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Abstract
Gradient inversion (GI) attacks present a threat to
the privacy of clients in federated learning (FL)
by aiming to enable reconstruction of the clients’
data from communicated model updates. A num-
ber of such techniques attempts to accelerate data
recovery by first reconstructing labels of the sam-
ples used in local training. However, existing
label extraction methods make strong assump-
tions that typically do not hold in realistic FL
settings. In this paper we present a novel label
recovery scheme, Recovering Labels from Local
Updates (RLU), which provides near-perfect ac-
curacy when attacking untrained (most vulnera-
ble) models. More significantly, RLU achieves
high performance even in realistic real-world set-
tings where the clients in an FL system run mul-
tiple local epochs, train on heterogeneous data,
and deploy various optimizers to minimize differ-
ent objective functions. Specifically, RLU esti-
mates labels by solving a least-square problem
that emerges from the analysis of the correla-
tion between labels of the data points used in
a training round and the resulting update of the
output layer. The experimental results on sev-
eral datasets, architectures, and data heterogeneity
scenarios demonstrate that the proposed method
consistently outperforms existing baselines, and
helps improve quality of the reconstructed images
in GI attacks in terms of both PSNR and LPIPS.

1. Introduction
Federated learning (FL) (McMahan et al., 2017), which aims
to enable collaborative training of ML models while protect-
ing privacy of the participating clients, has attracted consid-
erable interest in privacy-sensitive fields such as healthcare
and finance (Yang et al., 2019). However, recent works have
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demonstrated vulnerability of FL systems to privacy attacks
such as membership inference (Shokri et al., 2017), property
inference (Melis et al., 2019) and gradient inversion (Zhu
et al., 2019). In particular, gradient inversion methods have
been shown capable of reconstructing private training data
given the gradients computed during local training. The
milestone work, Deep Leakage from Gradient (DLG) (Zhu
et al., 2019), minimizes the difference between simulated
and true gradients to extract data and the corresponding
labels belonging to FL clients training a model for a classifi-
cation task. However, DLG does not perform well in settings
where the training batch size is large and the data resolution
is high, since in such scenarios the joint optimization of
data and the corresponding labels becomes challenging. A
subsequent study, iDLG (Zhao et al., 2020), presents an
analytical method for the recovery of ground-truth labels
from the gradients by exploiting a relationship between the
labels and the signs of the gradients. GradInversion (Yin
et al., 2021) takes a step further by exploiting a relationship
between labels and the magnitudes of gradient in the output
layer to perfectly restore labels of the samples used in the
considered training round, and facilitates high-resolution
reconstruction of data in a batch with as many as 48 samples.
Unfortunately, this method assumes no repeated labels in the
batch, which is unrealistic in real-world settings. Recently,
iRLG (Ma et al., 2023) attempted to address the limitations
of GradInversion, enabling recovery of potentially repeated
labels in a batch by utilizing gradients computed using a
randomly initialized untrained model. However, the per-
formance of iRLG drastically deteriorates as the model’s
accuracy improves.

The above label recovery methods either: (1) assume no
repeated labels in a batch; (2) use non-negative network
activation functions; or (3) perform well only on untrained
models. They further assume that each client in an FL sys-
tem runs only a single epoch when updating its local model,
while the more practical settings with multiple epochs of
local training are not considered. Moreover, these studies
are limited to the scenarios where a server collects gradients
and do not apply to the standard FL setting where the server
collects model updates rather than the gradients.

Aiming to address the aforementioned limitations of the
prior work, in this paper we propose a novel method for la-
bel recovery, Recovering Labels from Local Updates (RLU).
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We start by analyzing correlations between local updates
of the output layer and the ground-truth labels of data sam-
ples in training batches for several frequently used FL algo-
rithms. These correlations, along with the expected value
of the “erroneous confidence” (i.e., the level of confidence
when making erroneous decisions) evaluated on a small
auxiliary dataset, are then used to recover the labels. As
local training unfolds across multiple epochs, distribution
of the previously mentioned “erroneous confidence” under-
goes changes which the server cannot access. Simulating
an underlying dynamical model helps estimate how this
distribution evolves across training epochs; the obtained es-
timates of intermediate distributions are then utilized to help
achieve notable enhancement in the accuracy of label recov-
ery. The effectiveness of RLU is demonstrated in extensive
experiments involving several FL algorithms and various
model architectures on SVHN, CIFAR10, CIFAR100 and
Tiny-ImageNet datasets. In all the considered settings, RLU
outperforms state-of-the-art baselines on both untrained and
well-trained models. The main contributions of the paper
are summarized as follows:

• We propose a general analytical method that enables
the server in an FL system to recover labels of the
points used by clients in local training; the proposed
method applies to various FL algorithms and makes no
assumptions regarding the activation function or batch
label composition.

• To allow accurate label recovery in FL systems where
clients train across multiple epochs, we simulate the
evolution of the model through the epochs via a Monte
Carlo method that updates the “erroneous confidence”
characterizing the correlation between local updates
and training data labels.

• To evaluate the proposed label recovery method, we
conduct comprehensive benchmarking experiments
across a number of FL settings where we vary the
level of data heterogeneity, model architectures and
local objective functions.

2. Preliminary and Related Work
Federated Learning. The classical FL algorithm, FedAvg
(McMahan et al., 2017), enables K clients to collaboratively
train global model without sharing their private data Dk. In
FedAvg, the server initializes training round t by broadcast-
ing global model ω(t) to the clients. Client k updates its
local model by running a gradient descent procedure on its
(private) local data; the server then collects updated local
models ω(t)

k from the clients and averages them to form a
new global model,

ω(t+1) =
K∑

k=1

pkω
(t)
k , (1)

where pk denotes the weight assigned to client k. Since the
training is initialized by broadcasting global model ω(t) to
the clients, local updates are computed as !ω(t)

k = ω(t)
k →

ω(t). It is worth pointing out that in FL algorithms other
than FedAvg, !ω(t)

k is not necessarily proportional to the
gradients ↑ω(t)

k . We discuss properties of local updates in
Section 3.3.

Gradients Inversion Attack. DLG (Zhu et al., 2019) is the
first optimization-based method for reconstructing training
data given the gradients ↑ω and model ω. More specifi-
cally, DLG minimizes the difference between simulated and
ground-truth gradients,

xω
,yω = arg min

x→,y→
↓↑ωLtask(ω,x

→
,y→)→↑ω↓2 . (2)

Follow-up studies (Geiping et al., 2020; Yin et al., 2021) in-
troduced total variation and group consistency regularization
to the objective of the gradient inversion optimization, en-
abling high reconstruction performance on ImageNet (Deng
et al., 2009). Recently, a number of works (Jeon et al., 2021;
Fang et al., 2023; Zhang et al., 2023) leveraged pre-trained
generative models to improve the gradient inversion attack
and achieve state-of-the-art performance with batch size set
to 32. However, these schemes assume knowing the ground-
truth labels y in the batch – an unrealistic assumption that
significantly accelerates the search for the optimal data xω.

Label Recovery Attack. To improve the performance of an
attack on gradients computed using samples coming from a
relatively large batch, a series of studies (Zhao et al., 2020;
Yin et al., 2021; Dang et al., 2021; Wainakh et al., 2021;
Geng et al., 2021; Ma et al., 2023) proposed various analyt-
ical approaches to recovering labels y prior to solving the
optimization over x→. However, all these methods suffer lim-
itations that restrict their practical feasibility. GradInversion
(Yin et al., 2021) assumes there are no repeated labels in a
batch; RLG (Dang et al., 2021) can only recover class-wise
labels but not instance-wise labels; LLG (Wainakh et al.,
2021) and ZLG (Geng et al., 2021) require non-negative
activation functions; iRLG (Ma et al., 2023) performs well
only on randomly initialized untrained models. Moreover,
these methods primarily focus on FedAvg and generally
provide little if any discussion of other FL algorithms.

3. Methodology
3.1. Problem Settings

We consider multi-class classification models trained in FL
settings where an honest-but-curious (HBC) server aims to
recover ground-truth labels of the training samples using
local updates !ω(t)

k collected from clients while following
a standard FL training procedure. The HBC server knows
the batch size, number of local epochs and learning rate
used by the clients but has no information about local data
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distribution. We assume each local model is trained by
minimizing the cross-entropy (CE) loss

Lce = → 1

|B|

|B|∑

i=1

log
exp(q(i)

y(i))
∑N

n=1 exp(q
(i)
n )

, (3)

where B denotes a training batch; (x(i)
, y

(i)) is the i-th
example in the batch; N is the number of classes; and
q(i) = W · e(i) + b denotes the output logits of the model
given the embedding e(i) ↔ RL of x(i), where W ↔ RN↑L

and b ↔ RN are the weights and bias of the output layer.

3.2. Label Recovery from Local Updates (RLU)

Following the definition of the CE loss in Eq. 3, contribution
of x(i) to the j-th component of the gradient of b can be
computed as (the proof provided in Appendix A.1)

↑b(i)
j =






exp(q(i)
j )

∑N
n=1 exp(q

(i)
n )

= sj(x
(i)), if j ↗= y

(i)
,

→
∑

n ↓=j exp(q
(i)
n )

∑N
n=1 exp(q

(i)
n )

, if j = y
(i)
.

(4)
Assuming stochastic gradient descent (SGD) optimizer, the
local update of the j-th component of the output layer’s bias
computed by client k is

!bj = → ω

|Bε |

m∑

ε=1

|B|∑

i=1

↑b(i,ε)
j ,Bε ↘ Dk, (5)

where ε is the local epoch index, m is the number of epochs,
ω is the learning rate, and Dk denotes client k’s data. Note
that sj(x(i)) ↔ (0, 1) can be interpreted as the “erroneous
confidence” of labeling x(i) as class j while j ↗= y

(i) (i.e.,
confidence in a labeling decision that is in fact erroneous).
Let Sn,j denote the expected erroneous confidence for class
j given a sample with true label n ↗= j,

Sn,j = E
(x,y)↔D(n)

k
[sj(x)] , ≃n, j ↔ [N ] ⇐ n ↗= j, (6)

where D(n)
k ⇒ Dk collects samples with label n and (x, y)

is a random sample from D(n)
k . These expectations are

indicative of the model’s training error: Sn,j ⇑ 1
N in a ran-

domly initialized untrained model making random predic-
tions, whereas Sn,j asymptotically goes to 0 as the accuracy
of the model increases.

