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Abstract

The Android accessibility (ally) service is widely abused by
malware to conduct on-device monetization fraud. Existing
mitigation techniques focus on malware detection but
overlook providing users evidence of abuses that have
already occurred and notifying victims to facilitate defenses.
We developed DVa, a malware analysis pipeline based on
dynamic victim-guided execution and abuse-vector-guided
symbolic analysis, to help investigators uncover ally
malware’s targeted victims, victim-specific abuse vectors,
and persistence mechanisms. We deployed DVa to investigate
Android devices infected with 9,850 ally malware. From the
extractions, DVa uncovered 215 unique victims targeted with
an average of 13.9 abuse routines. DVa also extracted six
persistence mechanisms empowered by the al 1y service.

1 Introduction

Android’s accessibility service [1], called ally, provides
extensive utilities to assist users in better navigating their
phones. It stands as an exception to Android’s app-isolated
sandbox design in the sense that it grants ally apps the
ability to examine and navigate foreground graphical user

interface (GUI) screens of other apps or the Android OS.

These powerful capabilities are thus widely abused by
malware to conduct more intrusive attacks on user-controlled
information and services [2], [3]. In fact, these capabilities
enable malware to conduct on-device fraud [4] and simplify
traditional account takeover practices (e.g., ransomware,
RAT). Because of ally malware’s powerful capabilities,
traditional malware mitigation techniques that merely detect
and delete malware are inadequate. Users of compromised
devices need to know what damage could have occurred
during the infection to facilitate restitution. In addition, the
developers of victim apps need to know how they are
targeted to proactively deploy defenses.

*Co-corresponding author.

Regarding ally security, several works have proposed
data-flow restraints [5], [6] to counteract the
proof-of-concept (PoC) attacks [7]-[10]. However, our
research revealed (§6.3) that modern al 1y malware can still
evade the most recent Android security patch [11] and
state-of-the-art (SOTA) data-flow constraint defense [5].
Techniques also have been proposed to identify the misuse of
ally service in benign apps [7], [12]-[14]. However, without
considering the targets of these misuses, an investigator will
fall short of understanding their in-context abuse vectors
because generic ally service routines can mean drastically
different things in different contexts. A malware analysis
technique that provides proof of abuse capabilities to the
device owner and alerts targeted apps of the abuse vectors to
aid proactive defense remains an unresolved matter.

To achieve these capabilities, the existing malware
detection engine (e.g., Google Play Protect) needs to send
detected malware to the backend, accurately dissect the
malware’s al ly abuse vectors, and send the targeted victim
and abuse vector report to the device user and the developers
of affected victim apps. Unfortunately, such a technique is
very challenging to implement. Malware may not perform
abuse vectors without certain conditions (e.g., the absence of
victim apps), making it difficult for investigators to examine
the abuse intentions. As such, the abuse report that the device
user receives must be specific to the victim apps installed on
the user’s device. Compounding this issue, modern ally
malware complicates victim identification by dynamically
loading the abuse routines and encoding the targeted app
names. As a result, it remains largely impossible for
investigators to identify all targeted victim apps and alert
them to the discovered abuse techniques specific to each app.

During our research, we found that ally malware relied
on Android APIs and broadcast ally events to probe the
information of the installed apps on the user’s device. This
gives investigators an opportunity to mimic the presence of
the target victim apps and drive the execution in an isolated
environment without modifying the victim’s device. After
ally malware probes the information of the installed app, it
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Victim App Android OS ally Attacker

1 public class malwareAllyService extends AllyService{

@ ally Service * 2 @override
@ . D‘ and Callbacks 3 public void onAllyEvent (AllyEvent e) {
. <€ 4 // parse ally event properties
Button Clicked 5 int type = e.getEventType();
Focus Changed 6 CharSequence name = e.getPackageName();
...... . 7 e
l : 8 // parse the ally node structures
@ ally_Evcm with @ ally Event to 9 AllyNodeInfo node = e.getRecord().getSource();
g GUI Node Hlerarchy ‘r‘ Registered Callbacks 10 // malicious code to record GUI states
Generated with ” > ally Event 11 CharSequence nodeText = node.getText();
View's Hierarchy 12 nodeText .sendToCnC();
" . . 13 R
- .. 14 // malicious code to manipulate GUI screen
) GUI Change @ GUI @ Sensitive 15 node.performAction(ACTION_CLICK);
_ in the Victim App < Info to C&C Server 16 .
< il 17 3
18 }
(a) Steps an ally attacker uses to illicitly interact with a victim app. (b) Sample malware ally event handling logic.

Figure 1: Overview of malware workflow to abuse the Android al ly service. Steps used to parse and manipulate a victim app’s
GUI by an al ly service registered by an attacker is shown in (a). The al ly attacker’s actions are highlighted in red. A sample

implementation logic of the malicious ally service to achieve the

would choose to load the dynamic ally abuse routines
accordingly. Such trigger-based behaviors allow the
investigators to attribute the ally abuse routines to the
trigger — specific victim apps. Attackers have infinite ways
to implement each ally abuse routine. However, these
routines still rely on the ally APIs exposed by the Android
system. This enables investigators to uncover the abuse
vectors by evaluating its ally action sequences. These abuse
vectors can be reported to all corresponding victim apps to
enable blocking or mitigation. Lastly, by comparing the
attributed abuse vectors with the installed apps on the
victim’s device, the investigators can inform the device users
of their targeted apps and the damage they may face.

We developed DVa', a malware analysis pipeline to
uncover al ly malware’s targeted victims and victim-specific
abuse vectors. It can operate as a backend malware analysis
service for Google Play Protect, activated when an ally
malware is detected on the user’s device. With the malware
APK, DVa adopts a novel lightweight victim modeling and
reconstruction approach to guide malware to reveal its
targeted victims (§3.1). Using dynamic execution traces, DVa
further utilizes an abuse-vector-guided symbolic execution
strategy to identify and attribute abuse routines to
victims (§3.2). Finally, DVa detects ally-empowered
persistence mechanisms (§3.3) to understand how malware
obstructs legal queries or removal attempts.

Using DVa, we conducted investigations of five Google
Pixel 3 devices infected with 9,850 malware samples
collected from VirusTotal [15] that request al 1y permissions
from August 2022 to December 2022. DVa uncovered 215
unique victim apps across seven categories abused by 4,291
ally malware samples. DVa found that Banking and Crypto
apps are the most popular targets abused by 3,579 and 1,130
malware samples across 55 and 23 families, respectively.
DVa also detected an average adoption of 13.9 unique abuse

'Detector of Victim-specific al ly abuse

abuse illustrated in (a) is shown in (b).

routines targeting custom Uls of each victim app with an
average of 21.1 illicit ally API calls. To persist on user
devices, DVa uncovered that malware adopts six persistence
mechanisms empowered by ally. The most abused
mechanism is Permission Revocation Prevention, exploited
by 92% of malware. Lastly, we have made DVa available at:
https://github.com/CyFI-Lab-Public/DVa.

2  Overview

Android apps’ GUI contains substantial user-controlled
sensitive information [16], [17]. Although the Android ally
service is designed to help users better interact with their
devices, its ability to peek into the on-screen element
hierarchy and to simulate user interactions provides a new
perspective of malware to abuse victims.

2.1 Abusing Android ally Service

Malware uses the eight steps shown as circled numbers
in Figure la to illegally acquire sensitive information or
conduct malicious GUI actions. First, the malware registers
an ally service to the Android system that can retrieve
changes in window contents, as shown in (D. After the user
confirms the binding of the service, whenever something
notable [18] happens in the GUI such as when a window
changes, a button is clicked, a textbox is focused, etc. (Step
D), the View element in which the change occurred fires an
ally event to the system, as shown in Step B). The
relationship between the View and other elements in the GUI
is represented as a GUI tree data structure, as illustrated in
the tree in the blue box of Figure 1a. The ally event contains
properties of the changed View, together with the node
hierarchy of the GUI tree the View resides in. These
properties of the changed View and its relationship with other
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1 public class cerberusAllyService extends AllyService{

2 @override

3 protected void onServiceConnected() {

4 // hash encoded new targeting victims

5 List<String> newVictimHashes = secretDict.getNewVictimHashes();
6 for (PackageInfo pi : pm.getInstalledPackages()) {

7 // check existence and validity of targeting victims
8 if (newVictimHashes.contains(pi.packageName.hash())) {
9 if (pm.getLaunchIntentForPackage(pi.packageName).isvalid()) {
10 e

11 // load tailored new ally attack code from CnC
12 requestNewPayload(pi.packageName.hash());

13 classLoader.loadClass(newPayload);

14 }

15 3

16 3 New DCL ally
17 } Abuse Code
18 @override

19 public void onAllyEvent (AllyEvent e) {

20 // existing victims

21 List<String> victims = getVictimPackageNames();

22 if (victims.contains(e.getPackageName())) {

23 // existing overlay attack code to steal credentials
24 loadoOverlay();

25 keyLog();

26 ‘e

27

28 // new code targeting chime mobile banking app

29 if (e.getPackageName().hash() == newvictimHashes[0]) {

30 // new ally automatic transaction attack routine

31 if (e.checkGUIState() == homePage) {

32 findAndClickTransferPageButton();

33 findAndFillTransactionTarget();

34 [N

35 findAndClickTransfer();

36

37

38 // additional routines targeting 11 more victims

39

40 h

41}

Figure 2: Dynamically loaded automatic transaction abuse
routine targeting the Chime banking app extracted by DVa.

elements are represented as an al Iy node info data structure,
as shown in the blue circle inside the tree.

