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Abstract

Benign overfitting is the phenomenon wherein
none of the predictors in the hypothesis class can
achieve perfect accuracy (i.e., non-realizable or
noisy setting), but a model that interpolates the
training data still achieves good generalization. A
series of recent works aim to understand this phe-
nomenon for regression and classification tasks
using linear predictors as well as two-layer neural
networks. In this paper, we study such a benign
overfitting phenomenon in an adversarial setting.
We show that under a distributional assumption,
interpolating neural networks found using adver-
sarial training generalize well despite inference-
time attacks. Specifically, we provide conver-
gence and generalization guarantees for adversar-
ial training of two-layer networks (with smooth as
well as non-smooth activation functions) showing
that under moderate /5 norm perturbation budget,
the trained model has near-zero robust training
loss and near-optimal robust generalization error.
We support our theoretical findings with an em-
pirical study on synthetic and real-world data.

1. Introduction

Neural networks have been widely used in real-world appli-
cations, achieving state-of-the-art performance on various
tasks such as image classification and speech recognition.
Despite their tendency to be over-parameterized and capa-
ble of interpolating the training data with significant label
noise, neural networks perform surprisingly well on pre-
viously unseen test data. This seemingly contradicts the
classical learning theory where overfitting to the training
data would typically hinder with generalization. Such phe-
nomena, known as benign overfitting (Bartlett et al., 2020),
is technically characterized by the following conditions:
(1) the trained classifier perfectly fits the noisy training
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data, achieving zero training error; (2) no classifier in the
related hypothesis class can achieve near-zero generaliza-
tion error; (3) the trained classifier achieves near-optimal
generalization error. Several recent works seek to unravel
the mystery of benign overfitting in various settings, includ-
ing training linear models (Bartlett et al., 2020; Chatterji
et al., 2022), kernel methods (Belkin et al., 2018; Liang
& Rakhlin, 2020; Mei & Montanari, 2022) and training of
neural networks (Frei et al., 2022; Cao et al., 2022).

While models based on neural networks have been tremen-
dously successful, they are highly vulnerable to small, nearly
imperceptible, albeit strategic, perturbation of data. These
perturbations, called adversarial examples, are abundant and
easy to find computationally (Bubeck et al., 2021). The po-
tential of such adversarial attacks to substantially degrade
the performance of an otherwise well-performing model has
been a source of significant concern regarding deployment
of machine learning models in real-world systems. It is no
surprise, then, that developing algorithms that can provably
defend against such attacks and are guaranteed to improve
the robustness of machine learning has gained tremendous
traction in recent years.

One of the most prominent empirical defense algorithms
against inference-time attacks is the adversarial training
method of Madry et al. (2018). Adversarial training pro-
ceeds by simulating attacks as part of training — generating
adversarial examples from (clean) training examples and
using them to train a neural network. We can view adver-
sarial training as a two-player game, wherein the learner
seeks to minimize their error on the training set while an
adversary strives to maximize the error by crafting small
strategic corruptions of the input training examples. Several
empirical studies show that by using adversarial training
or its variants (Zhang et al., 2019; Wang et al., 2020), the
learner returns a model that is more resilient to perturbations
in the input space (Madry et al., 2018; Shafahi et al., 2019b;
Dong et al., 2020; Pang et al., 2021).

In contrast to the benign overfitting phenomenon that occurs
in the standard (clean) setting, Sanyal et al. (2020) identi-
fied a sufficient condition on the data distribution that hurts
robust generalization when the classifier perfectly fits the
noisy label data. This “robust overfitting” phenomenon was
also confirmed by Rice et al. (2020) showing that on sev-
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eral real-world datasets, the robust test loss increases after
the first learning rate decay while the robust training loss
keeps decreasing throughout training. This naturally begs
the question whether the modern wisdom of training neural
networks to zero training loss also extends to adversarial
settings, or in other words, if benign overfitting can occur in
adversarial training. Chen et al. (2023) took a first step in
studying benign overfitting for adversarially trained linear
models and provide empirical results for both linear clas-
sifiers and neural networks. They acknowledged that it is
nontrivial to generalize the analysis to neural networks and
leave it for future work.

In this paper, we resolve the open question posed by Chen
et al. (2023), asserting that benign overfitting can also occur
in adversarially trained neural networks under certain data
distributions. Our key contributions are as follows.

1. Given training data generated from a mixture distribution
with label noise, we establish convergence guarantees
for adversarial training of two-layer neural networks
showing that robust training loss can be driven to zero,
thereby robustly interpolating the noisy training data. We
consider the hypothesis class given by two-layer neural
networks. We consider smooth as well as non-smooth
activation functions. Furthermore, we do not make any
assumption about the robust realizability of data.

2. We provide generalization guarantees on both the clean
test error and the robust test error, demonstrating that they
simultaneously achieve the near-optimal standard and
adversarial risk. In particular, for a moderately large net-
work we show that for ¢, norm-bounded additive adver-
sarial attacks, if the perturbation budget is not too large,
the robust test error approximates the label noise rate.

3. We validate our theoretical results with experiments on
both synthetic and real-world datasets.

1.1. Related Work

Benign Overfitting. A significant body of recent works
has delved into understanding why predictors that interpo-
late noisy training data can still achieve a good general-
ization performance, with a particular emphasis on linear
models, e.g., linear regression (Bartlett et al., 2020; Hastie
et al., 2022; Zou et al., 2021b; Chatterji et al., 2022; Koehler
et al., 2021), sparse regression (Wang et al., 2022a; Chatterji
& Long, 2022), logistic regression (Chatterji & Long, 2021;
Wang et al., 2021), ridge regression (Tsigler & Bartlett,
2020), and kernel methods (Belkin et al., 2018; Liang et al.,
2020; Liang & Rakhlin, 2020; Mei & Montanari, 2022).

For nonlinear model such as neural networks, analyzing
benign overfitting becomes much more challenging. There
has been some progress toward addressing this challenge.
Frei et al. (2022) provided a first such guarantee for finite-

width neural networks trained on logistic loss for data drawn
from a Gaussian mixture model. Concurrently, Cao et al.
(2022) characterized the generalization guarantees of two-
layer convolutional neural networks, assuming that input
data is a sum of a label-dependent signal patch and a label-
independent noise patch. While the works above consider a
smooth activation function, follow-up studies by Kou et al.
(2023) and Xu & Gu (2023) extended the results to SGD for
training neural networks with non-smooth activations (e.g.,
ReLU). Recently, Zhu et al. (2023) further extended these
findings to deep neural networks in the lazy regime.

Robust Overfitting. Numerous works focus on mitigat-
ing overfitting in adversarial settings following the work of
Rice et al. (2020). These include approaches that employ
heuristic ideas, such as early stopping, adding regulariza-
tion, adapting cyclic learning rate schedules (Rice et al.,
2020), and smoothing the logits or weights during train-
ing (Chen et al., 2021), among others (Pang et al., 2021;
Huang et al., 2020; Dong et al., 2022). Thw works of Xiao
et al. (2022); Clarysse et al. (2022); Fu & Wang (2023)
provide some theoretical justification for these practical ap-
proaches. Donhauser et al. (2021) and Dong et al. (2021)
implicate memorization — neither work provides any theo-
retical results to support their claim. However, follow-up
work by Li & Li (2023) considers a patch data distribution
with a meaningful signal patch embedded in noisy patches—
they show that the ability of a model class to memorize
spurious features (noisy patches) leads to overfitting. More
recently, Li et al. (2022) argued that robust generalization
may require exponentially large models.

Robust Generalization Guarantees. A standard techni-
cal tool for establishing generalization bounds is that of
uniform convergence. Several works build on this idea to
give generalization guarantees for the robust loss, by ana-
lyzing Rademacher complexity (Yin et al., 2019; Khim &
Loh, 2018; Awasthi et al., 2020), VC dimension (Cullina
et al., 2018; Montasser et al., 2020), or the covering num-
ber (Balda et al., 2019; Mustafa et al., 2022; Li & Telgarsky,
2023), of the hypothesis class or utilizing PAC Bayesian
analysis (Viallard et al., 2021; Xiao et al., 2023) and margin-
theoretic analysis (Farnia et al., 2018). However, by defini-
tion, these guarantees rely on bounding the generalization
gap, i.e., the difference between the empirical and expected
error, of all hypothesis in the hypothesis class simultane-
ously. As such, uniform convergence bounds are unable
to explain the benign overfitting phenomenon, wherein the
empirical and expected errors of an interpolating predictor
are not close to each other.

Computational Guarantees. The statistical guarantees
based on uniform convergence fail to explain benign over-
fitting. It is natural then to rely on a more direct (e.g.,
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trajectory-based) analysis of the output of the training al-
gorithm. However, a good theoretical understanding of
why and when adversarial training succeeds remains elusive.
Much of the recent work (Charles et al., 2019; Li et al.,
2020; Zou et al., 2021a; Chen et al., 2023) has focused on
studying adversarial training of linear models wherein the
adversarial examples are given in a simple closed-form ex-
pression — this simplifies the problem greatly reducing it to
standard training. Of special relevance to us in this body
of results, is the work of Chen et al. (2023) who claim to
demonstrate benign overfitting for linear models; yet, they
fail to show that the model returned by adversarial training
in the setting they consider has small robust training error,
making their claim questionable.

Adversarial training of neural networks was analyzed
by Gao et al. (2019) and further improved by Zhang et al.
(2020); however, both of these works focus on ensuring
convergence of the training procedure and do not provide
generalization guarantees on robust loss. This gap has been
addressed in very recent work by Li & Telgarsky (2023).
However, the work of Li & Telgarsky (2023), and the prior
work all focus on the lazy training regime, which, unfortu-
nately, has been proven to be at odds with robustness (Wang
et al., 2022b). Finally, Allen-Zhu & Li (2022) present an
analysis of adversarial training when initialized using a net-
work returned by standard (clean) training instead of random
initialization. Mianjy & Arora (2023) provide an end-to-end
analysis of adversarial training beyond the NTK setting with
a variant of adversarial training that involves using a slightly
different (reflected) loss for the inner loop maximization
problem (for finding an attack vector as part of adversarial
training), yet, their results are limited to robustly realiz-
able distributions, which cannot justify benign overfitting
as there is no noise in their setting.

2. Preliminaries

Notation. Throughout the paper, we denote scalars, vec-
tors, and matrices with lowercase italics, lowercase bold,
and uppercase bold Roman letters, respectively; e.g., u, u,
and U. We use [m] to denote the set {1,2,...,m} and
use both || - || and || - || for £2-norm. Given a matrix
U= [uy,...,uy] € R™™ weuse |U||r and ||U||, to rep-
resent the Frobenius norm and spectral norm, respectively.
We use Ba(u, a) to denote the £, ball centered at u € R? of
radius a.. We use the standard O-notation (O, © and (2).

2.1. Problem Setup

We focus on binary classification and denote the input space
and label space as X = R? ) = {+1}, respectively. We
assume that the data are drawn from a noisy mixture data
distribution D on A’ x Y that, along with its variants, has
been studied in several recent works (Chatterji & Long,

2021; Cao et al., 2021; Frei et al., 2022). Formally, we
consider the following data distribution.

Definition 2.1 (Data Distribution). Let Dy be a A-strongly
log-concave distribution over R? for some A > 0. We
assume that Dy = Dc(llu)st X e X D(El‘fl)s[ is a product
distribution whose marginals are all mean-zero with the
sub-Gaussian norm at most one. We further assume that
EemDal €I*] > kd holds for some 0 < x < 1. Let
D, be a distribution over X x ). We first draw a sample
(Xey Ye) ~ D, by sampling y.. € {£1} uniformly at random,
sampling £ ~ Dy, and setting X, = y.u + €. Given a
noise rate § > 0, we define our true data distribution D
to be any distribution over X x ) such that the marginal
distribution of D and D, on X are the same, and the total
variation distance between the two distributions is bounded

by B» i'e'7 dTV(DC7 D) S 6'

The standard coupling lemma states that given two distribu-
tions D and D, over the same domain Z = X x ), there
exists a joint distribution over Z x Z such that the marginals
along the projections (z,2’) — z and (z,2') — 2’ are D
and D, respectively. Given that the marginal on X" for D
and D, are the same (see the definition above), this implies
that for (x,y) ~ D, (X¢,¥e) ~ De, P(x = x.) = 1 and
P(y # y.) < B. The definition above includes two settings:
1) Independent label flip, where for each sample, label y is
obtained by flipping y. with probability at most /3, indepen-
dent of how other labels are generated; 2) Non-independent
label flip, where there exists potential correlations between
labels y. A yet another special instance that has been stud-
ied extensively in the adversarial learning literature is that
of Gaussian distribution (Javanmard et al., 2020; Dobriban
et al., 2020; Dan et al., 2020) which is a special case of the
data generative model above for § = 0.

Hypothesis Class. We focus on learning two-layer neural
networks defined as: f(x; W) := ﬁ Y asd((ws,x))
where m is an even integer representing the number of
hidden nodes and ¢ : R — R is an activation func-
tion. The weight matrix at the bottom layer is denoted
as W = [w1, ..., W,,] € R?™ and the weight vector at the
top layer by a = [ay,...,an] =[1,...,1,—1,...,—1] €
R™. The top layer weight vector a is kept fixed through-
out the training process. The weight vectors at the bot-
tom layer are initialized randomly as w2 ~ N(0,w?,I),
for s € {1,...,%}, and setting wg = W(S)_% for s €
{% +1,..., m}. This ensures symmetry at initialization
and yields f(x; WY) = 0 for all x. This symmetric initializa-
tion technique is commonly used in related work (Langer,
2021; Bartlett et al., 2021; Montanari & Zhong, 2022) and
we employ here for analytical purposes.

Training Data. We are given a training data of size
n sampled i.i.d. from the noisy data distribution, S =
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{(x4,:)}i—; ~ D. Let C denote the set of indices of train-
ing data corresponding to the clean labels; i.e., for i € C, we
have that (x;,y;) ~ D,; similarly, let N denote the indices
corresponding to noisy labels; i.e., (x;, —y;) ~ D, Vi € N.

Loss Function. The 0-1 loss of a predictor f(-, W)
on a data point (x,y) is defined as ¢%/1((x,y); W) =
1 (yf(x; W) < 0), where 1(-) is the indicator function. For
computational reasons, as is typical, we use the logistic loss,
denoted ¢(z) = log (1 + exp (—z)), to train the two-layer
neural networks. The population and the empirical loss
w.r.t. £(-) are denoted as L(W) := E ,)~pl(yf(x; W))

and L(W) := LS Ui f (xi; W)).

Robust Loss. We consider ¢ norm-bounded adversarial
attacks with a perturbation budget of size o > 0. The set
of all such perturbations for an input example x € X is
represented by Bz (X, ). This threat model motivates min-

imizing the robust 0-1 loss defined as Zﬁg((x, y); W) =
maXges, (x,a) 1(yf(X; W) < 0). The population and empir-
ical risk w.r.t. the O-1 loss and the robust 0-1 loss, respec-
tively, are denoted as L%/1, L0/, L?O/bl, and E?O/bl. Analo-
gously, the population and empirical robust risk w.r.t. the
(surrogate) logistic loss ¢(+) are defined as:

Lrob(w) = IE(x,y)wD ieglax E(yf(;@ W))

2 (X,

n

~ 1
Lro W) = — f i ~i;V\] .
b(W) := — ine%i?ii,a) (yif (Ri; W)

i=1

Note that we are ultimately interested in bounding the 0-1
loss and its robust variant.

Algorithm 1 Gradient Descent-based Adversarial Training

Input: Step size 7, perturbation budget per sample a.. Num-

ber of iterations 7.
Initialize WO randomly.
fort=0,...,T—1do

fori=1,...,ndo

Xj = argmaxs,es, (x;.a) ((yif (Xi; W)

end for

Update W't = W' — 251 Vi(y; f(X}; W'))
end for
return: W'

Adversarial Training. The gradient descent-based ad-
versarial training algorithm is presented in Algo-
rithm 1. We denote the adversarial training exam-
ple for some input x; given model parameter W', at
round ¢ as if = argmaxg; B, (x;,o) E(yif(iﬁwt)) =
arg ming, e, (x;,a) ¥if (Xi; W*). A bi-product of our initial-
ization is that f(-; W?) is the zero function at initialization
(see the paragraph titled “Hypothesis Class”).

Therefore, at ¢ = 0, all perturbations of all training data
fare equally, i.e., perturbing data does not increase the train-
ing loss. Therefore, for simplicity, we simply choose to
not perturb the training data at iteration ¢ = 0'. The pro-
posed symmetric initialization and simple modification of
the training procedure at ¢ = 0 is instrumental in proving
Lemma 4.1, which further yields tight results.

We make the following assumptions on the problem setup.
Specifically, we consider a high dimensional setting where
the dimension d is much larger than the number of training
samples n, as stated below in Assumption (1). Such a regime
is popular in biomedical settings where the data comes from
limited patient information such as MRI or DNA sequence.

Assumption 1. Let § € (0,1/2). We assume
that there exists a positive constant C such that
the following holds: (1) The dimension satisfies
d > Cmax{[|u]”n,n? (log (n/d) +a®)}. (2) noise
rate 5 € [0,1/C]. (3) Initialization variance satisfies
wimVmd < 1. (4) Step size n < (Cd?)~t. (5) The
number of samples satisfies n > C'log (m/d). (6) Adver-
sarial perturbation o < |||

Assumption (3) requires a small initialization to ensure that
the first step of adversarial training dominates the behavior
of the neural network, pushing it beyond the lazy train-
ing regime. Such initialization technique has also been
introduced in previous work (Ba et al., 2019; Xing et al.,
2021). Given that the objective of adversarial training is
to achieve a classifier that is robust against small input per-
turbations imperceptible to human eyes, Assumption (6)
is reasonable as it imposes a mild constraint on the attack
strength. Finally, we note that we can relax Assumption (1)
tod > C max{||u*n,n?log (n/§)}, thereby removing the
dependence on « (see discussion in Section 4.1). We work
with the assumption above to keep our arguments and proofs
relatively simple and accessible.

