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ABSTRACT 

 
Various neuroimaging techniques and data analytics have 
been established in studying brain-wide activations in human. 
However, a significant impediment in studying brain-wide 
activations have been limited in its temporal resolutions, due 
to either slow response times in the signal of interest or 
amount of data required by the special analytics used. To 
overcome these limitations, we have developed modeling and 
computational tools for noninvasive electrical imaging of fast 
brain-wide neuronal activations in human brains from high-
density electroencephalography (EEG). Here we report a set 
of brain-wide co-activation patterns (bwCAPs) at the 
timescales of tens of milliseconds from dominant resting 
rhythmic human EEG at the alpha band, which indicate 
multiple recurring transient brain states and a well-organized 
transitional structure among them. This is the first time in 
detecting brain-wide modulating patterns on the well-
established neuronal oscillation. Due to the distributed nature 
of these bwCAPs at the brain-wide scale, their timescales 
close to the actual neuronal events, and frequency-specific 
detections, we expect that these phenomena will support 
future investigations on human cognition noninvasively. 
 

Index Terms— EEG, CAP, brain-wide, neuronal 
oscillation, fast dynamics 
 

1. INTRODUCTION 
 
Versatility of human cognition relies on the global access to 
widely distributed information across the entire brain at rapid 
speeds. The hierarchical network constructs of human brains 
at multiple spatial scales provide such a global access. At the 
macroscopic level, data from recent functional neuroimaging 
studies have provided strong evidence on mechanistic roles 
of brain-wide networks in cognition/behaviors [1, 2]. 
Specifically, these brain-wide networks/patterns have been 
widely elucidated in functional magnetic resonance imaging 
(fMRI) [3, 4], via measuring time-domain functional 
connectivity (FC) in either resting-state/task-free period [4], 
i.e., resting state networks (RSN), or tasks [5]. As fMRI is 
limited by the “sluggish” nature of hemodynamic responses 
of several seconds [6], studies using electroencephalography 
(EEG) [7, 8] and magnetoencephalography (MEG) [9] have 
reported brain-wide networks, e.g., RSNs in particular. These 
EEG/MEG RSNs have shown spatial similarities to fMRI 

RSNs [9] and strong temporal correspondences have been 
demonstrated in RSNs from simultaneously recorded EEG 
and fMRI data [7]. However, brain-wide networks reported 
in EEG/MEG are still limited in temporal resolutions due to 
the use of similar time-domain FC measures as in fMRI. 

In a long history, fMRI FCs have been measured 
typically on recorded data of a few minutes using pairwise 
statistical metrics, e.g., correlation-based analysis (CBA) 
[10], or data-driven methods, e.g., independent component 
analysis (ICA) [11, 12]. Both CBA and ICA are time-domain 
measures, and the temporal resolution of outcomes from such 
analyses are further dependent on the size of pre-selected 
time windows beyond the slow hemodynamic responses in 
fMRI. In recent EEG/MEG studies, these time-domain FC 
measures have been similarly adopted, both on sensor-level 
EEG [13-15] and cortical source data reconstructed from 
EEG/MEG [7, 16, 17] via solving the so-called inverse 
problem [18-20]. Therefore, while EEG/MEG has 
unsurpassed temporal resolution in recordings, i.e., 
milliseconds, brain-wide networks estimated from 
EEG/MEG via using time-domain FC measures are limited 
towards tens of seconds or event minutes.  

On the other hand, while brain-wide activations of fast 
dynamics could not be widely visualized, their existences 
have been evidenced in frequency-specific neuronal 
coherence across remote regions within human brains [21]. 
More recently, via measuring co-fluctuations in time courses 
of multiple ICs estimated from broadband EEG data, we, for 
the first time, demonstrated brain-wide co-activation patterns 
(bwCAPs) of fast dynamics at resting human brains [22]. We 
have further reported age-dependent changes in temporal and 
dynamic characteristics of these bwCAPs [23]. However, the 
physiological mechanism of these bwCAPs has not been 
elucidated and, especially, it is not clear whether similar 
bwCAPs exist in band-limited EEG signals that might 
indicates a potential link to frequency-specific neuronal 
coherence. In the present study, we extended the measure for 
co-fluctuations of multiple time courses into a spatial-domain 
similarity measure in replacing time-domain measures for 
obtaining brain-wide patterns. We integrated the use of a 
spatial-domain measure with cortical source tomography 
estimated from alpha-band EEG signals, which is the 
dominant rhythmic neural oscillation in resting brains. Our 
results indicated that transient bwCAPs exist in alpha-band 
EEG signals and are reproducible at multiple spatial 
resolutions (i.e., cortical parcels) with similar temporal 



patterns. Our results further reveal transitional structures 
among the set of brain states, coded in identified multiple 
bwCAPs, which might suggest brain-wide neuronal 
propagations as the mechanism of long-range frequency-
specific neuronal coherence.  
 

