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ABSTRACT

Various neuroimaging techniques and data analytics have
been established in studying brain-wide activations in human.
However, a significant impediment in studying brain-wide
activations have been limited in its temporal resolutions, due
to either slow response times in the signal of interest or
amount of data required by the special analytics used. To
overcome these limitations, we have developed modeling and
computational tools for noninvasive electrical imaging of fast
brain-wide neuronal activations in human brains from high-
density electroencephalography (EEG). Here we report a set
of brain-wide co-activation patterns (bwCAPs) at the
timescales of tens of milliseconds from dominant resting
rhythmic human EEG at the alpha band, which indicate
multiple recurring transient brain states and a well-organized
transitional structure among them. This is the first time in
detecting brain-wide modulating patterns on the well-
established neuronal oscillation. Due to the distributed nature
of these bwCAPs at the brain-wide scale, their timescales
close to the actual neuronal events, and frequency-specific
detections, we expect that these phenomena will support
future investigations on human cognition noninvasively.
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1. INTRODUCTION

Versatility of human cognition relies on the global access to
widely distributed information across the entire brain at rapid
speeds. The hierarchical network constructs of human brains
at multiple spatial scales provide such a global access. At the
macroscopic level, data from recent functional neuroimaging
studies have provided strong evidence on mechanistic roles
of brain-wide networks in cognition/behaviors [1, 2].
Specifically, these brain-wide networks/patterns have been
widely elucidated in functional magnetic resonance imaging
(fMRI) [3, 4], via measuring time-domain functional
connectivity (FC) in either resting-state/task-free period [4],
i.e., resting state networks (RSN), or tasks [5]. As fMRI is
limited by the “sluggish” nature of hemodynamic responses
of several seconds [6], studies using electroencephalography
(EEG) [7, 8] and magnetoencephalography (MEG) [9] have
reported brain-wide networks, e.g., RSN in particular. These
EEG/MEG RSNs have shown spatial similarities to fMRI

RSNs [9] and strong temporal correspondences have been
demonstrated in RSNs from simultaneously recorded EEG
and fMRI data [7]. However, brain-wide networks reported
in EEG/MEG are still limited in temporal resolutions due to
the use of similar time-domain FC measures as in fMRI.

In a long history, fMRI FCs have been measured
typically on recorded data of a few minutes using pairwise
statistical metrics, e.g., correlation-based analysis (CBA)
[10], or data-driven methods, e.g., independent component
analysis (ICA) [11, 12]. Both CBA and ICA are time-domain
measures, and the temporal resolution of outcomes from such
analyses are further dependent on the size of pre-selected
time windows beyond the slow hemodynamic responses in
fMRI. In recent EEG/MEG studies, these time-domain FC
measures have been similarly adopted, both on sensor-level
EEG [13-15] and cortical source data reconstructed from
EEG/MEG [7, 16, 17] via solving the so-called inverse

problem [18-20]. Therefore, while EEG/MEG has
unsurpassed temporal resolution in recordings, i.e.,
milliseconds, brain-wide networks estimated from

EEG/MEG via using time-domain FC measures are limited
towards tens of seconds or event minutes.

On the other hand, while brain-wide activations of fast
dynamics could not be widely visualized, their existences
have been evidenced in frequency-specific neuronal
coherence across remote regions within human brains [21].
More recently, via measuring co-fluctuations in time courses
of multiple ICs estimated from broadband EEG data, we, for
the first time, demonstrated brain-wide co-activation patterns
(bwCAPs) of fast dynamics at resting human brains [22]. We
have further reported age-dependent changes in temporal and
dynamic characteristics of these bwCAPs [23]. However, the
physiological mechanism of these bwCAPs has not been
elucidated and, especially, it is not clear whether similar
bwCAPs exist in band-limited EEG signals that might
indicates a potential link to frequency-specific neuronal
coherence. In the present study, we extended the measure for
co-fluctuations of multiple time courses into a spatial-domain
similarity measure in replacing time-domain measures for
obtaining brain-wide patterns. We integrated the use of a
spatial-domain measure with cortical source tomography
estimated from alpha-band EEG signals, which is the
dominant rhythmic neural oscillation in resting brains. Our
results indicated that transient bwCAPs exist in alpha-band
EEG signals and are reproducible at multiple spatial
resolutions (i.e., cortical parcels) with similar temporal



patterns. Our results further reveal transitional structures
among the set of brain states, coded in identified multiple
bwCAPs, which might suggest brain-wide neuronal
propagations as the mechanism of long-range frequency-
specific neuronal coherence.

