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Abstract

The Android accessibility (a11y) service is widely abused by

malware to conduct on-device monetization fraud. Existing

mitigation techniques focus on malware detection but

overlook providing users evidence of abuses that have

already occurred and notifying victims to facilitate defenses.

We developed DVa, a malware analysis pipeline based on

dynamic victim-guided execution and abuse-vector-guided

symbolic analysis, to help investigators uncover a11y

malware’s targeted victims, victim-specific abuse vectors,

and persistence mechanisms. We deployed DVa to investigate

Android devices infected with 9,850 a11y malware. From the

extractions, DVa uncovered 215 unique victims targeted with

an average of 13.9 abuse routines. DVa also extracted six

persistence mechanisms empowered by the a11y service.

1 Introduction

Android’s accessibility service [1], called a11y, provides

extensive utilities to assist users in better navigating their

phones. It stands as an exception to Android’s app-isolated

sandbox design in the sense that it grants a11y apps the

ability to examine and navigate foreground graphical user

interface (GUI) screens of other apps or the Android OS.

These powerful capabilities are thus widely abused by

malware to conduct more intrusive attacks on user-controlled

information and services [2], [3]. In fact, these capabilities

enable malware to conduct on-device fraud [4] and simplify

traditional account takeover practices (e.g., ransomware,

RAT). Because of a11y malware’s powerful capabilities,

traditional malware mitigation techniques that merely detect

and delete malware are inadequate. Users of compromised

devices need to know what damage could have occurred

during the infection to facilitate restitution. In addition, the

developers of victim apps need to know how they are

targeted to proactively deploy defenses.

∗Co-corresponding author.

Regarding a11y security, several works have proposed

data-flow restraints [5], [6] to counteract the

proof-of-concept (PoC) attacks [7]–[10]. However, our

research revealed (§6.3) that modern a11y malware can still

evade the most recent Android security patch [11] and

state-of-the-art (SOTA) data-flow constraint defense [5].

Techniques also have been proposed to identify the misuse of

a11y service in benign apps [7], [12]–[14]. However, without

considering the targets of these misuses, an investigator will

fall short of understanding their in-context abuse vectors

because generic a11y service routines can mean drastically

different things in different contexts. A malware analysis

technique that provides proof of abuse capabilities to the

device owner and alerts targeted apps of the abuse vectors to

aid proactive defense remains an unresolved matter.

To achieve these capabilities, the existing malware

detection engine (e.g., Google Play Protect) needs to send

detected malware to the backend, accurately dissect the

malware’s a11y abuse vectors, and send the targeted victim

and abuse vector report to the device user and the developers

of affected victim apps. Unfortunately, such a technique is

very challenging to implement. Malware may not perform

abuse vectors without certain conditions (e.g., the absence of

victim apps), making it difficult for investigators to examine

the abuse intentions. As such, the abuse report that the device

user receives must be specific to the victim apps installed on

the user’s device. Compounding this issue, modern a11y

malware complicates victim identification by dynamically

loading the abuse routines and encoding the targeted app

names. As a result, it remains largely impossible for

investigators to identify all targeted victim apps and alert

them to the discovered abuse techniques specific to each app.

During our research, we found that a11y malware relied

on Android APIs and broadcast a11y events to probe the

information of the installed apps on the user’s device. This

gives investigators an opportunity to mimic the presence of

the target victim apps and drive the execution in an isolated

environment without modifying the victim’s device. After

a11y malware probes the information of the installed app, it
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(a) Steps an a11y attacker uses to illicitly interact with a victim app.
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public class malwareA11yService extends A11yService{
  @Override
  public void onA11yEvent (A11yEvent e) {
    // parse a11y event properties
    int type = e.getEventType();
    CharSequence name = e.getPackageName();
    ...
    // parse the a11y node structures
    A11yNodeInfo node = e.getRecord().getSource();
    // malicious code to record GUI states
    CharSequence nodeText = node.getText();
    nodeText.sendToCnC();
    ...
    // malicious code to manipulate GUI screen
    node.performAction(ACTION_CLICK);
    ...
  }
} 

(b) Sample malware a11y event handling logic.

Figure 1: Overview of malware workflow to abuse the Android a11y service. Steps used to parse and manipulate a victim app’s

GUI by an a11y service registered by an attacker is shown in (a). The a11y attacker’s actions are highlighted in red. A sample

implementation logic of the malicious a11y service to achieve the abuse illustrated in (a) is shown in (b).

would choose to load the dynamic a11y abuse routines

accordingly. Such trigger-based behaviors allow the

investigators to attribute the a11y abuse routines to the

trigger — specific victim apps. Attackers have infinite ways

to implement each a11y abuse routine. However, these

routines still rely on the a11y APIs exposed by the Android

system. This enables investigators to uncover the abuse

vectors by evaluating its a11y action sequences. These abuse

vectors can be reported to all corresponding victim apps to

enable blocking or mitigation. Lastly, by comparing the

attributed abuse vectors with the installed apps on the

victim’s device, the investigators can inform the device users

of their targeted apps and the damage they may face.

We developed DVa1, a malware analysis pipeline to

uncover a11y malware’s targeted victims and victim-specific

abuse vectors. It can operate as a backend malware analysis

service for Google Play Protect, activated when an a11y

malware is detected on the user’s device. With the malware

APK, DVa adopts a novel lightweight victim modeling and

reconstruction approach to guide malware to reveal its

targeted victims (§3.1). Using dynamic execution traces, DVa

further utilizes an abuse-vector-guided symbolic execution

strategy to identify and attribute abuse routines to

victims (§3.2). Finally, DVa detects a11y-empowered

persistence mechanisms (§3.3) to understand how malware

obstructs legal queries or removal attempts.

Using DVa, we conducted investigations of five Google

Pixel 3 devices infected with 9,850 malware samples

collected from VirusTotal [15] that request a11y permissions

from August 2022 to December 2022. DVa uncovered 215

unique victim apps across seven categories abused by 4,291

a11y malware samples. DVa found that Banking and Crypto

apps are the most popular targets abused by 3,579 and 1,130

malware samples across 55 and 23 families, respectively.

DVa also detected an average adoption of 13.9 unique abuse

1Detector of Victim-specific a11y abuse

routines targeting custom UIs of each victim app with an

average of 21.1 illicit a11y API calls. To persist on user

devices, DVa uncovered that malware adopts six persistence

mechanisms empowered by a11y. The most abused

mechanism is Permission Revocation Prevention, exploited

by 92% of malware. Lastly, we have made DVa available at:

https://github.com/CyFI-Lab-Public/DVa.

2 Overview

Android apps’ GUI contains substantial user-controlled

sensitive information [16], [17]. Although the Android a11y

service is designed to help users better interact with their

devices, its ability to peek into the on-screen element

hierarchy and to simulate user interactions provides a new

perspective of malware to abuse victims.

2.1 Abusing Android a11y Service

Malware uses the eight steps shown as circled numbers

in Figure 1a to illegally acquire sensitive information or

conduct malicious GUI actions. First, the malware registers

an a11y service to the Android system that can retrieve

changes in window contents, as shown in 1 . After the user

confirms the binding of the service, whenever something

notable [18] happens in the GUI such as when a window

changes, a button is clicked, a textbox is focused, etc. (Step

2 ), the View element in which the change occurred fires an

a11y event to the system, as shown in Step 3 . The

relationship between the View and other elements in the GUI

is represented as a GUI tree data structure, as illustrated in

the tree in the blue box of Figure 1a. The a11y event contains

properties of the changed View, together with the node

hierarchy of the GUI tree the View resides in. These

properties of the changed View and its relationship with other
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public class cerberusA11yService extends A11yService{
    @Override
    protected void onServiceConnected() {

// hash encoded new targeting victims
List<String> newVictimHashes = secretDict.getNewVictimHashes();
for (PackageInfo pi : pm.getInstalledPackages()) {

// check existence and validity of targeting victims
if (newVictimHashes.contains(pi.packageName.hash())) {

if (pm.getLaunchIntentForPackage(pi.packageName).isValid()) {
...
// load tailored new a11y attack code from CnC
requestNewPayload(pi.packageName.hash());
classLoader.loadClass(newPayload);

}
}

}
    }
    @Override
    public void onA11yEvent (A11yEvent e) {

// existing victims
List<String> victims = getVictimPackageNames();
if (victims.contains(e.getPackageName())) {

// existing overlay attack code to steal credentials
loadOverlay();
keyLog();
...

}
// new code targeting chime mobile banking app
if (e.getPackageName().hash() == newVictimHashes[0]) {

// new a11y automatic transaction attack routine
if (e.checkGUIState() == homePage) {

findAndClickTransferPageButton();
findAndFillTransactionTarget();
...
findAndClickTransfer();

}
}
// additional routines targeting 11 more victims
...

    }
}

New DCL a11y 
Abuse Code

Figure 2: Dynamically loaded automatic transaction abuse

routine targeting the Chime banking app extracted by DVa.

elements are represented as an a11y node info data structure,

as shown in the blue circle inside the tree.