After the Android OS receives an al Iy event, it dispatches
the event to all registered al 1y services that listen for such an
event through a callback, as shown in step @. The callback is
handled by a declared onAllyEvent handler in the
malware’s registered ally service. A sample ally event
handler is illustrated in Figure Ib. This handler can then
parse the ally event (Lines 4-9 Figure 1b, ® Figure la),
steal information fetched from the event (Lines
10-13 Figure 1b, ® Figure 1a), and subsequently manipulate
the GUI according to the GUI node hierarchy contained in
the event (Lines 14-16 Figure 1b, @ ® Figure 1a). The GUI
manipulation is realized by issuing ally actions that can
mimic user interactions such as pressing a button, scrolling
the screen, inputting text, etc. It can also be realized by
sending ally global actions to simulate global controls such
as returning to the home screen, locking the screen, etc.

2.2 Uncovering 0-Day Abuse Evidence from
ally Malware

DVa’s benefit over standard malware analysis techniques is
that it dynamically models victim-specific al ly information
that malware is probing for. With DVa, an investigator will
have access to exclusive live interaction between the malware
and this ally information. In fact, lacking this evidence,
traditional techniques are incapable of fully extracting

malware’s targeted victims and abuse vectors.

Consider the Cerberus malware studied extensively by
malware analysts. Based on DVa’s analysis of a Google Pixel
3 device infected with the Cerberus malware?, DVa
discovered a previously unknown automatic transaction
abuse vector targeting 12 new victims.

Existing Malware Analysis Reports. Cerberus is widely
considered to be a RAT targeting multiple banking, utility,
and social media apps, capable of stealing users’
credentials [19], [20]. Lines 20-27 of Figure 2 show the
existing credential stealer abuse capabilities targeting
financial institutions. When Cerberus receives an al ly event,
it compares the source of the event with a hard-coded victim
package name. If the source matches with a targeted victim,
the malware then receives and loads overlay screen resources
tailored to attack identified victim apps (Line 24). The
onAllyEvent handler will also trigger text logging
capabilities after loading the overlay screens to illicitly
acquire users’ credentials (Line 25). DVa’s analysis also
revealed all 89 targeted victims with the credential stealer
abuse found by industry reports.

DVa’s Malware Analysis Discovery. In addition, DVa
uncovered 0-day dynamically loaded automatic transaction
abuse routines targeting 12 additional victims, as shown in
the highlighted red box of Figure 2. Lines 3-9 of Figure 2
show the victim discovery routines that lead to the loading of
new abuse code. When the ally service is connected,
Cerberus dynamically queries packages installed on the
device and compares them with a secret dictionary of hashes
of the new victims’ package names. When a package
matches, it then executes multiple verification routines such
as getLaunchIntentForPackage (), getPackageInfo(),
and getInstallSourcelInfo () to determine the validity of
the victim app states. Only when all victim states are verified
will Cerberus proceed to request and load tailored abuse code
targeting the victim, as shown in Lines 11-13 of Figure 2.
Investigators without DVa may notice these routines
statically, but they cannot decode the victim hash in Line 8 to
understand the conditions for triggering dynamic code
loading. To overcome this, DVa creates a lightweight
victim-information model that mimics benign apps’ static
characteristics and dynamic behaviors of 37K unique popular
apps. With access to this model, DVa then remodels all
interface functions the malware relies on to acquire victim
states such as package query APIs, package installation states
APIs, ally event queries, etc. to mimic the live interactions
as if all 37K benign apps are present on the user’s device.
Through this modeling, DVa guides Cerberus to execute the
whole victim parsing routine and trigger dynamic code
loading. DVa then extracts the secret victim package names
that matched Cerberus’s hash dictionary. DVa found the
Chime mobile banking app’s package name

2MD5: 9236f4009503b4216¢6773741b9d8ecO
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(com.onedebit.chime) along with 11 other package names,
thus confirming Cerberus’s undiscovered victim targets.
With the dynamically loaded abuse routines, DVa also
revealed the code containing the newly discovered automatic
transaction capability. Lines 28-37 show an example of the
capability targeting the Chime mobile banking app. However,
even when faced with such routines, a traditional malware
analysis technique is unable to attribute the capability to its
targeted victim because the trigger conditions of those
routines are unknown. Symbolic execution into the entire app
at this point will lead to state explosion. DVa uses a novel
abuse-vector-guided symbolic analysis to extract routines
listed in Lines 32-35 of Figure 2. After solving the symbolic
constraints, DVa determines that these routines all depend on
the value of the al 1y event package name and its GUI state,

whose symbolic value assignment occurs in Lines 29 and 31.

DVa solves the symbolic hash constraint in Line 29 to derive
a concrete hash value. DVa then matches this hash value with
a hash observed in the dynamic execution traces and reports

the plaintext victim package name that generated the hash.

As such, DVa attributes Lines 32-35 to the Chime mobile
banking app that the malware targets. Finally, by modeling
the ally API invocation sequences in Lines 32-35 in the
context of the victim target’s GUI screen, DVa reveals that
each one is capable of navigating to the transactions page,
selecting the transaction targets, filling the transaction
amount, and sending the transaction requests, etc.

2.3 Threat Model

DVa’s goal is to identify the victims targeted by ally
malware and attribute al 1y abuse vectors to each victim. We
assume the user’s Android device is infected with malware
that requests the ally permission and the user has already
granted the requested permissions. This is reasonable
because al ly malware has been infiltrating the Google Play
Store [21] and can trick users into granting ally
permissions [22]. DVa’s scope of abuse vector detection
covers malware actions conducted by ally APIs and
targeting specific victim apps. That said, malware actions
that complement al ly abuse but are conducted without ally
APIs (e.g., displaying overlay  screens with

SYSTEM_ALERT_WINDOW) are not considered by DVa.

Additionally, al 1y actions that do not have a specific targeted
victim app (such as recording screenshots with a fixed
interval and recording keystrokes whenever there is keyboard
input) are outside the scope of DVa.

3 Methodology

DVa is a backend service that conducts analysis on ally
malware detected by an on-device AV engine (e.g., Google
Play Protect). DVa takes the malware APK in the user-data

disk of an Android device from adb [23] as input’. DVa pulls
the list of installed applications from adb as victim app
candidates on the device. DVa requires no prior knowledge of
malicious ally apps. For each ally malware sample, DVa
outputs its targeted victim apps, victim-specific al ly abuse
vectors, and persistence mechanisms enabled by ally.

3.1 Victim Detection

The first goal of DVa is to identify victim apps on users’
devices that might have already been abused, as well as
potential victim apps that can be abused. However,
identifying all possible victims is not as easy as it seems. To
evade the security vetting system of the application stores,
ally malware dynamically loads payloads locally or fetched
from C&C servers during runtime. Specifically, the most
advanced ally malware loads attack payloads only after
scanning installed apps on victim devices, checking victim
app configurations, and receiving acknowledgments from
C&C servers [24]. This dynamic loading practice could
easily make static analysis ineffective since the payload is
not available at the time of the investigation. Worse still, even
if the payload is available, the wide adoption of victim
information encoding and encryption schemes makes
decoding them statically challenging. While dynamic
analysis with a SOTA sandbox can fake certain
environmental parameters and statuses in system API calls, it
cannot generate customized data structures such as ally
events that malware is checking for.

To overcome these challenges, DVa uses dynamic hooks
to mimic the existence of both targeted victims apps (§3.1.1)
and their generated al ly events (§3.1.2).

3.1.1 Dynamic Victim-Guided Execution

DVa first must be able to intervene with malware’s victim-
probing process and guide it to believe that the victims are
present and valid. On Android, the access points to scan the
status of installed apps are the package manager APIs [25].
Algorithm | presents DVa’s strategy to model victim query
APIs. DVa keeps a predetermined victim database (IT)
containing each victim app’s traits and properties. The victim
candidates are collected by querying the top-25 Android apps
in 34 categories across 92 countries from market intelligence
platforms AppBrain [26] and SensorTower [27]. Currently,
the database contains 37K unique Android packages. As
shown in Lines 2-28 of Algorithm 1, for each package
manager API, DVa applies a dynamic hook and models it to
return customized information containing legitimate victim
information. If the query is generic, DVa returns the handle
to the system’s default handler, as shown in Lines 5-7. If the
hooked API queries the information of a single (specific)

3In a real-world scenario, Google Play Protect can use its internal
extraction method to obtain the malware APK.
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Algorithm 1: DVa’s victim query modeling.