3. Main Result

In this section, we present our main result providing the-
oretical guarantees for adversarial training of neural net-
works. We assume that the underlying distribution is the
noisy mixture distribution described in Section 2.1. Further,
we consider network architectures with both smooth and
non-smooth activation functions — while we show identical
results for both cases, we need slightly different assump-
tions for the two. Therefore, we first separately describe
each setting before presenting a unified result.

"Due to this simple modification, we can allow perturbation
budget « to be as large as ||| (see Assumption (6)). On the other
hand, if we allow for non-zero perturbation at ¢ = 0, we will need
a < c||p|| for some ¢ € [0, 1).
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3.1. Smooth Activation Function

Here we consider a strictly increasing, 1-Lipschitz, H-
smooth activation function that is approximately homoge-
neous with ¢(0) = 0. Formally, there exists v, H > 0,0 <
¢ <1l,c1 >0,c0 > 0suchthat 0 < v < ¢'(2) < 1, ¢'(2)
is H-Lipschitz, and |¢/(2) - z — ¢(2)| < e14¢2 |2|,Vz €
R. Smooth activation functions have been extensively stud-
ied both theoretically and empirically (Liu & Di, 2021;
Biswas et al., 2022). One example of such an activation
function that satisfies our condition is the smoothed Leaky
ReLU activation (Frei et al., 2022) defined as follows:

1—v 1

2= Tm 2z
psireLu(2) = § FFEHZ? + 2z, |2 <& o (D)
1—v 1
REAmiy= ok 2 — g

However, we do need an additional assumption on top of
what (Frei et al., 2022) require. In particular, we assume
that ¢’ (z)z and ¢(z) are close to each other. We argue that
this is a mild assumption, and holds trivially for standard
ReLU and Leaky ReLU, with ¢; = ¢ = 0. For ¢ reru(2),
of (Frei et al., 2022), the assumption holds with ( = 0
with ¢; = %’ and co = 0. The reason we need this
additional assumption is because the neural networks with
¢sLreLU (Z) activation function are no longer homogeneous.
Consequently, without the assumption, we end up with terms
in the upper bound on the empirical robust risk that depends
on the Frobenius norm of the weight matrix (see Section 4.3
for more details).

3.2. Non-smooth activation function

Here, we consider a more practical setting where the acti-
vation function is no longer smooth. We consider a homo-
geneous non-smooth activation function that satisfies the
following properties.

#(0) =0,¢'(2)z = ¢(2),Vz € R;
0<¢(z) <1,Vz € R;
Iy € (0,1],8.t.¢'(2) > 7,¥z > 0.

This includes ReLLU and Leaky ReLU activation functions.

3.3. Theoretical Guarantees

Our main result establishes benign overfitting in adversar-
ially trained neural networks. In particular, we show that
adversarial training converges to neural networks with zero
robust training loss and with standard (clean) test error close
to the noise rate. Furthermore, for small attack strength, o,
the robust test error also converges to the noise rate. For-
mally, we show the following.

Theorem 3.1. Lete > 0,6 € (0,1/2). Letx € (0,1) and
A > 0 as given in Definition 2.1. We consider the following

regimes and parameter settings for smooth and non-smooth
activations functions, respectively.

Smooth Activation. Let ¢ be a vy-leaky H-smooth ac-

_ T d3 N\ 2
tivation with 0 < ¢ < 1. Set T = (Vi@
We assume that there exists some constant C' > 0 such
that Assumption 1 holds, (A1) d < ||u/|* /C, and (A2)

|u]l> > Clog (n/9).

Non-smooth Activation. Let ¢ be a non-smooth activa-
tion with v € (0,1]. Set T = Q(W) We as-
sume that there exists some constant C' > 0 such that
Assumption 1 holds, (B1) m > C'log(n/d), and (B2)

llpll® > Cmax { /4 log (md/nd),log (n/d) }.

Then, there exists a constant ¢ > 0 such that after running
Algorithm 1 for T > T iterations, we have that with proba-
bility at least 1 — 2§ over the random initialization and the
draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies Emb(W ) < ¢, the ro-

bust training error satisfies Lm/b1 (Wi =o.

2. The clean test error satisfies

CMHMH4)

LOYWT)y < B+ 2exp( - —o2g

2
3. For ” I < é\/ H I , the robust test error satisfies

ropt vy < ewp (el (1 -
S )

3.4. Discussion

Theorem 3.1 shows that adversarially-trained neural
networks can interpolate the noisy training data. In fact,
the trained network correctly classifies all training data
after the first step of adversarial training. For generalization
guarantees, Theorems 3.1 suggests an interesting interplay
between the parameters d, n, and ||¢||. Importantly, when
n > Q( T H“) it ensures a small clean test error. Further-

more, when n > Q(d(lﬁﬁ)

guaranteed to be small. This result aligns with the literature
suggesting that adversarial robustness requires more
data (Schmidt et al., 2018). Notably, the clean test error ob-
tained through the adversarial training algorithm shares the
same bound as that derived through gradient descent (Frei
et al., 2022; Xu & Gu, 2023), even when the perturbation
size « is as large as the signal size ||u||. For the robust
generalization error, the constraint on the perturbation can

) , the robust test error is also

21f we fix H 7 to be a constant, then n > Q( HH‘iHQ ) guarantees
the robust test error to be small. This is verified in Section 5.
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be the same scale as the signal size; i.e. & < O(]|p||) when
d = O(n ||u|/*). It is worth noting that the robust test error
decreases as n/d increases or as the attack strength ﬁ
decreases, which is consistent with the findings in previous
literature (Schmidt et al., 2018; Shafahi et al., 2019a).

For non-smooth activation functions, Assumption (B1) is
a relatively mild constraint on the network width. As-
sumption (B2) is slightly more stringent compared to
Assumption (A2). However, it is worth noting that in
the clean setting, the minimax generalization error is at
least O(exp(— min(||u||” ,n ||p||* /d))) (Giraud & Verze-
len, 2019), implying that (B2) is unavoidable up to logarith-
mic factors if we desire a classifier with good generalization.

Next, we provide a lower bound on the robust test error that
is independent of the algorithm as well as hypothesis class.

Theorem 3.2. We consider independent label flip with
probability 5. Let p(x) be the density function of Dgjyg.
For any given classifier f(-; W), when o < ||ps]|, we have
Ly (W) = B+ 122 [ min{p(€). p(€ + v)}dé, where
v=2(1—a/|pl)r When o > ||11]|, the robust test error
satisfies LO/I(W) > 0.5.

rob

Consider the special instance of when Dy is standard
Gaussian. Theorem 3.2 recovers the optimal risk in Do-
briban et al. (2020) up to a scaling factor when 5 = 0.
Moreover, the upper bound on the robust test error (denoted
as UBD) that we provide in Theorem 3.1 and the lower
bound (denoted as LBD) in Theorem 3.2 satisfy the follow-
ing: (UBD—3)=(LBD — 5)0(””“”2/d). Our upper bound

roughly matches the lower bound when % =Q(1).

Overfitting with Adversarial Training. While our result
may, at first, seem in conflict with the robust overfitting
phenomenon that observed by recent empirical studies,
we note that there is actually no contradiction with this
empirical observation as we consider a specific data-
generative model and a bound on the size of the adversarial
perturbation during adversarial training. Indeed, recent
empirical studies by (Dong et al., 2021) and (Yu et al., 2022)
confirm that small « prevents adversarial training from
overfitting. Furthermore, (Xing et al., 2022) explored the
phase transition between standard training and adversarial
training and showed that the optimization trajectories in the
two settings are close to each other when « is small. One
interesting future direction is to justify the generalization
guarantee for moderately large attack strength ﬁ

Comparison with Theoretical Works. Several recent
works focus on giving convergence and generalization guar-
antees for adversarial training (Gao et al., 2019; Zhang et al.,
2020; Mianjy & Arora, 2023; Li & Telgarsky, 2023); here
we compare and contrast our work with each of these.

The work of (Gao et al., 2019) prove convergence for a mod-
ified algorithm for adversarial training wherein the iterates
are projected onto a norm ball to ensure that the network
weights stay close to initialization. However, they further
need to assume that a robust network exists in the vicinity
of the initialization. Such an assumption has been shown
to be invalid in a recent work (Wang et al., 2022b). In a
related work, (Zhang et al., 2020) provide a fine-grained
convergence analysis for datasets that are well-separated.
More recently, (Li & Telgarsky, 2023) give convergence and
generalization guarantees for adversarial training of shal-
low networks with early stopping. Unfortunately, all of the
aforementioned works are limited to the lazy regime (aka,
the NTK setting) which has been shown to be at odds with
adversarial robustness (Wang et al., 2022b). (Mianjy &
Arora, 2023) were the first to provide both convergence and
generalization guarantees beyond the NTK regime, yet their
analysis was restricted to robust realizable data distributions.

Our work stands out from prior work in several ways. First,
we study the standard adversarial training algorithm com-
monly used in practice. Second, we give convergence guar-
antees for adversarial training on non-separable data, unlike
other works that make restrictive assumptions regarding lin-
ear separability and robust realizability. Finally, our results
hold for neural networks that can be trained for arbitrary
many iterations allowing HWt H to go to infinity, i.e., beyond
the NTK regime.

4. Proof Sketch

We begin by providing some intuition for our proof. We
show that when the perturbation size is not large (o < ||u]]),
the trajectory of the adversarial training remains close to
that of the standard training. Furthermore, given a good
initialization of the neural network the dynamics of the
training algorithm can be shown to be nearly linear. We also
leverage a result from high dimensional probability, that
the training data we draw is (nearly) separable even though
the underlying data distribution is non-separable. We show
that both of these events happen with high probability and
establish what we refer to as a “good” run of the algorithm
and are central to our proof.

Next, we formalize this intuition and provide a brief proof
sketch of our main result. We focus primarily on neural net-
works with smooth activation function (i.e., Theorem 3.1)
and note the differences in the analysis when extending the
result to the non-smooth activation functions. In our analy-
sis, we borrow many ideas from (Frei et al., 2022) and (Xu
& Gu, 2023). However, the extension is not straightforward
and our focus in this section is on highlighting the technical
challenges we overcome and the key insights we utilized
in our analysis. We also identify several non-rigorous ar-
guments and present a discussion regarding technical im-
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provements over (Frei et al., 2022); we defer them to Ap-
pendix B.1 due to space limitations. For detailed proofs, we
refer the reader to the Appendix.

4.1. Properties of Adversarial Training Examples

For convergence and generalization guarantees, Assump-
tion (6) allows the perturbation « to be as large as ||u||. This
requires a fine-grained analysis of the properties of the ad-
versarial examples generated during the training process, as
characterized in the following lemma.

Lemma 4.1. V¢ € N,i € [n], the distance between X. and
span{xi,...,x,} satisfies dist(X},span{xi,...,x,}) <

min {wimt\/@/n,a}.

Essentially, a smaller initialization on the model weight wipi
leads to a shorter distance between the generated adversar-
ial examples to the linear subspace spanned by the train-
ing data {x;};_,. Notably, dist(X},span{xi,...,x,}) <
min {1, a} due to Assumption (3). This helps us control
the size of |(u, X 1>’ = O(||p|[*), independently of o when
« is relatively large.

We can leverage another property of f(f to relax Assump-
tion (1) to d > C max{||u||?*n,n?log (n/d)}. In particular,
we show that the angle between the direction of the addi-
tive adversarial perturbation for each training examples, i.e.,
i (X! — x;), and the direction of the combined training data
(.., — > p_; YrXg) is small. This allows us to control the
size of (X;,X;) forall i,j € [n]. Both of these properties
we discuss above are crucial to our analysis and proofs.

4.2. Generalization Guarantee

As a proof strategy we seek to get an upper bound on the
robust test error in terms of a lower bound on the normalized
expected conditional margin. This follows using a concen-
tration argument given that Dy, is A-strongly log-concave.

Lemma 4.2. Suppose that E, , yp_ [y f(x; W)|y. = 7] —

[[W|l, & > 0 holds for both § = 1 and § = —1. Then, there
exists a universal constant ¢ > 0 such that

Exyo) e e f (5 W)lye = 9] 692)

L?oél(w)gﬁ+zexp(ic/\( HW||2

ge{-1,+1}

To get a lower bound on the normalized expected condi-
tional margin, we leverage the smoothness property of
the activation function to derive a lower bound on the
increment in the un-normalized margin for an independent
test example (X, y).

Lemma 4.3 (Informal). For some constant C5, with high
probability, we have for any ¢ > 0 and (x,y) € R? x {£1},

there exist gt = p (W, x},x) € [y2,1] such that

9y N

y [FOs W) — fx W]

RN = oty (Ft /. st HHXH C3dn
2 E ;gl(w )(52 <ylxz7yx> 2\/7’)’1, )
where g;(W') = =/ (y; f(Xj; W")) = !

For the non-smooth activation function, we get a similar
result which we defer to the Appendix due to space
constraints. Finally, we seek a positive lower bound on
un-normalized expected conditional margin for model W*
by expressing it in terms of the cumulative increments
of margin; i.e., showing E(X,yc)NDdyC:l[ycf(x; whH] =
it Eyonn o=t e f (6 W) = gef (W] +
E(x7yC)NDC‘yC:1[ny(x; WO)]. A positive lower bound
holds trivially positive if (y;X},y.x) is always bounded
below by some positive constant. However, due to the
presence of noisy labels y; and adversarial examples X;,
<y1>~(;, ycx> may be negative. Note, though, that the term
(yiX}, yex) scales with §;(W"). If we can show that §;(W*)
is of the same order across all training examples, and
assume a small perturbation budget and that only a small
fraction of labels are noisy, then we can mitigate the effect
of the negative terms. The key lemma providing such a
result by bounding the loss ratio is as follows.

Lemma 4.4 (Informal). Given Assumption 1, there is an
absolute constant C,. > 0 such that with high probability,

1O < O,

we have for all ¢ > 0, MAaX; je(n] 5 (wi) =

To see why the above holds, note that for any given ¢, j € [n],

we have that 2 W) o max {2 w} where

9;(W*) = T exp(—y; fREWY) 7

X! = arg ming, g, (x;;a) yif(X;; WH). For successive iter-
exp(—ya fERITHWIT)) exp(—yi fREW))

ates we get that exp(—yjf()"(;"'l;wt*l)) - eXp(—yj.f(i§ ;Wt)) .

exp(y fFRITHWh -y FRTTH W)
exp(y; f(RGW)—y, f(X5;WiHD))

to complete the proof.

. Finally, we use induction

For smooth activation functions, the proof of Lem-
mas 4.3 and 4.4, follows by controling the term
y [f(x; W) — f(x,W")] via Taylor approximation. For
non-smooth activation functions, we need to ensure that
there exist enough neurons have positive activations at ini-
tialization as well as throughout the training process.

Lemma 4.5 (Informal). Given Assumption 1
and (B2), with high probability, for all s € [m],
we have |{z €n]:yi=as (W x) >« ||W§H}| =
O(n); for all 4 € [n],  we

{s € m]:yi =as, (Wh,xi) > a||wl||}]| = ©(m).

have
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4.3. Convergence Guarantee

In order to control the robust training loss, a naive approach
would be to decouple the increment of the robust training
loss, from iterate ¢ to ¢ + 1, into two terms as follows:

Erob (WtJrl) _Erob (Wt)
= %Z { (O(ys fREE WD) — 0y f(RE W)
(U R W) ~ e (R W) |

The second term can be controlled by the smoothness
property of the loss function. The first term, unfortu-
nately, is upper bounded by ||Wt+1|| ||i§+1 - f(f| , and
the robust training loss hence inevitably depends on the
norm of iterates ||W“r1 || if no additional assumptions are
made. This poses a problem if we do not constrain the
model weights within a bounded domain, as HWt” may
tend to infinity as the number of epochs increases. To
mitigate this issue, we instead control the robust train-
ing loss via the norm of the iterates. Specifically, we
first show that L,(W') < 2 f:_ol Grob(W') where
Gron(W) i= % 300 maxg, e, (x,,0) —¢ (yi f (Xi; W)); this
holds due to a property of the loss ¢(+) (see the Appendix
for more details). We then bound Gy, (W') by a con-

stant scaling of <*vErob(Wt)7 V>, where V € Rm*d ig

a matrix with row vy = asp/ ||]|. We achieve this re-
sult using Lemma 4.4 and the fact that only a small frac-

tion labels are noisy. Given ZtT;()l <—Vfr0b (WhH), V> =
(W, V) — (WO, V) < [[WT] . + [[WP]|. the only thing
we need to prove is that the growth rate of ||Wr|| is smaller
than O(T). This property holds for both smooth activa-

tion functions that satisfy our construction and non-smooth
activation functions such as ReLU and Leaky ReLU.