After the Android OS receives an a11y event, it dispatches

the event to all registered a11y services that listen for such an

event through a callback, as shown in step 4 . The callback is

handled by a declared onA11yEvent handler in the

malware’s registered a11y service. A sample a11y event

handler is illustrated in Figure 1b. This handler can then

parse the a11y event (Lines 4-9 Figure 1b, 5 Figure 1a),

steal information fetched from the event (Lines

10-13 Figure 1b, 6 Figure 1a), and subsequently manipulate

the GUI according to the GUI node hierarchy contained in

the event (Lines 14-16 Figure 1b, 7 8 Figure 1a). The GUI

manipulation is realized by issuing a11y actions that can

mimic user interactions such as pressing a button, scrolling

the screen, inputting text, etc. It can also be realized by

sending a11y global actions to simulate global controls such

as returning to the home screen, locking the screen, etc.

2.2 Uncovering 0-Day Abuse Evidence from

a11y Malware

DVa’s benefit over standard malware analysis techniques is

that it dynamically models victim-specific a11y information

that malware is probing for. With DVa, an investigator will

have access to exclusive live interaction between the malware

and this a11y information. In fact, lacking this evidence,

traditional techniques are incapable of fully extracting

malware’s targeted victims and abuse vectors.

Consider the Cerberus malware studied extensively by

malware analysts. Based on DVa’s analysis of a Google Pixel

3 device infected with the Cerberus malware2, DVa

discovered a previously unknown automatic transaction

abuse vector targeting 12 new victims.

Existing Malware Analysis Reports. Cerberus is widely

considered to be a RAT targeting multiple banking, utility,

and social media apps, capable of stealing users’

credentials [19], [20]. Lines 20-27 of Figure 2 show the

existing credential stealer abuse capabilities targeting

financial institutions. When Cerberus receives an a11y event,

it compares the source of the event with a hard-coded victim

package name. If the source matches with a targeted victim,

the malware then receives and loads overlay screen resources

tailored to attack identified victim apps (Line 24). The

onA11yEvent handler will also trigger text logging

capabilities after loading the overlay screens to illicitly

acquire users’ credentials (Line 25). DVa’s analysis also

revealed all 89 targeted victims with the credential stealer

abuse found by industry reports.

DVa’s Malware Analysis Discovery. In addition, DVa

uncovered 0-day dynamically loaded automatic transaction

abuse routines targeting 12 additional victims, as shown in

the highlighted red box of Figure 2. Lines 3-9 of Figure 2

show the victim discovery routines that lead to the loading of

new abuse code. When the a11y service is connected,

Cerberus dynamically queries packages installed on the

device and compares them with a secret dictionary of hashes

of the new victims’ package names. When a package

matches, it then executes multiple verification routines such

as getLaunchIntentForPackage(), getPackageInfo(),

and getInstallSourceInfo() to determine the validity of

the victim app states. Only when all victim states are verified

will Cerberus proceed to request and load tailored abuse code

targeting the victim, as shown in Lines 11-13 of Figure 2.

Investigators without DVa may notice these routines

statically, but they cannot decode the victim hash in Line 8 to

understand the conditions for triggering dynamic code

loading. To overcome this, DVa creates a lightweight

victim-information model that mimics benign apps’ static

characteristics and dynamic behaviors of 37K unique popular

apps. With access to this model, DVa then remodels all

interface functions the malware relies on to acquire victim

states such as package query APIs, package installation states

APIs, a11y event queries, etc. to mimic the live interactions

as if all 37K benign apps are present on the user’s device.

Through this modeling, DVa guides Cerberus to execute the

whole victim parsing routine and trigger dynamic code

loading. DVa then extracts the secret victim package names

that matched Cerberus’s hash dictionary. DVa found the

Chime mobile banking app’s package name

2MD5: 9236f4009503b4216e6773741b9d8ec0
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(com.onedebit.chime) along with 11 other package names,

thus confirming Cerberus’s undiscovered victim targets.

With the dynamically loaded abuse routines, DVa also

revealed the code containing the newly discovered automatic

transaction capability. Lines 28-37 show an example of the

capability targeting the Chime mobile banking app. However,

even when faced with such routines, a traditional malware

analysis technique is unable to attribute the capability to its

targeted victim because the trigger conditions of those

routines are unknown. Symbolic execution into the entire app

at this point will lead to state explosion. DVa uses a novel

abuse-vector-guided symbolic analysis to extract routines

listed in Lines 32-35 of Figure 2. After solving the symbolic

constraints, DVa determines that these routines all depend on

the value of the a11y event package name and its GUI state,

whose symbolic value assignment occurs in Lines 29 and 31.

DVa solves the symbolic hash constraint in Line 29 to derive

a concrete hash value. DVa then matches this hash value with

a hash observed in the dynamic execution traces and reports

the plaintext victim package name that generated the hash.

As such, DVa attributes Lines 32-35 to the Chime mobile

banking app that the malware targets. Finally, by modeling

the a11y API invocation sequences in Lines 32-35 in the

context of the victim target’s GUI screen, DVa reveals that

each one is capable of navigating to the transactions page,

selecting the transaction targets, filling the transaction

amount, and sending the transaction requests, etc.

2.3 Threat Model

DVa’s goal is to identify the victims targeted by a11y

malware and attribute a11y abuse vectors to each victim. We

assume the user’s Android device is infected with malware

that requests the a11y permission and the user has already

granted the requested permissions. This is reasonable

because a11y malware has been infiltrating the Google Play

Store [21] and can trick users into granting a11y

permissions [22]. DVa’s scope of abuse vector detection

covers malware actions conducted by a11y APIs and

targeting specific victim apps. That said, malware actions

that complement a11y abuse but are conducted without a11y

APIs (e.g., displaying overlay screens with

SYSTEM_ALERT_WINDOW) are not considered by DVa.

Additionally, a11y actions that do not have a specific targeted

victim app (such as recording screenshots with a fixed

interval and recording keystrokes whenever there is keyboard

input) are outside the scope of DVa.

3 Methodology

DVa is a backend service that conducts analysis on a11y

malware detected by an on-device AV engine (e.g., Google

Play Protect). DVa takes the malware APK in the user-data

disk of an Android device from adb [23] as input3. DVa pulls

the list of installed applications from adb as victim app

candidates on the device. DVa requires no prior knowledge of

malicious a11y apps. For each a11y malware sample, DVa

outputs its targeted victim apps, victim-specific a11y abuse

vectors, and persistence mechanisms enabled by a11y.

3.1 Victim Detection

The first goal of DVa is to identify victim apps on users’

devices that might have already been abused, as well as

potential victim apps that can be abused. However,

identifying all possible victims is not as easy as it seems. To

evade the security vetting system of the application stores,

a11y malware dynamically loads payloads locally or fetched

from C&C servers during runtime. Specifically, the most

advanced a11y malware loads attack payloads only after

scanning installed apps on victim devices, checking victim

app configurations, and receiving acknowledgments from

C&C servers [24]. This dynamic loading practice could

easily make static analysis ineffective since the payload is

not available at the time of the investigation. Worse still, even

if the payload is available, the wide adoption of victim

information encoding and encryption schemes makes

decoding them statically challenging. While dynamic

analysis with a SOTA sandbox can fake certain

environmental parameters and statuses in system API calls, it

cannot generate customized data structures such as a11y

events that malware is checking for.

To overcome these challenges, DVa uses dynamic hooks

to mimic the existence of both targeted victims apps (§3.1.1)

and their generated a11y events (§3.1.2).

3.1.1 Dynamic Victim-Guided Execution

DVa first must be able to intervene with malware’s victim-

probing process and guide it to believe that the victims are

present and valid. On Android, the access points to scan the

status of installed apps are the package manager APIs [25].

Algorithm 1 presents DVa’s strategy to model victim query

APIs. DVa keeps a predetermined victim database (Π)

containing each victim app’s traits and properties. The victim

candidates are collected by querying the top-25 Android apps

in 34 categories across 92 countries from market intelligence

platforms AppBrain [26] and SensorTower [27]. Currently,

the database contains 37K unique Android packages. As

shown in Lines 2-28 of Algorithm 1, for each package

manager API, DVa applies a dynamic hook and models it to

return customized information containing legitimate victim

information. If the query is generic, DVa returns the handle

to the system’s default handler, as shown in Lines 5-7. If the

hooked API queries the information of a single (specific)

3In a real-world scenario, Google Play Protect can use its internal

extraction method to obtain the malware APK.
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Algorithm 1: DVa’s victim query modeling.