// Victim model, Il; is model of a single victim

// Model all Android packageManager APIs, override
before-method handler
2 @Override
3 Function Object beforePmMethod():

4 switch pm do
// BAPI queries Generic info
5 case G do
// Use default system handler
6 return;
7 end

// BAPI queries Individual package info
8 case / do
// Model of a single victim app

9 I1, = Il.get(pm.param.packageName);
10 R =new pm.returnType;
// Pierce back custom victim fields
11 for field € pm.returnType do
12 a=TIl,.get(field);
13 R.set(a);
14 end
15 R.pad();
16 return R;
17 end

// BAPI queries Collective info of packages

18 case C do

19 R =new pm.returnType;

// Pierce back custom victim field from
many victim apps

20 for package € pm.param.packageNames do
21 I1, = I.get (package);

2 field =T11,.get(pm.returnType);

23 R.set(package, field);

24 end

25 R.pad();

26 return R;

27 end

28 end

29 end

package (e.g., App X), DVa looks up the associated victim
model I1,. DVa then pierces all fields required in the API
return value from I, and returns the custom value (Lines
8-17) such as package name, app icon, package install time,
package launch intent, etc. Similarly, when the hooked API
queries collective information of several packages (e.g., Apps
A, B ... N), DVa obtains the required fields from each victim

model Iy, ITp...ITy, and pierces them together (Lines 18-27).

By returning the device status that malware is looking for,
DVa tricks it into believing that its target victims, together
with their traits, exist and are valid. DVa is also able to
handle general anti-dynamic-analysis techniques equipped by
the malware (detailed in Appendix A).

3.1.2 Mimicking Victim ally Events

For advanced malware that eavesdrops on device window
states and launches victim-specific attacks only after the user

Algorithm 2: DVa’s large-scale triggers of victim
ally events.

// Trigger startup events for each victim model
1 for I, € I1do

2 ae = allyEvent .obtain();
// Mimics an app startup event
3 ae.setEventType(WINDOW_STATE_CHANGED);
// Pierce together ally event with victim model
4 for field € allyEvent do
5 yriera = y.get(field);
6 ae.set(TyFiela);
7 end
// Broadcast victim ally event to the malware
8 am = getSystemService(Context.al lyService);
9 am.sendA11yEvent(ae);
10 end

instantiates the victim app, DVa needs to automatically fire
victim app ally events on a large scale to trigger the
malware’s victim-specific attack routines.

Algorithm 2 presents DVa’s strategy for triggering victim
ally events on a large scale. For each victim model IL; in the
victim database I'1, DVa obtains a default al 1y event. DVa then
lets the event mimic the change in the foreground GUI when
a user first opens up the victim app by setting the event’s type
to WINDOW_STATE_CHANGED. For each field in the ally event,
DVa queries the victim model IT, and populates the ally
event with the acquired custom victim trait, as shown in Lines
4-7 of Algorithm 2. The fields populated in the event contain
key information that represents the GUI screen during the
initiation of a victim app such as event time, content change
type, view locations, view content, etc. DVa then acquires the
system al ly manager and broadcasts the customized ally
event, as shown in Lines 8-9. This tricks malware to believe
that a victim app is open and loads targeted abuse routines.

With DVa’s capability of mimicking victim existence and
triggering victim ally events on a large scale, investigators
can now notify users of victim apps targeted on their device
as well as notify developers of additional malware targets.

3.2 Abuse Vector Detection

After identifying the targets of al 1y malware, DVa next finds
unique abuse vectors empowered by the ally service.
However, detecting abuse vectors from the dynamic
victim-guided execution is challenging. Specifically, the ally
event structures, embedded with trees of GUI elements that
malware looks for, are enormous considering all victim apps.

3.2.1 ally Capabilities

To accurately model the abuse vectors, we first systematically
categorize the capabilities of ally APIs according to the
official ally API doc [1], [18], [28]. Since an ally abuse
relies on the Android ally service, the malware has to use
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Table 1: Ally capabilities, generic al 1y techniques, and al ly-empowered abuse vectors in the context of victim apps.

ally Capabilities'

Sample APIs or Identifiers

allyService

GlobalAction performGlobalAction (), dispatchGesture (), findFocus (), takeScreenshot (), takeScreenshotOfWindow ()

allyEvent

QuerySourceNode getSource (), getPackageName (), getRecord ()

QueryViewChange TYPE_VIEW_CLICKED, TYPE_VIEW_SELECTED, TYPE_VIEW_TEXT_CHANGED, TYPE_VIEW_ TEXT_SELECTION_CHANGED

QueryWindowChange TYPE_WINDOW_STATE_CHANGED, TYPE_WINDOW_CONTENT_CHANGED, TYPE_WINDOWS_CHANGED

QueryNotiChange TYPE_NOTIFICATION_STATE_CHANGED

OtherQueries TYPE_VIEW_HOVER_ENTER, TYPE_TOUCH_INTERACTION_START, TYPE_ANNOUNCEMENT, TYPE_SPEECH_STATE_CHANGE

allyNodelInfo

QueryNodelnfo findAllyNodeInfoByText (), getBoundsInScreen (), getText (), getPackageName (), isPassword ()

NodeAction performAction ()

ally Techniques Action Models

Read

l-Evdeext2 QueryWindowChange — QuerySourceNode — QueryNodeInfo (Text)

EvdpClick QueryViewChange — QuerySourceNode — QueryNodeInfo (ViewProperties)

EvdpGesture QueryGestureDetection

ScreenLog QueryWindowChange — QuerySourceNode — QueryNodeInfo (Text) Il GlobalAction (Screenshot) —
FileWrite Il DBWrite Il InternetSend

Inject

FillText NodeAction (FillText)

lnjClick3 NodeAction (Click) Il GlobalAction (Back/Home)

InjGesture GlobalAction (Gesture)

Abuse Vectors Technique Models

Auto Transaction
Steal Credentials
Steal Auth. Code

QueryWindowChange (FinancialStackTrace) <> Screenlog && InjClick Il ScreenLog && FillText
QueryWindowChange (LoginScreen) — ScreenLog Il EvdpText
GetLaunchIntent (Auth./SMS) — SendIntent — EvdpText Il ScreenLog

Hide/Delete Noti. QueryNotiChange — InjClick && InjGesture
USSD Code GetLaunchIntent (Phone) — SendIntent — ScreenLog — InjClick
Fake Calls QueryWindowChange (Phone) — EvdpText && InjClick — LaunchActivity

Ransom Screen

QueryWindowChange Il EvdpClick ¢+ InjClick Il LaunchActivity

1: Excluding APISs that are default callbacks, used to construct objects, acquire handles, and misc APIs.

2: Eavesdrop Text. 3: Inject Click.

capabilities provided by the service [1], the allyEvent [18]
dispatched to the service, or the allyNodeInfo [28]
embedded within the allyEvent. The ally capabilities
section in Table 1 shows the categorization of official APIs
based on their purpose supplemented by sample APIs or
identifiers within the categories. For example in Row 5
of Table 1, for an app to query the information of an
on-screen element, it has to use APIs provided by the
allyEvent class that can query the source nodes, such as
getSource () or getPackageName (). Similarly, for an app
to click on an on-screen element on behalf of the user, it has
to rely on node action API performAction () supplemented
by the click action provided by the allyNodeInfo class, as
shown in Row 12 of Table 1. DVa uses these ally
capabilities as basic blocks for modeling ally behaviors.

3.2.2 ally Techniques

Next, DVa models the generic techniques an app can achieve
using the above capabilities. Since an ally service receives
an event whenever notable changes occurred in the GUI [18],
it can read the event to understand what changes occurred.
Based on this knowledge, the service can then inject inputs on

behalf of the user to conduct actions based on the conditions
of the GUI change. A11y Techniques section in Table 1 shows
the techniques that can either read screen changes or inject
input and their action models.

To detect these techniques, given malware’s ally event
handler, DVa uses it as the entry point to build a static Call-
Graph (CG). Within the CG build, DVa sets the sink functions
as the last action function in any of the techniques. For each
sink function marked, DVa then queries its caller methods in
the CG until it finds the ally event handler or reaches the top
parent. DVa then selects the call sequences that originate from
the al ly event handler as candidates and constructs Control-
Flow-Graphs (CFG) for each function within the call chain
using the built-in CFG constructor in Soot [29].

To confirm the complete action model and to resolve
parameters of action APIs to concretize actions, DVa starts
symbolic execution from the entry point along each CFG.
DVa first marks the input al Iy event parameter as symbolic.
Whenever DVa encounters an unseen variable, it introduces a
new symbolic label. If any part of the variable is reassigned,
DVa propagates the label and marks the new variable as
symbolic. When encountering branches, DVa duplicates the
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Table 2: Malware’s al 1y-empowered persistence mechanisms, their triggering conditions, and their ally behaviors.