2. MATERIALS AND METHODS
2.1. Data Acquisition and Preprocessing

EEG data used in the present study comprised resting-state
recordings from 34 healthy participants (age: 24 + 5 years,
range:18 ~ 38 years, 9 females). Resting-state EEG with eye-
closed were recorded for 10 minutes at a sample frequency of
1000Hz wusing the 128-channel Amps 300 amplifier
(Electrical Geodesics Inc., OR, USA). Structural MRI was
acquired via a GE MR750 scanner at the University of
Oklahoma Health Science Center (OUHSC) MRI facility,
using GE's "BRAVO" sequence: FOV=240 mm, axial slices
per slab = 180, slice thickness = 1 mm, image matrix =
256x256, TR/TE = 8.45/3.24 ms. EEG electrode positions
and three landmark fiducial locations (i.e., nasion, left and
right pre-auricular points) were digitized by the Polhemus
Patriot system. Study procedures were approved by the local
Institutional Review Board at OUHSC.

EEG data were preprocessed with the same routine at
individual participants as reported in our previous study [22]
using the EEGLAB toolbox [24]. Briefly, a band-pass filter
of 0.5 to 100 Hz and a notch filter of 58 to 62 Hz were firstly
applied. Secondly, both automated procedures from the
FASTER plugin [25] and visual inspection were used to
identify noisy channels and artifact independent components
(ICs) generated by ocular, muscular and cardiac activities.
Identified noisy channels were then interpolated and artifact
ICs were removed. At last, EEG data were downsampled to
250 Hz and re-referenced to the common average. It is noted
that no bad segments were rejected to maintain the continuity
of data for the purpose of calculating temporal and
transitional characteristics of bw-CAPs (see section 2.3).

2.2. Cortical Source Tomography

Cortical source tomography was reconstructed distributions
of brain sources over the cortical surface from surface EEG
recordings. Firstly, to reconstruct cortical sources from EEG,
individual MRI was used to build cortical current density
(CCD) source models and a three-layer boundary element
(BE) volume conductor model using FreeSurfer [26]. The
CCD model consisted of 40960 triangular mesh elements and
20484 nodes, while each layer of the volume conduction
model consisted of 10242 nodes and 20484 triangles. The
nodes on the medial wall adjoining the corpus callosum, basal
forebrain, and hippocampus in the CCD model were excluded
from the source space for inverse calculation, leading the total
number of sources as 18715. The three BE layers
corresponded to the scalp, skull, and brain and their electrical
conductivities were assigned as 0.33/Qm, 0.0165/Qm, and

0.33/Qm, respectively. The registration of EEG electrode
locations and the BE model was achieved via aligning three
landmark fiducial points from both EEG and MRI. The BE
method [27] was used to build the forward relationship
between EEG ®(¢) and cortical distributed dipole source
amplitudes S(¢): ®(¢)=L-S(¢), where L is the lead field matrix.
The minimum-norm estimate [28] was used to reconstruct
dipole source amplitudes: S(?)=LT-(L-L™+A-1)!-®(?),
leading to the cortical source tomography as function of time.
A was the regularization parameter and selected via the
generalized cross validation method [29] and I was the
identity matrix. The A values at individual time points beyond
three standard deviations of all time points from a participant
were considered as outliers and interpolated with the
neighboring ones.
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Fig. 1 1D time-domain and 3D spatial-domain measures for brain-wide
activation patterns.