S. Experiments

In this section, we present a simple empirical study on
a synthetic dataset to support our theoretical results. We
follow the generative model in Section 2 to synthesize a
dataset with independent label flips when generating y from
ye. Weset 1 = ||pl|5 [1,0,0,.. .,0]", 8= 0.1, and gen-
erate n = 100 training samples and 2K test samples with
the noise vector sampled from the standard multivariate
Gaussian distribution, £ ~ N(0,I). We train a two-layer
ReLU network with width 1K. We use the default initializa-
tion in PyTorch and train the network applying full-batch
gradient-descent based adversarial training using logistic
loss for 1K iterations. We use PGD attack to generate ad-
versarial examples with attack strength «/ ||11|| and attack
stepsize o/ (5 ||p4]]) for 20 iterations. The outer minimiza-
tion is trained using an initial learning rate of 0.1 with decay
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Figure 1. Clean test accuracy (left) / robust test accuracy (right)
as a function of signal size ||u|| and dimension d, for a fixed
perturbation ratio ot/ || || = 0.1.
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Figure 2. Robust training loss (left) / robust test error (right) as a
function of training iterations. Top row: fix d = 1000, H;LLH =0.1.
Middle row: fix ||p|| = 5.0, o = 0.1. Bottom row: fix Il =
5.0,d = 1000. Each curve is averaged over 10 runs and shaded

regions show standard error.

by 10 after training for every 500 iterations. We note that
adversarial training achieves 100% robust training accuracy.
We estimate the robust test accuracy using the same PGD
attack. We consider settings with varying dimension d and
attack strength HQTH

For our first experiment, we fix the perturbation ratio m =
0.1, and vary the value of the signal strength ||x|| from 1
to 10 and the dimension d from 1K to 18K. We show the
results in Figure 1 as a heat map of clean accuracy and
robust accuracy averaged over ten independent random runs.
We observe a phase transition for both clean accuracy and
robust accuracy at the value of dimension d around O(|||*)
for clean accuracy and O(||u||*) for robust accuracy. This
is consistent with the main theorems (see discussion in
Section 3.4).
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For our next experiment, we plot the robust training loss and
robust test error as a function of the number of training iter-
ations in Figure 2. For the top row, we fix d = 1000, HQTH =
0.1, and vary the signal size ||u|| € [4,6,8,10]; for the
middle row, we fix ||| = 5.0, o = 0.1, vary dimension
d € [500, 1000, 1500]; for the bottom row, we fix ||| =
5.0,d = 1000, vary attack rate 1= € [0.05,0.1,0.15]. We
observe that the robust training {oss goes to zero while the
robust test error converges to the label noise rate of 0.1. Fur-
thermore, smaller |||, larger d, and larger Ty all lead to
worse robust test error, which is consistent with our theory.

We observe the same trends on MNIST dataset even though
the data generative assumptions are no longer valid; we
defer a detailed discussion to the Appendix.

6. Conclusion

In this paper, we show benign overfitting in adversarial train-
ing of two-layer neural networks under a noisy mixture data
distribution. Specifically, we show that under /5 norm per-
turbations, the robust training loss converges to zero while
the robust generalization error is near-optimal. Our work
suggests several promising future directions. Our results as-
sume a generative model with a structured log-concave data
distribution. It is natural to explore whether our findings
can be extended to more general data distributions. Another
interesting direction is to investigate whether our results
generalize to the setting where the data dimension and the
number of training samples have the same scale. Finally,
we note that our main result only partially characterizes the
phase transition from small to large test errors for small and
large attack strengths, respectively. An important next step
is to provide generalization guarantees for attacks of mod-
erate strength and to explore the relationship between the
perturbation size, signal size, dimension, and the number of
training samples.
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Supplementary Material

A. Additional Experiments

0.9
For the synthetic dataset, we also run an additional experiment. We

fix the signal size ||| = 5.0, vary dimension d from 500 to 6K and 08
perturbation ratio m from 0.05 to 0.45. Figure 3 plots the robust ac- 0.7

curacy as a heat map averaged over ten independent runs. Our findings
indicate that, increasing the dimension leads to a smaller perturbation

o
()]
robust accuracy

ratio required to achieve the same level of robust test accuracy. 05

In order to see if our results extend beyond the generative data model 0.4

we consider in this paper, we run the same set of experiments as above 0.3
3 QO O O 0 O 0 0 90 0 0 0 9

on the MNIST .dataset. MNIST is a dataset of 28.>< 28 greyscale §SSS5SS §s S8 5

handwritten digits. We extract examples corresponding to images of - dimension d

the digits ‘0’ and ‘1’, resulting in 12,665 training examples and 2,115
test examples. We view the input image as a vector input of size d and
normalize the data to ensure that the ¢, norm of each input vector is
equal to ||u]|. A random subset of size n = 100 is used for training.

Figure 3. Robust test accuracy on synthetic dataset as a

function of d and ﬁ for a fixed || u|| = 5.

We do not introduce any label noise; i.e., § = 0. We train a two-layer ReLU network with width 1K using the same training

procedure as for the experiments on the synthetic data.

784 1.00 0.95
— 4

4000|ul| 0.95 0.90
0.90 > 0.85 >
©
T 484 0850 0.80°%
< 3 o
§ 400 0.80 0.75®
= c i)
© 289 0758 0.70 3
© e

0.70 0.65

0.60

[ull

Figure 4. Clean test accuracy (left) / robust test accuracy (right) on MNIST dataset as a function of signal size ||| and dimension d, for a

fixed perturbation ratio o/ ||u|| = 0.3

The perturbation ratio is set to = = 0.3, the signal size el is
varied from 0.1 to 2.0. We downsample the images by different
factors to simulate data with dimension d ranging between 25 and
784. We plot the heat map for both the clean accuracy and the robust
accuracy averaged over ten independent random runs in Figure 4. We
observe a phase transition in both subplots at the value of dimension d
around O(||z||*) for clean accuracy and O(||1||*) for robust accuracy.
This confirms that even when the data distribution deviates from a
Gaussian mixture model, the result in Theorem 3.1 is still indicative

0.95

o
O
o
obust accuracy

0.85 2

0.80

: H H H 8] (s} © )] S N 0o o ¥
of an interesting relationship between d, |||, oy and n. RS & & §8 & 88
dimsion d

As for the MNIST, for a second set of experiments, we fix the signal

size to ||u|| = 5.0 and vary the dimension d from 25 to 784 and Figure 5. Robust test accuracy (right) as a function of
perturbation ratios ﬁ from 0.05 to 0.45. The resulting heat map of dimension d and perturbation ratio ﬁ for a fixed

robust accuracy averaged over five independent runs is presented in
Figure 5. We see a similar trend as in Figure 3.

signal size ||p|| = 5.0 on MNIST

We also plot the robust training loss and robust test error as a function of the number of training iterations in Figure 6. For
the left column, we fix d = 784, po = 0.1, and vary the signal size ||u[| € [3,5,7,10]; for the middle column, we fix

13
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0.30 — |jul|=3.0 0.30 —— d=289
$0.25 [ul]=5.0 $#0.25 d=400 % 0.6
o o o
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Figure 6. Robust training loss (top) / robust test error (bottom) on MNIST dataset as a function of training iterations. Left column: fix
d = 784, % = 0.1. Middle column: fix ||| = 5.0, 7o = 0.1. Right column: fix ||| = 10.0,d = 784. Each curve is averaged over

el ,
5 runs and shaded regions show standard error.

[l = 5.0, g = 0.1, vary dimension d € [289,400, 784, 1024]; for the right column, we fix [|u[| = 10.0,d = 784, vary

attack rate HQTH € [0.05,0.1,0.15, 0.2]. We observe that both the robust training loss and the robust test error goes to zero.

B. Missing Proofs

We start by introducing some important notations that will be used throughout our proof. We find the negative derivative
of the logistic loss to be useful in our discussion; we denote it as g(z) := —¢(z) = 1/(1 + exp(z)). Note that g(-)
is non-negative and decreasing and can serve as a surrogate for the 0-1 loss. More importantly, we can check that
finding adversarial examples that maximize £(-) is equivalent to maximizing g(-), i.e., argmaxg, ¢, x, o) £(¥i f (Xi; W)) =
argmaxy, ¢z, (x; ) 9(yif(X;; W)). For simplicity, we denote /; (W) and g;(W) to represent maxy, e, (x,,a) £(¥i f (Xi; W))
and maxg, e, (x;,a) 9(¥if (Xi; W)), respectively. The empirical risk and the robust empirical risk w.r.t. the surrogate loss
g(-) are denoted as

n n

GW) = 3" g (W), Gun(W)i= = 57 max (0 f (5 W),

=1 n =1 )~(1‘,€Bz(x1;,()t)

B.1. Missing Proofs in Section 3.1

Improvements over (Frei et al., 2022). We have identified two non-rigorous arguments in the proof of (Frei et al., 2022)
and addressed them in our analysis. The first issue arises in the Lemma 4.1 of (Frei et al., 2022), where the concentration
inequality for the Lipschitz function class (Equation (2) in (Frei et al., 2022)) is applied. However, the expectation should be
taken with respect to x instead of (x, y). To resolve this, we introduce Lemma B.2, conditioning on the label y., and apply
the concentration argument twice. The second issue is found in the proof of Lemma 4.11, Equation 24 in (Frei et al., 2022),
specifically in the calculation of E(y , )~p, [§i (¥iXi, ycX)]. In their analysis, the expectation is taken only over (y;X;, ycX),
but it should also consider the dependence of &; on x. In our analysis, presented in Lemma B.14, we provide a careful

treatment of this expression, incorporating the additional assumption that d < %
Theorem B.1. Lete > 0,6 € (0,1/2). x € (0,1) and X > 0 are defined in Definition 2.1. Let ¢ be a y-leaky H-smooth

. . = 35484/ m/d3\ 12~ . .
activation with 0 < ( < 1. Set T = (tr\THZLs/) =< There exists some constant C' > 0 such that Assumption 1 and the

following holds: (A1) The dimension satisfies d < ||u||* /C. (A2) The signal size satisfies ||1z||> > C'log (n/8). Then there
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exists a constant ¢ > 0 such that after running Algorithm 1 for 7' > T iterations, we have that with probability at least
1 — 20 over the random initialization and the draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies Ly, (W) < €, the robust training error satisfies Z?O/bl (W) =o.

2. The clean test error satisfies 4
A
LYY WT) < B+ 2exp( _ cAnial g!g” )

2
| , the robust test error satisfies

rob

u
0/1(WT)<[3+26XP( C)\HNH H H d HM”

Proof of Theorem B.1. By Lemma B.3 and Lemma B.4, a good run occurs with probability at least 1 — 2§. The robust
training loss bound is proved in Lemma B.15. For the robust loss, we apply Lemma B.2 with Lemma B.14, which give us

with probability at least 1 — 24,

LU (WT) = Py p[3% € Ba(x, @) s.t. y # sign(f(%; WT))]

rob
Ex,yo)~p. e f (% W)y = —1] 2
< B+exp (—c)\( (x,ye)~De Wi - a)
2

Eix,ye)~ [cf(x;W)| czl] 2
_ ( ’yc) D, Y Y _
e ( ( W, ) )

NS )2
§5+2eXp< cA<3202\/g||u|| a )

2
<B+2exp <—c)\ (C\‘/\/ﬁg ull? = a) ) , (Choose C' > %)

nllpl?

where the last line holds for <3 L=, so that f MK

Tl —az0.

Similar for the standard loss, applying Lemma B.2 gives us

2
Lo/l(WT) <B+exp | —cA (E("vyc)NDc [ycf(x;WT)|yc =1
B W],

2
+exp | —cA Ex,y0)~D. [ycf(X5WT)|yc =—1]
W1l

<B+2exp | —cA <72\/ﬁ I ||2)2 (Lemma B.14)
= p 390,V H .

NG 2)2 32C
< B+2exp | —er (L Choose C' > 22
<p exp< c (C’\/& |l (Choose C' > =332)

cn [ull*
=0+ 2exp ( —2q |-

O

The proof of Theorem 3.1 builds upon a sequence of Lemmas, which we show below. Lemma B.2 bound the robust test
error by the normalized expected conditional margin via a concentration argument.
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Lemma B.2. Suppose that E, , yp, [ycf(x; W)|ye = 9] — [[W][, @ > 0 holds for both § = 1 and 5y = —1. Then, there
exists a universal constant ¢ > 0 such that

L?o/bl(w) <B+ Z exp( B CA(E(WC)NDC[%JC(X; W)lye = 9] _ a)Q),

ge{—-1,+1} W,
Exyo)~ p[ycf(mw)‘yc:g] 2
LY W) <8+ ) CXP(—C/\( e W] ) )
ge{—1,+1} 2

Proof of Lemma B.2. We have

LU (W) = P yyop 3K € Ba(x, a) s.t. y # sign(f(%; W))]
=Pry)~op 3K € Ba(x, ) st y f(X; W) < 0]
< B + P(x,yC)NDC [Eli € BQ(Xva) s.t. y(.f(i,W) < 0]

=B+Pr, e min  y.f(X; W) <0 .
6+ Py, | i 0o f (W) <0)

For any X € Ba(x, a), we have

8 1 | & 5
[Yef (6 W) = e f (W) = —= > as[p((ws,x)) — ¢(<Ws,x>)}‘
s=1
1 m
< L S0 e x — & is 1-Lipschit
< m;h | [{(ws,x — X)| (¢ is 1-Lipschitz)
1 m m
< — Z a? Z (We, X — X)? (Cauchy-Schwartz)
m
s=1 s=1
= [W(x =x)]|
< [|[W]], c (By the definition of the spectral norm)

Since Dy is A-strongly log concave, and y. f(x; W) is || W||,-Lipschitz, there is an absolute constant ¢ > 0 such that for
any ¢ > 1, |lycf(x; W) — E[ye f(x; W)]|| .o < €||W|l5 v/q/A. Therefore, there is an absolute constant ¢ > 0 such that for
any t > 0, for fixed y. = 1 (same for y. = —1), we have

P (yef(x; W) = Elyef(x; W)] < —t) < exp (—cA <”Wt”2> ) : )

where the expectation is w.r.t. x. Choose t = E[y. f(x; W)] — [[W||, a > 0, we have

yczl)

= P(vac)N’Dc <ycf(wi) - IE(X,yC)NDC [ycf(XQ W)

P yo)~ i SJ(X W) <0
(%,5e)~De (m?ﬁlﬁa)y F(X; W)

Yo = 1} < yef(x; W)

yc—1>

ye=1] < W,

— E(x,y.)~D. [ycf (x; W)

—1] - mi W
Ye xegll&l,a)%f( )

< P(x,yc)wDC (ycf(x;w) - ]E(x,yc)wDC [Z/cf(X; W)

yczl)

— Exyo)~n, [ycf (x; W)|ye = 1]
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E(x,y.)~D. [ycf (x; W)y,
W1l

= 1] = |[Wll,
<exp | —cA

Consider both y. = 1 and y. = —1 gives us
L?o/bl( ) < ﬂ""_P(xy( ~D, ( min  y.f X W) < 0)
XEB2 (x,c)

=B+ Px min JEXW) <0
B (x:ye)~De (xEBz(xa)y )

Ye = —1) Py =1)

+ P(x yC ~D. ( min yC X W) S 0 Ye = _1) . P(yc = —1)

XeBs (x,)

By e f (W) |ye = 1] — [W]|, o
=Ptep ] e W
2
E(xye) D, Ve f (s W)|ye = —1] — W],
+exp | —cA Wi
2
Similarly,
Lo/l(W)

= P(xy)~p[yf (x; W) < 0]

< B+ Piyo~p. {ycf(x; W) < 0}

< B+ Pxy)~p. {ycf(x; W) <0ly. = 1} + P(x,y)~D. {ycf(x; W) < 0lye = _1}

< B+ Pxyo)~p. {ycf(x; W) = Exyo)~n, [Wef (X W)lye = 1] < =By )mp. [Yef (W) ye = 1]ye = 1]

+ P(xayc)NDc [ny(X§W) - IE( JYe)~De [ (X W)|yc = 1] < _E(x,yc)~Dc [ycf(X;W”yc = _1”yc = _1]

2 2

Ex,y)~ c iW)lye =1 E(x.yo)~ c W)y = —1

(xye)~De [Yef (% W) |ye = 1] exp [ —en [ Beesormelef (x )|y ]
W[ W1,

< B+ exp c)\<

O

Now we only need to derive a lower bound on the normalized expected conditional margin. Below is a series of structural
results that leads us to our destination. Lemma B.3 and B.4 are the properties of initialized network weights as well as the
generated data.

Lemma B.3. Under Assumption 1, (A1) and (A2), there is a universal constant Cy > 1 such that with probability at least
1 — §/2 over the random initialization,
1

Sefud < w2112 < 2%,@ Vs € [ml; [WO, < Cownn(v/m + Va)

Proof of lemma B.3. For any fixed s, note that ||wO H yisa w2, -multiple of a chi-squared random variable with d degrees of

freedom. By concentration of the x? distribution, for any ¢ € (0, 1],

1 2

11’11[
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In particular, if we choose ¢t = 1/2, with probability at least 1 — 2 exp (—d/32), we have

1 3
Send < [wll[; < Sedud.

Applying a union bound, with probability at least 1 — 2m exp (—d/32), we have

L2ud < WO < Swkid,vs € [m).