Note that the expected erroneous confidence, Sn,j does not
admit closed-form expression; to analyze it and gain needed
insight, we make the following assumption.
Assumption 3.1. The output logits q(n) of model ω when
the input is x ↘ D(n) follows a multivariate normal distri-
bution, i.e.,

q(n) ↘ N (µn,!n), (7)

where the mean µn and covariance !n depend on the accu-
racy of the model.

For an untrained deep model whose parameters are initial-
ized from a zero-mean uniform distribution, expected values
of the output logits µ1, . . . ,µN are approximately 0. As
the accuracy of the model improves during the training pro-
cess, µj,j converges to a positive value while µn,j(n ↗= j)
converges to a negative value, forcing Sn,j to converge
to 0. The existing methods that perform well only on un-
trained models operate under the assumption µn = 0, which
does not hold for well-trained models. Experimental results
that empirically verify Assumption 3.1 are provided in Ap-
pendix B.3.

In each global round of training, the server leverages global
model ω(t) to obtain estimates of the parameters in (7), µ̄n

and !̄n, via a Monte Carlo method run on a small auxiliary
dataset A: the samples from A are processed by ω(t) and the
resulting output logits are used to empirically compute the
mean and variance. Given the estimates of the parameters,
the server samples M data points q(n,i) ↘ N (µ̄n, !̄n) to
infer Sn,j as

S̄n,j =
1

M

M∑

i=1

exp(q(n,i)
j )

∑N
c=1 exp(q

(n,i)
c )

. (8)

3.2.1. SINGLE EPOCH LOCAL TRAINING

When m = 1, we omit superscript ε and let !bj =

→ ϑ
|B|

∑|B|
i=1 ↑b(i)

j . By taking the expectation of !bj , we
obtain (details provided in Appendix A.3)

E [!bj ] =
ω

|B|



Nj

∑

n ↓=j

Sj,n →
∑

n ↓=j

NnSn,j



 , (9)

where Nj denotes the number of samples in B with label j.
Finally, Nj is estimated by solving

min
z↗RN

↓Az→ u↓22

s.t. 0 ⇓ z ⇓ 1 ⇐ ↓z↓1 = 1,
(10)

where u = !b/ω, the diagonal entries of the coefficient
matrix A are aj,j =

∑
n ↓=j Sj,n, and the (n, j) off-diagonal

entry of A is an,j = →Sn,j . After finding the solution zω

to the above problem, we estimate Nj as N̄j = ⇔|B| · zωj↖.

3.2.2. MULTIPLE EPOCHS OF LOCAL TRAINING

To reduce communication bandwidth, clients in FL typically
update their local models over multiple epochs (with multi-
ple batches of data), as illustrated in Eq. 5. Assume fixed
learning rate ω and constant batch size across all epochs
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(i.e., |Bε | = |B| for all ε ); then the expectation of the local
update E

[
!b(t)

j

]
in global round t can be found as

ω

|B|

m∑

ε=1



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →

∑

n ↓=j

N
(t,ε)
n S(t,ε)

n,j



 , (11)

where N (t,ε)
j is the number of samples with label j in epoch

ε and S(t,ε)
n,j denotes the expected erroneous confidence of

local model ω(t,ε↘1)
k on class j. At the beginning of lo-

cal training, ω(t,0)
k is initialized with the global model ω(t).

Note that S(t,1)
n,j can be estimated using global model ω(t)

while S(t,m+1)
n,j is readily inferred using the collected local

model ω(t,m)
k via previously described Monte Carlo proce-

dure. However, the intermediate states S(t,2)
n,j , . . . ,S(t,m)

n,j
are unknown since the server does not have access to local
models ω(t,1)

k , . . . ,ω(t,m↘1)
k . Since the evolution of S(t,ε)

n,j is
non-linear, trivial interpolation between S(t,1)

j,n and S(t,m+1)
j,n

may be highly inaccurate. To this end, we propose a practi-
cal method that relies on dynamics of the model parameter
updates to approximate S(t,ε)

j,n in the intermediate epochs.
Suppose we know S(t,ε)

j,n and the numbers of samples with
different labels N (t,ε)

j , j ↔ [N ]. Then

E
[
!b(t,ε)

j

]
=

ω

|B|



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →

∑

n ↓=j

N
(t,ε)
n S(t,ε)

n,j



 .

(12)
Since the gradients of the weights in the output layer satisfy
↑Wj,l = ↑bj · ēl, where ēl is the l-th component of the
average embedded signal, we can estimate the change of the
output logit as (the proof is provided in Appendix A.2)

E
[
!q(n)

j

]
= !µ(t,ε)

n,j = E
[
!b(t,ε)

j

]
·

L∑

l=1

ē2l , (13)

and then obtain µ(t,ε+1)
n,j = µ(t,ε)

n,j + !µ(t,ε)
n,j . Using

µ(t,ε+1)
n,j in the next local epoch, one can estimate S(t,ε+1)

n,j
according to Eq. 8. By recursively conducting the above
procedure, one can estimate all the intermediate states S(t,ε)

n,j .
However, N (t,ε)

j and ēl are not known – only the average
updates of weight !W(t)

j,l and bias !bt
j are given. A closer

examination of the correlation between ↑W(t)
j,l and ↑bt

j

suggests estimating the average embedded signal according
to

ēl ⇑ !W(t)
j,l /!b(t)

j . (14)

To estimate the total number {N̄ (t)
j }Nj=1 of labels in m sam-

pled batches we first set N (t,ε)
j = gj , where g ↔ NN de-

notes an arbitrarily vector (a guess) satisfying ↓g↓1 = |B|.

As described earlier in this subsection, if we knew N
(t,ε)
j

we could dynamically update S(t,ε)
j,n to arrive at S̄(t,m+1)

j,n .
Since the true S(t,m+1)

j,n is known by the server (collected
after the final epoch), the difference between S̄(t,m+1)

j,n and
S(t,m+1)
j,n could be used to adjust gj and subsequently im-

prove the estimate S̄(t,m+1)
j,n . If S̄(t,m+1)

j,n is significantly
smaller than S(t,m+1)

j,n , gj was underestimated; otherwise,
gj was overestimated. Intuitively, local model tends to label
input data as class j if the samples with label j are dominant
in the batches sampled for training.

After a number of iterations, the difference between
S̄(t,m+1)
j,n and S(t,m+1)

j,n becomes small and m · gj closely
approximates N

(t)
j . To accelerate the search for g, one

can introduce S̄(t)
j,n = (S(t,1)

j,n + S(t,m+1)
j,n )/2 and solve op-

timization (10) parameterized by Sj,n = S̄(t)
j,n to obtain an

initial estimate N̄
(t)
j which, in turn, is used to initialize

gj = N̄
(t)
j /m. In our experiments, following such an ini-

tialization RLU achieves highly accurate performance after
only T = 5 iterations. The algorithms described in this
section are formalized in Appendix C.1 and C.2.

3.3. FL schemes beyond FedAvg and SGD

The prior works on GI attacks in FL focused on FedAvg
(McMahan et al., 2017), where local training pursues min-
imization of the CE loss, Lce. Deterioration of the perfor-
mance of FedAvg observed in non-i.i.d. settings motivated a
number of studies (Li et al., 2020; Karimireddy et al., 2020;
Acar et al., 2021; Gao et al., 2022) that address the challenge
of data heterogeneity by introducing various regularization
terms to the local objective function. In particular, those
methods consider objectives that are combination of the
empirical risk and a regularizer, i.e.,

Llocal = Lce + Lregularizer. (15)

For such objectives, the local updates of the bias collected
by a server are not proportional to the gradients of Lce, ad-
versely affecting the efficacy of the existing methods that at-
tempt to recover labels from gradients. Furthermore, the ex-
isting label recovery methods assume that the local models
are updated using SGD optimizers. When optimizers other
than SGD are used, local updates are generally not propor-
tional to the gradients of Lce. To explore such settings, we
analyze the expectation of local updates in several milestone
non-i.i.d. FL schemes and consider two well-known variants
of SGD (Ruder, 2016), SGD with momentum (SGDm) and
Nesterov accelerated gradient method (NAG). To accommo-
date these more general cases, we rephrase the expectation
of the j-th component of the local update of bias E

[
!b(t)

j

]
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Table 1: Coefficients ϑ(ε) and h(ε)
j for different FL schemes including FedAvg (McMahan et al., 2017), Scaffold (Karim-

ireddy et al., 2020), FedProx (Li et al., 2020), FedDyn (Acar et al., 2021) and FedDC (Gao et al., 2022). Here m denotes the
number of local epochs, ε is the index of a local epoch, ω is the learning rate, and !b(r)

j denotes the j-th component of the
local update of bias b in global round r. For FedDC, !B(r)

j denotes the j-th component of the global update of bias b
while d(t)

k is the local drift in global round t. The server in each of the schemes can collect the corresponding variables and
potentially use them in a label recovery attack.