// Victim model, Πx is model of a single victim

1 Π = {Π1,Π2,Π3, ......};

// Model all Android packageManager APIs, override

before-method handler

2 @Override

3 Function Object beforePmMethod():

4 switch pm do

// API queries Generic info

5 case G do

// Use default system handler

6 return;

7 end

// API queries Individual package info

8 case I do

// Model of a single victim app

9 Πx = Π.get(pm.param.packageName);
10 R = new pm.returnType;

// Pierce back custom victim fields

11 for f ield ∈ pm.returnType do

12 a = Πx.get( f ield);
13 R.set(a);

14 end

15 R.pad();
16 return R;

17 end

// API queries Collective info of packages

18 case C do

19 R = new pm.returnType;

// Pierce back custom victim field from

many victim apps

20 for package ∈ pm.param.packageNames do

21 Πx = Π.get(package);
22 f ield = Πx.get(pm.returnType);
23 R.set(package, f ield);

24 end

25 R.pad();
26 return R;

27 end

28 end

29 end

package (e.g., App X), DVa looks up the associated victim

model Πx. DVa then pierces all fields required in the API

return value from Πx and returns the custom value (Lines

8-17) such as package name, app icon, package install time,

package launch intent, etc. Similarly, when the hooked API

queries collective information of several packages (e.g., Apps

A, B ... N), DVa obtains the required fields from each victim

model ΠA,ΠB...ΠN , and pierces them together (Lines 18-27).

By returning the device status that malware is looking for,

DVa tricks it into believing that its target victims, together

with their traits, exist and are valid. DVa is also able to

handle general anti-dynamic-analysis techniques equipped by

the malware (detailed in Appendix A).

3.1.2 Mimicking Victim a11y Events

For advanced malware that eavesdrops on device window

states and launches victim-specific attacks only after the user

Algorithm 2: DVa’s large-scale triggers of victim

a11y events.

// Trigger startup events for each victim model

1 for Πx ∈ Π do

2 ae = a11yEvent.obtain();
// Mimics an app startup event

3 ae.setEventType(WINDOW_STATE_CHANGED);
// Pierce together a11y event with victim model

4 for f ield ∈ a11yEvent do

5 ΠxField = Πx.get( f ield);
6 ae.set(ΠxField);

7 end

// Broadcast victim a11y event to the malware

8 am = getSystemService(Context.a11yService);
9 am.sendA11yEvent(ae);

10 end

instantiates the victim app, DVa needs to automatically fire

victim app a11y events on a large scale to trigger the

malware’s victim-specific attack routines.

Algorithm 2 presents DVa’s strategy for triggering victim

a11y events on a large scale. For each victim model Πx in the

victim database Π, DVa obtains a default a11y event. DVa then

lets the event mimic the change in the foreground GUI when

a user first opens up the victim app by setting the event’s type

to WINDOW_STATE_CHANGED. For each field in the a11y event,

DVa queries the victim model Πx and populates the a11y

event with the acquired custom victim trait, as shown in Lines

4-7 of Algorithm 2. The fields populated in the event contain

key information that represents the GUI screen during the

initiation of a victim app such as event time, content change

type, view locations, view content, etc. DVa then acquires the

system a11y manager and broadcasts the customized a11y

event, as shown in Lines 8-9. This tricks malware to believe

that a victim app is open and loads targeted abuse routines.

With DVa’s capability of mimicking victim existence and

triggering victim a11y events on a large scale, investigators

can now notify users of victim apps targeted on their device

as well as notify developers of additional malware targets.

3.2 Abuse Vector Detection

After identifying the targets of a11y malware, DVa next finds

unique abuse vectors empowered by the a11y service.

However, detecting abuse vectors from the dynamic

victim-guided execution is challenging. Specifically, the a11y

event structures, embedded with trees of GUI elements that

malware looks for, are enormous considering all victim apps.

3.2.1 a11y Capabilities

To accurately model the abuse vectors, we first systematically

categorize the capabilities of a11y APIs according to the

official a11y API doc [1], [18], [28]. Since an a11y abuse

relies on the Android a11y service, the malware has to use
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Table 1: A11y capabilities, generic a11y techniques, and a11y-empowered abuse vectors in the context of victim apps.

a11y Capabilities1 Sample APIs or Identifiers

a11yService

GlobalAction performGlobalAction(), dispatchGesture(), findFocus(), takeScreenshot(), takeScreenshotOfWindow()

a11yEvent

QuerySourceNode getSource(), getPackageName(), getRecord()

QueryViewChange TYPE_VIEW_CLICKED, TYPE_VIEW_SELECTED, TYPE_VIEW_TEXT_CHANGED, TYPE_VIEW_TEXT_SELECTION_CHANGED

QueryWindowChange TYPE_WINDOW_STATE_CHANGED, TYPE_WINDOW_CONTENT_CHANGED, TYPE_WINDOWS_CHANGED

QueryNotiChange TYPE_NOTIFICATION_STATE_CHANGED

OtherQueries TYPE_VIEW_HOVER_ENTER, TYPE_TOUCH_INTERACTION_START, TYPE_ANNOUNCEMENT, TYPE_SPEECH_STATE_CHANGE

a11yNodeInfo

QueryNodeInfo findA11yNodeInfoByText(), getBoundsInScreen(), getText(), getPackageName(), isPassword()

NodeAction performAction()

a11y Techniques Action Models

Read

EvdpText2 QueryWindowChange→ QuerySourceNode→ QueryNodeInfo(Text)

EvdpClick QueryViewChange→ QuerySourceNode→ QueryNodeInfo(ViewProperties)

EvdpGesture QueryGestureDetection

ScreenLog
QueryWindowChange→ QuerySourceNode→ QueryNodeInfo(Text) || GlobalAction(Screenshot)→
FileWrite || DBWrite || InternetSend

Inject

FillText NodeAction(FillText)

InjClick3 NodeAction(Click) || GlobalAction(Back/Home)

InjGesture GlobalAction(Gesture)

Abuse Vectors Technique Models

Auto Transaction QueryWindowChange(FinancialStackTrace)↔ ScreenLog && InjClick || ScreenLog && FillText

Steal Credentials QueryWindowChange(LoginScreen)→ ScreenLog || EvdpText

Steal Auth. Code GetLaunchIntent(Auth./SMS)→ SendIntent→ EvdpText || ScreenLog

Hide/Delete Noti. QueryNotiChange→ InjClick && InjGesture

USSD Code GetLaunchIntent(Phone)→ SendIntent→ ScreenLog→ InjClick

Fake Calls QueryWindowChange(Phone)→ EvdpText && InjClick→ LaunchActivity

Ransom Screen QueryWindowChange || EvdpClick↔ InjClick || LaunchActivity

1: Excluding APIs that are default callbacks, used to construct objects, acquire handles, and misc APIs.

2: Eavesdrop Text. 3: Inject Click.

capabilities provided by the service [1], the a11yEvent [18]

dispatched to the service, or the a11yNodeInfo [28]

embedded within the a11yEvent. The a11y capabilities

section in Table 1 shows the categorization of official APIs

based on their purpose supplemented by sample APIs or

identifiers within the categories. For example in Row 5

of Table 1, for an app to query the information of an

on-screen element, it has to use APIs provided by the

a11yEvent class that can query the source nodes, such as

getSource() or getPackageName(). Similarly, for an app

to click on an on-screen element on behalf of the user, it has

to rely on node action API performAction() supplemented

by the click action provided by the a11yNodeInfo class, as

shown in Row 12 of Table 1. DVa uses these a11y

capabilities as basic blocks for modeling a11y behaviors.

3.2.2 a11y Techniques

Next, DVa models the generic techniques an app can achieve

using the above capabilities. Since an a11y service receives

an event whenever notable changes occurred in the GUI [18],

it can read the event to understand what changes occurred.

Based on this knowledge, the service can then inject inputs on

behalf of the user to conduct actions based on the conditions

of the GUI change. A11y Techniques section in Table 1 shows

the techniques that can either read screen changes or inject

input and their action models.

To detect these techniques, given malware’s a11y event

handler, DVa uses it as the entry point to build a static Call-

Graph (CG). Within the CG build, DVa sets the sink functions

as the last action function in any of the techniques. For each

sink function marked, DVa then queries its caller methods in

the CG until it finds the a11y event handler or reaches the top

parent. DVa then selects the call sequences that originate from

the a11y event handler as candidates and constructs Control-

Flow-Graphs (CFG) for each function within the call chain

using the built-in CFG constructor in Soot [29].

To confirm the complete action model and to resolve

parameters of action APIs to concretize actions, DVa starts

symbolic execution from the entry point along each CFG.

DVa first marks the input a11y event parameter as symbolic.

Whenever DVa encounters an unseen variable, it introduces a

new symbolic label. If any part of the variable is reassigned,

DVa propagates the label and marks the new variable as

symbolic. When encountering branches, DVa duplicates the
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Table 2: Malware’s a11y-empowered persistence mechanisms, their triggering conditions, and their a11y behaviors.