2 lnlt 2 lnlt
Note that
1—2mexp(—d/32)
>1—25exp(n/C —d/32) (Assumption (5))
>1—20exp(—d/64) (d > 64n from Assumption (1), Assumption (A2) and C sufficiently large)
>1-4/4. (d > 192 from Assumption (1), Assumption (A2) and C sufficiently large)

Therefore $w2;d < HWOH 5 < 3w2id, Vs € [m] holds with probability at least 1 — §/4.
For the spectral norm, since the entries of [wy, ... ,W%] /winit are i.i.d. standard normal variables, by Theorem 4.4.5 in

(Vershynin, 2018), there exists a universal constant ¢ > 0 such that for any u > 0, with probability at least 1 — 2 exp (—u2),
we have

||[w1,...,wm]|’2 < cwpit(vVm/2 + \/a—ku)

2

In particular, taking u = /log (8/4), s W H2 < cwinit(v/m/2 +
Vd + +/log (8/4)). Since WO, = V2 ||[w1,. .., wa] |2 holds by symmetric initiallzatlon, and \f d> «/Clog(l/é >
\/log (8/6) by Assumption (1) and C sufficiently large, we are done with the spectral norm. O

Lemma B.4. Let (x;,y;) ~ D, Vi € [n], where x; = ySu + &, P(y§ # v;) < 5. Given 0 < £ < 1 in Definition 2.1, there
exists C1 = % > 1 such that for large enough C, with probability at least 1 — ¢ over D™, the following hold

2
Ixi|> < Cud; V&:, %, € Ba(xs,a), d/(4Cy) < (w/d/c1 foz> <

(Cl) Vi € [n], 5 < [|&]* < 3+ £)d, d/Cy <
%> < (VO + )’ < 4C1d. (%.%0) > (\dJC1 — 0 > d/(aCy).

(€2) ¥i # j € [n], (g, &) < i ( d10g<n/5)), (isx;)| < C1 (Il + v/dlog (n/2) ).
Vi € Ba(xi, ), %; € Ba(x;, ), [(%:, %) < Cu (Jlall® + v/@og (n/3) ) + 20v/Crd + o2,

[0x:,%)] < Cr (Iall® + v/dlog (n]8) ) + av/Crd.

i 2i&;

i=1

2 n
(C3) Vzl,ZQ,...,znéR, §4d2212

i=1

2

=1

X,

(4 V)NCZ S BQ(Xi,Oé), VZ1,22, ..., 2n € R, SC ;Z? <

(C5) Vi e,

2 2 - 2 - 2
(s yixi) — el ‘ < ull” /2, ¥%; € Ba(xiy @), g ull” = llull @ < (s yiki) < 5 ull” + [lull o

(C6) Vie N,

2 2 - 2 - 2
(1, yixi) + [l ‘ < lpll” /2, %i € Ba(xi, ), =5 |ull” = llell e < {p,yiki) < =3 [ull” + llull o
(C7) The number of noisy samples satisfies |NV|/n < 8+ /2.
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Proof of Lemma B.4. The proof is a simple extension of Lemma 13 in (Chatterji & Long, 2021). For statement (C1),
ad < l&1? < 3+ §)dand d/Cy < Ix;]|> < C\d follows directly from the proof of Lemma 19 in (Chatterji & Long,
2021). Since

[xi = Xil| < a < |yl (Assumption (6))

1 /d
< Ve (d > C ||u||* n from Assumption (1) with sufficiently large C')
1
<3 Il
5 1Xill»
-2

d/(4Cy) < < (s/Cld—i—oz)2 < 4Cid holds. Because ||x; — X;|| < o < 4 [|x;]| also holds,

(varc: - a) > d/(4Ch).

For statement (C2), |(&;,&;)| < Cq ( dlog (n/é)) and |(x;, x;)| < Cq (||u|| + +/dlog (n/&)) follows directly from the
proof of Lemma 20 in (Chatterji & Long, 2021).

(Varc, -a)” < Il

through some simple calculation, we have (X;,X;) > (||x;|| — a)? >

[(Xiy X5)| = [{xi, %5) + (Xi — Xi, X5) + (X, X5 — X5) + (X — x4, X5 — X5)]

< [ xg) | aflxill + efixsll + 1% = xill - 1% = x|

< 1 (Jlull? + v/dlog (n/0)) +20v/Crd + .

(i, %) = (xi %) + (%0, X5 = %)
< [y x5)] + a x|

e (Ilull +/dlog ( n/6>+a Chd.

The statement (C3) holds since

M=

NG +2) 2z (6, &5)

n 2
>z
i=1

i

M=

<.
Il
_

NE

.
Il
-

(34 5)d + 20,

1 i<j

dlog (n/d)

i<j
22 + z]2 d

234+ Syaq 20, S
zz( 2) 12 2 \/an

i<j

(CD), (C2))

(Assumption (1))

(C sufficiently large)

(3+ +— de <4de

The statement (C4) holds since
zn:ziil ZZQHle —|—22z1z] Xi, Xj)
1=1 i<j
< chl (01 (Hull2 + \/dlog (n/5)) +2a/Chd + a2)
1<J
(4C’1d+n (C’l <||,uH ++/dlog (n/d) ) +2avCid+ o ))
i=1

((CD), (C2))

Z

M:

i=1

(Assumption (1), C' sufficiently large)
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and

Zz2 1% —|—22z,z7 Xi, Xj)

n
E Ziiz
=1

1<J
2 %+ 2] 2 2

> Zzl 401 22 : (€1 (Il + v/dlog (n/8)) +20/Crd +a?) (C1), (C2))

d n
> (40 —n(C’l (HMHQ—I— dlog(n/é)) +2a C’ld+a2)> sz

i=1
d ) . .

> 2,
3G Z Z; (Assumption (1), C sufficiently large)

Statement (C5) and statement (C6) follow similarly from the proof of Lemma 21 and 22 in (Chatterji & Long, 2021) and
combining the fact that

(s yixi) = (o yiXa)| < [l - [xi = Xel| < [l ex.

The last statement follows from Hoeffding’s inequality:

PN /n — 5> /2)

< e—2n(/2)’

< ¢~ 2C log(1/6)(2) (Assumption (5))
=4

<4/6. (6 <0.5)

O

Definition B.5. If the events in Lemma B.3 and Lemma B.4 occur, let us say that we have a good run.

Lemma B.3 and Lemma B.4 show that a good run occurs with probability at least 1 — 24. In the following we assume
a good run occurs. Lemma B.6 leverages the smoothness property of activation function and derive the result via Taylor
approximation. Lemma B.7 characterizes the relationship between Lrob( ) and Gmb( ). Lemma B.38 further derives the
bounds on the gradient norm given adversarial training example, as well as the pairwise correlations of the gradients given
different adversarial training examples. These are standard results that have been derived by (Frei et al., 2022), and we
simply extend them for adversarial training scenario.

Lemma B.6 (Lemma 4.5 in (Frei et al., 2022)). For an H-smooth activation ¢ and any W,V € R™*¢ and x € R?, we have

. . . H x|
IfFW) = f( V) = (Vx5 V),W=V)| < ENCH

Lemma B.7. Let C7 > 1 be the constant from Lemma B.4. For an H-smooth activation ¢ and any W,V & R™*4 on a
good run it holds that

2
W=Vl

1 T ey ~
m HVLmb(W)HF < Grob(w) < Lrob(W) Al.

Proof of Lemma B.7. Since ¢ is 1-Lipschitz, we have VX; € Ba(x;, ),

2
IV £ (% W)I[3 = — Zuw (wo, X))Kil* < (VCid+a) 3)
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For Vi € [n], choose X; = argmaXzeg, (x;,a) £(y; f (X35 W)) so that EZ(W) = Uy fXW)), 5:(W) = g(y: f(Xi; W)), we
have

Hvzrob(w>HF| Zgz )y:V f (%is W)

F
< - Zgz VIV X W)l (Jensen’s inequality)
VvCid+ « - .

< Y27 )

< - ; Gi(W) (Equation (3))
L VGdta S min (7:(W), 1) (By the definition of §(W) and ;(W))

" i=1
< ( Cid + a) (frob(W) A 1) . (Jensen’s inequality)

O
Lemma B.8. Let C'; > 1 be the constant from Lemma B.4. For a y-leaky, H-smooth activation ¢, on a good run, for any
i,j € [n],i # j,VX; € Ba(xi, ), VX, € Ba(x;, ), VX € Ba(xj, ), we have
(V£ (x:, W), V£ (R, W) < G (Jlul* + /dlog (n/3) ) + ay/Crd,
(V& W), VI (3, W) < Cr (Jlul* + /dTog (n]8) ) +2ay/Crd + o,

Moreover, for any i € [n] and any W € R™*4, we have
2 2
(Va/Cr—a) ¥ < IVF&s WG < (VCid+a)
2 2
(VA/Cr = a) 2* < [(V/ (e W), VS (K, W))| < (VCrd + )

Proof of Lemma B.S. The proof is similar as Lemma 4.7 in (Frei et al., 2022).

<vf(wi)7vf(ya X Y Z(ZS Ws, T <W9’y>)

Therefore,

m

[(Vf(x, W), Vf(y, W))| = % [ ¢ (wey ) (W) € 72 1% ) 1% 9))-

s=1

Thus, the first two inequalities follow from Lemma B.4 (C2). The last two inequalities follow from Lemma B.4 (C1). [

Lemma B.9 plays a crucial role in our analysis. It demonstrates that the margin increases with each epoch of adversarial
training, given any adversarial examples. More importantly, it proves the loss g is at the same scale across all adversarial
training examples.

64C: (V1 +0.5, /5 )2

Lemma B.9. For a -leaky, H-smooth activation ¢, there is a constant C}. = -

provided C' > 1 is sufficiently large, we have for all £ > 0,
g (R W) = e f (R W) 2 0, Y% € Ba (e, ),V € [n],
< 2
glyi f(RLEWH) 16 (vCid + a)

max < 5 < C,

SER g TV (T a)

where X; = argmaxzc, (x, ) £(yif (X; W), X; = argmaxzep, (x, ) £(y; f (X W')).

such that on a good run,
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Proof of Lemma B.9. By Fact A.2 in (Frei et al., 2022), we have

holds for any z,y € R, so

e S REWY) max(

—yi f(RE W
pis — S 2,2 - max exp( yf(xl )) .
ij€ln] g(y; f(X;; W"))

i.i€ln) exp (—y; f(X; W)

In the remainder of the proof we will show that the ratio of the exponential losses is bounded. We will prove it by induction.
Since a good run occurs, all the events in Lemma B.3 and Lemma B.4 occurs. In particular, we have ||W0 ||2 < Cowinit(v/m+
V/d) and HX?H < /C1d + a. Note that at initialization, we have | f(X; W°)| = 0. For any %; € Ba(xi, ), %; € Ba(x;, @),
consider t = 0, we have

exp (—yif(x7; W)

max =1<

8 (VCrd +a)’
i€l exp (—y; (X} WO)) ~2 <\/d/701* 04)2.

Assume the result holds at time ¢ and consider the case ¢ + 1. For simplicity we only consider the exponential ratio for
=t wt d+a 2 .
w_ Then A; < 8(7 VClH')Q Fix k € [n],
(v 59) (Vi)

consider VXj, € B(xy, a), define pf = L 3™ ¢ (<ws ,xk>> ¢’ (<WS ,~f>) € [v%,1]. We first need to show that
Y f (Ki; W) > g f (Ri; WY).

Y [fZ W) — f(Res W]

the first sample and the second sample, and denote A; :=

> g [(V (R WH, WHT — W] — H2|\|;’LH Hthrl — WtH; (for y € {£1}, apply Lemma B.6)
= yen | { V(& W) lzn:g(wt)ny(itWt) H”Xk” n? HVE (Wt)HQ
k k> ani:l ) 7 %) 2\/— rob 5
i H(VCrd+a)' n? A
[ Zgl kaf(Xk, )yin(Xﬁ;Wt»] _ ( lea) n Grob(wt) (Lemma B.7)
H(V/Crd+a)' n? .,
:% k(W) pp, <Xk,Xk>+;gz (W) (yiXs, yXi) | — ( ;ma) 1 Grob(WY)
. | o max; §;(W")
> " lgw) (2 (VG o)’ Wz(a (Ilull*+/d1og (n/8)) +2a\/Crd-+a?) || (Lemma B.4)
H(JVCid+a)' P~
2\/7’% Grob(w)
2
> % {gk(wt) (72 (\/M— a) - Cmn (01 (Ilull2 + \/W) +2a Cld+a2)>}
(By induction, % <Cy)
H(v01d+04)4772 =~ t
— 2\/% Grob(w)
2
7 (Jd/ﬁ—a) e H(Cd+ Q)P
> m gk(w ) - 2\/m Gl’Ob(W )

(this line holds with large enough C' via Assumption (1))
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i [T VTC =) i)y

Gron(W') S - N (By induction, g (W') > & Glon(W'))
(VA gyt | .

> 1Grop(W") 5. - NG (Assumption (6) and Assumption (1))
. (W) i (2yon) |

> 1Grob(W') onC. — SO0 (Assumption (4))

>0, “)

where the last line holds from Assumption (1) with sufficiently large C'

Now we are back to prove the upper bound of the exponential ratio A;. We have

exp( w fX t+1, Wt+1))

Appr = oxp (—y2f (X [EE W)
_exp (—yn fEL W) exp (i f R W) — s fRTT W)
exp (—y2f(X5; W) exp (y2f (X5; W') — g f(RETH; WITY))
exp (y1 f(XTTH W) — g KT W) s
A o (R W) — g (R W) (By the defintion of ;. ;")
g, SRS ETW — g G W 5 1W(yz ( ;W)
exp (y2.f(X5; W') — ya f (Ro; WH — L3570 Ve(yi f(X5; W)
exp (—2 300 yiyig(yif (Xis WH) (VA (RTTH WH), © (x W)
<A - Lemma B.6
> A exp <_%E:L 1y2yig( f(;(tywt)) <Vf( 2,Wt Vf “ t)>) (Lemma )

2H (v n?
~eXp( (vVCd +a ZVZyZ XL W)

- |
= Ag-exp( = Loy F(K1s W) (VFERIT W, V(x]: W)
- Lgya (%6 W) (Vf(Rh: W), V. (%5 W) )
exp (—% S vtig (i f (X5 W) (VKT WE), Vf(iE;Wt)>)
exp (— 2 X vowig (i (R W) (VF (R W), VF(RE W)

o [ 2T+ )" 2
Xp \/7 ’

where the first inequality holds since exp (ylf(f(ﬁ“;wt)) > exp (y1 f(X; W), exp (y2f (X5 Ll ;W) <
exp (y2f(X5; W) by the definition of X}, X x5

ZVEyl x ;W)

We next bound each of the above term separately. For the first term, we have
exp (= gl (R W) (VWL VGG WO) + Lol f (55: W) (V1 (%5 W), U/ (%5: W)
e (-2 o(y2 (36 W) ( ol (54 W)

(VIR W, VIR W) = (VRS W), Vf(ié;wf»))

n ( 2f X27 )
: : 2 (VCid+a)®
< exp ( 9(y2f (% X2 ( z;jz 2 W) (\/d/Cl — a) — (172a)>> (Lemma B.8)
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9y (%5 WH)m? (m_a)Q g fELEWY))  (VCid+a)

=exp | — —

2
n 9(y2f (X3 W) 42 (\/d/TI — a)2

For the second term, we have

exp (= S g (R W) (VIR W), V(R W) )
exp (2 i vowi0 i (355 W) (V1 (35 W), VI (31 W) )

<eXp< D gy f R W) (VRS W, VE(RE W)
i#1

+= Zg (yif (X5; W) |<Vf(i§;Wt),Vf(i§;Wt)>|>
z7é2

< exp < Zg (yi f(XL; W) (01 lpll® + C1/dlog (n/8) + 2a+/Crd + a2)> . (Lemma B.8)

For the third term, we have

2
/C 2
exp ( ( \1F+ a Z VA(y; (XL W) )
2H (\/C1d+04) 7?1 <t ot
< Pap— . P .
< exp ( NG - ;g(yzf(xz,w ) (Lemma B.7)
<exp ( Z gy f X Wt ) (Large enough C for assumption (4))

Combining the above results gives us that

2
9(y2f (Xg; W)y (\/Czl—a) gy fEEWY)  (VCid+a)
n 9 f (5 W) (\/Czl_af
-exp( Zg (y; f(X5; W) (C’1 ll? 4 2C1v/dlog (n/8) + 2ax Cld+a2)>.

App1 < Apexp | —

[f S Gw) - 2(VCidta)®
9(y2f(R5:W1)) — 2(\/01/701%)

(g(yzf(ié; W))n(v/Cid + a)Q)

n

Now consider the following two cases. >, then we have

A <Ay -exp (g(y2f(X5; W) > 0)

~exp< Zg yi f(X5 W) (Cl||y||2+201\/d10g(n/5)+2a Cld+a2>>

JC
< A, - exp <”(1n+a)> exp (277 (01 pl? + 2C1/dlog (n]6) + 2a/Crd + a2)>

0 < gy f(x;WH) < 1)

< OB o (” VO +) )exp (20 (G Il + 261 VATog (n]5) + 20/Crd + ?))