Persistence Mechanisms Triggers

Behaviors

Disable Device Protection

Prevent Info Lookup / Uninstall
Prevent ally Permission Revocation
Escalating Privileges

Uninstall Other Apps

Disable Power Options

ally Settings Screen

Power Options Dialog

Security Settings Screen
App Detail Setting Screen

ally Permission Granted
Uninstall Package Setting(w/ Permission)

Back / Return Home

Back / Return Home

Back / Return Home

Permission Screen with Screen Navigation
Screen Navigation

Back / Return Home

symbolic label, continues execution, and records along both
directions. DVa ends the traversal along a path when it
successfully reaches the targeted sink APIs that it is
searching for, or when it encounters new functions not in the
marked call chains, indicating an irrelevant path. After
completing traversal along all call paths, DVa checks the
validity of each call path by confirming the symbolic labels’
existence in each intermediate routine. It also concretizes
sink APIs to exact actions by matching the value of the
symbolic parameters in the APIs back to their original value.
For example, DVa confirms a path to contain the InjClick
technique when the parameter of the node action resolves to
the identifier of ACTION_CLICK instead of other actions.

3.2.3 Victim-Specific Abuse Vectors

Preliminary Study. Next, DVa resolves the action models in
the context of the victim app to detect abuse vectors of ally
malware. We started by searching for reports of al 1y malware
published between 2017 and 2022 (reviewing and cataloging
results from the Google search query: Android accessibility
malware) [2]-[4], [19], [20], [30]-[39]. We also queried in
VirusTotal [15] and manually investigated all 43 unique ally
malware appended in the above reports and found the seven
abuse vectors, as listed in Table 1.
Dynamic Victim Stack Trace. DVa first searches for any
routines that examine the state of an ally event in the
previously detected ally techniques action models that
match with any dynamic victim detection stack traces. A
match implies that the following technique is specifically
targeting the victim detected in the dynamic victim-guided
execution. For example, as shown in Row 24 of Table I,
when a QueryWindowChange call of a detected ScreenLog
and consecutive InjClick or FillText technique has a
matching stack trace from a financial victim app up until the
call, DVa marks the trace to be an Auto Transaction abuse
vector and attributes it to the specific financial victim app.
To match additional abuse vectors to the victim app, DVa
compares the concretized parameter solved in symbolic
constraints of the al 1y event query APIs against other such
APIs from all detected abuse vector call sequences. If the
same value is resolved in another call, DVa confirms that it
also constitutes the abuse routine against the same victim.
Other Victim Hints. DVa also looks for other call sequences
before or after ally techniques to infer victim abuse vectors.

DVa scans the marked technique call sequences for intent
crafting and firing functions and uses the resolved symbolic
value in the parameters to infer victims. For example, when
DVa detects that before invocations to EvdpText or
ScreenLog in a call sequence, an activity launch intent is
concretized to the Google Authenticator’s package name, it is
marked with the Steal Authentication Code abuse vector.
With DVa’s ability to model al ly-specific abuse vectors
and match dynamic victim traces, an investigator can attribute
the abuse vectors to each previously detected victim and notify
users and victim app developers of victim-specific assets and
behaviors targeted by al ly malware.
Extendability of DVa. We designed DVa to be modular and
extendable to detect new abuse vectors. When a new
malware emerges with novel techniques or abuse vectors, the
investigator can easily extend DVa by (1) adding the abuse
vector’s sink API into DVa’s sink list and (2) adding the new
action sequence in DVa’s symbolic model.

3.3 Persistence Mechanism Detection

Aside from abusing victims, ally malware modifies the
user’s interaction with system settings to persist for as long
as possible on user devices. DVa next detects how malware
utilizes ally service to do so and notify users about possible
changes to system settings. To achieve this, DVa invokes the
triggers of persistence mechanisms that malware looks for
and deploys dynamic hooks to capture their ally responses.
Triggers to ally Behaviors. Table 2 Column 1 lists the
mechanisms empowered by ally service malware use to
persist on user devices. Since malware tries to adopt them as
early as possible after installation and acquiring ally
permissions, DVa tries to match the triggering conditions
listed in Table 2 Column 2 for each of the mechanisms,
satisfy them, and trigger them to observe malware’s reactions
to them. For example, to examine if malware prevents a user
from looking up its information and uninstalling it, DVa
crafts an intent to open the app detail menu of the malware in
Settings and sends it to navigate to the screen; to examine if
malware prevents users from powering off or restarting the
device, DVa sends an action to open the device power options
dialog. A similar strategy is adopted to trigger other
mechanisms listed, except for when testing for escalation of
privileges, in which case DVa dumps the malware’s runtime
permissions and device admin apps when the foreground
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Table 3: Validation of the victims, abuse vectors, and persistence mechanisms detected by DVa together with AVClass2 labels of

the top-10 al 1y malware families.

D#  Family # Victims # Vectors # P Mechs.’ AVClass2 CLASS & BEH Labels
GT D> TP EN|GT D TP FP FN|GT D TP FP FN

1 Spynote 13 11 11 2 6 6 6 0 0 6 6 6 0 0 | spyware
2 Hqgwar 5 5 5 0 7 7 7 0 0 4 4 4 0 0 | execdownload, infosteal, bankbot, grayware
3 Bianlian 20 20 20 0 5 5 5 0 0 6 6 6 0 0 | execdownload, infosteal, bankbot
4 Spymax 17 17 17 0 7 7 6 1 0 7 7 7 0 0 | spyware, grayware
5  Anubis 89 78 78 11 4 3 3 0 1 8 8 8 0 0 | infosteal, bankbot
6  Fakecall 4 4 4 0 3 3 3 0 0 3 3 3 0 0 | execdownload, infosteal, grayware
7  Cerberus 29 29 29 0 6 6 6 0 0 7 7 7 0 0 | execdownload, infosteal, bankbot
8  Androlua 15 14 14 1 6 6 6 0 0 6 6 6 0 0 | grayware, clicker
9  Mobtes 16 16 16 0 5 5 5 0 0 4 4 4 0 0 | execdownload, grayware

10 Mobtool 12 12 12 0 6 6 6 0 0 4 4 4 0 0 | infosteal, grayware

Total® 220 206 206 14 ] 55 54 53 1 1] 5 55 55 0 0]—

1: Persistence Mechanisms. 2: DVa’s detection result. 3: Indicates total instances of detection, including duplicates.

activity stabilizes after granting the al 1y permission.
Intercepting ally Behaviors. To interpret ally responses of
the mechanisms, DVa applies dynamic hooks to capture their
ally actions (listed in Table 2 Column 3). For example, after
DVa triggers the power options dialog, if back or return home
actions to send users away from the screens are captured, DVa
confirms malware’s abuse of ally service to persist on a user
device through disable power options. With DVa’s persistence
mechanisms detction, investigators can notify users of illicit
changes to their device configurations.

4 Validating Our Techniques

4.1 Implementation

Abuse-vector-guided symbolic analysis in DVa is
implemented in Java (7.3K lines) leveraging Soot [29], used
in top-tier research [40]. Dynamic hooks leverage
EdXposed [41] with 1.6K lines of Java code. Dynamic
analysis management is implemented in Python (1.3K lines).
AVClass2 [42], a SOTA malware labeling tool is used to
classify malware families. For deriving malware labels, we
used the latest PyPI avclass-malicialab 2.8.7 with -t flag to
extract all CLASS and BEH (behavior) tags from VirusTotal
reports. The victim application dataset is queried from
AppBrain [26] and SensorTower [27], SOTA Android market
intelligence services. Benign application icons and Ul
screens are collected from Google Image Search. We used an
Ubuntu 20.04 LTS system to host DVa’s static analysis
module. DVa’s dynamic analysis and ally malware are
hosted on 5 Google Pixel 3 (64GB, 4GB RAM) phones
running Android 9.0 (Pie).

4.2 Validation Setup

Due to the physical disk size limitation, we installed the
top-300 banking apps across all regions together with 100
other apps evenly distributed among the other five categories

of apps such as crypto, authentication, social media,
communication, and shopping apps on each device. Then we
used AVClass2 [42] to label our malware dataset and
randomly picked samples from the top-10 malware families
until we found two samples in each family with industry
reports and live C&C response, resulting in 20 samples. The
C&C response is determined by matching with at least one of
the contacted IP addresses in VirusTotal’s malware relation
reports. We installed the two samples from each family onto
the five devices respectively in two batches and dumped the
disk image, resulting in 10 device investigations, as listed in
Column 1 of Table 3. We manually reverse-engineered these
malware samples using Jadx [43] and used industry reports
to derive the ground truth®.