Schemes Optimizer ω(ω) h(t)
j Regularizer

FedAvg

SGD 1 0 No

SGDm 1→εm+1↑ω

1→ε
0 No; ε is the momentum weight

NAG 1→εm+2↑ω

1→ε
0 No; ε is the momentum weight

Scaffold SGD 1
ϑm

∑t
r=2 c

(r)+ No; c(r) is the server control∑t→1
r=1 !b(r)

j variate in global round r

FedProx SGD (1→ ϖϑ)m→ω 0 ϑ
2

∥∥∥ϱ(t,ω)k → ϱ(t)
∥∥∥
2

FedDyn SGD (1→ ϖϑ)m→ω (1→ (1→ ϖϑ)m)
∑t→1

r=1 !b(r)
j

ϑ
2

∥∥∥ϱ(t,ω)k → ϱ(t)
∥∥∥
2
→

〈
↑L(t→1,m)

ce , ϱ(t,ω)k

〉

FedDC SGD (1→ ϖϑ)m→ω (1→ (1→ ϖϑ)m)
∑t→1

r=1 !b(r)
j + ϑ

2

∥∥∥ϱ(t,ω)k → (ϱ(t) → d(t)
k )

∥∥∥
2
+

1→(1→ϑϖ)m

ϑϖm

(
!b(t→1)

j →!B(t→1)
j

)
1

ϖm

〈
ϱ(t,ω)k ,!ϱ(t→1)

k →!ϱ(t→1)
〉

in global round t as

ω

|B|

m∑

ε=1

ϑ
(ε)



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →

∑

n ↓=j

N
(t,ε)
n S(t,ε)

n,j



→h(t)
j ,

(16)
where ϑ

(ε) is a constant that depends on hyper-parameters
used by different methods and remains constant across
global rounds, and h(t)

j is a term capturing historical train-
ing information (past local updates). We summarize the
values of ϑ(ε) and h(t)

j for different FL schemes in Table 1
(derivations provided in Appendix A.4-A.9). To the best of
our knowledge, this is the first work that studies label recov-
ery attacks in FL schemes beyond FedAvg. In FL schemes
that utilize only the gradient information computed in the
current global round (e.g., FedAvg and FedProx) ht

j = 0,
while for the schemes that also rely on the past gradient
information (Scaffold, FedDyn and FedDC) ht

j ↗= 0. In
any case, ϑ(ε) and h(t)

j are known to the server and may
potentially be used for label recovery attacks. In our work,
we rely on the procedure for label recovery from local up-
dates discussed in the previous section to run RLU attacks
on different FL schemes where ϑ

(ε) and ht
j vary from one

scheme to another according to Table 1.

4. Experiments
4.1. Setups

We evaluate the performance of RLU on a classification task
using a variety of model architectures including LeNet-5

(LeCun et al., 1998), VGG-16 (Simonyan & Zisserman,
2014) and ResNet-50 (He et al., 2016), and four bench-
mark datasets including SVHN (Netzer et al., 2011), CI-
FAR10, CIFAR100 and Tiny-ImageNet (Le & Yang, 2015).
Throughout these experiments we employ a number of acti-
vation functions including ReLU, Tanh, ELU (Clevert et al.,
2015), SELU (Klambauer et al., 2017) and SiLU (Elfwing
et al., 2018) to further evaluate robustness of our proposed
method. To simulate diverse FL scenarios, we follow the
strategy in (Yurochkin et al., 2019) and utilize Dirichlet dis-
tribution with a concentration parameter ϖ, controlling the
level of data heterogeneity across 10 data partitions owned
by 10 clients. Unless specified otherwise, the models are
trained using SGD optimizers. The auxiliary dataset A con-
tains 100 samples per class. Further experimental details
are provided in Appendix B.2.

4.2. Baselines and Evaluation Metrics

We compare our proposed RLU to three state-of-the-art
methods: LLG (Wainakh et al., 2021), ZLG (Geng et al.,
2021) and iRLG (Ma et al., 2023), all capable of recover-
ing repeated labels in a batch. For fairness, we compare
RLU to LLG+ and ZLG+; the latter two utilize the same
auxiliary dataset A as RLU to achieve improved perfor-
mance. Following the strategy of iRLG, we quantify the
performance of a label recovery attack using two metrics:
(1) class-level accuracy (cAcc): the proportion of correctly
recovered classes; (2) instance-level accuracy (iAcc): the
proportion of correctly recovered labels. Details of com-
puting cAcc and iAcc are provided in Appendix B.4. We
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Table 2: Comparison of class-level accuracy (cAcc) and instance-level accuracy (iAcc) of various methods in label recovery
attacks on untrained models. The concentration parameter ϖ controlling data partitioning is set to 0.5 in experiments on
SVHN and CIFAR10, and to 0.1 on CIFAR100 and Tiny-ImageNet. The optimizer used in all experiments is SGD.

Model Dataset Batch Activation LLG+ ZLG+ iRLG RLU (ours)
Size cAcc iAcc cAcc iAcc cAcc iAcc cAcc iAcc

single local epoch m = 1

LeNet-5 SVHN 32 ReLU 0.980 0.984 0.810 0.906 0.998 1.000 1.000 1.000
Tanh 0.199 0.063 0.314 0.831 0.994 1.000 1.000 1.000

Vgg-16
CIFAR10 64 ReLU 0.982 0.981 0.907 0.982 0.961 0.979 1.000 1.000

ELU 0.845 0.925 0.962 0.932 0.920 0.936 0.994 0.996
CIFAR100 256 ReLU 0.960 0.932 0.888 0.943 0.981 0.992 1.000 1.000

SELU 0.267 0.104 0.893 0.855 0.958 0.982 1.000 1.000

ResNet-50 Tiny 256 ReLU 0.998 0.938 0.880 0.666 0.992 0.995 1.000 1.000
SiLU 0.953 0.794 0.847 0.534 0.989 1.000 1.000 1.000

multiple local epochs m = 10

LeNet-5 SVHN 32 ReLU 0.863 0.934 0.496 0.644 0.996 0.997 1.000 1.000
Tanh 0.218 0.164 0.551 0.699 0.976 0.996 1.000 1.000

Vgg-16
CIFAR10 64 ReLU 0.674 0.875 0.671 0.866 0.843 0.717 0.845 0.946

ELU 0.688 0.812 0.682 0.798 0.808 0.650 0.866 0.923
CIFAR100 256 ReLU 0.902 0.948 0.693 0.929 0.463 0.902 0.922 0.981

SELU 0.072 0.014 0.400 0.840 0.466 0.689 0.843 0.904

ResNet-50 Tiny 256 ReLU 0.929 0.921 0.643 0.723 0.792 0.937 0.957 0.976
SiLU 0.922 0.840 0.589 0.759 0.983 0.984 0.991 0.996

recover batch labels from the local updates computed on
clients’ local dataset and report the average cAcc and iAcc.

4.3. Attack on Untrained Models

A randomly initialized untrained model may be extremely
vulnerable to label recovery attacks; for instance, if the
server knows how the training is initialized, it does not even
need an auxiliary data set to infer the parameters (e.g., µn)
used in the attack. To compare the performance of baseline
methods with that of RLU, we conduct comprehensive ex-
periments on untrained models across various architectures,
datasets, batch-sizes and activation functions. The results,
reported in Table 2, demonstrate that RLU outperforms the
baselines in all settings. When local training consists of a
single epoch, RLU achieves near-perfect accuracy across the
board in terms of both cAcc and iAcc; iRLG is a close sec-
ond, outperforming other baselines. Since LLG+ assumes
non-negative activation functions, its performance deterio-
rates significantly with Tanh and SELU. On Tiny-ImageNet,
ZLG+ performs the worst among the four methods, achiev-
ing under 70% iAcc.

When the clients run m = 10 local epochs, performance of
all methods deteriorates (as expected based on the discus-
sion in Section 3.2.2). Nevertheless, the results in Table 2
show that RLU still outperforms the baselines, maintaining
at least 84% cACC and 90% iAcc on all datasets, architec-
tures and activation functions. While iRLG maintains solid
performance on SVHN and Tiny-ImageNet, it performs sig-
nificantly worse on CIFAR10 and CIFAR100 (iAcc falls
below 70%, cAcc drops below 50%). The results of LLG+

follow the same pattern exhibited in single epoch settings,
while ZLG+ experiences significant performance deteriora-
tion on SVHN. For consistency and a comparison with the
results in Table 2, unless stated otherwise, in the remainder
of this section the number of local epochs m is set to 10.

4.4. Attack on Trained Models

Since the accuracy of the global model improves as the
training proceeds, comparing methods in terms of attacks
on untrained model becomes no longer meaningful. As dis-
cussed in Section 3.2, distribution of output logits depends
on the accuracy of the model which is parameterized by
mean µn and covariance !n. When the model becomes
highly accurate, magnitudes of local gradients (updates)
start vanishing; this, in turn, causes high sensitivity to noise
and a large error in estimating the labels. All of the meth-
ods in Table 2 experience performance deterioration as the
model accuracy increases. To compare their robustness, we
conduct extensive experiments and evaluate performance of
different attack methods at different stages of training. As
shown in Fig. 1, RLU outperforms the baselines at all train-
ing stages, achieving 80% iAcc when the model accuracy
reaches 80%. For the global model achieving 90% training
accuracy, iAcc of iRLG reaches 75.6%, 83.3% and 72.6%
on SVHN, CIFAR10 and CIFAR100, respectively. The iAcc
of ZLG+ is 33.3%, 21.1% and 30.1% lower than RLU’s,
while iRLG’s trails RLU by 16.3%, 17.3% and 23.9% on
these three datasets, respectively. The iAcc performance of
LLG+ is better than that of other prior methods but still falls
significantly behind RLU’s.
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(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 1: Instance-level accuracy of different attack methods deteriorates as training progresses. Each point on the black
dashed curve indicates the training accuracy of the global model in each global round.

Table 3: Experiments on CIFAR10 comparing iAcc of dif-
ferent methods on data partitions generated by varying ϖ.