(3 exp (—2) < g(2) < exp(—z),Vz > 0; Equation (4))
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4(v/Crd VCid + a)®
= (VG —|—a) 5 €Xp (217 <01 pll” + 2C1V/dlog (n/8) + 20n/Chd + o +( 12n+a) >>
72 (\/d/C’lfa
< 8( C1d+a)
(Vo)

where the last line holds from Assumption (4) with sufficiently large C' so that the following holds

2
VCid+
2n <01 Ipll® + 201 \/dlog (n/8) + 20n/Cid + o + (1a)>

2n
2
Cid +
_ @ + o (01 lll® + a2) +4n (01 dlog (n/d) + Cld)
) 2y 4(C1y/ &5 + Cid)
< (2\0/610?) N 2(2%;|2u\| ) n ng (Assumption (1), (4), (6) with sufficiently large C)
n
<l
=38

gL f KW 2(VCrdta)®
g(y2 f(X5;WY)) “/2<\/d/7C17a)

Otherwise, >, then we have

oo f G5 W? (VTG =) [ gy paswy)  (VCrd+a)
n 92 f (X W) 2 (\/CUTl ~ a)2

At+1 S At cexXp | —

op [ 21902 f (%5 W) S~ g(y:f (Xi; W) /dTog (]3] + 2a N
p( n ;g(yzf(xm )) (ClHMH 2Vl g /5 i Gt ))
< a4 o ol f G W (VTG =) (ypaiw) (VO a)’
DR n 92 f(Z5 W) (\/CUTl—a)2

16 (v/Crd + )’
7 (Vi -a)

cexp | 2ng(ya f(xL: WY)) (o1 ell? + 201 \/dlog (n/d) + 2a Cld+a2)max 2,

<A exp( — g(y2f (X3 W))n (Wii:a)

32 (vCid + o)’
7 (VA o)

5 (01 12l * + 2C1\/dlog (n/d) + 2a+/Crd + O;) ))

(Assumption that 9] (W) 2(VCidta)”

9= FTEWD) 7z(\/dl/icl-a)”

8 (VCid + )’
7 (Ve —a)
where the last line holds from Assumption (6), Assumption (1) with C being sufficiently large that

32 (vOrd + o)’
2 (VTG o)

<A<

b

5 (01 I12l|* + 2C1\/dlog (n/d) + 2a+/Crd + a?)
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< WO (0, L sy ooy 22 + )
7 ($V/4/C7) '

_2(/Cd+a)’ (c PN d>
N ) 15 1 ~ 9 ~
~2 (%\/d/—C’l) Cn Cn?2  Cn

(VTid + )’

n

We have shown through induction that

gy f R W) _ 16 (VCrd+a)
max Tty 2"
i€l g(y; f(x;; W) 2 (\/d/—C'l - 04)

By Assumption (6) and Assumption (1), we know a < ||| < 3+/d/C}. Therefore,

16(/Cid o)’ _ 810 (VO 405/ )

max < < 5 = ().

€t gy (5 W) ™ e (/a7 - )’ 7

O

With Lemma B.9, we can characterize a property of the adversarial training example X' :during training the perturbed data X'
is close to the linear subspace span{xy, ..., X, } in R%.

Lemma B.10. V¢ € N and i € [n], the distance between X} and span{x, ..., X, } satisfies dist (X}, span{xy, ..., x,}) <
min {‘*’—‘““ AL 04}
no

Proof of Lemma B.10. We define Cy = ‘”‘"“Tm for simplicity. The upper bound « is obvious because the perturbation size
is a.. Now we look at C';. We prove the result via induction. Consider time ¢ = 0, from the symmetric initialization, for any
given x, we have f(x; W?) = 0 is a constant function. Therefore, for any given training data x;, generating the adversarial
examples by adding any perturbations on X; cannot increase the training loss. For simplicity, we consider the algorithm runs
standard GD at time ¢ = 0; i.e. no adversarial training examples are generated for the first step, the adversarial training
process starts at ¢ > 1. This gives us that dist(X, span{x,, ..., X, }) = dist(x;,span{xy, ..., X, }) = 0 < Cy. Suppose

we have dist(X}, span{xi,...,X,}) < Cqholds for any 1 < s < ¢ — 1, and we will now prove the result for ¢.
Recall Xj, = argmax;c g, (s, ) L(Urf(X; W*)). We decompose Xj, = X}, | + X, ,, where X; | € span{xy,...,X,} and
i Lspan{xi,...,x,}. Assume ||X} | [|2 > C4, and we will prove via contradiction.

S A linear span of {x;}_,

Figure 7. Graphical illustration of adversarial examples and corresponding vectors that used in the proof of Lemma B.10.
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As the loss function is monotonically decreasing, f(z = argmingeg, (x, o) Yk S (X; W), As a result, there is no feasible

n
direction that is also a descent direction. Here we construct directions vg = —i}c’ 1 — Oy (> yix;) for every 6 € R that

=1

. 1%, 113
satisfies 0 < 6 < : . We have that
V(@2=x}, | [13)-8C1dn

n
<)~(',:C — xk,v9> = <i§c,l- + XZ)H — Xp, —ifw_ — Hyk(z yixi)>
i=1
n
= <ifc| — X, =0y (D in¢)> + (Kp 1 —Xp 1)
i1

n
< OlI%% = xellz - 1D wixillz — 1%, 1113

i=1

< 0y/(02 — |IE L [3) - 8Cidn — %6, L 3 <0, (Lemma B.4 (C4))

therefore vy are feasible directions. From the above discussion, we know that vy cannot be descent directions. Pick
S . oWty 1 e t o, ~
0= Tsatcg- From the form of the classifier Y f(X; W) = Yk T Sz_:l aso((w, X)), and combining the fact that ¢ is

strictly increasing with ¢/ € [, 1], we know there exists so € [m] such that yra,, (W',

V9> > 0.
0> yras, (W, —Vo)

t—1 n n
Z Ykls, <W§0+1 —wh X+ 0 () yixi)> + Yrls, <w20,i§€,L + 0y (D yz'xi)>

i=1 i=1
na -
= Z YkQs, < ~ Z gk' Wt < 507 Xk’>)yk’xk’ Xk 1 + eyk Zyz z > + YrQs, <W807i§c,L + Gyk(z yixi)>
k/ 1 i=1 =1
< n
Nt/ Nt/
S ETES LRIy oty
n\/i k'=1 =1
n
+ Z U < o~ Z e (WH)e < goyxkf>)ykfi2g¢,ih> + Yras, <W§07i27¢ +0ye (> yixz')>
k'=1 i=1

Applying Lemma B.3 and Lemma B.4 (C4), the third term can be bounded by

Oy (D yixi)

=1

n
Yk s, <W20, i};l + ka(z yixq;)>

i=1

<t (Hw +

) < 2w Vd(|[Xg L || + 0+/8C1dn)
For the second term, we have

n St st
Z Yk <n\/7n Z e (W) < sovxk/>)yk’xll;/,L,X;c,L>

k'=1
n t—1 n ,
S <z (W >> @O <D
=0 \k'=1
C Ly
< Z ‘meb wt) ) 1% || (Lemma B.9, induction that [|X}, | [lo < Cq, V' € [t —1])
Jm :
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For the first term, we have

t—1 n n
> <TL\ZTTL > g (Wt')¢’(<w’;'0,ii’,>)yk,§§€',7”79(z Z/z‘Xi)>

o) i put
o 5[5 ) - 5 5 (e

> 9% ti: é‘""'gw) (47(? —n ( ) (||u||2 +/dlog (n/é)) +a Cld))> (Lemma B.4, B.9)
Z ngc?gb N (Assumption (1))

As a result, we have

'YWdGrob Cdn t ~t
Yrasg (Wi =V >92 SC.C. f gﬁ bW, 1l — 2w V([5G 112 + 0+/8Cadn)

(||i’,5€,,7 | |l2 < Cy4 from induction)
t—1

||Xk L”Q ’Y'I]dG b ) - C’dn,\ P ~ ”ikL”%
- - ——Gro W |Ix — 2Wini \/g X 4 =
i 2 i L W IRl — R AR+ )

(plug in 0)

Hi}tc L”% — ’Yndarob(wt/) - Cdn -~ AT st
> ’ =3 =G (W)IRE, L ll2 — 2wini VIR, 12
a?Crdn (= 32C1Cr/m = Vm koL ' k.l

(winit < = < —=L= and C sufficiently large)

> Cd”i;c,ﬂb — ’W?dérob(wt/) _ i Ccma
= Va2Cidn — 32C1Crn/m = "

m
CallXf 1 ll2 = Y1dGron (W) Can ~ )
> 3 70! o 5 Gro Wt ~
% alCrdn 2= 32C:Con/in ;7& oW IRE L1

’ - ~
ob(wt )||ij_||2 - QWinit\/g”XZ,ﬂb

t—1 , .
(Z Grob(Wt ) > Grob(WO) = %)
t'=0

> 0. (d > Cna? from Assumption (1), and C sufficiently large)
This is a contradiction. Therefore, we have proved dist(X},, span{x1, ...,xn}) = [[X} [l < Cq. By induction, proof is
complete. O

Using Lemma B.10, we can prove a different version of Lemma B.4 (C5) and (C6) that will be used later.
Lemma B.IL Vi € C, § ul® < (1, L) < 3 ul®. Vi € N =3 [luf® < (uyikl) < — 3 |lull”

ProofofLemma B.11. From Lemma B.4 (C5) and (C6), we know that 3 ||,uH (1, yix;) < 2||p||* holds for all i € C, and
—2||p)1* < {p, yixs) < —L||ul|” holds for all € N. Therefore, it sufﬁces to prove | {p, yiXt) — (p,yix) | < & [lpfl?. We
can decompose X} —x; = (X, —x;)| + (X} —x;) 1, where (X} —x;)| € span{x1,...,x,} and (X} —x;) | Lspan{xi,...,x,}.
From Lemma B.10, ||(X} — x;) 1 ||z < min{Cq,a} < Cy < 1. For the parallel component, we can write (X; — x;)| =

n n
>" 2kXp, where zj, € R. From Lemma B.4 (C4), o® > ||X} — x,]13 > [|(X] — x,)y/13 > % - > 22 Thus, 4/ % >
k=1 k=1

n n
k=1 k=1
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Now we can prove the statement.

| (s yike) = (o yixs) | = [, Xi = xi) |
<|<u, (X5 —xa)p) [+ | (s (K5 —xi) 1) |

< Z 26| - | (o %) | + Callell

8C1na?
d

IN

< 2||ull* + Callul

1
< 6 ||u\|2 . (Assumption (A2), Assumption (1) and C' being sufficiently large)
O

With Lemma B.9, we are able to give a tighter bound on the norm of W*.

Lemma B.12. There is a constant C'5 > 1 such that

W< 97 = o4 3 s,

Proof of Lemma B.12. By triangle inequality we have that
Wil = W = T

< I+ o

t—1
< [[WOl[ +n ; HVErob(Ws) . (Telescope)

Consider X; = argmaxy, ¢, (x;,a) (¥ f (Xi; W*)). Then we have the following

~ 2
foruaowo]

n 2

> Gi(WO V(RS W?)

i=1

1
n2

F

= — |2 @GOV IVFES WG + D vay;9:(W*)5; (W) (VF(R5 W*), V(K5 W*))

=1 i#j

- [Z@(wsng( 01d+a)2

i—1

IN

~

+ 32 5:W)3; (W) (Cu (Il + V/dTog (n/5) ) +20+/Crd + o)

i#]

< 12 maxgk Zgl (201d+2a +n (Cl HMH +C1+/dlog (n/d)+2a+/Crd +a))

n

(Lemma B.8)

5C,d 5 .
W) Grop (W*),
- ’?é?i(]gk( )Glrob(W?)

<

where the last line follows Assumption (1) and Assumption (6).
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Applying Lemma B.9 gives us

C ~
<= W) = ).
iré%gk(w )< — ;_1 Gi(W*) = CrGron(W*)

Define C5 := +/5C4C,., then we have

[5C:Crd ~ . d
‘F < ln Gmb(W ) 02\/>Gr0b(w ) )

I < 37 = o 3 o), ®

‘ ‘ V Lion (W*)

As a result, we have

O

Recall that our goal is to give a lower bound on the normalized expected conditional margin. We start by giving a lower
bound in terms of the cumulative increments of margin given any independent test example (X, y), shown in Lemma B.13.

Lemma B.13. Let C5 > 1 be the constant from Lemma B.12. For a 7 leaky, H-smooth activation ¢, on a good run, we
have for any ¢ > 0 and (x,y) € R? x {1}, there exist 3¢ = p (W, x{,x) € [y, 1] such that

) g

n 2 ~2
wttl t 77 ~ t H ||| C5dn
y [FO W) — f(x W) ggy (W) ( ik, yx) — avmn

Proof of Lemma B.13. Note that since a good run occurs, Lemma B.6 implies

|F WD) — Fxs W — (VF(x; W, W — W) | < HHX” (Wit — Wt||§ (7)
Therefore, we have
y [fOs WD) — fF(x; W]
>y [(Vf(x; W, Wi —wh] — H X" I (Wit — th; (for y € {1}, apply (7))

2/m

<Vf(X;Wt),iZéi(Wt)yin(ilf;Wt)ﬂ I o )
=1

. . CQ 2
>n [rlz Zgi(wt) (yV f(x; W), yivf(ii;wt»] - WG
=1

=yn

rob (Wt )

Lo (W) || < [TZan(WH)|| . Gron(W') < 1)
n 2 2
_n Sty [ st/ ot H ||x[|” C5dn A ty _ 1N~ it
= Zgz(w ) (Pi (yiX;, yx) — BN (Grob (W) = 2 > 221 Gi(WY))
i=1
where the last equality follows by defining
N 1 — }
= o5 = L 30 (w0, )) o ((w0.R)) € 21
s=1
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Leveraging Lemma B.9 and B.13, we now formally derive a lower bound on the normalized expected conditional margin.

Lemma B.14. For a vy-leaky H-smooth activation ¢, and for all C' > 1 sufficiently large, on a good run, for any ¢t > 1, we
have

Eqp~. [y W)ly=1] _ *vn

2.

Wi, e

Epper [pf(sWly=-1] _ VA, 2
W, ST

where C5 is the constant from Lemma B.12.

Lemma B.14. From Lemma B.12, we have
g
W, < WO+ Comy 23 G,
s=0
Recall the following definition
N _ 1 — ;
pi=p(W', X}, %) = — Z_; ¢ ((w,x)) o ((wi,50)) € 22, 1)

By Lemma B.11, we have

1.2 2 .
o 3y llpll® ieC
E (v )~ [5 (yiXi, ) [y = 1] > {33 ||u|:|2 Lo N

Ifi € C:
E(x,y)ch [ﬁf <y1i§7yx> ‘y = 1:|
= E(xy)~D. [/35 (yiXi, yx — p) + pt (yiXi, p) ‘y = 1}
> E(x,y)~D, [ﬁ§ (yiki, yx = p) - Ly, yx — p) > 0)’?/ = 1}
~ - - 1
+ Ex)op, |6 (0K ux — ) - 1kl yx — ) < 0)‘1/ —1] + 37 llel®
> E(x,y)~D, [72 (yiki yx — ) - L((yiki, yx — ) > 0)‘1/ = 1}
- - 1
+ Ex,y)~D. [<yixf,yx — 1) - L({yiXi, yx — p) < 0)’@/ = 1] + 572\|MH2
1—~2 - 1
=~ Eayeo, [kl yx = )] + 592 ul?
1—+2 ot L ooy 12 ;
> — 5 C3 || (yixt, yx — u>||¢2 + 37 Il el (cs is an absolute constant)
1—~2 -t L o2 .
> — 5 ¢4 Hylle2 + 37 Il 2] (c4 is an absolute constant)
1—~2 1
> ——Lei(v/Crd+a) + 37?|ul%
Ifi e N

E(xy)~D. [ﬁﬁ (yiXi, yx) ’y = 1}
= Ey)~o. [ﬁf- (yiki, yx — wy + ph (yiXy, p) ‘y = 1}
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2 E(xy)~p, [ﬁf (yi%i, yx — p) - L((yiXi, yx — p) > O)‘y = 1}
+ B y)~pe {ﬁf (yixi, yx — p) - L((yik}, yx — p) < 0)’y = 1} — 3|l
> Exy)~p. [72 (%, yx — ) - L((yiXi, yx — p) > 0)’1/ = 1}

+ Ex4)~p. [(yiiﬁ,yx —py - L({yxl yx — p) < 0)’1/ = 1} —3ull®

1_ ~

- 27 B ey, || ikl yx = )] [y = 1] = 31l
_ A2

= - 27 €3 ‘|<yii§’yx_“>||¢2 =3l (cs is an absolute constant)
_ A2

2 — 27 C4Hyii§||2_3”“||2 (c4 is an absolute constant)

1—
> -~ Lei(v/Crd + ) = 3.

S, 59 w1
) % H ||x 202(177
Z W2)E (x,y)~D. [pf (yiki,yx) — ”2\/77173 Y= 1]

n

(Lemma B.13)

> (23 aw) (“o ey Gd ) + L
=1 nzgz( )\~ 2 ca(VC +0‘)+3’7 [l
ic

c
2 HesdC3dn .
2/\:/ ( 2W ca(v/Crd+a) —3 ||u||2> - MGrob(Ws)> (c5 is an absolute constant)
(=

HesC3d? o
: ( <1 - (—(1 = ®)ea(v/Crd + @) + 292 ||ul?) Wn) Grob(W?)

