MMS, this implies that an allocation that gives every

agent a bundle of value at least 0.1222 times their APS can be

computed in polynomial time.

Finally, Theorem 4.2 shows an instance where the agents have

identical valuation functions, and their APS is at least twice their
MMS. By definition ofMMS, no allocation can have the smallest
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bundle’s value more than MMS. Therefore, in every allocation,

at least the smallest bundle’s agent receives a bundle of value at

most half their APS, and a better than 0.5-APS allocation does not

exist. □

5 SUBMODULAR VALUATIONS WITH
TERNARY MARGINALS

In this section, we show the following hardness result.

Theorem 5.1. In an instance ( [𝑛], [𝑚], (𝑣𝑖 )𝑖∈[𝑛] ), it is NP-hard to
compute the MMS value of an agent approximately up to a factor
better than 5/6, when the agent has a submodular valuation function,
even when all the marginal utilities are in {0, 1/2, 1}.

An immediate corollary, using Claim 2.1, is that computing the

APS value approximately up to a factor better than 5/6 is also NP-
hard for such an agent. The proof of the theorem has three parts.

First, we show a reduction from the known NP-complete problem

3-D-MATCHING to a fair allocation instance with agents with

identical valuations. We then show that this valuation function in

the reduced instance is submodular with all the marginal values

in {0, 1/2, 1}. Finally, we show the correctness of the reduction,

establishing the factor of the hardness of approximation.

Reduction. The 3-D-MATCHING problem is as follows. Given are

three disjoint sets 𝑋,𝑌, 𝑍, having𝑚 elements each, and a set T of

triples (𝑎, 𝑏, 𝑐), where 𝑎 ∈ 𝑋, 𝑏 ∈ 𝑌 and 𝑐 ∈ 𝑍 . The problem is to

answer if there is a subset of𝑚 triples inT called a 3-D-MATCHING
of𝑋,𝑌, 𝑍, that cover all of𝑋,𝑌 and 𝑍,meaning for all 𝑠 ∈ 𝑋 ∪𝑌 ∪𝑍,
𝑠 ∈ 3-D-MATCHING.

Given an instance of 3-D-MATCHING, we form a fair allocation

instance as follows. There are𝑚 agents, and a setM of 3𝑚 goods,

one good corresponding to each element of 𝑋,𝑌 and 𝑍 . All the

agents have the following identical valuation function 𝑣 for the

goods. For any subset S ofM, 𝑣 (S) is defined as follows.

𝑣 (S) =


1, if |S| = 1

2, if |S| = 2

2.5, if |S| = 3 and S ∉ T
3, if |S| = 3 and S ∈ T
3, if |S| ≥ 4

Function 𝑣 is submodular with ternary marginals. First, let
us compute the marginal utility of a good 𝑔 over sets of different

sizes. From the definition of 𝑣 (S), one can verify that,

𝑣 (𝑔 |S) =



1, if |S| ≤ 1

0.5, if |S| = 2 and S ∪ {𝑔} ∉ T
1, if |S| = 2 and S ∪ {𝑔} ∈ T
0.5, if |S| = 3 and S ∉ T
0, if |S| = 3 and S ∈ T
0, if |S| ≥ 4.

Therefore, 𝑣 (𝑔 |S) ∈ {0, 1/2, 1} for all 𝑔 and S.
Also 𝑣 (𝑔 |S) ≤ 𝑣 (𝑔|S′), for any two sets S,S′ with |S| ≥ |S′ |,

hence also when S′ ⊆ S. This establishes submodularity.

Correctness. Finally, we prove that theMMS value of any agent

is 3 if and only if the 3-D-MATCHING instance has a solution, and

is at most 2.5 otherwise.

Suppose a 3-D-MATCHING exists. Then one can divide the 3

goods from each triple in the solution to every agent. Each agent

receives a bundle of value 3. As the highest value under 𝑣 of any

set of goods is 3, MMS ≤ 3. Therefore, in this case, MMS = 3.

Alternatively, suppose theMMS value of the reduced instance

is 3. Then every agent must receive exactly 3 goods. Otherwise,

some agent will receive at most 2 goods, and have value at most

2. A bundle of 3 goods has value 3 only when the corresponding

elements form a triple in the 3-D-MATCHING instance. Also, the

bundles of goods in theMMS-defining allocation are disjoint, hence
the triples allocated to all the agents are disjoint. Therefore, the

allocation consists of goods corresponding to𝑚 disjoint triples, that

cover all the elements, hence form a solution of 3-D-MATCHING.
Now, if there was an algorithm that computed the MMS value

within a factor better than 5/6 for such instances with submodular

functions and ternary marginals, then given the reduced instance,

the algorithm would output a value higher than 2.5 if and only if a

3-D-MATCHING existed. This proves Theorem 5.1.

6 CONCLUSION
We analyzed the fairness notion of APS for indivisible goods under

submodular and XOS functions with binary marginals, a rich and

expressive class of valuation functions [6, 7, 10, 16]. Under binary

submodular valuations, we give a rather surprising result that APS
=MMS. This is not true for even additive valuations (with non-

binary marginals.) On the other hand for fractionally subadditive

functions with binary marginals, we show a gap of 2 between APS
and MMS and show that is almost tight.

It would be interesting to study the relations between APS and

MMS for other valuation functions, and in particular for binary

subadditive valuations. Subadditive functions generalizes both frac-

tionally subadditive and submodular functions, and remains rela-

tively less explored. We note that, most of Section 4 can be extended

to work for binary subadditive functions, except Claim 4.1. A gener-

alization of this claim for subadditive valuations will be helpful in

determining the gap betweenMMS and APS under these valuations.

Finally, a study of APS for the case when agents are heteroge-

neous, i.e. each agent has a weight or endowment, under valuations

beyond-additive with binary marginals is the next natural question.
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