Data heterogeneity ϖ

Schemes 0.05 0.1 0.5 1 5
LLG+ 0.766 0.831 0.882 0.905 0.941
ZLG+ 0.747 0.812 0.867 0.897 0.944
iRLG 0.449 0.630 0.715 0.766 0.820
RLU 0.961 0.947 0.944 0.943 0.931

4.5. Effect of Data Heterogeneity

Data heterogeneity is one the main challenges in real-world
applications of federated learning. Prior works on label re-
construction evaluated their proposed methods on i.i.d. data,
but the evaluation on non-i.i.d. data has remained largely
unexplored. To this end, we benchmark the methods con-
sidered in this paper on CIFAR10 data partitions generated
for varied values of ϖ = {0.05, 0.1, 0.5, 1, 5} (smaller ϖ
corresponds to higher level of heterogeneity). We visual-
ize the generated data partitions in Appendix B.5. Table 3
shows that iAcc of the three baselines monotonically de-
creases with the level of data heterogeneity. On the other
hand, RLU demonstrate a great degree of robustness as it
maintains high iAcc across the board; in particular, RLU
achieves 93% or higher instance-level accuracy in all set-
tings, including at the highest level of data heterogeneity
(ϖ = 0.05).

4.6. Effect of the Size of Auxiliary Dataset A

As previously discussed, RLU needs an auxiliary dataset A
to estimate moments of the output logits distribution. In the
benchmarking experiments presented thus far, we used 100
samples for each class in A. To analyze the effect of the size
of auxiliary dataset on the performance of RLU, we conduct
4 sets of experiments that utilize 4 auxiliary datasets with:

Figure 2: The iAcc of RLU utilizing auxiliary dataset A as
the number of samples per class varies.

(1) 5 samples per class; (2) 10 samples per class; (3) 50
samples per class; and (4) 100 samples per class. As shown
in Fig. 2, there appears to be no significant performance
degradation due to reduction of the auxiliary data set size.
When using the smallest among the auxiliary sets, on SVHN
and Tiny the proposed RLU achieves performance close to
the baseline. The largest performance gap is on CIFAR10
and CIFAR100, and even there the gap is only 2.4% and
3.1%, respectively. Therefore, RLU exhibits robustness
with respect to the variations in the size of the auxiliary data
set used by the server.

4.7. Effect of Distribution Shift in Auxiliary Dataset A

To evaluate robustness of RLU to a domain shift in auxil-
iary data, we conducted experiments where we used RLU
to attack models trained on CIFAR10 with auxiliary data
subsampled from either CIFAR10.1 (Recht et al., 1806) or
CIFAR10.2 (Lu et al., 2020) datasets. As the experimen-
tal results reported in Table 5 show, when the amount of
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Table 4: Instance-level accuracy achieved by various methods in label recovery attacks on different FL schemes.

Schemes Dataset LLG+ ZLG+ iRLG RLU (ours) LLG+ ZLG+ iRLG RLU (ours)
Hyper-parameter: ϖ = 0.5 ϖ = 5

FedProx
SVHN 0.917 0.656 0.982 0.991 0.079 0.566 0.881 0.973

CIFAR10 0.747 0.795 0.691 0.938 0.665 0.682 0.616 0.899
CIFAR100 0.805 0.791 0.594 0.930 0.659 0.626 0.493 0.929

Hyper-parameter: ε = 0.1 ε = 0.9

SGDm
SVHN 0.951 0.520 0.819 0.987 0.737 0.870 0.114 0.916

CIFAR10 0.884 0.872 0.919 0.935 0.883 0.871 0.450 0.928
CIFAR100 0.855 0.826 0.856 0.915 0.864 0.859 0.755 0.882

Hyper-parameter: ϖ = 0.5, t = 2 ϖ = 0.5, t = 6

FedDyn
SVHN 0.185 0.676 0.819 0.921 0.084 0.567 0.738 0.863

CIFAR10 0.861 0.859 0.693 0.919 0.842 0.833 0.667 0.889
CIFAR100 0.748 0.742 0.536 0.861 0.626 0.616 0.402 0.861

Hyper-parameter: t = 2 t = 6

Scaffold
SVHN 0.377 0.477 0.428 0.874 0.229 0.541 0.426 0.814

CIFAR10 0.796 0.805 0.507 0.853 0.590 0.785 0.499 0.817
CIFAR100 0.821 0.798 0.286 0.858 0.806 0.783 0.286 0.860

Table 5: iAcc of the RLU attack on models trained on
CIFAR10 with the help of an auxiliary dataset A sampled
from either CIFAR10.1 or CIFAR10.2 as the number of
samples per class varies.

Number of Samples per Class
A Activation 5 10 50 100

C10.1 ReLU 0.915 0.915 0.911 0.924
C10.2 ELU 0.597 0.837 0.855 0.862
C10.1 ReLU 0.688 0.909 0.918 0.915
C10.2 ELU 0.596 0.813 0.852 0.851

auxiliary data is either 10, 50, or 100 samples per class,
RLU experiences relatively small performance degradation
compared to the results in Table 2. However, a noticeable
deterioration occurs when only 5 samples per class are used;
this is due to the difficulty of estimating parameters of the
distribution that underwent a shift using a very small number
of samples.

4.8. Attacks on Different FL Schemes

To the best of our knowledge, prior works evaluate their
methods only on FedAvg. While FedAvg is indeed the oldest
and perhaps the most widely used FL scheme, a number
of other FL schemes has grown to prominence yet remains
largely unexplored in the context of label recovery. As
discussed in Section 3.3, we provide a framework to conduct
label recovery attacks on several regularization-based FL
schemes that may be using various optimizers. Table 4
shows the superior performance of RLU in the experiments
on FedProx, SGDm, FedDyn and Scaffold. As can be seen
from the table, in the experiments on FedProx and SGDm
where ϱ = 0.5 and ς = 0.1 (which leads to ϑ

(ε) ⇑ 1), the
three baselines achieve performance similar to that in their

attacks on FedAvg. However, as ϑ(ε) deviates from 1 when
ϱ = 5 and ς = 0.9, performance of the baselines severely
deteriorates while RLU maintain its iAcc of at least 88%. In
the experiments conducted on FedDyn and Scaffold, which
rely on historical training data to update global model, RLU
demonstrates capability to maintain its performance levels.

4.9. Improved Gradient Inversion Attacks with RLU

The outstanding performance of RLU on label recovery can
improve the gradient inversion attacks in federated learning.
In the prior work IG (Geiping et al., 2020), an HBC server
performs joint optimization of the reconstructed labels y→

and images x→, which typically results in slow convergence
and poor quality of the reconstructed images. We conduct
gradients inversion attack experiments on CIFAR10, where
we use RLU to estimate labels y→ from local updates and
only optimize the reconstructed images x→ according to Eq.
2. To quantitatively characterize the quality of reconstructed
images, we compute the peak signal-to-noise ratio (PSNR)
and the learned perceptual image patch similarity (LPIPS)
(Zhang et al., 2018) of the reconstructed images in each
batch. As illustrated in Fig. 3, images reconstructed with the
help of RLU have higher PSNR and lower LPIPS, indicating
smaller distance to the original images.

4.10. Defense with Differentially Private Noise

To defend against the proposed label recovery approach,
clients can use differential privacy (DP) mechanism (Abadi
et al., 2016) to encrypt the transmitted gradients. In par-
ticular, in such scenarios a zero-mean Gaussian noise with
variance φ

2 may be injected into the gradients to provide
a certified level of privacy. To investigate the impact of
DP noise added to gradients, we conducted a series of ex-
periments using RLU across three datasets. As reported in

8



Recovering Labels from Local Updates in Federated Learning

(a) Ground Truth (b) IG (Joint Optimization) (c) Improved by RLU

Figure 3: Batch image reconstruction (batch size set to 9) on CIFAR10 compared to IG (Geiping et al., 2020). We select the
best reconstructed batch for visualization and display the average metrics of the selected batches.

Table 6: we report iAcc of RLU conducted on gradients
injected with DP noise in different level of privacy, charac-
terized by variance φ

2.

Standard Deviation φ

Dataset Epochs 0.05 0.1 0.2 0.5

SVHN 1 0.968 0.942 0.905 0.812
10 0.844 0.727 0.606 0.484

CIFAR10 1 0.909 0.908 0.902 0.830
10 0.906 0.877 0.792 0. 622

CIFAR100 1 0.999 0.977 0.933 0.831
10 0.854 0.732 0.592 0.409

Table 6, higher variance of DP noise enhances the level of
protection, leading to less accurate label recovery attacks.
Noticeably, DP noise more effectively helps mitigate the
RLU attacks in multi-epoch than in single-epoch settings;
this is expected since the posterior search algorithm relies on
the gradients which in the former case may be significantly
perturbed by the DP noise.

5. Conclusion
In this paper, we studied label recovery attacks on federated
learning systems in which clients send their local model
updates to the server for aggregation. We developed RLU,
a novel label recovery method which solves a least-square
problem constructed by examining the correlation between
the number of samples of each label type and local updates
of the output layer. We extended the proposed framework to
real-world scenarios involving well-trained models, multiple
local epochs, high levels of data heterogeneity and various
local objective functions, and provided theoretical analysis
of RLU in different FL schemes. Comprehensive experi-
ments on four datasets, three model architectures and six
activation functions demonstrate consistently high accuracy,

robustness and universality of RLU. Moreover, gradients in-
version attack experiments illustrate that utilizing RLU may
significantly improve quality of the reconstructed data in
term of two widely-used metrics, PSNR and LPIPS. Future
work will include exploring defense mechanism that may
help ameliorate safety concerns caused by RLU.
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A. Proof of Analytical Results
A.1. Derivation of the gradient of the output layer’s bias b

Given a batch of samples (x(i)
, y

(i)) ↔ B, the cross-entrop loss can be computed as

Lce ==
1

|B|

|B|∑

i=1

L(i)
ce = → 1

|B|

|B|∑

i=1

log
exp(q(i)

y(i))
∑N

n=1 exp(q
(i)
n )

, (17)

q(i)
j =

L∑

l=1

Wj,lz
(i)
l + bj , (18)

where N is the number of classes; q(i)
j denotes the j-th component of output logits given sample x(i); Wj,l is the (j, l)-

element of weights of the output layer; bj is the j-th component of bias of the output layer; z(i) is the embedding of data
x(i); L is the dimension of embedding space. The gradient of the bias bj given sample (x(i)

, y
(i)) can be computed using

the chain rule as
↼L(i)

ce

↼bj
=

↼L(i)
ce

↼Q
· ↼Q

↼q(i)
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·
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where
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exp(q(i)
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. (20)

To start, note that
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(i), we obtain
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while if j ↗= y
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By substituting Eq. 22 and Eq. 23 in Eq. 19, we obtain

↑b(i)
j =


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.