(14 0=DalCd ) 16l Y L
(1 + —(1 = 2)es(vVCrd + a) + §V2M||2> ” Z gi(W ))

ieN
1—+9? 1
21 < 5 ca( Cld+0[)+§"}/2 ||u||2)

es(v/Crd + ) + vllull2>

( 1— HC5022d277
(-0 = )es(VTrd + 0) + 22 ) vmn

2 (1—)es(WVCrd+a) +6]lull” | & s
B Il Gro
o+ (1 U DG a) + 2 ||u||2> o >>

érob (WS)

nérob(ws) 1—’)/2 1 9 9
> - p—
=7y 5—ca(VCid+a) + 297 [l

NGro
ST

1.4 2
where the second last inequality follows from 1 < 22 < % ,8<1/C,d<

< 2WC o < |yl < VO
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and C being sufficiently large so that

HesC3d?n
(—(=2)ea(vCId + @) + 292 ) v/imn
; S )

T —(1 = )es(2V/Crd) + 392 |l
3 el

= 2 2 +Yy
=372 =) llel” + 392

2 (1= es(VCrd + @) + 6 ||ul|?
—)C, 2
(’BJ’\/;) <1+ —(1=?)ea(vCrd+ o) + 242 ||| )

and

1 o) (1 —42)ca(2v/Chd) + 6 || a?
_ —)C, [ 1 2
<@ty ( T DeVTd) + §v2lul>
1 2 2721 = 42) [|plf® + 6 | el)?
<(= e, (1 3
=@tye ( T 1) i+ 2 P )
2 _
:(é—i_ /%)Cr (1+W)

< 0.25.
The third last inequality follows from Lemma B.9 that
> Gi(W*) < V] max g (W)

1EN
Zmaxgl W?#)
<C,- IN\  Gron(W*)
o .
> CT (6 + g)nGrob(WS) (8)
The last inequality follows from d < H § ”’jg and o < ||| < +/C1d so that
4
1—72
- —5—alVd +a)+ 7 lf?
1 -7
> ——5 a2 Cld)+772 [
S _ 2
> Ll 2
> 22l
> 77kl

Applying the above result gives us the following
E(xy)~p. [y (6 W)ly = 1]

Wl
_ Epyen, [0 WOly = 1] + 30070 Eyon, [5f (6 W) — yf (x; W9)ly = 1]
||Wt||2
-1 A
> Ls=0 Gmb(t m” el (f(x; W%) = 0 via symmetric initialization)
16]|W*|[ 5
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Note that we have

Ghron(W°) = %fjfu(wo) = —% Enjf’(yif(i?;wo)) =5 ©)
=1 =1
Along with Lemma B.3, Assumption (3) and Assumption (1) gives us
[WO| < 2wiievmd < 21 < 1v/d/nGrop (W (10)
Then if ||[W|,, < 2||W|| .. we have
Eqy)~p, [f(x; W)y =1] . 52024 Gron (W) al?
W, 32 [Wel|
i;j%;éb @02 [ (Equation (10))
> L0 e, (1) Coon(W) = Coon(WO))
If ||W*]| . > 2||W?| .. by Lemma B.12, we have

2{[Wollp < Wi < W1l +Czn\/d/720mbws

Thus we have

E(X,y)NDc [yf(X,Wt)‘y = 1] ZZ;:(L) érob(ws)n'VQ ||/>14H2
||Wt ||2 B 32Csn V d/n ZZ;E Grob(ws)
nry
> VI e
3205v/d

Similarly, we can get

o [yf (6 W)ly=-1] _ +*Van
W, = 320yva "

We finally provide the convergence guarantees of robust training loss in Lemma B.15.

Lemma B.15. For a y-leaky, H-smooth activation ¢, provided C' > 1 is sufficiently large, then on a good run we have that,

Hvimb(wt)HF > %@mb(wﬂ

Moreover, the robust training loss satisfies

£ (W) < 35+ 8,/

rob( >~ 1-¢C
Y lpl[ nT =

Proof of Lemma B.15. Consider f(f as the adversarial example given model parameter W'; ie., f(f
ArgMaxy, ¢, (x;.a) (Wi f (Xi; WF)). We first need to show a lower bound for HVEmb(Wt)HF
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SUPy: |y =1 <—Vfr0b(Wt),U>, and it suffices to construct a matrix V with Frobenius norm at most one such

that <—vab( b, V> is bounded from below by a positive constant. To this end, choose V € R™*4 be the matrix with

TOWS Vg = W,VS € [m]. Then ||V||» = 1 since a5 = £1, and we have for any W € R"™*4,
1 «— U 1 —
vf X“W 7V = = (IS(ZS/ Ws, X Vs, X <7Xi> ¢, Ws, X; (11)
(Vf(x;; W), V) \/m; (« ) (Ve Xi) ol m; (( )
By Lemma B.4 and Lemma B.11, we have
fin o 2 Hus i€ ) Zéllu\\;, iec
x| < 3l e N7 L[ x0)[ <3l ieN
And Vz,¢'(z) > v > 0, equation (11) implies that we have the following lower bound for any W € R™*¢,
slull, iec ot {”ull ieC
ZV Xi;W7V2 2 ’ . ,iV XZ-;W,VZ 3 ’ .
yi (Vf( ), V) {—“;’MH’ ze/\/y< f( ) > =3, ieN
This allows for a lower bound on <—Vfrob (WH), V>, since
~ 1 < B
(=VLan(WE, V) = — 37 (W) (V1R W), V)
i=1
1 -
> S GO Dl - 37 5W3 ]
ieC "ien
7 el [A t 9.1 2wt
= o [Grap(WH) = (1 4+ 2)= D 3:(Wh)
3 v nieN
~ 9 2.~ .
Z% Grob(wt)f(lﬁ’;) ([3+\/6)G (Wt)] (Equation (8))
> %@mb(wf), (12)
where the last line holds by C' being sufficiently large so that
9 2
1+-)-C, —
(1+2)-C(8+4/5)
9 1 2
< 3.0(= Z
<(1+2)Clg+1/2)
1
< —.
4
Thus we have
N 4 ~ ~
Cron(W') <~ (= VEap(W), V) <~ [ VT (W) (13)
Y lull VIl F
We next give an upper bound on HWt Hf, as follows:
t+11|2
W[ (14)

~ 2
= W =R
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= [ W[+ 72 [T L (W

< W2+
C2%d ~
= W 2 G w2 2

2+?72

2 ~
= W+ 2 2L G (W7 42

m

1 < _
+2ngzg(y¢f(Xf;Wt Yi
< [Wl5 +n

+ 277% Z 9(yi f(X;; W) Z

S QS L

Cd
S e

2
< el +n@ +2

,C3d
< Wl 40?2

Then we have

If || W'

If || W*

t41(]2—¢ |2 2@
W™ < AWl +0° ==+

Ir <

I

2—¢
Wl

§<1+n0d

2
< [[WH]3¢ + (1 + n2ci

1+2;C ( ,C3d

< Wl +

> 1,

2C3d
n

H — 20— ZZ'% XL W)

C3d 1
2iC;rob(vvt)2 - 277*
n n

5 C2d
2 Grob Wt + 277

\F

ii

n :
2

+ 7]+27761\F+

2
=n + 2’1’]01\/7711 +

2
+377+27701f+27702m 7

yi (Vf(X5; W, W

> V(i f (R W)y (VF(RE W, W
=1

%Zg(yif(iﬁ;wt))yi

=1

%Zg(yif(iﬁ;wt))yi

=1

(Equation (5))

t~t
Ws, X

) (W

Zg vi f(X5; W)
wh,X()) (Wh,XE) —

s:l

1

yif (X5 W)

3

i)

CR ]

m

Z

61 + (6] ‘<Wg, Z>|C)

m

ZH”H ZHWtHz

2ncy 1 - _¢
N E_: [

277c2 1

+§77—|—27701\F+277ch T ( C’ld—l—ozCHWtHF.

gn + 2nciv/m + 27762771%( Crd+ )¢ HWtH;)¥

2—¢
2

Cid

o)

d 2 _
tant 2e1/m + 2nezm’ = (

2—¢
2

Cid +

)

2
+on2ne/m2ncem = ( Cld+a)>

3

2—-¢

+ 20+ 2nc1y/m + 2ncom T (VCid +a) C||Wt||C

W2 < w3 (1+ i

W )

Cd
¢ _C 772 2
< w3 (1+ —

377—|-27761\/>+2n62m = (VCrd+a) CHWtH<
w3
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e 2— ,C3d
< W€ 25 (G St v e (VERd ).

Combining the two cases, we have

- - 2— C3d 2
W57 < I 25 (S s e (/i)

Summing up the above inequality, we get

w7 < I (142 (P B e S (Vi) )

Thus,
Wl 1
< (Hw%@%m (1 - % : (nzcid-i-gn—lﬁncl\/ﬁ-iﬂngml;( Cld+a)<)>)2
< |[WO|| . + T== - 1+— ( »C3d +3n+2nc1f+2nc2m T cld+a)<)>21<

1 2d
< || WO + 7= - (1+2 (2+3n+2nclf+2ncmn B Cld+a)<)>

1+7727+ 77+7IC1\F+7702m2( Cid + )C>-

= HWOHF"FTZic 3

Consider the correlation between iterates weight and V as follows:
(W V) = <wt ~ nvab(Wt)7V>
= (W', V) =7 <v2mb(wt),v>

<W0,V> -7 Zt: <Vzrob(ws), V> .

s=0

15)

Recall from Lemma B.9 that V¢ > 0,y f(Xp; W) > g f(Xe; W), VX, € Ba(xy, )Vk; € [n]. Then we have
yrf (X s WT) > yp f(Xi; W), and therefore £(yy f(Xj s W) < £(ynf (X3 W')) < £(yx f(X;; W) by definition that

Xl = arg Maxg, B, (xi,a) £ (yif(ii;wt)) ,t < T. As aresult, we have

Zrob (WT)

INA A
R
M I
| —

M

s

i

o~

=

<

>

=
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8 =,
= YlullT z; <_VLr°b(Wt)’V> (Equation (13))
t=
8 .
B W (W5, V) = (W, V) (Equation (15))
< (W 9,

1 Cz2d 1
< & +T2<-<1+77 224+ neyymAneam = (v Crd+a >)
vullnT< W2l 2n 3 K )

C2d 1
= (2Hw0uF+1+n S Sy neam's (/G
AR
8 C2d
< = (wmn\/ + +n ( 2 + (e1 + co)vm(y/Cid + a))) (Lemma B.3)
7 |l nT== 2n
8 C2dn .
< W Vén + + ™ + (e1 + e2)vm(y/Cid + ) (Assumption (3))
Yl L2
8 41 [ cd .
< ST V6 + - + — 72 + (e1 + c2)vm(y/Crd + «) (Assumption (4))
v [l nT== 3 Cd> \2nCd
8 4 1 m 5
<—— (V6+o+ o+ (choose C' > max{1,C1, Ca,4(c1 + c2)*} be large enough)
vl nTz=¢ 372 V&
< 35+ 8/
< ——.
Yl T =
o\ 1-C ~
Ve>0,T > (W) guarantees Lop(W7) < e. O

For the smooth Leaky ReLU activation function of (Frei et al., 2022), we have the following result as corollary.

Corollary B.16. For the v-leaky H-smooth ReLU activation ¢sireLy defined in Equation (1), and for x € (0,1),A > 0
defined in Definition 2.1. There exists some constant C' > 0 such that Assumption 1, (A1) and (A2) hold, then we have that
with probability at least 1 — 20 over the random initialization and the draws of the samples, the robust training loss satisfies
6 1
e T 30 + ﬁm 4
Lip(W') < —————.
vl vavT

Proof of Corollary B.16. Here our activation function ¢ is ¢syreLy- The definition of ¢gpreLyu gives us that

z=¢(2) + 4 z> 4

¢’() — 1— 1,2 Zf’IY 1—’YH 2 <H1
2)z = 3 +le d(z)+ —LHz*, [2|< 5 -
_ 1

vz = ¢(2) + T z< —5

Therefore, ¢'(2)z — ¢(z) < 14_7}17' Similar as Lemma B.15, we have @mb(Wt)

upper bound on ||Wt 2

HVLmb )H . In terms of the
\uH F
-

we have
2
W

- v =¥
= W o [ VW) 20 Ze' yi (% W)y (VF (R W), W)
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CQdA 1 n )
< W e+ P2 (W7 =20 3 55

i=1

- |
i=1
- |
i=1

RS oty L Y
om— R W) ——L/
+ nn;lg(y f(x;;W9) g v

2 C?
< w2
i—1

C2d 2 1-—
< ||Wt||i +772% + gt m/an
C3d
nCd?

5
<[wil+u (5

. 2 1—

7)

2
||F+77

Telescoping gives us that

5

W7 < 1ol +

As a result, we have

n
1
— max

n =1 X; €Ba(xi,a)

Erob (WT)

Cyif (X WD)

IN

1 ! <-- t
T Z g =1 i,erlg%§7a)€ (ylf(x’uw ))

3

IN

max
X, EB2 (xi ,a)

= (yif (Xi; W)

=

IN

IN

—~

Wl + W2 )

2 C2d ~ 1 — -
e+ 7722 Gron (W2 + 20— > g(uif (K3

2 C2d ~ 1 & N
e+ 77 =25 Gron (W2 + 20— >~ g(ui (K3

d A 1<
rob (W52 + 21— i f(RE:
Gron(W')? + 21— > g(ui f(Xi;

WH))yi (Vf(x5; W), W) (Equation (5))

m

wt>>yiﬁgas¢/<<wz,xz>> (wh, %)

w%m% 3 aap((wh, 1))

(¢ (2)z — o(2) < 5D
W)y f (x5 W) + 77\/77112_7}]7 (g(z) <D
(9(2)z < 3)

(Assumption (4))

L
2H\/m>T'

(¢ (z) < —2¢'(z) when z > 0, Equation (4))

(Equation (13))

(Equation (15))

IN

5
2(|WO|| . + \/n (3 +

v [l nT

)

8
vl nT

IN

3 20

(Lemma B.3)

vin) T)

_ 8
v el nT

IN

\/577+\/77(§+
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30 + \/»m4
W’||/~L|| VIVT

B.2. Missing Proofs in Section 3.2

Theorem B.17. Lete > 0,0 € (0,1/2). x € (0,1) and A > 0 are defined in Definition 2.1. Let ¢ be a non-smooth
_ 2

activation with v € (0,1]. Set T = (W) . There exists some constant C' > 0 such that Assumption 1 and the

following holds: (B1) The network width satisfies m > C'log (1/3). (B2) ||ul|* > C max {,/ 2 log (md/nd),log (n/5) }.

Then there exists a constant ¢ > 0 such that after running Algorithm 1 for 7' > T iterations, we have that with probability at
least 1 — 29 over the random initialization and the draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies Lmb(WT) < ¢, the robust trammg error satlsﬁes L?o/bl (Wh) = 0.
2. The clean test error satisfies

02d
"Mlz , the robust test error satisfies

3. For
L?o/bl(wT)<B+26Xp< C)‘HMH IM'\/; HN”

<

1
H h=c

Proof of Theorem B.17. This proof is similar with the proof of Theorem B.1. The robust training loss bound is proved in
Lemma B.29. For the generalization guarantee, apply Lemma B.2 with Lemma B.33, with probability at least 1 — 24,

Lo (WT) = Py op (3K € Ba(x, @) s.t. y # sign(f(%; WT))]

rob
2
Egyo~p e f (5 WH)ye =1] a)

< B +exp —c)\<

Wl — 2
exp [ —er (E(x,yc)NDC [yi(;s;r] )ye =-1] a)

N )2 16C
<B4+2 —cA | ——= — , Choose C' > 2
<6 exp< A (5 Il - ( )

where the last line holds for &, < Hgl\\\ff, so that C\f > —a >o0.

B

Similarly, we have

2
E(x,y )~ [Yef (5 WD)y = 1])

LYYWT) < B+exp | —eX <
Wl

2
E(xyo)~p. Ve (X W) |ye = _1]>

+exp | —cA (
W™,

cAn |u]*
S ,8+2eXp 7W .

The proof of Theorem B.17 builds upon a sequence of Propositions and Lemmas, which we show below.

Proposition B.18 defines a set G to characterize the index of noise that have large variance, and show the size of set G is
large.
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Proposition B.18. Let{ = [¢!,...,¢% T denote the random vector sampled from Deyyg;. Define G = {i € [d][E(¢%)? > £1.
Then the number of elements |Q | > 57d.

ProofofProposition B.18. Since each &' has subgaussian norm at most 1, we have 2 > Eexp ((£9)%) > 1+ E(£)?, so
E(£%)? < 1. Suppose |G| < 52-d, then we have

rd SE[§]* =Y B(E)?+ Y E(E)? < |G- 1+(d—[6])-5 < d- +(1-F)g7—d = d.
i€g i¢G

which is a contradiction. O

Lemma B.19 provides properties of the initialized network weights, similar to Lemma B.3 except we have an additional
result that the averaged initialized weights variance that belongs to set G are not small. This additional result will be used in
proving Lemma B.21.

Lemma B.19. There is a universal constant Cjy > 1 such that with probability at least 1 —3J /4 over the random initialization,

S < W2 < S, s € fml: WO |, < ot (Vi + V)

Dicg(Wh:)? S lzie[d] (wg,)?
1G] 4 d

Vs € [m].
Here G is defined in Proposition B.18.

Proof of Lemma B.19. The first part is proved in Lemma B.3, and it holds with probability at least 1 — §/2.