4.3 Validation Results

Table 3 presents DVa’s validation results. Column 2 shows
the top-10 ally malware families that are installed on each
device investigation. Columns 3, 7, and 12 show the ground
truth (GT) number of abused victim apps, abuse vectors, and
categories of al ly-empowered persistence mechanisms. The
following columns present DVa’s detection on the respective
tasks. DVa’s evaluation metrics, including True Positives (TP),
False Positives (FP), and False Negatives (FN), are presented
in the rest of the columns.

Victim Detection. As shown in Column 5 of Table 3, DVa
correctly identified (TP) 206 instances of targeted victims.
Our manual investigation together with industry reports
revealed 220 instances, indicating DVa’s 94% accuracy in
detecting victims. In Row 6, DVa produced 11 FNs while
detecting victims for the Anubis family. With investigation,
we found that while matching abuse code with dynamic
execution trace, DVa’s symbolic engine failed to reconstruct
the victim package names. This is due to Anubis’s adoption
of a complex customized data structure for encoding victim

4Note that DVa does not need nor have access to the ground truth data.
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information. We confirmed that this is a rare behavior.
Additionally, while investigating devices 1 and 8, DVa
introduced 2 FNs in a Spynote sample and 1 FN in an
Androlua sample. We found that the 3 FN victims — Cajasur,
Kutxabank, and Banca Movil Laboral Kutxa — were reported
in industry reports but were not installed on the devices.
After installing them manually, DVa observed the abuse
vectors and confirmed them as victims.

Abuse Vectors Detection. As shown in Columns 7 and 9
in Table 3, DVa successfully detected (TP) 53 categories of
abuse vectors among 55 categories in the GT, yielding a 96%
detection accuracy. As shown in Row 5, DVa introduced 1 FP
while analyzing Spymax malware on device 4. We manually
investigated and found that it contained a screen navigation
error handler to immediately return to the malware’s screen
after failed attempts to parse the on-screen element tree,
making DVa incorrectly attribute its abuse vector. We
confirmed that this is a rare occurrence. DVa also introduced
1 FN while investigating device 5. Due to the unreachability
of Anubis malware’s C&C server for remote code loading,
DVa was unable to detect the ScreenLog behavior in industry
reports, which is solely contained in the dropped payload.
Persistence Mechanisms Detection. Shown in Columns 12-
16 of Table 3, DVa achieved 100% accuracy, detecting 55
instances of persistence routines.

Comparison with AVClass2. To understand the advantage
of DVa in reporting fine-grained abuse vectors specific to
ally, we compared DVa’s result with labels reported by the
SOTA malware intelligence engine AVClass2. The last
column of Table 3 shows all class and behavior tag labels
reported by AVClass2’s extraction from VirusTotal reports.
As observed in all rows, the labels reported are high-level
and coarse-grained without containing evidence of detailed
abuse behaviors. For example in Row 4, the only labels
reported for the Spymax malware are spyware and grayware,
which do not contain evidence of targeted victim or specific
techniques abused as reported by DVa. Similarly in Row 2,
although the labels contain bankbot, execdownload, and
infosteal, no specific bank victims or abuse vectors that
constitute infosteal or executable download are evident.

4.4 Coverage Assessment

Next, we evaluated how much of an advantage DVa’s abuse
vector modeling provides over a generic data-flow analysis.
We hypothesized that a generic data-flow analysis would
over-taint paths and lead to false positives in discovering
ally abuse and be insufficient in detecting behaviors reliant
on dynamic execution traces. We compared victims, abuse
vectors, and persistence mechanisms extracted from paths
explored by DVa and those explored by the SOTA taint
data-flow analysis tool, FlowDroid [40].

Experiment Setup. We used FlowDroid’s latest stable-build
version (2.11.1) as the starting point to derive data-flow path

Table 4: Comparison of victims, abuse vectors, and
persistence mechanisms detected by DVa versus FlowDroid.

D# Family DVa FlowDroid
V! PAVZ PM3 |V PAV FP FN PM
1 Spynote 11 207 6|0 1348 1,165 24 0
2 Hqwar 5 63 4|0 48 360 5 0
3 Bianlian 20 217 6|0 1719 1540 38 0
4 Spymax 17 236 7|0 198 1771 32 0
5 Anubis 78 746 8| 0 3458 2767 55 0
6 Fakecall 4 51 3|0 342 30 9 0
7 Cerberus 29 269 7|0 1317 1097 49 0
8 Androlua 14 199 6|0 813 639 25 0
9 Mobtes 16 182 4|0 1006 847 23 0
10 Mobtool 12 157 4|0 1291 1,143 9 0
Total 206 2327 55]0 13,680 11,629 269 0

1: Detected victims. 2: Paths flagged with ally abuse.
3: Detected persistence mechanisms.

coverage. The input APKs are the ones repackaged with
dynamically loaded DEX files extracted by DVa. We set the
source function to be the onAllyEvent handler and the sink
functions to be all functions declared in ally service,
ally event, and ally node info classes (in total 246
functions). We found that initially, FlowDroid was unable to
track data-flow from the onAllyEvent callback function
because it doesn’t have a concrete invocation. Because of this
issue, we modified FlowDroid’s source tracking logic of the
onAllyEvent handler to taint the first assignment statement
of the function parameter instead. We used the standard CHA
algorithm for FlowDroid to generate the CG.

Assessment result. Table 4 shows the victims detected,
number of paths flagged with ally abuse, and persistence
mechanisms detected by DVa and FlowDroid. The FP and
FN columns for DVa are omitted because they were
discussed in Table 3. FP and FN columns for FlowDroid are
derived by manually examining the data-flow paths. As
discussed in §4.3, we counted seven FP paths that DVa
flagged in the Spymax samples as TP for FlowDroid in Row
4. For the Anubis samples in Row 5, we omitted FN paths for
both DVa and FlowDroid because the payload containing the
reported behavior was statically unavailable. As shown in the
Total row of Columns 4 and 7, DVa flagged 2,327 paths with
ally abuse, while FlowDroid flagged a total of 13,680.
However, in Column 8 we see that FlowDroid incurred FP in
11,629 (85%) paths that do not constitute ally abuse. This is
because FlowDroid does not have access to the abuse vector
modeling and flags irrelevant paths with generic ally APIs.
Column 9 shows that 269 paths were marked by DVa as ally
abuse but not traversed by FlowDroid. We found that these
paths contain global action system APIs such as
dispatchGesture() and findFocus() for which
FlowDroid does not have pre-extracted method summaries,
thus breaking the taint propagation. Additionally, Columns 3
and 6 show the number of victims detected along the paths
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with ally abuse. While DVa extracted 206 victim apps, we
manually verified the paths flagged by FlowDroid and found
that 0 victim apps could be resolved with the data-flow paths
alone. This is because the constraints along all paths can only
be resolved to one-way encoded hashes and cannot be further
matched. With the help of execution traces that DVa
extracted in victim-guided dynamic analysis, DVa has a
unique advantage in resolving statically unsolvable victim
constraints. Finally, Columns 5 and 10 show the number of
persistence mechanisms detected. While DVa reported a total
of 55 instances of persistence mechanisms, the data-flow
paths alone generated by FlowDroid cannot derive any of
them because their trigger conditions and sink actions are
unknown and unmodeled by FlowDroid.

5 Findings

To help gather large-scale malware behavioral insights from

ally malware, we deployed DVa on 5 Google Pixel 3 phones.

These phones were repetitively infected with each of the 9,850
malware collected from VirusTotal [15] from August 2022
to December 2022. The selection criteria for the samples
that they be (1) are labeled by at least five antivirus engines,
ensuring that they are indeed malware [44] and (2) contain the
BIND_A11lY_ SERVICE permission declaration string in the app
manifest file, which indicates that they abuse the Android ally
service. Out of the 9,850 samples collected, 7,700 samples
are labeled by AVClass?2 [42] spanning 197 families. The rest
of the 2,150 samples contain no family labels and are treated
as singleton malware.

DVa’s dynamic analysis has an average runtime of 110
seconds per sample. Since DVa is deployed on a backend
server, this overhead is acceptable. The execution overhead
on the frontend user’s device is negligible (no more than the
current Google Play Protect).