2. MATERIALS AND METHODS 
 
2.1. Data Acquisition and Preprocessing 
 
EEG data used in the present study comprised resting-state 
recordings from 34 healthy participants (age: 24 ± 5 years, 
range:18 ~ 38 years, 9 females). Resting-state EEG with eye-
closed were recorded for 10 minutes at a sample frequency of 
1000Hz using the 128-channel Amps 300 amplifier 
(Electrical Geodesics Inc., OR, USA). Structural MRI was 
acquired via a GE MR750 scanner at the University of 
Oklahoma Health Science Center (OUHSC) MRI facility, 
using GE's "BRAVO" sequence: FOV=240 mm, axial slices 
per slab = 180, slice thickness = 1 mm, image matrix = 
256×256, TR/TE = 8.45/3.24 ms. EEG electrode positions 
and three landmark fiducial locations (i.e., nasion, left and 
right pre-auricular points) were digitized by the Polhemus 
Patriot system. Study procedures were approved by the local 
Institutional Review Board at OUHSC. 

EEG data were preprocessed with the same routine at 
individual participants as reported in our previous study [22] 
using the EEGLAB toolbox [24]. Briefly, a band-pass filter 
of 0.5 to 100 Hz and a notch filter of 58 to 62 Hz were firstly 
applied. Secondly, both automated procedures from the 
FASTER plugin [25] and visual inspection were used to 
identify noisy channels and artifact independent components 
(ICs) generated by ocular, muscular and cardiac activities. 
Identified noisy channels were then interpolated and artifact 
ICs were removed. At last, EEG data were downsampled to 
250 Hz and re-referenced to the common average. It is noted 
that no bad segments were rejected to maintain the continuity 
of data for the purpose of calculating temporal and 
transitional characteristics of bw-CAPs (see section 2.3). 

 
2.2. Cortical Source Tomography 
 
Cortical source tomography was reconstructed distributions 
of brain sources over the cortical surface from surface EEG 
recordings. Firstly, to reconstruct cortical sources from EEG, 
individual MRI was used to build cortical current density 
(CCD) source models and a three-layer boundary element 
(BE) volume conductor model using FreeSurfer [26]. The 
CCD model consisted of 40960 triangular mesh elements and 
20484 nodes, while each layer of the volume conduction 
model consisted of 10242 nodes and 20484 triangles. The 
nodes on the medial wall adjoining the corpus callosum, basal 
forebrain, and hippocampus in the CCD model were excluded 
from the source space for inverse calculation, leading the total 
number of sources as 18715. The three BE layers 
corresponded to the scalp, skull, and brain and their electrical 
conductivities were assigned as 0.33/Wm, 0.0165/Wm, and 

0.33/Wm, respectively. The registration of EEG electrode 
locations and the BE model was achieved via aligning three 
landmark fiducial points from both EEG and MRI. The BE 
method [27] was used to build the forward relationship 
between EEG Φ(t) and cortical distributed dipole source 
amplitudes S(t): Φ(t)=L·S(t), where L is the lead field matrix. 
The minimum-norm estimate [28] was used to reconstruct 
dipole source amplitudes: S(t)=LT·(L·LT+l·I)-1·Φ(t), 
leading to the cortical source tomography as function of time. 
l was the regularization parameter and selected via the 
generalized cross validation method [29] and I was the 
identity matrix. The l values at individual time points beyond 
three standard deviations of all time points from a participant 
were considered as outliers and interpolated with the 
neighboring ones.  