2.3. Brain-wide CAPs and their Dynamics

To obtain bwCAPs, the following steps were performed on
EEG cortical source tomography [30]. Firstly, cortical source
tomographic data from each individual participant were
filtered into data for the alpha band, i.e., 8-12Hz, and
calculated for their instantaneous amplitudes [31, 32].
Secondly, cortical parcels were defined based on an atlas with
each parcel representing cortical units of functional
similarities [33]. To study the performance of the proposed
approach at different spatial resolutions, two numbers (i.e.,
100 and 200) of parcels were used. Thirdly, parcel-level
instantaneous amplitude data were calculated as average
values among all cortical sources within a parcel and
converted into z scores at each individual participant. Lastly,
cortical parcel-level z-score data were concatenated across
participants and subject to a K-means clustering analysis
using the L1-norm distance as the spatial-domain measure
(Fig. 1) on the concatenated data to extract bwCAPs. The
distance measure, different from time-domain measures, was
calculated on single timeframe data (Fig. 1), which gave the
highest possible temporal resolution that was only limited by
the sampling rate. It was also noted that one-dimensional
(1D) measures, e.g., correlation in time domain, were not



appropriate to be used as the spatial-domain measures in the
present study since the cortical surface spanned in the three-
dimensional (3D) space and any calculation of 1D measures
required vectorization of data from the higher-dimensional
space into 1D that led to the loss of spatial relationship among
individual cortical source points (Fig. 1). Meanwhile, the
distance measure could reserve such spatial relationship in
the high-dimensional space. For the protocol of running the
K-means clustering, the cluster size was varied from 2 to 20,
and the results from 12 clusters were reported based on the
metric of explained variances [34].

The outcome of the K-mean clustering assigned
individual timeframe data to a specific bwCAP, which led to
a sequence of labels at the resolution of sampling frequency
for identified bwCAPs. Thereafter, the spatial pattern of each
bwCAP was obtained by averaging all time frames (z scores)
belonging to the bwCAP. Two temporal metrics and one
transitional metric were calculated for each bwCAP. An
occurrence of a bwCAP was defined as multiple consecutive
time frames that were assigned to the bwCAP, and counted in
each participant. Lifetime was defined as the number of
consecutive time frames in an occurrence of the bwCAP, and
its mean value was firstly calculated in individual participants
across all occurrences, and then averaged across all
participants. These two temporal measures defined each
bwCAP as a recurring transient brain state. One-step
transition among states were defined as the transition from
one CAP occurrence (at time t) to the next occurrence of a
different CAP (at time t+1). The one-step transition rate was
calculated via normalizing the number of one-step directional
transitions (e.g., CAP1->CAP2 differs from CAP2->CAP1)
toward the number of occurrences of the brain state at either
time t+1 (i.e., inflow) or time t (i.e., outflow).

3. RESULTS

For the spatial patterns from the cortical tomography of
bwCAPs (Fig. 2 for 100 parcels), several distinct features are
obtained. Firstly, large-scale distributed activations show in
all bwCAPs (Fig. 5.1B and Fig. 4.2). Secondly, all bwCAPs
indicate strong symmetry between two hemispheres. Lastly,
these bwCAPs could also be visually conveniently grouped
into three categories. The first category consists of bwCAPs
8,9, 10 and 12 that have all their parcel-level z-scores across
the whole cortex above the corresponding mean z-score
levels (which is zero), indicating the global high-activation.
Similarly, bwCAPs 2, 4, 5, and 7 indicate the global low-
activation as all their parcel-level z-scores lower than zero.
At the same time, CAPs 1, 3, 6, and 11 indicate the non-global
patterns with the parcel-level z-scores higher or lower than
zero at different cortical locations. Moreover, an arrangement
of bwCAPs in decreasing activation strengths, reflected
similarly in both the global activation strength (i.e., sum of
all parcels over the whole brain) and maximal parcel
activation strength (numbers labeled in each bwCAP spatial
map in Fig. 2), are observed within both the global high-
activation and global low-activation groups. For example, in
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Fig. 2 Spatial patterns of 12 bwCAPs obtained with the use of 100 cortical
parcels. Numbers in each subplot: maximal parcel activation amplitude.

the global high-activation group, the order of the bwCAPs in
terms of activation amplitudes is 12, 10, 9, then 8. For the
global low-activation group, the order is 4, 7, 2, then 5. It is
also noted that the activation amplitude from the global
highest-activation brain state (i.e., bwCAP 12) is more than 3
times of the activation amplitude from the global lowest-
activation brain state (i.e., bwCAP 4). At the same time, the
bwCAPs within the global low-activation group show much
narrowed range of activation amplitudes among them, which
might indicate that these bwCAPs are baseline brain states
while the global high-activation bwCAPs indicate transient
events that deviate from the baseline. The results using 200
parcels reveal the bwCAPs of similar spatial patterns as the
bwCAPs from 100 parcels could be one-to-one matched to
those from 200 parcels (Fig. 3).