Persistence Mechanisms Triggers Behaviors

Disable Device Protection Security Settings Screen Back / Return Home

Prevent Info Lookup / Uninstall App Detail Setting Screen Back / Return Home

Prevent a11y Permission Revocation a11y Settings Screen Back / Return Home

Escalating Privileges a11y Permission Granted Permission Screen with Screen Navigation

Uninstall Other Apps Uninstall Package Setting(w/ Permission) Screen Navigation

Disable Power Options Power Options Dialog Back / Return Home

symbolic label, continues execution, and records along both

directions. DVa ends the traversal along a path when it

successfully reaches the targeted sink APIs that it is

searching for, or when it encounters new functions not in the

marked call chains, indicating an irrelevant path. After

completing traversal along all call paths, DVa checks the

validity of each call path by confirming the symbolic labels’

existence in each intermediate routine. It also concretizes

sink APIs to exact actions by matching the value of the

symbolic parameters in the APIs back to their original value.

For example, DVa confirms a path to contain the InjClick

technique when the parameter of the node action resolves to

the identifier of ACTION_CLICK instead of other actions.

3.2.3 Victim-Specific Abuse Vectors

Preliminary Study. Next, DVa resolves the action models in

the context of the victim app to detect abuse vectors of a11y

malware. We started by searching for reports of a11y malware

published between 2017 and 2022 (reviewing and cataloging

results from the Google search query: Android accessibility

malware) [2]–[4], [19], [20], [30]–[39]. We also queried in

VirusTotal [15] and manually investigated all 43 unique a11y

malware appended in the above reports and found the seven

abuse vectors, as listed in Table 1.

Dynamic Victim Stack Trace. DVa first searches for any

routines that examine the state of an a11y event in the

previously detected a11y techniques action models that

match with any dynamic victim detection stack traces. A

match implies that the following technique is specifically

targeting the victim detected in the dynamic victim-guided

execution. For example, as shown in Row 24 of Table 1,

when a QueryWindowChange call of a detected ScreenLog

and consecutive InjClick or FillText technique has a

matching stack trace from a financial victim app up until the

call, DVa marks the trace to be an Auto Transaction abuse

vector and attributes it to the specific financial victim app.

To match additional abuse vectors to the victim app, DVa

compares the concretized parameter solved in symbolic

constraints of the a11y event query APIs against other such

APIs from all detected abuse vector call sequences. If the

same value is resolved in another call, DVa confirms that it

also constitutes the abuse routine against the same victim.

Other Victim Hints. DVa also looks for other call sequences

before or after a11y techniques to infer victim abuse vectors.

DVa scans the marked technique call sequences for intent

crafting and firing functions and uses the resolved symbolic

value in the parameters to infer victims. For example, when

DVa detects that before invocations to EvdpText or

ScreenLog in a call sequence, an activity launch intent is

concretized to the Google Authenticator’s package name, it is

marked with the Steal Authentication Code abuse vector.

With DVa’s ability to model a11y-specific abuse vectors

and match dynamic victim traces, an investigator can attribute

the abuse vectors to each previously detected victim and notify

users and victim app developers of victim-specific assets and

behaviors targeted by a11y malware.

Extendability of DVa. We designed DVa to be modular and

extendable to detect new abuse vectors. When a new

malware emerges with novel techniques or abuse vectors, the

investigator can easily extend DVa by (1) adding the abuse

vector’s sink API into DVa’s sink list and (2) adding the new

action sequence in DVa’s symbolic model.

3.3 Persistence Mechanism Detection

Aside from abusing victims, a11y malware modifies the

user’s interaction with system settings to persist for as long

as possible on user devices. DVa next detects how malware

utilizes a11y service to do so and notify users about possible

changes to system settings. To achieve this, DVa invokes the

triggers of persistence mechanisms that malware looks for

and deploys dynamic hooks to capture their a11y responses.

Triggers to a11y Behaviors. Table 2 Column 1 lists the

mechanisms empowered by a11y service malware use to

persist on user devices. Since malware tries to adopt them as

early as possible after installation and acquiring a11y

permissions, DVa tries to match the triggering conditions

listed in Table 2 Column 2 for each of the mechanisms,

satisfy them, and trigger them to observe malware’s reactions

to them. For example, to examine if malware prevents a user

from looking up its information and uninstalling it, DVa

crafts an intent to open the app detail menu of the malware in

Settings and sends it to navigate to the screen; to examine if

malware prevents users from powering off or restarting the

device, DVa sends an action to open the device power options

dialog. A similar strategy is adopted to trigger other

mechanisms listed, except for when testing for escalation of

privileges, in which case DVa dumps the malware’s runtime

permissions and device admin apps when the foreground
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Table 3: Validation of the victims, abuse vectors, and persistence mechanisms detected by DVa together with AVClass2 labels of

the top-10 a11y malware families.

D# Family
# Victims # Vectors # P Mechs.1

AVClass2 CLASS & BEH Labels

GT D2 TP FN GT D TP FP FN GT D TP FP FN

1 Spynote 13 11 11 2 6 6 6 0 0 6 6 6 0 0 spyware

2 Hqwar 5 5 5 0 7 7 7 0 0 4 4 4 0 0 execdownload, infosteal, bankbot, grayware

3 Bianlian 20 20 20 0 5 5 5 0 0 6 6 6 0 0 execdownload, infosteal, bankbot

4 Spymax 17 17 17 0 7 7 6 1 0 7 7 7 0 0 spyware, grayware

5 Anubis 89 78 78 11 4 3 3 0 1 8 8 8 0 0 infosteal, bankbot

6 Fakecall 4 4 4 0 3 3 3 0 0 3 3 3 0 0 execdownload, infosteal, grayware

7 Cerberus 29 29 29 0 6 6 6 0 0 7 7 7 0 0 execdownload, infosteal, bankbot

8 Androlua 15 14 14 1 6 6 6 0 0 6 6 6 0 0 grayware, clicker

9 Mobtes 16 16 16 0 5 5 5 0 0 4 4 4 0 0 execdownload, grayware

10 Mobtool 12 12 12 0 6 6 6 0 0 4 4 4 0 0 infosteal, grayware

Total3 220 206 206 14 55 54 53 1 1 55 55 55 0 0 —

1: Persistence Mechanisms. 2: DVa’s detection result. 3: Indicates total instances of detection, including duplicates.

activity stabilizes after granting the a11y permission.

Intercepting a11y Behaviors. To interpret a11y responses of

the mechanisms, DVa applies dynamic hooks to capture their

a11y actions (listed in Table 2 Column 3). For example, after

DVa triggers the power options dialog, if back or return home

actions to send users away from the screens are captured, DVa

confirms malware’s abuse of a11y service to persist on a user

device through disable power options. With DVa’s persistence

mechanisms detction, investigators can notify users of illicit

changes to their device configurations.

4 Validating Our Techniques

4.1 Implementation

Abuse-vector-guided symbolic analysis in DVa is

implemented in Java (7.3K lines) leveraging Soot [29], used

in top-tier research [40]. Dynamic hooks leverage

EdXposed [41] with 1.6K lines of Java code. Dynamic

analysis management is implemented in Python (1.3K lines).

AVClass2 [42], a SOTA malware labeling tool is used to

classify malware families. For deriving malware labels, we

used the latest PyPI avclass-malicialab 2.8.7 with -t flag to

extract all CLASS and BEH (behavior) tags from VirusTotal

reports. The victim application dataset is queried from

AppBrain [26] and SensorTower [27], SOTA Android market

intelligence services. Benign application icons and UI

screens are collected from Google Image Search. We used an

Ubuntu 20.04 LTS system to host DVa’s static analysis

module. DVa’s dynamic analysis and a11y malware are

hosted on 5 Google Pixel 3 (64GB, 4GB RAM) phones

running Android 9.0 (Pie).

4.2 Validation Setup

Due to the physical disk size limitation, we installed the

top-300 banking apps across all regions together with 100

other apps evenly distributed among the other five categories

of apps such as crypto, authentication, social media,

communication, and shopping apps on each device. Then we

used AVClass2 [42] to label our malware dataset and

randomly picked samples from the top-10 malware families

until we found two samples in each family with industry

reports and live C&C response, resulting in 20 samples. The

C&C response is determined by matching with at least one of

the contacted IP addresses in VirusTotal’s malware relation

reports. We installed the two samples from each family onto

the five devices respectively in two batches and dumped the

disk image, resulting in 10 device investigations, as listed in

Column 1 of Table 3. We manually reverse-engineered these

malware samples using Jadx [43] and used industry reports

to derive the ground truth4.

4.3 Validation Results

Table 3 presents DVa’s validation results. Column 2 shows

the top-10 a11y malware families that are installed on each

device investigation. Columns 3, 7, and 12 show the ground

truth (GT) number of abused victim apps, abuse vectors, and

categories of a11y-empowered persistence mechanisms. The

following columns present DVa’s detection on the respective

tasks. DVa’s evaluation metrics, including True Positives (TP),

False Positives (FP), and False Negatives (FN), are presented

in the rest of the columns.

Victim Detection. As shown in Column 5 of Table 3, DVa

correctly identified (TP) 206 instances of targeted victims.