5.1 Targeted Victims

Table 5 presents the identified victims grouped by category
in Column 1, their most popular geolocation country code in
Column 2, victim count and victim median download number
in Columns 5 and 6, and their abused malware count and
family count in Columns 7 and 8. As shown in Columns 5, 7,
and 8 in the 7otal row, DVa detected a total of 4,291 malware
samples spanning 65 families abusing 215 victim apps. DVa
reported no targeted victims for the other 5,559 samples. Upon
further investigation, we found that 4,614 of the samples did
not have any live C&C responses, so we excluded them from
the victim-detection evaluation. For the other 945 samples, we
manually investigated 10 random samples and found that six
of them are generic utility apps that misuse the ally service
such as file manager, overlay widget, notification modifier
apps, etc. In fact, prior work [7], [45] confirmed that benign
apps also misuse the ally service to achieve functionality

purposes. These utility apps do not target specific victim apps,
so we exclude them from the victim-detection evaluation.
Of the 4,291 malware samples with detected victims,
2,575 require C&C response to drop victim-specific
information and still have live C&C connections. The rest of
the 1,716 malware samples contain local abuse routines that
are present statically or loaded at runtime. Column 6 in the
Total row shows that the median download number is 10M+
across all 215 abused victim apps. Columns 1 and 5 show the
abused victim apps’ categories along with their ranked victim
app count in each category. The 215 victim apps span a total
of seven categories — Banking, Crypto, Shopping, Social
Media, Transportation, Authentication, and Communication.
Banking apps are the most abused victim app category with
159 (74%) apps targeted by 3,579 (83%) malware samples
across 55 (85%) families, corroborating the banking apps’
vulnerability to al ly-based attacks found by prior work [46].
Following Banking apps are Crypto and Shopping apps, with,
respectively, 16 (7%) and 13 (6%) victim apps abused by
1,130 (26%) and 257 (6%) malware samples across 23 (35%)
and five (8%) families. As shown in the Auth. category row,
although only five authentication apps (e.g., Microsoft
Authenticator, Google Authenticator) are abused, they are
abused by a majority of 3,022 (70%) malware samples across
52 (80%) families. The median victim app download
numbers in Column 5 reveal that Social Media apps are the
most popular apps that are targeted, with a median of 1B+
downloads. Communication apps such as Gmail, WhatsApp,
etc. are the next most popular apps, with a median of 100M+
downloads. All victim app categories have at least a median
of 5M+ downloads, indicating a large batch of renowned
victim apps targeted by ally malware.
Takeaway. DVa identified 215 victim apps spanning seven
categories abused by 4,291 ally malware samples across 65
families. Banking apps are the most widely targeted category,
with 74% of all victim apps falling in the category and
targeted by 83% ally malware samples across 85% families.
Seventy percent of al ly malware samples also target a set of
five Authentication apps, extending their capabilities into
infiltrating other benign apps. Ally malware targets
renowned victim apps with a median download of over 10M
across all categories. With the victim targets extracted,
investigators can compare the targets with existing services
on the user’s device to identify abuse tha has already occured,
as well as notify developers of malware targets that have not
yet been abused.

5.2 Abuse Vectors

After extracting the victims of ally malware, DVa helps
investigators extract abuse vectors and attribute them to the
victims. Columns 3, 4, 9, 10, and 11 of Table 5 present the
ally techniques and abuse vectors tailored for each category
of victim apps. Columns 3 and 4 show the different abuse
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Table 5: Categories of victim apps, al 1y malware that target them, and abuse vectors statistics.

Vic. Catg.  Vic. Geo. (Top-5) Abu. Vec. Avg. Vec.!  #Vic. Med.DL?>  #Mal #Fam allyTech. Avg. Q> Avg A*
Scr. Nav. 46.5 34
Auto Tran. 11.7 35 10M+ 755 12 AutoFill 15.5 28
Steal Cre. 19.3 147 10M+ 3,296 52 Scr. Log. 9.6 1.7
Banki RU BR GB MX 2

anking UBRGB US Steal Auth. 34 122 10M+ 2,444 47 SerNav. 259 31
Scr. Log. 18.3 3.0
Noti. 1.2 98 10M+ 1,930 20  Scr. Nav. 7.6 1.2
Scr. Nav. 59.7 2.8
Ussd 5.2 103 10M+ 2,067 16 AutoFill "1 11
Calls 1.0 5 10M+ 340 3 Scr. Nav. 55.4 2.7
Subtotal - - 21.1 159 10M+ 3,579 55 - 29.0 2.4
Scr. Nav. 63.0 3.8
Auto Tran. 9.8 3 10M+ 787 12 AutoFill 247 29
Crypto US IR AU BE PO Steal Cre. 21.5 16 SM+ 1,051 23 Scr. Log. 7.9 1.6
Scr. Nav. 32.8 2.8
Steal Auth. 4.3 12 SM+ 775 16 Ser. Log. 17.1 23
Noti. 1.2 12 SM+ 713 10 Scr. Nav. 7.1 1.3
Subtotal - - 24.1 16 SM+ 1,130 23 - 254 2.3
Auto Tran. 7.0 5 SOM+ 110 4 Sor v e -

Shopping USESJPIT DE ' '
Steal Cre. 15.8 13 50M+ 219 5  Scr. Log. 6.6 1.6
Noti. 1.3 10 50M+ 143 5 Scr. Nav. 5.8 1.3
Subtotal - - 15.2 13 50M+ 257 5 - 14.9 1.8
Scr. Nav. 38.0 3.1
Auto Tran. 9.3 7 1B+ 171 11 AutoFill 12.4 24
Social IN US CA MX ID Steal Cre. 4.3 10 1B+ 450 14 Scr. Log 7.8 1.5
Scr. Nav. 28.9 2.5
Steal Auth. 2.7 7 1B+ 268 7 Scr. Log 15.8 23
Noti. 1.2 2 5B+ 22 1 Scr. Nav. 6.4 1.4
Subtotal - - 6.0 11 1B+ 539 17 - 18.2 2.2
Auto Tran. 3.5 6 S0M+ 45 a o T 330 =

Transp. US CA BR AU FR : ’
Steal Cre. 14.5 6 50M+ 45 2 Scr. Log. 8.8 1.7
Noti. 2.8 6 50M+ 45 2 Scr. Nav. 5.6 14
Subtotal - - 20.8 6 50M+ 45 2 - 15.8 1.9
Auth. US CA BE DE NO Steal Cre. 13.7 5 10M+ 3,022 52 Scr. Log. 23.9 2.4
Noti. 3.6 5 10M+ 3,022 52 Scr. Nav. 4.5 1.2
Subtotal - - 17.3 5 10M+ 3,022 52 - 14.2 1.8
Auto Tran. 12.0 3 100M-+ 45 7 icurtoI\FI?ﬁ ??g ;‘7‘

Comm. UK JP US CA AU : ’
Steal Cre. 2.8 5 100M+ 1,374 34 Scr. Log. 54 1.1
Noti. 14 3 500M+ 45 7  Scr. Nav. 5.2 14
Subtotal - - 3.1 5 100M+ 1,374 34 - 15.5 2.2
Others - Ransom Scr. - - 12 3 - 1.5 -
Subtotal - - - - - 12 3 - 1.5 -
Total - - 13.9* 215 10M+  4,291* 65 - 19.07 2.17

1: Average Abuse Vectors per victim app per malware. 2: Medium download number of abused victim apps.
3: Average of System ally Query APIs used per ally Technique. 4: Average of System ally Action APIs used per ally Technique.
5: 1,235 samples contain no AVClass family name. *: Not a sum of subtotals, multiple targeted victims per malware.

F: Excluding Others Column.

vectors and their average numbers targeting each victim.

As shown in the Total row of Column 4, a malware sample

adopts an average of 13.9 vectors to target each victim.

Looking at the Subtotal rows of Column 4, malware targeting
a Banking or Crypto victim implements an average of 21.1
and 24.1 abuse vectors toward each victim, 52% and 73%

higher than the average. This indicates that malware targeting
these two categories adopts more event checks to handle a
diverse set of window change events. Comparing the subrows
of each victim category, the most adopted abuse vector across
banking, crypto, shopping, and transportation apps is Steal
Credentials, followed by Auto Transactions. The
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Authentication apps are also targeted with 13.7 Steal
Credentials abuse vectors, accounting for 79% of all abuse
vectors. This corroborates the feasibility of ally abuse
proposed by prior PoC attacks [9], [47], [48].

Column 9 of Table 5 shows the ally techniques used by
each abuse vector. We further categorize APIs adopted by
the techniques into query APIs (those that query window
states) and action APIs (those that conduct GUI actions) in
Columns 10 and 11. As shown in the Total row of Columns
10 and 11, an ally technique routine on average adopts 19.0
APIs to query the state of on-screen elements and 2.1 APIs
to perform ally actions. In the Subtotal rows of Column 10,
we observe that an average of 29.0 and 25.4 query APIs are
used in each ally technique that targets Banking and Crypto

apps, 53% and 34% more than that of the category average.

This indicates that malware employs more al 1y node checks
to properly handle more on-screen elements that are present
on each banking and crypto app screen.

The Subtotal rows of Column 11 show that the average
number of ally actions performed is similar across each
category, having an average of 2.1 ally action APIs to
perform each al 1y technique. This shows that the differences
that malware adopts in handling victim Uls lies in the queries
of on-screen elements instead of the actions to them. Instead
of focusing on the actions that malware performs in an abuse
technique, it is more important to measure the query strategy
of the UI that malware deploys against each victim.
Takeaway. DVa extracted an average of 19.0 ally query
APIs and 2.1 actions APIs in each al ly technique to deploy
13.9 abuse vectors towards each victim app. Al11ly malware
implements more handler routines to parse UI screens (52%
and 73% higher than average) as well as more on-screen
element query routines (53% and 34% higher than average)
to abuse Banking and Crypto apps. The most frequently
adopted abuse vectors are Steal Credential and Auto
Transaction across most categories of victims. Although
ally action APIs are used to perform concrete al 1y actions
on elements, the query API usage is the pattern that
differentiates abuse routines across different victim
categories. With victim-specific abuse vectors extracted,
investigators can enrich the notification to both users and
victim developers with concrete abuse behaviors to guide
loss remediation and develop proactive defenses.