For the second part, for any fixed s € [m], by concentration of the x? distribution, we have

P (|t Zo

init = g

) < Qexp (_|g|/32) )

Pieg(WY,)? S }wg_ S lzl*e[d] (w9,;)
I« 2Ty d
holds with probability at least
1 —2mexp (—|G|/32) — 2mexp (—d/8)
>1—2mexp (_?>2(2K—/<;)d) — 2mexp (—d/8) (Proposition B.18)
>1—25exp (n/C’ - 32(;5)d> — 25 exp (n/C — d/8) (Assumption (5))

>1—25exp < ( Clog(2) — 1/C)> —2dexp (—(Clog(2) /8 —1/C))
(d > Cn?log (2) from Assumption (1); C sufficiently large)

>1-4/4. (C sufficiently large)

32( k)

The proof is complete by taking a union bound over the above claims. O
The following anti-concentration inequality is helpful in proving Lemma B.21.
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Proposition B.20. [Anti-concentration of subgaussian random variables] Assume X is a c-subgaussian random variable

with E[X] = 0,E[X?] = 1, then
P<X> 1 >> 0.04

10¢2 ) = 22054

Proof of Lemma B.20. Denote a = 10%, A=2203¢% and B = 0 94 From 2 > Eexp ( ) >1+ E we know ¢ > 1.
Consider a truncated version of X defined by X=X- To<|x|<a- We have

EX =EX —EX = -E (X - Ljxj<a) —~E (X - Lixj54a) .
It is trivial that |]E (X -1 X\<a) | < a. By subgaussian tail bound one may compute

E (X - Ljxj>a)|
<E(IX|-Lix>4)

A oo
g/ (|X|>A)dt+/A P(|X| > t)dt

2 [e s} t2
2) +/A 2 exp <_02) dt
A2 2 2
<2A- eXp( 2)—1—; (—i)

<2A- eXp(

These imply
‘EX‘ <a+2A-exp A2> — exp (—fj) .
Similarly,
1=EX?=E (X* 1Lxj<q) +E(X? Lx5a) + EX?
< a? + 242 exp( 2)+202exp (—;)—l—EXQ
Thus,

~ A? A?
‘IEX2 — 1‘ <a?+2A%  exp (—2> + 2¢? exp (—2> .
c c
Let X; = max(X,0) and X_ = max(—X,0), then X and X_ are non-negative and X = X, — X_, X? = X2 + X2.
We thus have

~ ~ A2 c2 A2
’EX+ — IEX,‘ <a+2A-exp <_(:2) + 5 oXP (_02> ;

~ ~ A2 A2
]EXi +EX2 >1—-a?—-24% exp <—2) —2c% exp (—2> .
c c
Now assume to the contrary that P (X > a) < B. We have

EX, <A-P(|X|>a)<A-B,
EX? < A?-B

2
EX_<EX, +a+24- exp( ) 2)
)

exXp
~ ~ 2 A2
EX3§A~IEX_<A<A B+a+2A- exp( 2) exp(2>>.
c

ool
:

<A-B+a+2A- exp( )
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These together imply
A? c? A?
EX? +EX? <A>.B+A (A-B+a+2A-exp <—2> + —exp (—2)>
c c

A
2 542 A? _ 9.2 _A2
<1l—a*—2A% exp 2 2¢” exp 5 |
c

which is a contradiction. The last inequality holds since

2

A2 A?
—AQ-B—A(A B+a+2A- exp( 2>—|—A6Xp(—2))
c

2 AQ
=1-a>—24%2-B—A-a—4A%. eXp( 2)—3@ exp(—2>
C

1 2 A2 A?
=1———-008—A-a—4A — ] = ——
100cA 0.08 a ( 2) 3¢? exp( 02>

1 ) ,422 2A

=1-0.09 - 1.5(22¢*a%)5 =1 —0.09 — 1.5(0.22)§ > 0.

A? A?
RHS — LHS =1 —a® — 2A? - exp <—2) —2c% exp (—)
c

This completes the proof. O

By combining Proposition B.18, Lemma B.19, and Proposition B.20, we establish the existence of enough neurons with
positive activation at the first and second step of adversarial training, as stated in Lemma B.21. This lemma plays a vital role
throughout the entire proof of networks with non-smooth activation functions.

Lemma B.21. Suppose the events in Lemma B.4 and Lemma B.19 hold. Given Assumption 1, (B1) and (B2), there exists a
constant ¢g > 0 that only depends on & such that with probability at least 1 — §/5,

Vs € [m HZE yi:am<W2,X1¢> >0}| > con;
Vi€ [ ] Yi = Qs, <W27X¢> > 0}‘ > com.
Vs € [m !&e [y = ag, (whoxi) > o |wWh||}] = cons
Vi € [n], [{s €| ] Yi = as, (Wi, xi) > a||wi|[}] = com.

Proof of Lemma B.21. Firstly, we prove the result for wY, i.e., the first 2 statements. Fix any given (x;, ;). Recall that
xi = y$pu+E&;, where y§ is the clean label, & ~ Dejyy is the noise. Note that (w0, x;) = y¢ (w0, ) + (w2, &;). The first term
is a centered Gaussian with variance w?, ?, therefore applying concentration argument gives us with probability at least
1—6/20, max,e ) [(W2, )| < 4winic [|p2l| /log (m/5). For the second term, condition on &;, which is a centered Gaussian

with variance w2, [|; |?,Vs € [m]. Since P <<W2, &) > %}f“) > L, applying the Hoeffding’s inequality gives us with

probability at least 1 — exp (—m,/225), there exists a subset .J; € [m] with |J;| > m/15 such that (w9,&;) > %(‘f“ and
as = y;, Vs € J;. Conditioning on ||&;|* > &4 obtained in Lemma B.4, we have that

(W9, x;) > —dwiic || ]| v/1og (m /) + winic [|:]] /10 (Proposition B.19)
> wn (Vid/20 = 4 ]| Viog (m/5))
> Wini (\/E/m) - 4\/E/C) >0,

where the last line holds via Assumption (1) and (5) for large enough C. Combining the above arguments, we have with
probability at least 1 — /20 — n exp (—m/225),

V7,€ |{SE yz—ae,<W27X7>>0}|— 15'
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Given m > C'log (n/¢), the above holds with probability at least 1 — §/10.

0
o e 0 . . _ Ws ) - X
For the other statement, we can condition on w, similarly. Denote X; = <7HW2H2 , §1>, Y, = X It is obvious that

EY; =0and EY? = 1.

o S (W0, EE)?

i

”WgHQ
. W0 . 2]E J 2
> 2 jeq! SJ)O (gz) (here G is defined in Proposition B.18)
Zje[d](ws,j)
- Kk/2 2
> |Q|4C/;/ > 16H P (Lemma B.19 and Proposition B.18)
— 8k

1 Xill.y, < ¢ VI6=8k

From Proposition 2.6.1 in (Vershynin, 2018), there exists a universal constant ¢ such that || Y|, = = < =

Applying Proposition B.20 gives us that

3 K? o
P (%> s —sar) 27 (72 wErie=sg) 2 i s

Therefore, <w2, §i> > 0 holds with probability at least 0.04(2“—4). Consider y§ be the clean label that is
2203 (c1)4(16—8k)?

uniformly distributed on {—1,+1} and is independent of &;, then we have
P((W),&) > 0,a, = yf|wY)

P (Wi &) > Olw})

:‘<L4

> 0.02(— ).
2203 (c¢1)4(16 — 8k)?

Similar with the previous part, since w2, 3d/2 > ||w0 H > w2, d/2 holds, applying Hoeffding’s inequality, with probability

tleast1 — /20 — — 1_”—42 s
at leas /20 mexp( 5x 10 (220%(01)4(16_8@2) n)

K4

= a,, (W), x;) > 0}] > 0.015(— )n.

Vs E p)
2203(61)4(16 — 8/1)2

When C is sufficiently large and n > C'log (m/¢) as assumed in Assumption (5), the above holds with probability at least
1 — 6/10. Note that | {i € [n];y; # y5}| < (1/C+ \/2/0) n < 0.005(
Thus,

z—)n holds for a sufficient large C'.
2203 (c1)4(16—8k)2

4
Vs € | € [n] : yi = as, (w2, x;) > 0}| >0.01 ” .
s € [m], |{i Ly = as, (W9, x;) > 0}] > (220%&1)4(16_8%)2%

The proof of the first two statements is complete by taking a union bound over the above two claims.
Now we are going to prove the last two statements. We consider the algorithm runs standard GD at time ¢ = 0; i.e. no
adversarial training examples are generated for the first step, the adversarial training process starts at £ > 1. The gradient

descent update gives us wi = w9 + 5% Z & ((W2, X1 ) ) Y X

m

Vs € [m

= a,, <w2,xz> > O}] > ¢on. For these i,

ok =l =)+ (51 (s ) - oo
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st (v~ (Inl? + Vg /) )

\/8C, dn) (Lemma B.19 and Lemma B.4)

> — gwinit\/E'Q Crd +

3 n
- SwinitVd
a( 2wnl\[+2n\/ﬁ

3 n vy 8C1
> —wineVd - 3v/Chd — —/—=]d
2~ | qumc/d Wt S m <201 C
(a < |p| < % < +/Cid and Assumption (1))
8C 54C1n?
> o ( 5C, \/ ! \/ dln ) d (Assumption (3))
>0. (d > Cn?log (2) from Assumption (1) and C sufficiently large)
Therefore, Vs E |{z 6 ;= ag, <W§,xi> >« Hwi”}‘ > con.
Similarly, Vi € | |{s €| yl = as, <w§7xi> >« ||W;HH > com. O

Definition B.22. If the events in Lemma B.4, B.19 and B.21 occur, let us say that we have a good run.

A good run occurs with probability at least 1 — 24. In the following proof, we condition on a good run occurs.

The following proposition presents several properties of the distribution D.j,y, Which are crucial for establishing the
generalization guarantees.

Proposition B.23. Assume ¢ ~ Dy, Then the following holds:

(D1) For any fixed v € R?, for any < 0.5, with probability at least 1 — § w.r.t &, [(v,£)| < cg ||v|| \/log (1/6), where cg
is an absolute constant.

(D2) For any § < 0.5, with probability at least 1 — § w.r.t &, [|€]|* < 9d(log (1/8)). In particular, denote event & =
{||g|| > 64 /log (1/3) d}, we have E [||£]| 1 (€)] < 85% - /d - log (1/5).

Proof of B.23. We first prove (D1). Note that the coordinates of £ are independent variables with )5 norm at most 1. From
Hoeffding’s inequality, there exists a universal constant ¢ such that

P (|<V7 &) > cg ||v] 1/log (1/5)) < 2exp (—ccg [|v]|? log (1/6) / Hu||2) = 2.
By selecting cg = \/g , we get

P <|<v,5>| > cq [[o] /log (1/5)) <22 <.

Next we prove (D2). Note that the coordinates of ¢ = [¢1,£2, ..., &9 T are independent variables with 1/, norm at most 1.
From Bernstein’s inequality, there exists a universal constant ¢ such that for every ¢ > 0,

2
P (Il —EJI” > t) < exp (—cmin {tdt}> .

Since 2 > Eexp ((€9)%) > 1+ E(¢)%, we have E [|¢]] = S0 E(¢7)?

dlog(l/S) log(l/g)

c b

Select ¢ = max { } then P <||f||2 —E|¢)? > t) < 4. Therefore, with probability at least 1 — § w.r.t
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dl o) 1 5
l€ll® SJE||§|2+maX{ o8 (fl/ ) log (61/ )}

dlog (1/9) N log (1/6)

c c
< 9d(log (1/6)). (d is sufficiently large since C is sufficiently large; § < 0.5)
As for the last statement,
Efllln(&)]
= [ raeine = o
- b 1 e =+ /W (EREERY

<6,/1og(1/5)d.P<||g||]1() 64 /log (1/3) > /6 T exp( * >dt (P<||§|| >9d(1og(1/5)))g5)

— o0 t+64/log (1/0)d
<6 log(l/é)d~54+/ exp —( 9d( )> dt
0

— 00 12t4/log (1/8) d + 361og (1/6) d
4
§6\/log(1/6)d~5 +/O exp (— 94 dt
o - 9d
=64/log (1/8)d - 6% + ' ——
(/%) 124/log (1/6) d
<85*-/d-log (1/6). (6 <0.5)
O

Before proceeding to the next Lemma, we define some important notations which will be used frequently later. We define

o 1 (W= V(W) ) — a({wx)
Ai(x; Wh) = m ; <*ﬂvwerob(Wt),X>

¢’ (W5, X)),

so that the following holds:

yf (W) — g f(x; W)
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For any ¢ > 1, We define A(t) as the set of pairs (7, s) such that the neurons s is active for the adversarial examples
VX; € Ba(x;, ); i.e.,
A(t) == {(i,s) € [n] x [m] : (W}, %;) > 0,V%; € Ba(x;,0) } .

For notation simplicity, we also define
A(0) == {(i,s) € [n] x [m] : (W,,x;) >0} .

Denote its coordinate as

Al(t):={s € [m]: (i,s) € A(t)},

As(t) :={ie[n]:(i,s) € A(t)}.
Proposition B.24. For any ¢ > 1 and any pair (i,s) € A(t), we have VX; € Ba(x;, ), ¢'({(W§,X;)) > . Moreover,
Ai(Ri; W) > 42 |AN () N A+ 1)| /m.
Proof. The definition of A(¢) implies that (w’,X;) > 0,VX; € Ba(x;, «). By the definition of activation function we have
¢ ((We, Xi)) > 7.
The definition of \;(X;; W") gives us the following:
D (e ) RYAL)

(5 W) >
Mol W) 2 (Weth Ki) — (Wt %)

sEA(t)NA(t+1)

Y

72 . .
—[A BN AT+ )]

We further define 7 := {(¢, s) € [n] X [m] : y; = a5} and similarly we denote

T':={se[m]:(i,s) € T},
Ts:={i€[n]:(,s) €T}

Lemma B.25. On a good run we have
A () NTH] = [AY(0) N T > com,
|As(1) N Ts| = [As(0) N T5| > con.
Proof of Lemma B.25. The proof of Lemma B.21 implies that Vi € [n], s € [m],

Hz € [n]:y; = as, <wi,ii> > 0,VX; € Bg(xi,a)}f > HZ € [n] :y; = as, <w2,xi> > 0}‘ > con,

}{s € [m]:y; = as, <W}),,)~(¢> > 0,VX; € Bg(xi,a)H > Hs € [m]: y; = as, <w2,i¢> > OH > com.
Combine with the definition of A and 7 conclude the proof. O
In the following Lemma, we will 1) prove the number of neurons with positive activation increases as the training epochs
increases; 2) provide both an upper bound and a lower bound on the increment in the un-normalized margin for arbitrary

adversarial training examples; 3) show the loss g is at the same scale across all adversarial training examples. An analog of
Lemma B.26 is Lemma B.9 for neural networks with smooth activation functions.

Lemma B.26. On a good run, there exists a constant C,. > 0 that only depends on &, v such that for any ¢ > 0, we have
(ED AO)NT CAEt+1)NT.

I 2
(B2) 10OV ([ = 0)" < g f(Ri W) — g f(Ri W) < 21 (Crd + 02) 5(W), Y5 € Ba(x,), Vi € [n].
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(g f(GEW"))
(E3) max; jepm) gy fiztw) < Or

Here ¢y is the constant introduced in Lemma B.21

Proof of Lemma B.26. We prove via induction. Recall X} = arg maxy, ¢ Ba(xi,a) L(yi f(X; W')). Similar as network with
smooth activation functions, we have the following

~t t
i -;W
e WS CEW) (M -

i,j€[n] g(yjf(f(;;Wt)) i,j€[n] exp (*yjf(izﬁwt))

expl —vyi )~(tv; t e —y; f (XY 0
Therefore we only need Zl?éi[i] % < C}-/2 to hold. Note that at initialization, glea[ﬁ] % 1<
C,/2.
Without loss of generality, we choose ¢ = 1, j = 2. Through induction, at iteration ¢, we have oxp( 1 /(W) Cr/2.

xp(—y2f(X5;W?)) —
Now we are proving with the following order: (E1), (E2) and (E3) for ¢+ 1. The ¢t = 0 case of (El) is proved in Lemma B.21.
For any ¢t > 1 and (i, s) € A(t) N T, we have y;as = 1 and (W%, X;) > 0,VX; € Ba(x;,a) > 0 by definition, we have

<t+“> (Wi %)

= Zykasgk (WHo' ((wg, %5.)) (i X

n\/>
= #gaw% ((whx0)) (&0 %) + f Zykasguwt)as ((wh,%h)) (%, %)
n arob(vvt) 2

Z odm G, 1 (Vi/Ci-a)

- %émb(wt) (c1 <|\u||2+\/dlog (n/5)> +2a Cld+a2>

Grop(W! 2 N Ci+1 V50 :
> nj}mbc(’r)»y (w/d/Cl—a) _n:}ﬁGmb(wt)d< 16—"_ + \(FCl) (Assumption (1))
> 1 M’y (\/d/C’ - a>2 >0 (a < ||p|| € L4/d/Cy; C sufficiently large)
= onym G, L ' = =2 L

This implies that (¢, s) € A(t + 1) N T, therefore (E1) holds.

Next we consider the following for any ¢ > 1
yif (Xis W) — g f (R W)

- ng Nk (Xi; W) (yrXy,, yi%s)

= %gi(wt))‘ (Xis W) (X5, %) + — ng Ak (Xis W) (X, yi%s) -

k;h

The first term gives us

L3 (WM (R W) (R, %0) > ﬁgmwt)Ai(ii;wt) (V7ci —a)’

n n
> gg Wt }Al )N AY(E+ 1) (\/d/C’l - a>2 (Proposition B.24)
. 2
> 25, wh = }Al )T (Va/Ci - a) ((B1))
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2 2
> 10 (/d]Cr — ) gi(W"). (Lemma B.25)

On the other hand,

The second terms tells us that

LIS G (WA (i W) (e i)

ki
<n (¢ (Il + Vdlog (n/8)) +20/Crd + 02) Grop(W')
~ t N
< M (Grob(W"') < C.3;(W"); Assumption (1) for large enough C)

n

Similarly,

- ng )\k Xza ) <yki§cv yziz>

k#z
> 77(01 (||u|| + +/dlog (n/é) ) +20y/Crd + @ )é o(W')
=nCy (C1 (Il + v/@log (n/2)) + 2av/Crd + a2) Gu(W (Gran(W') < C,:(W'))
2
> —% (0.5 d/C’l) Gi(Wh) (Assumption (1) for large enough C')
n

> —% (Vare: - a)Qgi(Wt).

Summing the two terms together we have (E2) holds for any ¢ > 1. Now let’s look at the ¢t = 0 case of (E2). From the

proof of Lemma B.21, for any i € [n], there are at least com many s € [m], such that y; = a, and (w!,X;) > 5n\ﬁ o d.
s < 3 V6C1d V6C - .