Our manual investigation together with industry reports

revealed 220 instances, indicating DVa’s 94% accuracy in

detecting victims. In Row 6, DVa produced 11 FNs while

detecting victims for the Anubis family. With investigation,

we found that while matching abuse code with dynamic

execution trace, DVa’s symbolic engine failed to reconstruct

the victim package names. This is due to Anubis’s adoption

of a complex customized data structure for encoding victim

4Note that DVa does not need nor have access to the ground truth data.

708    33rd USENIX Security Symposium USENIX Association



information. We confirmed that this is a rare behavior.

Additionally, while investigating devices 1 and 8, DVa

introduced 2 FNs in a Spynote sample and 1 FN in an

Androlua sample. We found that the 3 FN victims – Cajasur,

Kutxabank, and Banca Móvil Laboral Kutxa – were reported

in industry reports but were not installed on the devices.

After installing them manually, DVa observed the abuse

vectors and confirmed them as victims.

Abuse Vectors Detection. As shown in Columns 7 and 9

in Table 3, DVa successfully detected (TP) 53 categories of

abuse vectors among 55 categories in the GT, yielding a 96%

detection accuracy. As shown in Row 5, DVa introduced 1 FP

while analyzing Spymax malware on device 4. We manually

investigated and found that it contained a screen navigation

error handler to immediately return to the malware’s screen

after failed attempts to parse the on-screen element tree,

making DVa incorrectly attribute its abuse vector. We

confirmed that this is a rare occurrence. DVa also introduced

1 FN while investigating device 5. Due to the unreachability

of Anubis malware’s C&C server for remote code loading,

DVa was unable to detect the ScreenLog behavior in industry

reports, which is solely contained in the dropped payload.

Persistence Mechanisms Detection. Shown in Columns 12-

16 of Table 3, DVa achieved 100% accuracy, detecting 55

instances of persistence routines.

Comparison with AVClass2. To understand the advantage

of DVa in reporting fine-grained abuse vectors specific to

a11y, we compared DVa’s result with labels reported by the

SOTA malware intelligence engine AVClass2. The last

column of Table 3 shows all class and behavior tag labels

reported by AVClass2’s extraction from VirusTotal reports.

As observed in all rows, the labels reported are high-level

and coarse-grained without containing evidence of detailed

abuse behaviors. For example in Row 4, the only labels

reported for the Spymax malware are spyware and grayware,

which do not contain evidence of targeted victim or specific

techniques abused as reported by DVa. Similarly in Row 2,

although the labels contain bankbot, execdownload, and

infosteal, no specific bank victims or abuse vectors that

constitute infosteal or executable download are evident.

4.4 Coverage Assessment

Next, we evaluated how much of an advantage DVa’s abuse

vector modeling provides over a generic data-flow analysis.

We hypothesized that a generic data-flow analysis would

over-taint paths and lead to false positives in discovering

a11y abuse and be insufficient in detecting behaviors reliant

on dynamic execution traces. We compared victims, abuse

vectors, and persistence mechanisms extracted from paths

explored by DVa and those explored by the SOTA taint

data-flow analysis tool, FlowDroid [40].

Experiment Setup. We used FlowDroid’s latest stable-build

version (2.11.1) as the starting point to derive data-flow path

Table 4: Comparison of victims, abuse vectors, and

persistence mechanisms detected by DVa versus FlowDroid.

D# Family
DVa FlowDroid

V1 PAV2 PM3 V PAV FP FN PM

1 Spynote 11 207 6 0 1,348 1,165 24 0

2 Hqwar 5 63 4 0 418 360 5 0

3 Bianlian 20 217 6 0 1,719 1,540 38 0

4 Spymax 17 236 7 0 1,968 1,771 32 0

5 Anubis 78 746 8 0 3,458 2,767 55 0

6 Fakecall 4 51 3 0 342 300 9 0

7 Cerberus 29 269 7 0 1,317 1,097 49 0

8 Androlua 14 199 6 0 813 639 25 0

9 Mobtes 16 182 4 0 1,006 847 23 0

10 Mobtool 12 157 4 0 1,291 1,143 9 0

Total 206 2,327 55 0 13,680 11,629 269 0

1: Detected victims. 2: Paths flagged with a11y abuse.

3: Detected persistence mechanisms.

coverage. The input APKs are the ones repackaged with

dynamically loaded DEX files extracted by DVa. We set the

source function to be the onA11yEvent handler and the sink

functions to be all functions declared in a11y service,

a11y event, and a11y node info classes (in total 246

functions). We found that initially, FlowDroid was unable to

track data-flow from the onA11yEvent callback function

because it doesn’t have a concrete invocation. Because of this

issue, we modified FlowDroid’s source tracking logic of the

onA11yEvent handler to taint the first assignment statement

of the function parameter instead. We used the standard CHA

algorithm for FlowDroid to generate the CG.

Assessment result. Table 4 shows the victims detected,

number of paths flagged with a11y abuse, and persistence

mechanisms detected by DVa and FlowDroid. The FP and

FN columns for DVa are omitted because they were

discussed in Table 3. FP and FN columns for FlowDroid are

derived by manually examining the data-flow paths. As

discussed in §4.3, we counted seven FP paths that DVa

flagged in the Spymax samples as TP for FlowDroid in Row

4. For the Anubis samples in Row 5, we omitted FN paths for

both DVa and FlowDroid because the payload containing the

reported behavior was statically unavailable. As shown in the

Total row of Columns 4 and 7, DVa flagged 2,327 paths with

a11y abuse, while FlowDroid flagged a total of 13,680.

However, in Column 8 we see that FlowDroid incurred FP in

11,629 (85%) paths that do not constitute a11y abuse. This is

because FlowDroid does not have access to the abuse vector

modeling and flags irrelevant paths with generic a11y APIs.

Column 9 shows that 269 paths were marked by DVa as a11y

abuse but not traversed by FlowDroid. We found that these

paths contain global action system APIs such as

dispatchGesture() and findFocus() for which

FlowDroid does not have pre-extracted method summaries,

thus breaking the taint propagation. Additionally, Columns 3

and 6 show the number of victims detected along the paths
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with a11y abuse. While DVa extracted 206 victim apps, we

manually verified the paths flagged by FlowDroid and found

that 0 victim apps could be resolved with the data-flow paths

alone. This is because the constraints along all paths can only

be resolved to one-way encoded hashes and cannot be further

matched. With the help of execution traces that DVa

extracted in victim-guided dynamic analysis, DVa has a

unique advantage in resolving statically unsolvable victim

constraints. Finally, Columns 5 and 10 show the number of

persistence mechanisms detected. While DVa reported a total

of 55 instances of persistence mechanisms, the data-flow

paths alone generated by FlowDroid cannot derive any of

them because their trigger conditions and sink actions are

unknown and unmodeled by FlowDroid.

5 Findings

To help gather large-scale malware behavioral insights from

a11y malware, we deployed DVa on 5 Google Pixel 3 phones.

These phones were repetitively infected with each of the 9,850

malware collected from VirusTotal [15] from August 2022

to December 2022. The selection criteria for the samples

that they be (1) are labeled by at least five antivirus engines,

ensuring that they are indeed malware [44] and (2) contain the

BIND_A11Y_SERVICE permission declaration string in the app

manifest file, which indicates that they abuse the Android a11y

service. Out of the 9,850 samples collected, 7,700 samples

are labeled by AVClass2 [42] spanning 197 families. The rest

of the 2,150 samples contain no family labels and are treated

as singleton malware.

DVa’s dynamic analysis has an average runtime of 110

seconds per sample. Since DVa is deployed on a backend

server, this overhead is acceptable. The execution overhead

on the frontend user’s device is negligible (no more than the

current Google Play Protect).

5.1 Targeted Victims

Table 5 presents the identified victims grouped by category

in Column 1, their most popular geolocation country code in

Column 2, victim count and victim median download number

in Columns 5 and 6, and their abused malware count and

family count in Columns 7 and 8. As shown in Columns 5, 7,

and 8 in the Total row, DVa detected a total of 4,291 malware

samples spanning 65 families abusing 215 victim apps. DVa

reported no targeted victims for the other 5,559 samples. Upon

further investigation, we found that 4,614 of the samples did

not have any live C&C responses, so we excluded them from

the victim-detection evaluation. For the other 945 samples, we

manually investigated 10 random samples and found that six

of them are generic utility apps that misuse the a11y service

such as file manager, overlay widget, notification modifier

apps, etc. In fact, prior work [7], [45] confirmed that benign

apps also misuse the a11y service to achieve functionality

purposes. These utility apps do not target specific victim apps,

so we exclude them from the victim-detection evaluation.

Of the 4,291 malware samples with detected victims,

2,575 require C&C response to drop victim-specific

information and still have live C&C connections. The rest of

the 1,716 malware samples contain local abuse routines that

are present statically or loaded at runtime. Column 6 in the

Total row shows that the median download number is 10M+

across all 215 abused victim apps. Columns 1 and 5 show the

abused victim apps’ categories along with their ranked victim

app count in each category. The 215 victim apps span a total

of seven categories – Banking, Crypto, Shopping, Social

Media, Transportation, Authentication, and Communication.