5.3 Persistence Mechanisms

After extracting victim-specific abuse vectors adopted by
ally malware, DVa then helps investigators understand what
al ly-empowered mechanisms malware adopts to persist on
users’ devices. Table 6 presents the persistence mechanisms
adopted by the top-10 malware families. Columns 1-2 list the
malware families and their respective sample counts.
Columns 3, 4, 5, 8, and 9 show the number in each family
that adopts mechanisms to disable device protection, prevent

Table 6: Ally-empowered persistence mechanisms used by
the top-10 al ly malware families.

E.p*

Family # DP!' PL?2 PR3 __ ™"  UA’ PO°
Adm. Others
Spynote 1,421 1,278 1,397 1,378 0 1281 1,071 0
Hqwar 1,400 1,291 1270 1,306 0 1,183 989 1277
Bianlian 545 523 539 521 0 0 0 0
Spymax 461 429 446 451 0 384 351 0
Anubis 449 413 443 443 0 0 278 0
Fakecalls 351 319 290 303 0 323 0 0
Cerberus 349 244 305 305 0 0 102 0
Androlua 298 278 242 238 0 256 108 0
Mobtes 245 214 227 219 0 0 210 220
Mobtool 212 168 188 194 0 0 0 0
Others 4,119 3,584 3,677 3,744 157 1277 979 355

Total 9,850 8,741 9,024 9,102 157 4,704 4,088 1,852

1: Disable device protection. 2: Prevent info lookup/uninstall.
3: Prevent al ly permission revocation. 4: Escalate privileges.
5: Uninstall other apps. 6: Disable power options.

app info lookup/uninstallation, prevent ally permission
revocation, uninstall other apps, and disable device power
options. Columns 6 and 7 show the number of samples that
can escalate to device admin privilege and other privileges.
As shown in the Total row, preventing ally permission
revocation, preventing info lookup, and disabling device
protection are the three most widely adopted persistence
mechanisms, observed in 9,102 (92%), 9,024 (92%), and
8,741 (89%) malware samples. Disabling power options is
the least adopted, used by only 1,852 (19%) malware
samples. Although 4,861 (49%) samples escalate privileges,
only 157 (2%) of them (all from the Fakeapp family) escalate
to device admin. Although the powerful device admin
privilege can be illegally escalated by abusing ally
permission, very few malware samples choose to do that to
avoid static and runtime antivirus scans since it is a strong
indicator of malware. Similarly, few malware samples
employ the intrusive mechanism of disabling power options
to avoid alerting users. This adoption trend indicates that
most malware deploys ally-based measures to turn off
system malware scanning and prevent users from querying,
disabling, or uninstalling them.

Takeaway. DVa extracted six categories of al ly-empowered
persistence mechanisms. Most malware abuses ally to
prevent users from revoking al ly permission (92%), looking
up malware info / uninstalling malware (92%), and disabling
Google Play Protect (89%). More intrusive behaviors such as
preventing users from turning off or restarting the device
(19%) and escalating to device admin privilege (2%), are less
common to avoid antivirus detection and alerting users.
Investigators now can understand how al 1y malware persists
on users’ devices and notify users of malware’s illicit
modifications to system settings.
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6 Case Studies

6.1 ally 2FA Stealer

Authenticator apps use 2FA codes to provide users additional
protection against compromised static passwords. In our
experiments, DVa found that 471/545 malware samples from
the Bianlian family can steal 2FA codes generated from the
Google Authenticator app. Of the initial 545 Bianlian
samples, DVa found that 224 implemented dynamic loading
of their ally service class or ally event handlers. After
DVa’s victim-guided dynamic analysis, DVa captured and
repackaged new DEX payloads from 144 samples using
dynamic class loaders. With DVa’s abuse-vector-guided
symbolic analysis from the onAllyEvent handler, DVa
found that 471 malware samples contained valid execution
paths to EvdpText and ScreenLog techniques with the victim
package name resolved to the Google Authenticator App,
confirming their 2FA code stealing capability. The routines
start with malware creating and sending an Intent that
launches the main activity of the app. Then, the malware
checks for package names of the WINDOW_STATE_CHANGED
event to confirm the start of the app. After that, the malware
creates an iterator from the source node of the event (a
ViewGroup containing all child elements of the main
activity) to capture all user’s 2FA codes. Within each child
view representing a 2FA code, the malware uses customized
parsing logic tailored for the app to extract the text element
of the code and the account name associated with the code.

ally Blocking by 2FA Apps. Although ally malware can
steal 2FA codes, authenticator apps can choose to block
untrusted al ly services from accessing the code. We picked
the top-11 authenticator apps listed on the Google Play Store,
installed them on one Google Pixel 4 device running Android

14, and manually registered 2FA code for Twitch in all apps.

We then installed a custom app with an ally service that
listens for and parses ally events from the views in each app
that contain the 2FA codes. Only two of the 11 apps protect
their 2FA codes from untrusted al 1y services. We observed
that the text properties of 2FA code fields in the 2FAS
(com.twofasapp) and Dashlane (com.dashlane.authenticator)
apps are set to null, confirming their protection against
untrusted ally services. We manually reverse engineered the
apps and found that both protect their views containing 2FA
codes with the AllyDataSensitive property to block
interaction with untrusted al ly services.

6.2 ally Ransomware

DVa detected 131 instances of the Doublelocker malware that
abuses al ly service for ransom, indicating new strategies for
mobile ransomware. DVa also reported the privilege
escalation persistence mechanism. DVa found that the
malware automatically brings up device administration and

Table 7: Effectiveness of the newest security patch and data-
flow defense in eliminating ally malware behaviors.

Behaviors 0S9 OS 13 OS 13+DFD*
ScreenNav 13 9 6
Autofill 2 2 1
ScreenLog 7 5 0
Prevent Info Lookup 7 4 4
Prevent ally Revocation 9 5 3
Escalating Privileges 3 2 2
Disable Power Options 1 1 1
Total 42(100%)  28(67%) 17(40%)

*: Data-Flow Defense.

default home app user dialog and utilizes hard-coded ally
node parsing routines to locate and click the confirm buttons
without user acknowledgment. By escalating to the default
home app, the malware ensures that whenever a user tries to
press the Home button or the Back button, the malware is
relaunched instead. This renders the device unusable to the
user, achieving an intrusive abuse and persistence measure.
The main activity captured by DVa indicates a classic ransom
screen, asking users to send an equivalent of 50 US dollars
worth of bitcoin to an attacker’s account.

Traditional ransomware requires multiple user interactions
to achieve its purpose. As DVa observed in the Doublelocker
family, all user interactions required for the malware to
achieve its ransom purpose is granting the al 1y permission,
thus increasing the attack’s success rate.

6.3 Defenses Against ally Malware

To understand how SOTA defenses are (in)effective at
preventing ally malware abuse, we evaluated how ally
malware behaves under the newest Android security patch
(Android 13.0.0_r31) [11] and the most recent data-flow
defense framework proposed by Huang et. al. [5]. We
re-implemented the defense framework as stated in the
study [5] as a patch to the AOSP that constrains data-flow
from user inputs to non-GUI actions and from the GUI event
change to non-user-perception APIs. We deployed DVa on
one Google Pixel 4 device with the latest Android security
patch and another one with our re-implemented defense
framework. We evaluated using 14 malware samples that
target Android SDK Level 33 (Android 13) from the dataset.

Table 7 shows the effectiveness of the previous two
defenses. Column 2 shows the baseline behaviors extracted
by DVa from the 14 malware samples. In total, 42 instances
of malware behaviors are extracted under Android 9. Column
3 shows the behaviors extracted by DVa on the newest
Android security patch (Android 13). Four malware failed to
install with manifest malformed errors due to the
incompatibility of code on Android 13. Of the remaining 10
malware samples, the system initially blocked the installation
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of eight of them with Google Play Protect scanning.
However, all eight malware samples successfully bypassed
such scanning after we added a trivial asset (one JSON file in
APK assets) and reinfected the re-signed APK. In particular,
aside from the signature scanning, 100% of malware
behaviors are observed under Android 13. Column 4 shows
the effectiveness of the data-flow defense framework on
Android 13. It successfully eliminated ScreenLog behaviors
from all malware due to the constraints set to prevent
information leakage from ally events. However, 6/13 (46%)
screen navigation behaviors still persist. Upon investigation,
we found that malware relies on hardcoded screen
coordinates not associated with ally events to navigate GUI,
thus circumventing the constraints. A similar technique is
also utilized to prevent restriction to 4/7 (57%) illegal info
lookup prevention behaviors, etc.