(24)

↭

A.2. Derivation of the gradient of the output layer’s weight W

According to Eq. 17 and Eq. 18, gradients of the weight Wj,l given sample (x(i)
,y(i)) can be computed as

↼L(i)
ce

↼Wj,l
=

↼L(i)
ce

↼Q
· ↼Q

↼q(i)
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·
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j

↼Wj,l
. (25)
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Since, as discussed in Section A.1, we know ϖL(i)
ce

ϖQ and ϖQ

ϖq(i)
j

, we have
ϖq(i)

j

ϖWj,l
= z(i)j . Finally, we obtain

↑W(i)
j,l = ↑b(i)

j · z(i)l . (26)

↭

A.3. Derivation of the expected local update of the output layer’s bias b (single epoch)

Suppose mini-batch stochastic gradient descent (SGD) is used as the optimizer in FL training; the local update computed in
a single epoch can be found as

!bj = →ω↑bj = → ω

|B|

|B|∑

i=1

↑b(i)
j . (27)

Taking expectation of both sides yields
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i=1

(
I{j = y

(i)}E
∑

n ↓=j exp(q
(i)
n )

∑N
n=1 exp(q

(i)
n )


→ I{j ↗= y

(i)}E


exp(q(i)
j )

∑N
n=1 exp(q

(i)
n )



=
ω

|B|



Nj

∑

n ↓=j

E
(x,y)↔D(j)

k
[sn(x)]→

∑

n ↓=j

NnE(x,y)↔D(n)
k

[sj(x)]





=
ω

|B|



Nj

∑

n ↓=j

Sj,n →
∑

n ↓=j

NnSn,j



 .

(28)

Let D(↘j)
k denote the subset of local dataset Dk that excludes the samples with label j, and let Sj = E

(x,y)↔D(↑j)
k

[sj(x)]

(can be approximated by Sj ⇑ 1
N↘1

∑
n ↓=j Sn,j). It follows that

N∑

j=1

Sj =
N∑

j=1

E
(x,y)↔D(↑j)

k
[sj(x)]

⇑ 1

N → 1

N∑

j=1

∑

n ↓=j

1

|Dk| · Pn

|Dk|∑

i=1

I{y(i) = n}
exp(q(i)

j )
∑N

c=1 exp(q
(i)
c )

  
reformulate

=
1

N → 1

N∑

j=1

1

|Dk| · Pj

|Dk|∑

i=1

I{y(i) = j}
∑

n ↓=j exp(q
(i)
j )

∑N
n=1 exp(q

(i)
n )

=
1

N → 1

N∑

j=1



1→ 1

|Dk| · Pj

|Dk|∑

i=1

I{y(i) = j}
exp(q(i)

j )
∑N

n=1 exp(q
(i)
n )





=
N

N → 1
→ 1

(N → 1)|Dk|

N∑

j=1

|Dk|∑

i=1

exp(q(i)
y(i))

∑N
n=1 exp(q

(i)
n )

· I{y
(i) = j}
Pj

,

(29)

where Pj is the proportion of samples with label j in dataset Dk. Note that the second term in Eq. 29 is positively correlated
to Lce specified in Eq. 17. Given an untrained neural network model, we have

exp(q(i)
y(i))

∑N
n=1 exp(q

(i)
n )

⇑ 1

N
, ≃y(i) ↔ [N ], (30)
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and thus we obtain
N∑

j=1

Sj ⇑
N

N → 1
→ 1

N → 1

N∑

j=1

1

N

|Dk| · Pj

|Dk| · Pj
=

N → 1

N → 1
= 1. (31)

Assume that after T global rounds Lω
ce = 0; it follows that

exp(q(i)
y(i))

∑N
n=1 exp(q

(i)
n )

= 1, ≃y(i) ↔ [N ], (32)

and thus we obtain
N∑

j=1

Sj ⇑
N

N → 1
→ 1

N → 1

N∑

j=1

1 · |Dk| · Pj

|Dk| · Pj
=

N

N → 1
→ N

N → 1
= 0. (33)

↭

A.4. Derivation of the expected local update using SGD with momentum (SGDm)

In each local epoch ε , SGD with momentum (Ruder, 2016) updates the model parameters ↽(t,ε)k of client k according to

v(t,ε)
k ↙→ ςv(t,ε↘1)

k +↑L(t,ε)
ce , (34)

↽
(t,ε)
k ↙→ ↽

(t,ε↘1)
k → ωv(t,ε)

k , (35)

where ω is the learning rate in global round t; v(t,ε) is the momentum in local epoch ε ; ς ↔ (0, 1) is the momentum weight.
Then the local update of client k takes form

!↽
(t)
k = →ω

m∑

ε=1

v(t,ε)
k . (36)

We can compute v(t,ε)
k in Eq. 34 by mathematical induction, with v(t,1)

k initialized as ↑L(t,1)
ce . In the following, we will

prove that

v(t,ε)
k =

ε∑

i=1

ς
ε↘i↑L(t,i)

ce . (37)

Proof: According to Eq. 34,
v(t,2)
k = ςv(t,1)

k +↑L(t,2)
ce = ς↑L(t,1)

ce +↑L(t,2)
ce , (38)

v(t,3)
k = ςv(t,2)

k +↑L(t,3)
ce = ς

2↑L(t,1)
ce + ς↑L(t,2)

ce +↑L(t,3)
ce , (39)

both satisfying Eq. 37. Assuming that for any ε ∝ 2

v(t,ε)
k =

ε∑

i=1

ς
ε↘i↑L(t,i)

ce , (40)

we can obtain v(t,ε+1)
k by following Eq. 34,

v(t,ε+1)
k = ςv(t,ε)

k +↑L(t,ε+1)
ce

=
ε∑

i=1

ς
ε+1↘i↑L(t,i)

ce +↑L(t,ε+1)
ce

=
ε+1∑

i=1

ς
ε+1↘i↑L(t,i)

ce ,

(41)

which proves our claim in Eq. 37. Thus we have

!↽
(t)
k = →ω

m∑

ε=1

ε∑

i=1

ς
ε↘i↑L(t,i)

ce . (42)
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Similar to the discussion regarding updating bias in the output layer, we obtain

E
[
!b(t)

j

]
=

ω

|B|

m∑

ε=1

ε∑

i=1

ς
ε↘i



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →

∑

n ↓=j

N
(t,ε)
n S(t,ε)

n,j



 . (43)

Reformulating Eq. 43 yields

E
[
!b(t)

j

]
=

ω

|B|

m∑

ε=1

ϑ
(ε)



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →

∑

n ↓=j

N
(t,ε)
n S(t,ε)

n,j



 , (44)

where

ϑ
(ε) =

1→ ς
m+1↘ε

1→ ς
. (45)

↭

A.5. Derivation of the expected local update using Nesterov accelerated gradient method (NAG)

In each local epoch ε , Nesterov’s accelerated gradient method (Ruder, 2016) updates the model parameters ↽(t,ε)k of client k
according to

v(t,ε)
k ↙→ ςv(t,ε↘1)

k +↑L(t,ε)
ce + ς

(
↑L(t,ε)

ce →↑L(t,ε↘1)
ce

)
, (46)

↽
(t,ε)
k ↙→ ↽

(t,ε↘1)
k → ωv(t,ε)

k , (47)

where ω is the learning rate in global round t; v(t,ε) is the momentum in local epoch ε ; ς ↔ (0, 1) is the momentum weight.
We form the local update of client k as

!↽
(t)
k = →ω

m∑

ε=1

v(t,ε)
k . (48)

One can compute v(t,ε)
k according to Eq. 46 via mathematical induction, where v(t,1)

k is initialized as (1 + ς)↑L(t,1)
ce . In

the following, we will prove that

v(t,ε)
k =

ε↘1∑

i=1

ς
ε↘i+1↑L(t,i)

ce + (1 + ς)↑L(t,ε)
ce , ε ∝ 2. (49)

Proof: According to Eq. 46,
v(t,2)
k = ςv(t,1)

k +↑L(t,2)
ce + ς

(
↑L(t,2)

ce →↑L(t,1)
ce

)

= ς
2↑L(t,1)

ce + (1 + ς)↑L(t,2)
ce ,

(50)

v(t,3)
k = ςv(t,2)

k +↑L(t,3)
ce + ς

(
↑L(t,3)

ce →↑L(t,2)
ce

)

= ς
3↑L(t,1)

ce + ς
2↑L(t,2)

ce + (1 + ς)↑L(t,3)
ce ,

(51)

both satisfying Eq. 49. Assuming that for any ε ∝ 2

v(t,ε)
k =

ε↘1∑

i=1

ς
ε↘i+1↑L(t,i)

ce + (1 + ς)↑L(t,ε)
ce , (52)

we obtain v(t,ε+1)
k according to Eq. 46 as

v(t,ε+1)
k = ςv(t,ε)

k +↑L(t,ε+1)
ce + ς

(
↑L(t,ε+1)

ce →↑L(t,ε)
ce

)

=
ε↘1∑

i=1

ς
ε+1↘i+1↑L(t,i)

ce + ς
2↑L(t,ε)

ce + (1 + ς)↑L(t,ε+1)
ce

=
ε∑

i=1

ς
ε+1↘i+1↑L(t,i)

ce + (1 + ς)↑L(t,ε+1)
ce ,

(53)
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which proves our claim in Eq. 49 and thus