Banking apps are the most abused victim app category with

159 (74%) apps targeted by 3,579 (83%) malware samples

across 55 (85%) families, corroborating the banking apps’

vulnerability to a11y-based attacks found by prior work [46].

Following Banking apps are Crypto and Shopping apps, with,

respectively, 16 (7%) and 13 (6%) victim apps abused by

1,130 (26%) and 257 (6%) malware samples across 23 (35%)

and five (8%) families. As shown in the Auth. category row,

although only five authentication apps (e.g., Microsoft

Authenticator, Google Authenticator) are abused, they are

abused by a majority of 3,022 (70%) malware samples across

52 (80%) families. The median victim app download

numbers in Column 5 reveal that Social Media apps are the

most popular apps that are targeted, with a median of 1B+

downloads. Communication apps such as Gmail, WhatsApp,

etc. are the next most popular apps, with a median of 100M+

downloads. All victim app categories have at least a median

of 5M+ downloads, indicating a large batch of renowned

victim apps targeted by a11y malware.

Takeaway. DVa identified 215 victim apps spanning seven

categories abused by 4,291 a11y malware samples across 65

families. Banking apps are the most widely targeted category,

with 74% of all victim apps falling in the category and

targeted by 83% a11y malware samples across 85% families.

Seventy percent of a11y malware samples also target a set of

five Authentication apps, extending their capabilities into

infiltrating other benign apps. A11y malware targets

renowned victim apps with a median download of over 10M

across all categories. With the victim targets extracted,

investigators can compare the targets with existing services

on the user’s device to identify abuse tha has already occured,

as well as notify developers of malware targets that have not

yet been abused.

5.2 Abuse Vectors

After extracting the victims of a11y malware, DVa helps

investigators extract abuse vectors and attribute them to the

victims. Columns 3, 4, 9, 10, and 11 of Table 5 present the

a11y techniques and abuse vectors tailored for each category

of victim apps. Columns 3 and 4 show the different abuse
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Table 5: Categories of victim apps, a11y malware that target them, and abuse vectors statistics.

Vic. Catg. Vic. Geo. (Top-5) Abu.Vec. Avg. Vec.1 # Vic. Med. DL2 # Mal # Fam a11y Tech. Avg. Q3 Avg. A4

Banking RU BR GB US MX

Auto Tran. 11.7 35 10M+ 755 12
Scr. Nav. 46.5 3.4
AutoFill 15.5 2.8

Steal Cre. 19.3 147 10M+ 3,296 52 Scr. Log. 9.6 1.7

Steal Auth. 3.4 122 10M+ 2,444 47
Scr. Nav. 25.9 3.1
Scr. Log. 18.3 3.0

Noti. 1.2 98 10M+ 1,930 20 Scr. Nav. 7.6 1.2

Ussd 5.2 103 10M+ 2,067 16
Scr. Nav. 59.7 2.8
AutoFill 22.1 1.1

Calls 1.0 5 10M+ 340 3 Scr. Nav. 55.4 2.7
Subtotal - - 21.1 159 10M+ 3,579 55 - 29.0 2.4

Crypto US IR AU BE PO

Auto Tran. 9.8 3 10M+ 787 12
Scr. Nav. 63.0 3.8
AutoFill 24.7 2.2

Steal Cre. 21.5 16 5M+ 1,051 23 Scr. Log. 7.9 1.6

Steal Auth. 4.3 12 5M+ 775 16
Scr. Nav. 32.8 2.8
Scr. Log. 17.1 2.3

Noti. 1.2 12 5M+ 713 10 Scr. Nav. 7.1 1.3
Subtotal - - 24.1 16 5M+ 1,130 23 - 25.4 2.3

Shopping US ES JP IT DE
Auto Tran. 7.0 5 50M+ 110 4

Scr. Nav. 34.4 2.5
AutoFill 12.7 1.8

Steal Cre. 15.8 13 50M+ 219 5 Scr. Log. 6.6 1.6

Noti. 1.3 10 50M+ 143 5 Scr. Nav. 5.8 1.3
Subtotal - - 15.2 13 50M+ 257 5 - 14.9 1.8

Social IN US CA MX ID

Auto Tran. 9.3 7 1B+ 171 11
Scr. Nav. 38.0 3.1
AutoFill 12.4 2.4

Steal Cre. 4.3 10 1B+ 450 14 Scr. Log 7.8 1.5

Steal Auth. 2.7 7 1B+ 268 7
Scr. Nav. 28.9 2.5
Scr. Log 15.8 2.3

Noti. 1.2 2 5B+ 22 1 Scr. Nav. 6.4 1.4
Subtotal - - 6.0 11 1B+ 539 17 - 18.2 2.2

Transp. US CA BR AU FR
Auto Tran. 3.5 6 50M+ 45 2

Scr. Nav. 33.6 2.5
AutoFill 15.3 1.9

Steal Cre. 14.5 6 50M+ 45 2 Scr. Log. 8.8 1.7

Noti. 2.8 6 50M+ 45 2 Scr. Nav. 5.6 1.4
Subtotal - - 20.8 6 50M+ 45 2 - 15.8 1.9

Auth. US CA BE DE NO
Steal Cre. 13.7 5 10M+ 3,022 52 Scr. Log. 23.9 2.4

Noti. 3.6 5 10M+ 3,022 52 Scr. Nav. 4.5 1.2
Subtotal - - 17.3 5 10M+ 3,022 52 - 14.2 1.8

Comm. UK JP US CA AU
Auto Tran. 12.0 3 100M+ 45 7

Scr. Nav. 39.5 3.4
AutoFill 11.8 2.7

Steal Cre. 2.8 5 100M+ 1,374 34 Scr. Log. 5.4 1.1

Noti. 1.4 3 500M+ 45 7 Scr. Nav. 5.2 1.4
Subtotal - - 3.1 5 100M+ 1,374 34 - 15.5 2.2
Others - Ransom Scr. - - - 12 3 - 1.5 -
Subtotal - - - - - 12 3 - 1.5 -

Total - - 13.9∗ 215 10M+ 4,291∗ 655 - 19.0† 2.1†

1: Average Abuse Vectors per victim app per malware. 2: Medium download number of abused victim apps.
3: Average of System a11y Query APIs used per a11y Technique. 4: Average of System a11y Action APIs used per a11y Technique.
5: 1,235 samples contain no AVClass family name. *: Not a sum of subtotals, multiple targeted victims per malware.
†: Excluding Others Column.

vectors and their average numbers targeting each victim.

As shown in the Total row of Column 4, a malware sample

adopts an average of 13.9 vectors to target each victim.

Looking at the Subtotal rows of Column 4, malware targeting

a Banking or Crypto victim implements an average of 21.1

and 24.1 abuse vectors toward each victim, 52% and 73%

higher than the average. This indicates that malware targeting

these two categories adopts more event checks to handle a

diverse set of window change events. Comparing the subrows

of each victim category, the most adopted abuse vector across

banking, crypto, shopping, and transportation apps is Steal

Credentials, followed by Auto Transactions. The
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Authentication apps are also targeted with 13.7 Steal

Credentials abuse vectors, accounting for 79% of all abuse

vectors. This corroborates the feasibility of a11y abuse

proposed by prior PoC attacks [9], [47], [48].

Column 9 of Table 5 shows the a11y techniques used by

each abuse vector. We further categorize APIs adopted by

the techniques into query APIs (those that query window

states) and action APIs (those that conduct GUI actions) in

Columns 10 and 11. As shown in the Total row of Columns

10 and 11, an a11y technique routine on average adopts 19.0

APIs to query the state of on-screen elements and 2.1 APIs

to perform a11y actions. In the Subtotal rows of Column 10,

we observe that an average of 29.0 and 25.4 query APIs are

used in each a11y technique that targets Banking and Crypto

apps, 53% and 34% more than that of the category average.

This indicates that malware employs more a11y node checks

to properly handle more on-screen elements that are present

on each banking and crypto app screen.

The Subtotal rows of Column 11 show that the average

number of a11y actions performed is similar across each

category, having an average of 2.1 a11y action APIs to

perform each a11y technique. This shows that the differences

that malware adopts in handling victim UIs lies in the queries

of on-screen elements instead of the actions to them. Instead

of focusing on the actions that malware performs in an abuse

technique, it is more important to measure the query strategy

of the UI that malware deploys against each victim.