Shown in the Total row of Table 7, 67% of malicious ally
behaviors are still observed in the latest Android security
patch and 40% can still bypass the SOTA data-flow defense
framework on top of the latest Android security patch.

7 Discussion

Malware Detection. Since DVa acts as an add-on service to
existing malware detection engines, DVa relies on identified
ally malware. Google Play Protect already has
signature-based and behavior-based malware detection [49]
incorporated. Researchers have also proposed methods to
distinguish benign and malicious al ly apps based on explicit
user intention used as sources for al ly actions [5].
Limitations. Although DVa can be extended to adapt to new
abuse vectors, it still relies on the modeling of explicit
functionalities defined by ally APIs. That said, DVa will fail
to detect abuse that relies on side-channel exploitation of
ally APIs. Additionally, although DVa optimizes its
symbolic exploration strategy based on abuse vectors, path
explosion and unsolvable constraints are still possible when
malware adopts overly complex ally event handlers, as seen
in the Anubis samples in §4.3. Since DVa relies on dynamic
analysis, malware can deploy new evasion techniques and
time-sensitive behaviors to hinder the analysis. Although not
observed in §4.3, malware could implement stringent
runtime checks to find a very rare ally event. Since DVa can
only reconstruct a finite set of ally events in dynamic
analysis, DVa will miss detecting malware capabilities if they
do so. If this happens, DVa’s victim model can be extended
to incorporate these al ly events.

Implementation Alternatives. While designing DVa, we
considered alternative methods to implement victim
detection. Fuzzing could be used to enumerate victim apps’
properties. However, fuzzing would generate many ally
events that do not make sense in the context of any real
victim app and risk alerting the malware of our analysis.
Honeypots could be deployed to mimic the dynamic traits of

victim apps and record abuse behaviors. However, honeypots
passively execute malware, which would not drive the
malware’s execution through victim-generated al ly events.
DVa’s victim-guided dynamic analysis resolves both of these
challenges by actively generating ally events in the context
of real victim apps’ behaviors.

Future of Android’s ally Malware. Although Android 14
allows developers to restrict ally information delivered to
unvetted al 1y services by checking the A11Y_TOOL flag [50],
we expect future malware to subvert its vetting process. Since
the process is manual and conducted at Google Play Store’s
submission stage, malware can still infiltrate the store by
loading malicious code dynamically or through app updates
just as it did before [21], [51].

Developer’s Defense. App developers can choose not to
broadcast ally events if untrusted ally services are found on
a user’s device [52]. However, this sacrifices the usability of
the app because legitimate ally services would also be
blocked. The Coinbase app [53] adopted an out-of-band al ly
verification that malware could not intercept: It displays a
view that ally cannot interact with, instructing users to
shake the device to approve the use of an untrusted ally
service. Another approach is to protect an app’s GUI in a
more fine-grained manner. Specifically, wrap only the
minimal views containing sensitive information with ally
delegates [54] to customize their exposed ally events and
declare allyDataSensitive on views so that untrusted
ally services cannot interact with them.

8 Related Work

Benign Misuse of ally Service. Benign services such as
antivirus engines [45] and utility apps [7] can abuse the ally
service to automate legitimate tasks. Multiple works have
focused on evaluating the misuse of the ally service. Chen et
al. [12] proposed dynamic analysis to automatically extract
ally issues while traversing the Android apps. Salehnamadi
et al. [13] proposed Latte to automatically assess the
functional correctness of an app’s ally features. Naseri et
al. [14] conducted a study on how ally functionalities are
misused commonly by Android apps. Unlike detecting and
analyzing benign misuse of the ally service, focuses on
dissecting malicious use of ally to target victim apps.

Attacks on ally Service. The ally service provides
malware with a unique surface [47] to launch phishing
attacks [55] and make them more evasive [56]. Multiple
works also focus on proposing PoC attacks that exploit the
ally service [9], [48]. Lei et al. [57] exposed a side channel
of using consecutive content queries to guess passwords
through ally service. Mehralian et al. [58] exposed
information leakage through overly accessible elements in
Android’s ally service. Jang et al. [8] evaluated the ally
support for four operating systems and identified 12 attacks
on them. Fratantonio et al. [10] uncovered an attack that can
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control the UI feedback of an Android device should the
malware be granted both the SYSTEM_ALERT_WINDOW and
ally permissions. Motivated by these attacks, DVa focuses
on understanding al 1y abuse conducted by real malware and
the victims they target.

Mobile Banking Security. E-banking fraud [59]-[61] and

attacks [62]-[65] have led to huge financial losses worldwide.

Mobile banking apps are vulnerable to malware attacks [66],
[67]. Multiple works focus on evaluating the security
measures imposed by these apps [68], [69]. Chen et al. [70]
exposed weaknesses in mobile banking apps’ sensitive data
storage and transmission, confirming their proneness to being
targeted by malware, as illustrated by DVa. Botacin et
al. [46] evaluated the security flaws of Brazilian mobile
banking apps, uncovering their susceptibility to Ul and
ally-based attacks. Corroborating the security flaws in
mobile banking apps, DVa contributes to this field of
research by detecting ally abuse vectors exploiting real
victim banking apps targeted by mobile ally malware.
Defenses Against ally Abuse. Defenses have been
proposed to restrict malicious usage of the ally service [71],
[72]. Fernandes et al. [6] proposed data-flow restriction on
Android apps that only allows declared data-flow patterns by
users while blocking all other undeclared flows. Huang et
al. [5] introduced a more fine-grained sandbox design across
the ally service lifecycle that uses least-privileged data-flow
constraints to secure the Android al 1y service. §6.3 shows
how existing defenses are ineffective in eliminating all ally
malware abuse — motivating the need for malware analysis
techniques like DVa.

Malware Analysis. Some works use taint analysis [73], [74],
API trace analysis [75]-[79], and network traffic
analysis [80]-[82] to reveal malware behaviors. However, to
attribute ally attack vectors, DVa wuses symbolic
analysis [83]-[86] to match the constraints of al 1y behaviors
to their targets. Inspired by forced execution [87]-[89], DVa
uses victim modeling to guide the execution of malware and
loading of victim-specific abuse payloads.

9 Conclusion

We introduced DVa, a malware analysis pipeline to notify
users and victims of ally abuse vectors. Using DVa, we
conducted analysis for 9,850 malware samples extracted
from Google Pixel devices to uncover 215 victim apps that
were abused with an average of 13.9 abuse vectors and six
categories of persistence mechanisms empowered by ally.
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A Prerequisites for Analysis

DVa initiates the investigation by pulling a list of registered
ally services from the user’s device using the al Iy manager
API and matching it with the identified malware’s ally

service name. For each identified ally service, DVa then
finds the package it belongs to and extracts its base APK file
from the user’s internal app-data storage directory. During
our extraction, we encountered multiple families of malware
with anti-static and anti-dynamic techniques to thwart
analysis. Here, we briefly describe strategies DVa adopts to
bypass them.

A.1 Packed Malware and Dynamic Code
Loading (DCL)

Malware heavily relies on packers to hide static malicious
payloads by decrypting and loading them only after the
application is loaded on a device. Some malicious payloads
are loaded only after dynamic environment checks. To
accurately collect all malicious payloads for static analysis,
DVa deploys dynamic hooks to class loaders and utilize code
reflection to locate and dump them. For each direct and
indirect  subclasses of ClassLoader, such as
BaseDexClassLoader, PathClassLoader, etc., DVa
deploys dynamic hooks on the loadClass API to capture
every DCL attempt. Before the control logic is handed back
to the routine, DVa intercepts the ClassLoader parameter
and uses reflection to gather the path lists, dex elements, dex
files being loaded, and the paths of the loaded files. DVa then
copies the loaded files from the path in malware’s internal
storage, unzips them if necessary, and collects the final dex
payload. After bypassing dynamic victim checks, DVa
gathers all dumped payloads, eliminates duplicated ones,
zips, and signs them into an APK for static analysis.

A.2 Anti-Dynamic Techniques

To avoid detection, malware also halts malicious code
execution when it detects dynamic environment traces that
suggest they are being analyzed. We observed multiple
techniques such as emulator detection and side-channel
inference on dynamic analysis framework artifacts used to
hinder analysis. We reverse-engineered al ly malware from
major families and deployed the following counteractions.
DVa circumvents them first by running dynamic analysis on
real Android devices. To counter side-channel inferences
when malware infers the existence of a dynamic analysis
framework by differentiating exception types when querying
their class loaders, DVa applies dynamic hooks and directly
throws ClassNotFoundException. Similarly, to counter
malware from querying the existence of artifacts used by
dynamic analysis frameworks in the file system, DVa applies
dynamic hooks to file IO APIs and throws
FileNotFoundException when detecting such queries.
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