!↽
(t)
k = →ω

m∑

ε=2

(
ε↘1∑

i=1

ς
ε↘i+1↑L(t,i)

ce


→ ω(1 + ς)

m∑

ε=1

↑L(t,ε)
ce . (54)

Similar to the discussion regarding the update of bias in the output layer, we obtain

E
[
!b(t)

j

]
=

ω

|B|

m∑

ε=1

ϑ
(ε)



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →

∑

n ↓=j

N
(t,ε)
n S(t,ε)

n,j



 , (55)

where

ϑ
(ε) =

1→ ς
m+2↘ε

1→ ς
. (56)

↭

A.6. Derivation of the expected local update of Scaffold

The local update of Scaffold (Karimireddy et al., 2020) in local epoch ε and global round t can be found as

↽
(t,ε)
k ↙→ ↽

(t,ε↘1)
k → ω

(
↑L(t,ε)

ce → c(t)k + c(t)
)
, (57)

c(t+1)
k ↙→ c(t)k → c(t) +

1

ωm
(↽(t) → ↽

(t,m)
k ), (58)

where c(t)k is the client control variate while c(t) is the server control variate in global round t; c(1)k is initialized by c(1); m
is the number of local epochs; ω is the learning rate. According to the update rule of c(t+1)

k in Eq. 58,

c(t)k = c(t↘1)
k → c(t↘1) → 1

ωm
!↽

(t↘1)
k

= c(t↘2)
k → c(t↘2) → c(t↘1) → 1

ωm
!↽

(t↘2)
k → 1

ωm
!↽

(t↘1)
k

= . . .

= c(1)k → c(1) →
t↘1∑

r=2

c(r) → 1

ωm

t↘1∑

r=1

!↽
(r)
k

= →
t↘1∑

r=2

c(r) → 1

ωm

t↘1∑

r=1

!↽
(r)
k ,

(59)

where !↽
(r)
k is the local update of client k in global round r. Then the local update of client k is given by

!↽
(t)
k = →ω

m∑

ε=1

↑L(t,ε)
ce → ωm

(
t∑

r=2

c(r) +
1

ωm

t↘1∑

r=1

!↽
(r)
k


. (60)

Therefore, the j-th component of the update of bias in the output layer can be found as

!b(t)
j = →ω

m∑

ε=1

↼L(t,ε)
ce

↼bj
→ ωm

(
t∑

r=2

c(r) +
1

ωm

t↘1∑

r=1

!b(r)
j


, (61)

where !b(r)
j is the update of bj in global round r < t (known by the server). Similar to the previous analysis, we obtain

E
[
!b(t)

j

]
=

ω

|B|

m∑

ε=1



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →

∑

n ↓=j

N
(t,ε)
n S(t,ε)

n,j



→ h(t)
j , (62)

where

h(t)
j = ωm

t∑

r=2

c(r) +
t↘1∑

r=1

!b(r)
j . (63)

↭
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A.7. Derivation of the expected local update of FedProx

The local objective function in FedProx (Li et al., 2020) is defined as

Lprox = Lce +
ϱ

2

↽(t,ε)k → ↽
(t)

2
, (64)

where ↽(t) is the global model used to initialize local training; ↽(t,ε)k is the local model of client k in local epoch ε and ↽
(t,1)
k

is initialized as ↽(t) ; ϱ is a hyper-parameter. Therefore, the gradient of Lprox in local epoch ε can be computed as

↼L(t,ε)
prox

↼bj
=

↼L(t,ε)
ce

↼bj
+ ϱ

(
b(t,ε)
j → b(t,1)

j

)
, (65)

where b(t,ε)
j ↔ ↽

(t,ε)
k is the j-th component of bias b in the output layer in the local epoch ε . We assume the model is

trained by an SGD optimizer, leading to

b(t,ε)
j → b(t,1)

j = b(t,ε↘1)
j → ω

↼L(t,ε↘1)
prox

↼bj
→ b(t,1)

j

= b(t,ε↘1)
j → ω

↼L(t,ε↘1)
ce

↼bj
→ ϱω

(
b(t,ε↘1)
j → b(t,1)

j

)
→ b(t,1)

j

= →ω
↼L(t,ε↘1)

ce

↼bj
+ (1→ ϱω)

(
b(t,ε↘1)
j → b(t,1)

j

)

= →ω
↼L(t,ε↘1)

ce

↼bj
→ ω(1→ ϱω)

↼L(t,ε↘2)
ce

↼bj
+ (1→ ϱω)2

(
b(t,ε↘2)
j → b(t,1)

j

)

= . . .

= →ω

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i ↼L
(t,i)
ce

↼bj
+ (1→ ϱω)ε↘1

(
b(t,1)
j → b(t,1)

j

)

= →ω

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i ↼L
(t,i)
ce

↼bj
,

(66)

and thus we obtain

↼L(t,1)
prox

↼bj
=

↼L(t,1)
ce

↼bj
,
↼L(t,ε)

prox

↼bj
=

↼L(t,ε)
ce

↼bj
→ ϱω

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i ↼L
(t,i)
ce

↼bj
, ε ∝ 2. (67)

Taking expectation of both sides yields

E

!bt

j


= →ω

m∑

ε=1

E

↼L(t,ε)

prox

↼bj



= →ω

m∑

ε=1

E

↼L(t,ε)

ce

↼bj


+ ϱω

2
m∑

ε=2

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i E

↼L(t,i)

ce

↼bj



= →ω

m∑

ε=1

E

↼L(t,ε)

ce

↼bj


+ ϱω

2
m↘1∑

ε=1

1→ (1→ ϱω)m↘ε

ϱω
E

↼L(t,ε)

ce

↼bj



= →ω

m∑

ε=1

E

↼L(t,ε)

ce

↼bj


+ ω

m↘1∑

ε=1


1→ (1→ ϱω)m↘ε


E

↼L(t,ε)

ce

↼bj


,

(68)

which is readily reformulated as

E
[
!b(t)

j

]
=

ω

|B|

m∑

ε=1

ϑ
(ε)



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →

∑

n ↓=j

N
(t,ε)
n S(t,ε)

n,j



 , (69)
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where
ϑ
(ε) = (1→ ϱω)m↘ε

. (70)

↭

A.8. Derivation of the expected local update of FedDyn

The local objective function in FedDyn (Acar et al., 2021) is defined as

L(t,ε)
dyn = Lce →


↑L(t↘1,m)

ce , ↽
(t,ε)
k


+

ϱ

2

↽(t,ε)k → ↽
(t)

2
, (71)

where ↽
(t) is the global model used to initialize local training; ↽(t,ε)k is the local model of client k in local epoch ε and

↽
(t,1)
k = ↽

(t) ; ↑L(t↘1,m)
dyn is the gradient of L(t↘1,m)

dyn in the previous global round; ϱ is a hyper-parameter; m denotes the
total number of local epochs. According to the first-order condition for local optima,

↑L(t,ε)
ce →↑L(t↘1,m)

ce + ϱ

(
↽
(t,ε)
k → ↽

(t)
)
= 0, (72)

and thus the partial gradient of Lce in local epoch m can be computed as

↼L(t,m)
ce

↼bj
=

↼L(t↘1,m)
ce

↼bj
→ ϱ

(
b(t,m)
j → b(t,1)

j

)

=
↼L(t↘2,m)

ce

↼bj
→ ϱ

(
b(t↘1,m)
j → b(t↘1,1)

j

)
→ ϱ

(
b(t,m)
j → b(t,1)

j

)

= →ϱ

t∑

r=1

(
b(r,m)
j → b(r,1)

j

)

= →ϱ

t∑

r=1

!b(r)
j ,

(73)

where !b(r)
j is the update of bj in global round r < t (known by the server); ω is the learning rate. Therefore, we obtain

↼L(t,ε)
dyn

↼bj
=

↼L(t,ε)
ce

↼bj
+ ϱ

t↘1∑

r=1

!b(r)
j + ϱ

(
b(t,ε)
j → b(t,1)

j

)
. (74)

Considering

b(t,ε)
j → b(t,1)

j = b(t,ε↘1)
j → ω

↼L(t,ε↘1)
dyn

↼bj
→ b(t,1)

j

= b(t,ε↘1)
j → ω

↼L(t,ε↘1)
ce

↼bj
→ ϱω

(
b(t,ε↘1)
j → b(t,1)

j

)
→ b(t,1)

j → ϱω

t↘1∑

r=1

!b(r)
j

= →ω
↼L(t,ε↘1)

ce

↼bj
+ (1→ ϱω)

(
b(t,ε↘1)
j → b(t,1)

j

)
→ ϱω

t↘1∑

r=1

!b(r)
j

= →ω
↼L(t,ε↘1)

ce

↼bj
→ ω(1→ ϱω)

↼L(t,ε↘2)
ce

↼bj
+ (1→ ϱω)2

(
b(t,ε↘2)
j → b(t,1)

j

)
→ ϱω

2∑

i=1

(1→ ϱω)2↘i
t↘1∑

r=1

!b(r)
j

= . . .

= →ω

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i ↼L
(t,i)
ce

↼bj
+ (1→ ϱω)ε↘1

(
b(t,1)
j → b(t,1)

j

)
→ ϱω

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i
t↘1∑

r=1

!b(r)
j

= →ω

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i ↼L
(t,i)
ce

↼bj
→

1→ (1→ ϱω)ε↘1

 t↘1∑

r=1

!b(r)
j ,

(75)
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we obtain

↼L(t,ε)
dyn

↼bj
=

↼L(t,ε)
ce

↼bj
+ ϱ

t↘1∑

r=1

!b(r)
j → ϱω

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i ↼L
(t,i)
ce

↼bj
→ ϱ


1→ (1→ ϱω)ε↘1

 t↘1∑

r=1

!b(r)
j

=
↼L(t,ε)

ce

↼bj
→ ϱω

ε↘1∑

i=1

(1→ ϱω)ε↘1↘i ↼L
(t,i)
ce

↼bj
+ ϱ(1→ ϱω)ε↘1

t↘1∑

r=1

!b(r)
j , ε ∝ 2.