Takeaway. DVa extracted an average of 19.0 a11y query

APIs and 2.1 actions APIs in each a11y technique to deploy

13.9 abuse vectors towards each victim app. A11y malware

implements more handler routines to parse UI screens (52%

and 73% higher than average) as well as more on-screen

element query routines (53% and 34% higher than average)

to abuse Banking and Crypto apps. The most frequently

adopted abuse vectors are Steal Credential and Auto

Transaction across most categories of victims. Although

a11y action APIs are used to perform concrete a11y actions

on elements, the query API usage is the pattern that

differentiates abuse routines across different victim

categories. With victim-specific abuse vectors extracted,

investigators can enrich the notification to both users and

victim developers with concrete abuse behaviors to guide

loss remediation and develop proactive defenses.

5.3 Persistence Mechanisms

After extracting victim-specific abuse vectors adopted by

a11y malware, DVa then helps investigators understand what

a11y-empowered mechanisms malware adopts to persist on

users’ devices. Table 6 presents the persistence mechanisms

adopted by the top-10 malware families. Columns 1-2 list the

malware families and their respective sample counts.

Columns 3, 4, 5, 8, and 9 show the number in each family

that adopts mechanisms to disable device protection, prevent

Table 6: A11y-empowered persistence mechanisms used by

the top-10 a11y malware families.

Family # D.P.1 P.L.2 P.R.3
E.P.4

U.A.5 P.O.6

Adm. Others

Spynote 1,421 1,278 1,397 1,378 0 1,281 1,071 0

Hqwar 1,400 1,291 1,270 1,306 0 1,183 989 1,277

Bianlian 545 523 539 521 0 0 0 0

Spymax 461 429 446 451 0 384 351 0

Anubis 449 413 443 443 0 0 278 0

Fakecalls 351 319 290 303 0 323 0 0

Cerberus 349 244 305 305 0 0 102 0

Androlua 298 278 242 238 0 256 108 0

Mobtes 245 214 227 219 0 0 210 220

Mobtool 212 168 188 194 0 0 0 0

Others 4,119 3,584 3,677 3,744 157 1,277 979 355

Total 9,850 8,741 9,024 9,102 157 4,704 4,088 1,852

1: Disable device protection. 2: Prevent info lookup/uninstall.

3: Prevent a11y permission revocation. 4: Escalate privileges.

5: Uninstall other apps. 6: Disable power options.

app info lookup/uninstallation, prevent a11y permission

revocation, uninstall other apps, and disable device power

options. Columns 6 and 7 show the number of samples that

can escalate to device admin privilege and other privileges.

As shown in the Total row, preventing a11y permission

revocation, preventing info lookup, and disabling device

protection are the three most widely adopted persistence

mechanisms, observed in 9,102 (92%), 9,024 (92%), and

8,741 (89%) malware samples. Disabling power options is

the least adopted, used by only 1,852 (19%) malware

samples. Although 4,861 (49%) samples escalate privileges,

only 157 (2%) of them (all from the Fakeapp family) escalate

to device admin. Although the powerful device admin

privilege can be illegally escalated by abusing a11y

permission, very few malware samples choose to do that to

avoid static and runtime antivirus scans since it is a strong

indicator of malware. Similarly, few malware samples

employ the intrusive mechanism of disabling power options

to avoid alerting users. This adoption trend indicates that

most malware deploys a11y-based measures to turn off

system malware scanning and prevent users from querying,

disabling, or uninstalling them.

Takeaway. DVa extracted six categories of a11y-empowered

persistence mechanisms. Most malware abuses a11y to

prevent users from revoking a11y permission (92%), looking

up malware info / uninstalling malware (92%), and disabling

Google Play Protect (89%). More intrusive behaviors such as

preventing users from turning off or restarting the device

(19%) and escalating to device admin privilege (2%), are less

common to avoid antivirus detection and alerting users.

Investigators now can understand how a11y malware persists

on users’ devices and notify users of malware’s illicit

modifications to system settings.
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6 Case Studies

6.1 a11y 2FA Stealer

Authenticator apps use 2FA codes to provide users additional

protection against compromised static passwords. In our

experiments, DVa found that 471/545 malware samples from

the Bianlian family can steal 2FA codes generated from the

Google Authenticator app. Of the initial 545 Bianlian

samples, DVa found that 224 implemented dynamic loading

of their a11y service class or a11y event handlers. After

DVa’s victim-guided dynamic analysis, DVa captured and

repackaged new DEX payloads from 144 samples using

dynamic class loaders. With DVa’s abuse-vector-guided

symbolic analysis from the onA11yEvent handler, DVa

found that 471 malware samples contained valid execution

paths to EvdpText and ScreenLog techniques with the victim

package name resolved to the Google Authenticator App,

confirming their 2FA code stealing capability. The routines

start with malware creating and sending an Intent that

launches the main activity of the app. Then, the malware

checks for package names of the WINDOW_STATE_CHANGED

event to confirm the start of the app. After that, the malware

creates an iterator from the source node of the event (a

ViewGroup containing all child elements of the main

activity) to capture all user’s 2FA codes. Within each child

view representing a 2FA code, the malware uses customized

parsing logic tailored for the app to extract the text element

of the code and the account name associated with the code.

a11y Blocking by 2FA Apps. Although a11y malware can

steal 2FA codes, authenticator apps can choose to block

untrusted a11y services from accessing the code. We picked

the top-11 authenticator apps listed on the Google Play Store,

installed them on one Google Pixel 4 device running Android

14, and manually registered 2FA code for Twitch in all apps.

We then installed a custom app with an a11y service that

listens for and parses a11y events from the views in each app

that contain the 2FA codes. Only two of the 11 apps protect

their 2FA codes from untrusted a11y services. We observed

that the text properties of 2FA code fields in the 2FAS

(com.twofasapp) and Dashlane (com.dashlane.authenticator)

apps are set to null, confirming their protection against

untrusted a11y services. We manually reverse engineered the

apps and found that both protect their views containing 2FA

codes with the A11yDataSensitive property to block

interaction with untrusted a11y services.

6.2 a11y Ransomware

DVa detected 131 instances of the Doublelocker malware that

abuses a11y service for ransom, indicating new strategies for

mobile ransomware. DVa also reported the privilege

escalation persistence mechanism. DVa found that the

malware automatically brings up device administration and

Table 7: Effectiveness of the newest security patch and data-

flow defense in eliminating a11y malware behaviors.

Behaviors OS 9 OS 13 OS 13+DFD∗

ScreenNav 13 9 6

Autofill 2 2 1

ScreenLog 7 5 0

Prevent Info Lookup 7 4 4

Prevent a11y Revocation 9 5 3

Escalating Privileges 3 2 2

Disable Power Options 1 1 1

Total 42(100%) 28(67%) 17(40%)

*: Data-Flow Defense.

default home app user dialog and utilizes hard-coded a11y

node parsing routines to locate and click the confirm buttons

without user acknowledgment. By escalating to the default

home app, the malware ensures that whenever a user tries to

press the Home button or the Back button, the malware is

relaunched instead. This renders the device unusable to the

user, achieving an intrusive abuse and persistence measure.

The main activity captured by DVa indicates a classic ransom

screen, asking users to send an equivalent of 50 US dollars

worth of bitcoin to an attacker’s account.

Traditional ransomware requires multiple user interactions

to achieve its purpose. As DVa observed in the Doublelocker

family, all user interactions required for the malware to

achieve its ransom purpose is granting the a11y permission,

thus increasing the attack’s success rate.

6.3 Defenses Against a11y Malware

To understand how SOTA defenses are (in)effective at

preventing a11y malware abuse, we evaluated how a11y

malware behaves under the newest Android security patch

(Android 13.0.0_r31) [11] and the most recent data-flow

defense framework proposed by Huang et. al. [5]. We

re-implemented the defense framework as stated in the

study [5] as a patch to the AOSP that constrains data-flow

from user inputs to non-GUI actions and from the GUI event

change to non-user-perception APIs. We deployed DVa on

one Google Pixel 4 device with the latest Android security

patch and another one with our re-implemented defense

framework. We evaluated using 14 malware samples that

target Android SDK Level 33 (Android 13) from the dataset.

Table 7 shows the effectiveness of the previous two

defenses. Column 2 shows the baseline behaviors extracted

by DVa from the 14 malware samples. In total, 42 instances

of malware behaviors are extracted under Android 9. Column

3 shows the behaviors extracted by DVa on the newest

Android security patch (Android 13). Four malware failed to

install with manifest malformed errors due to the

incompatibility of code on Android 13. Of the remaining 10

malware samples, the system initially blocked the installation
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of eight of them with Google Play Protect scanning.

However, all eight malware samples successfully bypassed

such scanning after we added a trivial asset (one JSON file in

APK assets) and reinfected the re-signed APK. In particular,

aside from the signature scanning, 100% of malware

behaviors are observed under Android 13. Column 4 shows

the effectiveness of the data-flow defense framework on

Android 13. It successfully eliminated ScreenLog behaviors

from all malware due to the constraints set to prevent

information leakage from a11y events. However, 6/13 (46%)

screen navigation behaviors still persist. Upon investigation,

we found that malware relies on hardcoded screen

coordinates not associated with a11y events to navigate GUI,

thus circumventing the constraints. A similar technique is

also utilized to prevent restriction to 4/7 (57%) illegal info

lookup prevention behaviors, etc.