The bwCAPs from these three groups further indicate
distinct reproducible temporal and transitional characteristics
(the top panel in Fig. 3). Typically, the global high-activation
bwCAPs have relatively low occurrences (i.e., bwCAP 8, 9,
10, and 12). Most of the global low-activation bwCAPs have
high occurrences (i.e., bwCAPs 4, 5, and 7). However, the
global lowest-activation brain state (i.e., bwCAP 4) shows the
similar low occurrences as the global high-activation
bwCAPs. Furthermore, the global highest activation brain
state (i.e, bwCAP 12) and the global lowest activation brain



state (i.e., bwCAP 4) display higher lifetimes than all other
bwCAPs. Transitions between different brain states present
moment-to-moment dynamics among these brain states in
each recording session. Firstly, the one-step transition
matrices (both inflow and outflow matrices) are sparse (Fig.
4), which supports the idea that transitions among these
transient brain states are highly structured. Secondly, the one-
step transitions occur more often between the bwCAPs from
the same group, e.g., bwCAP 4 mostly transitioning to
bwCAP 7 and both from the global low-activation group;
bwCAP 12 mostly transitioning to bwCAP10 and both from
the global high-activation group. This feature is similarly
observed in both the inflow and outflow matrices (Fig. 4). All
these distinct temporal and transitional features are
reproduced in the results from 200 parcels (the low panel in
Fig. 3).
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Fig. 3 Occurrences and lifetimes for 12 bwCAPs. Top panel: 100
cortical parcels; bottom panel: 200 cortical parcels; lines in the middle:
one-to-one matched bwCAPs from 100 parcels and 200 parcels.

4. DISCUSSION

While fMRI has been dominant in studying brain-wide
neuronal patterns in human brains, it is fundamentally limited
in temporal resolutions due to the nature of hemodynamic
responses [6]. EEG [7, 8] MEG [9] studies have been grown
significantly in the past several years on researching brain-
wide neuronal patterns because of their millisecond temporal
resolutions. However, most of reported studies are still
limited in temporal resolutions due to the similar choice of
time-domain FC measures as fMRI. Our recent study has
reported the detection of recurring transient brain states from
broadband EEG data [22]. The present study adopted the use
of a 3D spatial-domain measure, in place of 1D time-domain
measures, which extended our previous detection of recurring
transient brain states onto narrow-band resting thythmic EEG
oscillations (i.e., alpha band).

Interestingly, the set of bwCAPs reconstructed indicates
layered activation strengths (i.e., the differences between the
global high-activation and global low-activation groups, as
well as ordered amplitudes for the bwCAPs with one of these
groups), which might indicate that these brain-states are
driven by low-occurrence transient events deviated from

baseline. The congruent evidence from spatial and temporal
features of bwCAPs from the different groups further
indicates the physiological significance of such recurring,
while of low occurrence, transient events. For example, while
the brain state with the strongest activation has the lowest
occurrence, its lifetime is otherwise the highest. Then, the
different roles played by the bwCAPs from the different
groups further suggest that all spatial and temporal patterns
might be driven by dynamic propagations of the recurring
transient across the scale of whole brain.

In summary, we have detected the recurring transient
brain-wide states modulating neuronal oscillations at resting
human brains. This provides the first set of evidence that
transient brain events occur in the frequency band that
coherent neuronal oscillations are usually observed [21]. At
the same time, such a phenomenon might be driven by
propagating waves across the cortex [35] and responsible for
correlation structures in spontaneous oscillatory activity [36].
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Fig. 4 Normalized one-step transtional probabilities. Left: inflow; right:
outflow. White squares: zero transitional probabilities.
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