(76)

Taking expectation of both sides yields

E
[
!b(t)

j

]
= →ω

m∑

ε=1

E

↼L(t,ε)

dyn

↼bj



= →ω

m∑

ε=1
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
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(77)

which is readily reformulated as

E
[
!b(t)

j

]
=

ω

|B|

m∑

ε=1

ϑ
(ε)



N
(t,ε)
j

∑

n ↓=j

S(t,ε)
j,n →
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n ↓=j

N
(t,ε)
n S(t,ε)

n,j



→ h(t)
j , (78)

where
ϑ
(ε) = (1→ ϱω)m↘ε

, (79)

h(t)
j = (1→ (1→ ϱω)m)

t↘1∑

r=1

!b(r)
j . (80)

↭

A.9. Derivation of the expected local update of FedDC

The local objective function in FedDC (Gao et al., 2022) is defined as

L(t,ε)
dc = Lce +

ϱ

2

↽(t,ε)k → (↽(t) → d(t)
k )


2
+

1

ωm


↽
(t,ε)
k ,!↽

(t↘1)
k →!↽

(t↘1)

, (81)

d(t+1)
k = d(t)

k + ↽
(t,m)
k → ↽

(t)
, (82)

where d(t)
k denotes the local drift in global round t and is initialized as d(1)

k = 0; m is the number of local epochs; !↽
(t) is

the global model update in round t. According to the update rule of d(t+1)
k in Eq. 82,

d(t)
k = d(t↘1)

k +!↽
(t↘1)
k

= d(t↘2)
k +!↽

(t↘2)
k +!↽

(t↘1)
k

= . . .

= d(1)
k +
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r=1

!↽
(r)
k

=
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!↽
(r)
k ,

(83)
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and thus the gradient of Ldc in local epoch ε can be computed as
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dc
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, (84)

where !B(t↘1)
j denotes the global update of bj in global round t→ 1. Then
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and thus we obtain
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Table 7: Comparison of RLU and state-of-the-art label recovery methods in FL. The “Batch” column indicates whether
the method can recover labels in a batch or not; “Repeating Labels” column indicates if the method assumes no repeating
labels in the batch; “Activation-agnostic” column indicates if the method can work beyond non-negative activation functions;
“Multiple Epochs” column indicates if the method can recover labels from updates computed in multiple local epochs;
“Trained Model” column indicates if the method preserve performance on well-trained models.

Schemes Batch Repeating Labels Activation-agnostic Multiple Epochs Trained Model
iDLG (Zhao et al., 2020) ! ! ! ! "
GI (Yin et al., 2021) " ! ! ! "
RLG (Dang et al., 2021) " ! " " "
LLG (Wainakh et al., 2021) " " ! ! "
ZLG (Geng et al., 2021) " " ! ! !
iRLG (Ma et al., 2023) " " " ! !
RLU (ours) " " " " "
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which is readily reformulated as
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↭

B. Experimental Details
B.1. Comparison with Prior Works

We qualitatively summarize capabilities of the state-of-the-art label recovery methods in Table 7. A check mark (")
indicates that a method is suitable for a given setting while the cross mark (!) indicates that it is not. As the table indicates,
RLU is capable of operating in a variety of scenarios.
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B.2. Experimental Settings

B.2.1. GENERAL SETTINGS

We used Pytorch (Paszke et al., 2019) to implement all the described experiments. In the experiments involving SVHN, the
clients used LeNet (LeCun et al., 1998), a convolutional neural network with 16 convolution layers and 5′ 5 kernel, as the
classifier. The batch size was set to 32 in all experiments on SVHN. In the experiments involving CIFAR10 and CIFAR100,
the clients trained Vgg-16 (Simonyan & Zisserman, 2014) with different scales of convolution kernel as the classifier. The
batch size was set to 64 and 256 in the experiments on CIFAR10 and CIFAR100, respectively. In the experiments involving
Tiny-ImageNet, the clients learned a standard ResNet-50 (He et al., 2016) where the batch size was set to 256. The number
of clients was set to 10 across all the experiments.

B.2.2. SETTINGS OF THE EXPERIMENTS IN TABLE 2

The learning rate ω for the SGD optimizer was set to 0.01 in all experiments reported in Table 2. In order to obtain high
level of data heterogeneity, we set the concentration parameters ϖ to 0.5 in the experiments on SVHN and CIFAR10; in
the experiments on CIFAR100 and Tiny-ImageNet, this parameter was set to 0.1. There are two groups of experiments in
Table 2; in one the number of local epochs m was set to 1, while in the other it was set to 10. For the experiments involving
multiple local epochs, the number of iterations T in Alg. 2 was set to 10.

B.2.3. SETTINGS OF THE EXPERIMENTS IN TABLE 3

Here we explored the effect of data heterogeneity controlled by varying the concentration parameter ϖ from 0.05 to 5. For a
fair comparison, we set the number of local epochs to m = 10; other settings were identical to the settings in Table 2.

B.2.4. SETTINGS OF THE EXPERIMENTS IN TABLE 4, FIGURE 1 AND FIGURE 2

Similar to Table 2 and Table 3, we set the number of local epochs m to 10 in all experiments reported in Table 4, Figure 1
and Figure 2. The concentration parameter ϖ was set to 0.5 on SVHN/CIFAR10 and to 0.1 on CIFAR100. The learning rate
ω was set to 0.01 in experiments on SVHN and to 0.05 in experiments on CIFAR10 and CIFAR100.

B.2.5. SETTINGS OF THE EXPERIMENTS IN GRADIENTS INVERSION ATTACK

We conducted gradients inversion attack on the training set of CIFAR10 with an untrained ResNet32 model. We follow the
strategy in IG (Geiping et al., 2020), using cosine similarity as the distance between ground-truth gradients and the estimated
gradients computed using reconstructed images and labels. The batch size was set to 9 and the number of iterations for
optimizing the reconstructed images and labels was set to 24000. We used Adam (Kingma & Ba, 2014) optimizer and set
the learning rate to 0.1. We also added the total variation regularization (Yin et al., 2021) to the objective function to create
more realistic images with a weight scalar 0.2.

B.3. Empirical Validation of Assumption 3.1

To verify Assumption 3.1, we perform inference on the training set of SVHN and CIFAR10 using the global model across
different training rounds. We collect the j-th component of the output logits for the samples with label n, and organize them
into 100 bins to generate histograms. In each histogram, x-axis indicates the values of the j-th component of the output
logits while the values on y-axis indicate the corresponding number of samples. As shown in Figures 4 and 7, means µn,j of
the randomly initialized global model are close to 0 regardless of their sign. As the training accuracy of the global model
improves, the means µj,j increase to larger positive values while µn,j(n ↗= j) decreases to negative values, as shown in
Figures 4-9.

B.4. Evaluation Metrics

We follow the strategy in iRLG (Ma et al., 2023), evaluating all methods in terms of class-level accuracy (cAcc) and
instance-level accuracy (iAcc). Specifically, cAcc indicates the proportion of correctly recovered classes while iAcc
indicates the proportion of correctly recovered labels. Suppose yc denotes the ground-truth classes that appear in the batches
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(a) µ(0)
1,1 = →0.14 (b) µ(0)

5,5 = →0.02 (c) µ(0)
9,9 = →0.04 (d) µ(0)

1,5 = →0.02 (e) µ(0)
1,9 = →0.04 (f) µ(0)

5,9 = 0.02

Figure 4: A selection of histograms that characterize distribution of the output logits in global round 0 (randomly initialized)
on SVHN dataset. Specifically, each histogram illustrates the number of samples with label n as input that have a certain
value of the j-th component of output logits. From left to right, the corresponding values of n and j are as follow: (a) n = 1,
j = 1; (b) n = 5, j = 5; (c) n = 9, j = 9; (d) n = 1, j = 5; (e) n = 1, j = 9; (f) n = 5, j = 9.

(a) µ(4)
1,1 = 3.41 (b) µ(4)

5,5 = 2.66 (c) µ(4)
9,9 = 0.89 (d) µ(4)

1,5 = →0.96 (e) µ(4)
1,9 = →1.29 (f) µ(4)

5,9 = →0.03

Figure 5: A selection of histograms that characterize distribution of the output logits in global round 4 in which the training
accuracy of the global model is 68% on SVHN dataset. The other settings are identical to Fig. 4.

(a) µ(9)
1,1 = 4.92 (b) µ(9)

5,5 = 5.65 (c) µ(9)
9,9 = 3.38 (d) µ(9)

1,5 = →1.51 (e) µ(9)
1,9 = →1.39 (f) µ(9)

5,9 = →0.56

Figure 6: A selection of histograms that characterize distribution of the output logits in the global round 9 in which the
training accuracy of the global model is 83% on SVHN dataset. The other settings are identical to Fig. 4.

(a) µ(0)
1,1 = 0.06 (b) µ(0)

5,5 = 0.03 (c) µ(0)
9,9 = 0.20 (d) µ(0)

1,5 = 0.06 (e) µ(0)
1,9 = 0.21 (f) µ(0)

5,9 = 0.18

Figure 7: A selection of histograms that characterize distribution of the output logits in global round 0 on CIFAR10. The
other settings are identical to Fig. 4.

while ŷc denotes the estimated classes; then cAcc can be computed as

cAcc(ŷc,yc) =
|ŷc XNOR yc|

N
, (91)
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(a) µ(20)
1,1 = 6.21 (b) µ(20)

5,5 = 4.56 (c) µ(20)
9,9 = 3.46 (d) µ(20)

1,5 = →1.83 (e) µ(20)
1,9 = 2.04 (f) µ(20)

5,9 = →2.31

Figure 8: A part of histograms that characterize the distribution of output logits in the global round 20 in which the training
accuracy of the global model is 80% on CIFAR10. The other settings are identical to Fig. 4.