Shown in the Total row of Table 7, 67% of malicious a11y

behaviors are still observed in the latest Android security

patch and 40% can still bypass the SOTA data-flow defense

framework on top of the latest Android security patch.

7 Discussion

Malware Detection. Since DVa acts as an add-on service to

existing malware detection engines, DVa relies on identified

a11y malware. Google Play Protect already has

signature-based and behavior-based malware detection [49]

incorporated. Researchers have also proposed methods to

distinguish benign and malicious a11y apps based on explicit

user intention used as sources for a11y actions [5].

Limitations. Although DVa can be extended to adapt to new

abuse vectors, it still relies on the modeling of explicit

functionalities defined by a11y APIs. That said, DVa will fail

to detect abuse that relies on side-channel exploitation of

a11y APIs. Additionally, although DVa optimizes its

symbolic exploration strategy based on abuse vectors, path

explosion and unsolvable constraints are still possible when

malware adopts overly complex a11y event handlers, as seen

in the Anubis samples in §4.3. Since DVa relies on dynamic

analysis, malware can deploy new evasion techniques and

time-sensitive behaviors to hinder the analysis. Although not

observed in §4.3, malware could implement stringent

runtime checks to find a very rare a11y event. Since DVa can

only reconstruct a finite set of a11y events in dynamic

analysis, DVa will miss detecting malware capabilities if they

do so. If this happens, DVa’s victim model can be extended

to incorporate these a11y events.

Implementation Alternatives. While designing DVa, we

considered alternative methods to implement victim

detection. Fuzzing could be used to enumerate victim apps’

properties. However, fuzzing would generate many a11y

events that do not make sense in the context of any real

victim app and risk alerting the malware of our analysis.

Honeypots could be deployed to mimic the dynamic traits of

victim apps and record abuse behaviors. However, honeypots

passively execute malware, which would not drive the

malware’s execution through victim-generated a11y events.

DVa’s victim-guided dynamic analysis resolves both of these

challenges by actively generating a11y events in the context

of real victim apps’ behaviors.

Future of Android’s a11y Malware. Although Android 14

allows developers to restrict a11y information delivered to

unvetted a11y services by checking the A11Y_TOOL flag [50],

we expect future malware to subvert its vetting process. Since

the process is manual and conducted at Google Play Store’s

submission stage, malware can still infiltrate the store by

loading malicious code dynamically or through app updates

just as it did before [21], [51].

Developer’s Defense. App developers can choose not to

broadcast a11y events if untrusted a11y services are found on

a user’s device [52]. However, this sacrifices the usability of

the app because legitimate a11y services would also be

blocked. The Coinbase app [53] adopted an out-of-band a11y

verification that malware could not intercept: It displays a

view that a11y cannot interact with, instructing users to

shake the device to approve the use of an untrusted a11y

service. Another approach is to protect an app’s GUI in a

more fine-grained manner. Specifically, wrap only the

minimal views containing sensitive information with a11y

delegates [54] to customize their exposed a11y events and

declare a11yDataSensitive on views so that untrusted

a11y services cannot interact with them.

8 Related Work

Benign Misuse of a11y Service. Benign services such as

antivirus engines [45] and utility apps [7] can abuse the a11y

service to automate legitimate tasks. Multiple works have

focused on evaluating the misuse of the a11y service. Chen et

al. [12] proposed dynamic analysis to automatically extract

a11y issues while traversing the Android apps. Salehnamadi

et al. [13] proposed Latte to automatically assess the

functional correctness of an app’s a11y features. Naseri et

al. [14] conducted a study on how a11y functionalities are

misused commonly by Android apps. Unlike detecting and

analyzing benign misuse of the a11y service, focuses on

dissecting malicious use of a11y to target victim apps.

Attacks on a11y Service. The a11y service provides

malware with a unique surface [47] to launch phishing

attacks [55] and make them more evasive [56]. Multiple

works also focus on proposing PoC attacks that exploit the

a11y service [9], [48]. Lei et al. [57] exposed a side channel

of using consecutive content queries to guess passwords

through a11y service. Mehralian et al. [58] exposed

information leakage through overly accessible elements in

Android’s a11y service. Jang et al. [8] evaluated the a11y

support for four operating systems and identified 12 attacks

on them. Fratantonio et al. [10] uncovered an attack that can
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control the UI feedback of an Android device should the

malware be granted both the SYSTEM_ALERT_WINDOW and

a11y permissions. Motivated by these attacks, DVa focuses

on understanding a11y abuse conducted by real malware and

the victims they target.

Mobile Banking Security. E-banking fraud [59]–[61] and

attacks [62]–[65] have led to huge financial losses worldwide.

Mobile banking apps are vulnerable to malware attacks [66],

[67]. Multiple works focus on evaluating the security

measures imposed by these apps [68], [69]. Chen et al. [70]

exposed weaknesses in mobile banking apps’ sensitive data

storage and transmission, confirming their proneness to being

targeted by malware, as illustrated by DVa. Botacin et

al. [46] evaluated the security flaws of Brazilian mobile

banking apps, uncovering their susceptibility to UI and

a11y-based attacks. Corroborating the security flaws in

mobile banking apps, DVa contributes to this field of

research by detecting a11y abuse vectors exploiting real

victim banking apps targeted by mobile a11y malware.

Defenses Against a11y Abuse. Defenses have been

proposed to restrict malicious usage of the a11y service [71],

[72]. Fernandes et al. [6] proposed data-flow restriction on

Android apps that only allows declared data-flow patterns by

users while blocking all other undeclared flows. Huang et

al. [5] introduced a more fine-grained sandbox design across

the a11y service lifecycle that uses least-privileged data-flow

constraints to secure the Android a11y service. §6.3 shows

how existing defenses are ineffective in eliminating all a11y

malware abuse – motivating the need for malware analysis

techniques like DVa.

Malware Analysis. Some works use taint analysis [73], [74],

API trace analysis [75]–[79], and network traffic

analysis [80]–[82] to reveal malware behaviors. However, to

attribute a11y attack vectors, DVa uses symbolic

analysis [83]–[86] to match the constraints of a11y behaviors

to their targets. Inspired by forced execution [87]–[89], DVa

uses victim modeling to guide the execution of malware and

loading of victim-specific abuse payloads.

9 Conclusion

We introduced DVa, a malware analysis pipeline to notify

users and victims of a11y abuse vectors. Using DVa, we

conducted analysis for 9,850 malware samples extracted

from Google Pixel devices to uncover 215 victim apps that

were abused with an average of 13.9 abuse vectors and six

categories of persistence mechanisms empowered by a11y.
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A Prerequisites for Analysis

DVa initiates the investigation by pulling a list of registered

a11y services from the user’s device using the a11y manager

API and matching it with the identified malware’s a11y

service name. For each identified a11y service, DVa then

finds the package it belongs to and extracts its base APK file

from the user’s internal app-data storage directory. During

our extraction, we encountered multiple families of malware

with anti-static and anti-dynamic techniques to thwart

analysis. Here, we briefly describe strategies DVa adopts to

bypass them.

A.1 Packed Malware and Dynamic Code

Loading (DCL)

Malware heavily relies on packers to hide static malicious

payloads by decrypting and loading them only after the

application is loaded on a device. Some malicious payloads

are loaded only after dynamic environment checks. To

accurately collect all malicious payloads for static analysis,

DVa deploys dynamic hooks to class loaders and utilize code

reflection to locate and dump them. For each direct and

indirect subclasses of ClassLoader, such as

BaseDexClassLoader, PathClassLoader, etc., DVa

deploys dynamic hooks on the loadClass API to capture

every DCL attempt. Before the control logic is handed back

to the routine, DVa intercepts the ClassLoader parameter

and uses reflection to gather the path lists, dex elements, dex

files being loaded, and the paths of the loaded files. DVa then

copies the loaded files from the path in malware’s internal

storage, unzips them if necessary, and collects the final dex

payload. After bypassing dynamic victim checks, DVa

gathers all dumped payloads, eliminates duplicated ones,

zips, and signs them into an APK for static analysis.

A.2 Anti-Dynamic Techniques

To avoid detection, malware also halts malicious code

execution when it detects dynamic environment traces that

suggest they are being analyzed. We observed multiple

techniques such as emulator detection and side-channel

inference on dynamic analysis framework artifacts used to

hinder analysis. We reverse-engineered a11y malware from

major families and deployed the following counteractions.

DVa circumvents them first by running dynamic analysis on

real Android devices. To counter side-channel inferences

when malware infers the existence of a dynamic analysis

framework by differentiating exception types when querying

their class loaders, DVa applies dynamic hooks and directly

throws ClassNotFoundException. Similarly, to counter

malware from querying the existence of artifacts used by

dynamic analysis frameworks in the file system, DVa applies

dynamic hooks to file IO APIs and throws

FileNotFoundException when detecting such queries.
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