 
2.3. Brain-wide CAPs and their Dynamics 
 
To obtain bwCAPs, the following steps were performed on 
EEG cortical source tomography [30]. Firstly, cortical source 
tomographic data from each individual participant were 
filtered into data for the alpha band, i.e., 8-12Hz, and 
calculated for their instantaneous amplitudes [31, 32]. 
Secondly, cortical parcels were defined based on an atlas with 
each parcel representing cortical units of functional 
similarities [33]. To study the performance of the proposed 
approach at different spatial resolutions, two numbers (i.e., 
100 and 200) of parcels were used. Thirdly, parcel-level 
instantaneous amplitude data were calculated as average 
values among all cortical sources within a parcel and 
converted into z scores at each individual participant. Lastly, 
cortical parcel-level z-score data were concatenated across 
participants and subject to a K-means clustering analysis 
using the L1-norm distance as the spatial-domain measure 
(Fig. 1) on the concatenated data to extract bwCAPs. The 
distance measure, different from time-domain measures, was 
calculated on single timeframe data (Fig. 1), which gave the 
highest possible temporal resolution that was only limited by 
the sampling rate. It was also noted that one-dimensional 
(1D) measures, e.g., correlation in time domain, were not 

 
Fig. 1 1D time-domain and 3D spatial-domain measures for brain-wide 

activation patterns.  



appropriate to be used as the spatial-domain measures in the 
present study since the cortical surface spanned in the three-
dimensional (3D) space and any calculation of 1D measures 
required vectorization of data from the higher-dimensional 
space into 1D that led to the loss of spatial relationship among 
individual cortical source points (Fig. 1). Meanwhile, the 
distance measure could reserve such spatial relationship in 
the high-dimensional space. For the protocol of running the 
K-means clustering, the cluster size was varied from 2 to 20, 
and the results from 12 clusters were reported based on the 
metric of explained variances [34].   

The outcome of the K-mean clustering assigned 
individual timeframe data to a specific bwCAP, which led to 
a sequence of labels at the resolution of sampling frequency 
for identified bwCAPs. Thereafter, the spatial pattern of each 
bwCAP was obtained by averaging all time frames (z scores) 
belonging to the bwCAP. Two temporal metrics and one 
transitional metric were calculated for each bwCAP. An 
occurrence of a bwCAP was defined as multiple consecutive 
time frames that were assigned to the bwCAP, and counted in 
each participant. Lifetime was defined as the number of 
consecutive time frames in an occurrence of the bwCAP, and 
its mean value was firstly calculated in individual participants 
across all occurrences, and then averaged across all 
participants. These two temporal measures defined each 
bwCAP as a recurring transient brain state. One-step 
transition among states were defined as the transition from 
one CAP occurrence (at time t) to the next occurrence of a 
different CAP (at time t+1). The one-step transition rate was 
calculated via normalizing the number of one-step directional 
transitions (e.g., CAP1->CAP2 differs from CAP2->CAP1) 
toward the number of occurrences of the brain state at either 
time t+1 (i.e., inflow) or time t (i.e., outflow).  

 
3. RESULTS 

 
For the spatial patterns from the cortical tomography of 
bwCAPs (Fig. 2 for 100 parcels), several distinct features are 
obtained. Firstly, large-scale distributed activations show in 
all bwCAPs (Fig. 5.1B and Fig. 4.2). Secondly, all bwCAPs 
indicate strong symmetry between two hemispheres. Lastly, 
these bwCAPs could also be visually conveniently grouped 
into three categories. The first category consists of bwCAPs 
8, 9, 10 and 12 that have all their parcel-level z-scores across 
the whole cortex above the corresponding mean z-score 
levels (which is zero), indicating the global high-activation. 
Similarly, bwCAPs 2, 4, 5, and 7 indicate the global low-
activation as all their parcel-level z-scores lower than zero. 
At the same time, CAPs 1, 3, 6, and 11 indicate the non-global 
patterns with the parcel-level z-scores higher or lower than 
zero at different cortical locations. Moreover, an arrangement 
of bwCAPs in decreasing activation strengths, reflected 
similarly in both the global activation strength (i.e., sum of 
all parcels over the whole brain) and maximal parcel 
activation strength (numbers labeled in each bwCAP spatial 
map in Fig. 2), are observed within both the global high-
activation and global low-activation groups. For example, in 