(a) µ(40)
1,1 = 8.46 (b) µ(40)

5,5 = 6.78 (c) µ(40)
9,9 = 5.36 (d) µ(40)

1,5 = →1.97 (e) µ(40)
1,9 = 2.21 (f) µ(40)

5,9 = →2.67

Figure 9: A part of histograms that characterize the distribution of output logits in the global round 40 in which the training
accuracy of the global model is 95% on CIFAR10. The other settings are identical to Fig. 4.

where N is the total number of classes. Similarly, suppose yi denotes the ground-truth labels in the batches while ŷi denotes
estimated labels; then iAcc can be computed as

iAcc(ŷi,yi) =
|ŷi ∞ yi|
m · |B| , (92)

where |ŷi| = |yi| = m · |B| and m denotes the number of local epochs.

B.5. Visualization of Data Heterogeneity

We follow the strategy in (Yurochkin et al., 2019), utilizing Dirichlet distribution to generate heterogeneous data partitions
from the original datasets. Specifically, we assign different proportions p(j)

k of samples with label j in the local dataset Dk

to K clients according to
p(j) = {p(j)

k , k ↔ [K]} ↘ DirK(ϖ), (93)

where ϖ is the concentration parameter that controls the level of heterogeneity. The number of samples with label j in client
k’s local dataset can be computed as

N
(j)
k =

p(j)
k∑K

i p(j)
i

N
(j)

, (94)

where N (j) is the number of samples with label j in the overall training dataset. Figures 10 and 11 show the class distribution
of clients’ local dataset by color-coding the number of samples: the darker the color, the larger the number of samples with
the corresponding label. As shown in Figures 10 and 11, clients own only 2 or 3 classes in their local dataset given ϖ = 0.05
while ϖ = 5 leads to more balanced class distribution.

B.6. Selecting Values of ϖ

To generate data partitions for the experiments reported in Table. 2, we attempted to create a scenario with “mild”
heterogeneity – specifically, we aimed at partitions such that each client has 40-50% classes present in its local dataset.
The first work (Yurochkin et al., 2019) (that we are aware of) using such a partitioning strategy sets ϖ = 0.5 as the default
value. However, using the same value of the parameter (ϖ = 0.5) to partition CIFAR100 and Tiny-ImageNet would lead
to different heterogeneity levels simply because these two datasets contain more classes. Formally, this is reflected in the
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expression for the entropy of a Dirichlet variable p in Eq. 93 which, according to (Lin, 2016), is given by

H(p) = lnB(ϖ) +N · (ϖ→ 1) · (⇀(Nϖ)→ ⇀(ϖ)) , (95)

where N is the number of classes; B() is beta function; ⇀() is digamma function (strictly ascending in R+). Clearly, for a
fixed value of ϖ < 1, H(p) is smaller for a larger N ; smaller entropy suggests p is more homogeneous. For this reason, in
the experiments on CIFAR100 and Tiny-ImageNet we set ϖ = 0.1.

(a) ς = 0.05 (b) ς = 0.5 (c) ς = 5

Figure 10: Training data from CIFAR10 is split into 10 partitions according to a Dirichlet distribution. The concentration
parameter is set as follows: (a) ϖ = 0.05; (b) ϖ = 0.5; (c) ϖ = 5.

(a) ς = 0.05 (b) ς = 0.5 (c) ς = 5

Figure 11: Training data from CIFAR100 is split into 10 partitions according to a Dirichlet distribution. The concentration
parameter is set as follows: (a) ϖ = 0.05; (b) ϖ = 0.5; (c) ϖ = 5.

C. Algorithms
C.1. RLU Algorithm

In this section, we formalize the RLU algorithm as Alg.1. In the standard paradigm in federated learning, the server
broadcasts the global model ω(t) to selected clients; these clients then initialize their local model ω(t)

k to start local training.
After m local epochs, each client k computes the local update !ω(t)

k = ω(t)
k → ω(t) including !W(t)

k and !b(t)
k . For

convenience, we omit the subscript k in !W(t)
k and !b(t)

k in Alg.1. According to the formulated problem in Section 3.1,
the learning rate ω in local training is known by the server. While preparing to conduct label recovery attack, the server
estimates µ(t)

n ,”(t)
n ,S(t)

n,j ,µ
(t+1)
n,j ,”(t+1)

n , and S(t+1)
n,j , ≃n, j ↔ [N ] via Monte Carlo method according to Eq. 8 with the

global model ω(t), updated local model ω(t)
k and the auxiliary dataset A. If m = 1, the server simply solves the least-squares

problem described in Eq. 10. If m > 1, the server first solves the least-squares problem using coefficients computed as
the mean of S(t)

n,j and S(t+1)
n,j to obtain a crude estimate. Then the server conducts posterior search (Alg. 2) to adjust the

estimated N
(t) as discussed in Section 3.2.2.
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Algorithm 1 RLU

Input: Auxiliary dataset A, the global model ω(t), local updates !ω(t)
k including !W(t) and !b(t), learning rate ω.

Output: The number of samples with each label N (t)
j in the batches sampled by client k, where ≃j ↔ [N ].

1 Initial: Estimate µ(t)
n ,!(t)

n ,S(t)
n,j ,µ

(t+1)
n,j ,!(t+1)

n , and S(t+1)
n,j , ≃n, j ↔ [N ] via Monte Carlo method according to Eq.8 with

the global model ω(t), updated local model ω(t)
k ↙→ ω(t) +!ω(t)

k and the auxiliary dataset A; create coefficient matrices
A(t)

,A(t+1) ↔ RN↑N ; initialize vector u ↙→ !b(t)
/ω.

/* Compute coefficients for the least square problem */
2 for n, j ↔ [N ] do
3 if n ↗= j then
4 A(t)

n,j ↙→ →S(t)
n,j , A(t+1)

n,j ↙→ →S(t+1)
n,j

5 else
6 A(t)

j,j ↙→
∑

n ↓=j S
(t)
j,n, A(t+1)

j,j ↙→
∑

n ↓=j S
(t+1)
j,n

7 end
8 end
9 if m = 1 then

10 z ↙→ LeastSquare(A(t)
,u) as described in (10)

11 N(t) ↙→ ⇔|B| · z↖
12 else
13 Ā ↙→ (A(t) +A(t+1))/2

14 z ↙→ LeastSquare(Ā,u), N(t) ↙→ ⇔|B| · z↖
15 N(t) ↙→ PosteriorSearch(N(t)

,!W(t)
,!b(t)

,µ(t)
n ,!(t)

n ,µ(t+1)
n ,!(t+1)

n , ω)
16 end
17 return N(t) : {N (t)

j , ≃j ↔ [N ]}

C.2. Posterior Search Algorithm

In Alg. 2, we simulated the dynamics of µ(t)
n during local training. First, the server estimates average embedded signal ē

according to Eq. 14. Using the crude estimates of N (t) and S(t)
n,j as inputs, the server computes !b(t,ε)

j according to Eq. 12.
Subsequently, the server computes !µ(t,ε)

n,j using ē, and then estimates µ̂(t,ε+1)
n,j . Recursively, repeating the procedure, the

server finally obtains µ̂(t,ε+1)
n,j . Based on the difference between µ̂(t,ε+1)

n,j and µ(t,ε+1)
n,j , the server can calibrate/improve

estimated N
(t).
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Algorithm 2 Posterior Search
Input: Number of iterations T , !W(t), !b(t), learning rate ϑ, estimated N(t), µ(t)

n ,!(t)
n ,µ(t+1)

n and !(t+1)
n for n, j ↓ [N ].

Output: The number of samples with each label N (t)
j in the batches, where ↔j ↓ [N ].

18 Initial: The average embedding signal ē ↓ RL.
/* Compute average embedding signal. */

19 for l ↓ [L] do
20 ēl ↗→ !W(t)

j,l /!b(t)
j

21 end
22 for n ↓ [N ] do
23 µ̂(t,1)

n ↗→ µ(t)
n

24 end
25 for i ↓ [T ] do
26 g ↗→ ↘N(t)/m≃
27 for φ ↓ [m] do

/* Update the expectation */

28 Ŝ(t,ω)
n,j ↗→ MonteCarlo(µ̂(t,ω)

n ,!(t)
n ), for n, j ↓ [N ]

29 for j ↓ [N ] do
/* Use the statics of model to estimate the updates of bias as illustrated in

Eq.12. */

30 !b(t,ω)
j ↗→ ϖ

|B|

(
gj

∑N
n ↑=j Ŝ

(t,ω)
j,n →

∑
n ↑=j gnŜ(t,ω)

n,j

)

31 end
32 for j ↓ [N ] do

/* Update the intermediate means according to Eq.13. */

33 !µ(t,ω)
n,j ↗→ !b(t,ω)

j ·
∑L

l ē2
l , for ↔n ↓ [N ]

34 µ̂(t,ω+1)
n,j ↗→ µ̂(t,ω)

n,j +!µ(t,ω)
n,j , for ↔n ↓ [N ]

35 end
36 end

/* Compare the true statics and our proceedings estimation. */

37 M ↗→ {j ↓ [N ] |
∑N

n=1 µ̂
(T,m+1)
n,j →

∑N
n=1 µ

(T,m+1)
n,j > 0}

38 jmax ↗→ argmaxj↓M
∑N

n=1 µ̂
(T,m+1)
n,j →

∑N
n=1 µ

(T,m+1)
n,j

39 I ↗→ {j ↓ [N ] |
∑N

n=1 µ̂
(T,m+1)
n,j →

∑N
n=1 µ

(T,m+1)
n,j < 0}

40 jmin ↗→ argminj↓I
∑N

n=1 µ̂
(T,m+1)
n,j →

∑N
n=1 µ

(T,m+1)
n,j

41 N (t)
jmax

↗→ N (t)
jmax

→m

42 N (t)
jmin

↗→ N (t)
jmin

+m
43 end
44 return N(t) : {N (t)

j , ↔j ↓ [N ]}
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