the global high-activation group, the order of the bwCAPs in 
terms of activation amplitudes is 12, 10, 9, then 8. For the 
global low-activation group, the order is 4, 7, 2, then 5. It is 
also noted that the activation amplitude from the global 
highest-activation brain state (i.e., bwCAP 12) is more than 3 
times of the activation amplitude from the global lowest-
activation brain state (i.e., bwCAP 4). At the same time, the 
bwCAPs within the global low-activation group show much 
narrowed range of activation amplitudes among them, which 
might indicate that these bwCAPs are baseline brain states 
while the global high-activation bwCAPs indicate transient 
events that deviate from the baseline. The results using 200 
parcels reveal the bwCAPs of similar spatial patterns as the 
bwCAPs from 100 parcels could be one-to-one matched to 
those from 200 parcels (Fig. 3).  

The bwCAPs from these three groups further indicate 
distinct reproducible temporal and transitional characteristics 
(the top panel in Fig. 3). Typically, the global high-activation 
bwCAPs have relatively low occurrences (i.e., bwCAP 8, 9, 
10, and 12). Most of the global low-activation bwCAPs have 
high occurrences (i.e., bwCAPs 4, 5, and 7). However, the 
global lowest-activation brain state (i.e., bwCAP 4) shows the 
similar low occurrences as the global high-activation 
bwCAPs. Furthermore, the global highest activation brain 
state (i.e, bwCAP 12) and the global lowest activation brain 

 
Fig. 2 Spatial patterns of 12 bwCAPs obtained with the use of 100 cortical 
parcels. Numbers in each subplot: maximal parcel activation amplitude. 



state (i.e., bwCAP 4) display higher lifetimes than all other 
bwCAPs. Transitions between different brain states present 
moment-to-moment dynamics among these brain states in 
each recording session. Firstly, the one-step transition 
matrices (both inflow and outflow matrices) are sparse (Fig. 
4), which supports the idea that transitions among these 
transient brain states are highly structured. Secondly, the one-
step transitions occur more often between the bwCAPs from 
the same group, e.g., bwCAP 4 mostly transitioning to 
bwCAP 7 and both from the global low-activation group; 
bwCAP 12 mostly transitioning to bwCAP10 and both from 
the global high-activation group. This feature is similarly 
observed in both the inflow and outflow matrices (Fig. 4). All 
these distinct temporal and transitional features are 
reproduced in the results from 200 parcels (the low panel in 
Fig. 3).  

  
4. DISCUSSION 

 
While fMRI has been dominant in studying brain-wide 
neuronal patterns in human brains, it is fundamentally limited 
in temporal resolutions due to the nature of hemodynamic 
responses [6]. EEG [7, 8] MEG [9] studies have been grown 
significantly in the past several years on researching brain-
wide neuronal patterns because of their millisecond temporal 
resolutions. However, most of reported studies are still 
limited in temporal resolutions due to the similar choice of 
time-domain FC measures as fMRI. Our recent study has 
reported the detection of recurring transient brain states from 
broadband EEG data [22]. The present study adopted the use 
of a 3D spatial-domain measure, in place of 1D time-domain 
measures, which extended our previous detection of recurring 
transient brain states onto narrow-band resting rhythmic EEG 
oscillations (i.e., alpha band).  
  Interestingly, the set of bwCAPs reconstructed indicates 
layered activation strengths (i.e., the differences between the 
global high-activation and global low-activation groups, as 
well as ordered amplitudes for the bwCAPs with one of these 
groups), which might indicate that these brain-states are 
driven by low-occurrence transient events deviated from 

baseline. The congruent evidence from spatial and temporal 
features of bwCAPs from the different groups further 
indicates the physiological significance of such recurring, 
while of low occurrence, transient events. For example, while 
the brain state with the strongest activation has the lowest 
occurrence, its lifetime is otherwise the highest. Then, the 
different roles played by the bwCAPs from the different 
groups further suggest that all spatial and temporal patterns 
might be driven by dynamic propagations of the recurring 
transient across the scale of whole brain.  

In summary, we have detected the recurring transient 
brain-wide states modulating neuronal oscillations at resting 
human brains. This provides the first set of evidence that 
transient brain events occur in the frequency band that 
coherent neuronal oscillations are usually observed [21]. At 
the same time, such a phenomenon might be driven by 
propagating waves across the cortex [35] and responsible for 
correlation structures in spontaneous oscillatory activity [36]. 
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