Combining the fact that | (w0, X;) | < \/;winit\/aZ\/Cld <1 et < n\nﬁ oot L d and C is sufficiently large, we

know that

i wl %)) — o((W2,%; coy?
ey = Ly A X)) 200050 g ) e (90

— (wl — w0 ;) 1.1

yif Ris W) = i f (Ri; W) = ng (WA (Ris WO) (yiXD, i%; )
Similar with the logic for ¢ > 1, we get
yif (X W) — i f(Xi; WO)

P (TG —a) W) —nC (C1 (Il? + VAR /) + 20/ Crd + %) (WO)

>
— 1.1n
2 2
nY~Co ~ /0
2 (\/d/cl —Oé) 9:(W?)

and
yaf (% W) = 9 f (% W) < L (\/Crd + 0)25,(W°) + 0, (Cu (1l + /dlog (n]3)) + 201/Crd + ) (W)

<cld+ a?)g; (W)

IN
c,os\d
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Now the proof of (E2) is complete. This implies that ; f(X’; W) > 0,Vt > 0,4 € [n]. Applying the above gives us the
following,

t+1, Wt+l))
T witl))

exXp (*ylf
exp (—y2f

(X1
(

= exp (—y1 /(X3 W)) Cexp (yf (X ,Wt — y fRTTH W)
exp (—y2f (R WD) exp (2 (35 W) — 4 (R57s WiH1))
< exp( ylf(iiywt)) - exp (y f' t+1 Wt - f( t+1, Wt+1))
< eXp( yzf(ié,wt)) exp yzf X2,Wt ny(X27Wt+1>)
eXp( ylf( t17 t)) ) . nCO’yQ \/7_ 2~ t
= o (s (G wWh) T T+ 0?) (W)~ TR ([ G —a ) GuW)

exp (— Xt wt 2 d 2~ 30 (Chd + a2 g1 (W
_ p( y1f(~i. t))-exp 77‘;07 /C'i_a (W[ —= (Cy )2_?1( t) 7
exp (—y2f(X27W )) n 1 77<>2m2 ( /CL*O‘) g2(W*)

where the first inequality holds since exp (ylf(f(ﬁ“;wt)) > exp (y1f(X; W), exp (y2f (X5 AR ;W) <
exp (y2f(X5; W) by the definition of X}, X x5

gl(W) 37’ (C1d+a ) - 6(C1d+a ) exp(*ylf(ifi+1?wt+l)) < exp(fylf(ii;wt)) < 1
If Zom 2 negn” ( aon a) = 6072( r/cﬁa)% then o (—ya FETTWIT)) = axp(—yaf (WD) = C,./2. Otherwise

we have

exp( ylf( t+1, Wt+1))
exp (—y2f (X3 W)

291 (W) 31 oty N0y’ 2wt
< W - exp (n (Crd + a?) go(W?) — 20T (\/M— a) a (W ))

2
. 12(Cuda?) exp (2 (Crd+ o?) @:i(Wh) < 1)
2 n
c0? (V/C1 - a)
24 (Cd + o2
( 1 ) 5 SCr/za

o? (\/W— a)

where the last line holds due to exp (22 (Cyd + a?)) < 2 forn < 1/Cd? with C > 10651) given by Assumption (4).
d

o As a result, there exists a constant C, =

Assumption (1) and Assumption (6) gives us that « < ||u|| < 0.5

48(Crd+a?
19201(01+21 /(4Ch)) > (Cadta?) > such that the Lemma statement holds, where C'; comes from Lemma B .4. O
€0y coy? (\/d/lea)
Similar with the smooth activation setting, we can characterize a property of the adversarial training example X; using
Lemma B.26: during training the perturbed data if is close to the linear subspace span{xy, ..., X, } in R%
Lemma B.27. V¢ € Nand i € [n], the distance between X; and span{x, ..., X, } satisfies dist(X}, span{x, ..., x,}) <
min {7‘*"““77v md a}.

Proof of Lemma B.27. We define Cy = “"““‘/"T for simplicity. The upper bound « is obvious because the perturbation size
is a. Now we look at Cy. We prove the result via induction. Consider time ¢ = 0, from the symmetric initialization, for any
given x, we have f(x; W?) = 0 is a constant function. Therefore, for any given training data x;, generating the adversarial
examples by adding any perturbations on X; cannot increase the training loss. For simplicity, we consider the algorithm runs
standard GD at time ¢ = 0; i.e. no adversarial training examples are generated for the first step, the adversarial training
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process starts at ¢ > 1. This gives us that dist(i?, span{xy,...,X,}) = dist(x;, span{xy,...,x,}) = 0 < Cq4. Suppose
we have dist(X}, span{xy,...,X,}) < Cyholds for any 0 < s < ¢ — 1, and we will now prove the result for ¢.
Recall X = ArgMaxze g, (v, ) LYk f(X; W*)). We decompose Xj = ﬁ“” + X}, |, where i};’” € span{xy,...,X,} and
i}; | Lspan{xi,...,x,}. Assume ||)Z’,5C | |l2 > C4, and we will prove via contradiction. As the loss function is monotonically
decreasing, f(fc = argmingeg, (x, ) Y&/ (X; W?). As a result, there is no feasible direction that is also a descent direction.
n st 2
Here we construct directions vp = —X, | — 6 x;) for every 0 € R that satisfies 0 < 6 < LIy :
0 koL yk(g1 YiXi) ry J/(@2—IRL . 13)8Crdn
have that
n
(X}, — Xk, Vo) = <>~<ZL + Xp ) — Xk, —Kp | — 9.%(2 yixz’)>
i=1
n
= <’~<Z,| — X, =0y (> yixi)> + (Kb 1> —Xp 1)
i=1
n
<t St 2
< OlIR% ) = xellz - 1D wixillz — 1%, 1113
i=1
< 9\/ X1 [13) - 8Cidn — [|x}, |15 <0, (Lemma B.4 (C4))

therefore vy are feasible directions. From the above discussion, we know that vy cannot be descent directions. Pick

Xt )12 . . . - .
0= \/l%. Since sufficient neurons are activated for every X € Ba(xy, ), we know there exist at least com many
1

s € [m] such that (w%,X},) > 0. From the form of the classifier y;, f (X; W') = y, = N Z 5¢)(<w X)), and combining the

éo’ >

fact that ¢ is strictly increasing on (0, +00), there exists an sq such that yxas, <

0> yras, (Wi, —Vo)

t—1 n n
=) ykas, <W§0+1 —wh X+ 0> yixi)> + Yrls, <W20’ R+ 0u(> yixi)>
t'=0

i=1 i=1

t—1 n
= > yras < \F Z Gr (W) (< soaxk’>)yk’xkfvxkj_ + 0y Zyz Xi >+ykaso <WSO,iZ,L + 0y (> yixi)>
t'=0

k'=1 i=1 i=1

-y <n3m > aw <wt’>¢'<<wz’o,i2f>>yk/ii'a||v€<2ym>>

k=1 =1

t—1 n n
n - ¢ Y Y - -
+ Z Yk <n\/ﬁ > e (W )¢/(<W§O>X?>)yk'>‘2/,m XZ,¢> + Yras, <WSO>X2,J_ +0y(> yixi)>

i=1

Can » N -
LG (WK 1l = 2w V(I 112 + 61/8C1dn)

(IX}s 1 |2 < Cq from induction, and sufficiently many neurons activated)

%%, 113 <= covndGrop(WY) Can A N - X5, 113 .
o Gm W[k — 2wV d(||X 4+ —— lug in 6
TCWE: e E: WIS L — 2 VIR Lo+ T52)  (plugin)
%113 <= coynd@ (W) Can » .
ro Gm (W% QwinieVd||X
Wldn? it §: WIS L — 2 VIR 1

(Winit < = <

7= < \/c% and C sufficiently large)

- Call%hill> = cormdClhop (W) Cang  wiiz ¢
\/W Z 32010 \/> - Z GTOb( )||X]€,J_||2 - 2winh\/g||xk,J_H2
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CdHXk L2 = covdGron(W ~ Can 4 g N A
i — 5 Gm (W) %] Grov(W') > Grop(W0) = §
> 0. (d > Cna? from Assumption (1), and C sufficiently large)
This is a contradiction. Therefore, we have proved dist (X}, span{xy,...,x,}) = ||)~(fC 1 |l2 £ Cq. By induction, proof is
complete. O

Similar with the smooth activation setting, we can prove a different version of Lemma B.4 (C5) and (C6) that will be used
later.

LemmaB.28. Vi € C, & ||u|® < (p, yix{) < 3|ul*. Vi € N, =3 ||ull* < (p9:Xi) < = [[ll*.

ProofofLemmaBZS From Lemma B.4 (C5) and (C6), we know that 2 ||uH (11, yix;) < 2||u||? holds for all i € C, and
—2||p)1* < {p, yix;) < —L||ul|® holds for all € N. Therefore, it sufﬁces to prove | (y, y[t> (yyixi) | < L ul®. We

can decompose X; —x; = (X, —x; )| + (X} —x;) 1, where (X{ —x;)| € span{x1,...,x,} and (X} —x;) L Lspan{x1,...,x,}.
From Lemma B.10, ||(X} — x;) 1|2 < min{Cy,a} < Cy < 1. For the parallel component we can write (X} — x;)| =
> ziXg, where z;, € R. From Lemma B.4 (C4), o? > ||X} — x;[|3 > ||(X} — x)lI3 > 8C Z 22. Thus, \/% >
k=1

n
ny 2z >3 |
F=1 E=1
Now we can prove the statement.

| (s ik = (oyixs) | = | {p, X = xi) |
< |<u, (X5 — xa)y ) |+ [ (K = x3) 1) |

< Z |2k| - [ (s xie) | + Calla|

8C1na?
<\ S ol + ol
1
< g ||,u||2 . (Assumption (B2), Assumption (1) and C being sufficiently large)

O

Lemma B.29, an analog of Lemma B.15, aims at providing the convergence guarantees of robust training loss for networks
with non-smooth activation functions.

Lemma B.29. For a non-smooth homogeneous activation function ¢, provided C' > 1 is sufficiently large, then on a good
run, the robust training loss satisfies

30

Liop(WT) <
© [l veor/nT

where ¢y > 1 is the constant in Lemma B.21.

Proof of Lemma B.29. The proof is similar with Lemma B.15. We first need to show a lower bound for Hmeb(Wt) H =
F
SUpy. |y =1 <—Vfrob(Wt), U>, and it suffices to construct a matrix V with Frobenius norm at most one such that

<—Virob(Wt), V> is bounded from below by a positive constant. To this end, choose V € R™*4 be the matrix with rows

Vs = ﬁas,u/ ]l , Vs € [m]. Then ||V||» = 1 since a; = %1, and we have for any W?,

<vf(7~(uwt)’v> :Zimas¢l(<wgaiz>) <V5a)~(i> = <||M|| > Z(vb <WS7X1

s=1

52



Benign Overfitting in Adversarial Training of Neural Networks

1 m
1 2 E Z <W97 XZ

1

> — Z o' ((Wh, ;) (Only count the neurons that satisfy (w’,X;) > 0)
m s€A(t)NT?
1

> — t >

< Z ‘925 (<W >) Co7Y- (Lemma B.26)

sEA(0)NT?

By Lemma B.4 and Lemma B.28, we have

{yi <,LL7XZ'> Z % ”:U'H227 ieC {yl <,LL7XZ> - 3 ”:u‘H ) 1eC
[oxi)l < S llull*s i e N7 U [ R) <3 |pl®, ieN

And Vz > 0,¢'(z) >~ > 0, so applying Lemma B.25, we have the following lower bound for any W?,

c : i - co, i€ C
(W, vy = LE I 0 T EC 9w, v >{3 |
(9wt v = Bl TS o pwn, vy = {3l e TEC

Similar as Lemma B.15, we have

<_vzrob(wt)>v> 2 7 |Z‘1M|| Coérob(wt)~

Thus we have
PN 4

t t t
G(rob(vv ) S m< VLrob(vv ) V> m Hv rob W ) P
We next give an upper bound on HWtH?F as follows:
W (16)
= |[W = a9 En (W)
= W2+ o [ V(W) 20 Zf’ i (R W)y (V (35 W), W)
§||wf||i 202 Grop(WH)? — 29— Zé’ (yi f (X W)y (VF(XE W, W) (Equation (5))
=1
C3d ~ 1 « . =
= [[W 5+ =G (W 20 >~ glwaf (% W)y Z Wi X)) (WE, X
=1 s=1
C3d 1 < . N
= W[5 + 72 =25 Gran (W12 4+ 20 izzlg<yif<x§;wt>>yif<x§;wt>
C2d 2
< W+ 2= g (9(2) < 3,9(2) < 1)

Telescoping gives us that
Cid 2
Wil < el (P24 )

We apply the same argument as B.15. Recall from Lemma B.26 (E2) that V¢ > 0, yp, f (Xp; W) > 4 f(X; WH), V%), €
Ba(xk, @), Vk € [n]. Then we have yi. f(X}; WT) > yi f(X}; W?), and therefore £(yy f(Xi; WT)) < L(ypf(XE; WH)) <
(yr. f(X;; W')) by definition that X} = arg maxs, e, (x;,a) £ (¥if (Xi; W) .t < T. As aresult, we have

n

- 1 _
Lean(WT) = —  max L (vif Ris WT))
i1 XiHo
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1 T—1 1 n
=1 € (yi f (Ris W'
- T — n,ziieglz?i{l,a) (y f(x ))
t=0 =1
1 T—-1 9 n
=7 ; = ;Xielgﬁﬁa) 0 (yi f(Xi; W) (¢ (z) < —20'(z) when z > 0, Lemma B.26 (E2))
B ETflé (Wt)
- T rob
t=0

i Z <—Vfrob(Wt),V>

g -
[l veoT
8

T 0 .
~ NullyeonT (W V) = (W V) (Equation (15))
8 T 0
< Taleon IV e +11W2l )
8 C2d
< | 2||[W° 222% L 2o\
= TullveonT ( IWo e+ \/(’7 2 5) )
8 Cc2d 2 .
= el veonT (wi“i‘m"‘ \/(nédg + 3> 77T> (Lemma B.3, Assumption (4))
<L Vo + i+g T (Choose C > C2)
= TullyeonT \ V7" nd 3)" | > (3
30
< e
[[eell veov/nT
2 ~
Thus Ve > 0, T Z (W) guarantees Lrob(WT) S c.

O

Now we switch to prove generalization guarantees. Lemma B.30 provides lower bound on both the local difference
of asy ((wit,x) — (wf,x)) and the global difference of asy ((w’,x) — (w?,x)), which serves a similar purpose as
Lemma B.13 in networks with smooth activation functions.

Lemma B.30. Assume (X,y) ~ D.,x = yu + £. Fix some ¢ > 0. On a good run, there exist constants ¢7, C’ > 0,C" > 0
such that the following holds for all s € [m] and for all 7 < ¢ with probability at least 1 — 3(d/n) ! w.r.t. &,

asy (W, x) — (W], x))

d\\ ~
> <Ilu2 - ' (6,6) — C'ay [alog (n)> Grop(W).

asy ((wg,x) = (Wi, x))

> 7 (Il - € V/alog @n/m) /n) 3~ Gin(W").
7=0

Concurrently,

Proof of Lemma B.30. Consider x;, = ysu + &, X = yu + &, where yf and y are the clean label. Denote f(f =

arg MaXze g, (x;,a) L(Yi f (X; W), € = X} — x;. Then we have

asy (W x) = (W, x))
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n:}% ;yiyéi(wt)d(@iai”) (Ysn+ &+ elyp+ &)

n\r/lﬁ ;yiygi(wt)qb’((WZ, X)) (yy Null® 4y (& + €t + s (u, &) + (et + fi,€>)

= o o AW (%) (Il + 95 (o))
i=1

B (t)

iEN

Bo (t)

n

+ g SRV (L 5)) 0,6+ Dy (W (W X0) (6 €1, 8).

B3 (t) Ba(t)

2

We now bound each of the term separately. Recall from Lemma B.4 and Lemma B.28 that |{u,&;)| < ””2” and

[, €l)] < M, also lemma B.25 gives us that |A4(t)] > |As(0) N Ts| > con, together with Lemma B.26 gives us
that 3= c 4y (W) > %"’(Wt) Therefore, for B (t), we have

2
Bl(t)zn%~”/;” S G(Wh (Lemma B.26)
€A (t)
2
neoy  el” A gt
> BTG (W
= CT\/E 3 rob( )

For Bs(t), we have

N9

[Ba(t)] < ”fﬁ (é - ) (31l> + 21l @) Giron (W)

2
C ~
nco”y . ||/’LH Grob(wt)>

~4C/m 3
where the last inequality holds for large enough C and o < || |-

For B3(t), define event & = {|<u,§>\ < cgy/111log (d/n) || p]] } Apply Proposition B.23 (D1) gives us that P(&;) >
1 — (d/n) 1!, Therefore conditioning on & gives us that,

Ba(®)] < 10 Gron (W) |11, €)]

\/ﬁ
< ST/ TTog (4] 1] Gon(W')
< % 111log (||u||4 /04) ]l Grop (W) (Assumption (B2))
< 42‘?% . ”“jémb(wt). (Choose large enough C')
For By(t), we have
|Ba(t)] < %%%ﬁgi(wt)%?ﬁKfi +e,6)] < %@rob(wt) (grel[aan(&,é)I +a |§|) :
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Proposition B.23 (D2) gives us that with probability at least 1 — (d/n)~ ! w.r.t. &, ||¢]| < 104/dlog (£). Conditioning on

this event gives us that
|B4(t)] < CTCA? (WH) [ max |(&,€)] + 10y [dlog | —
: Jm P icn] " n '

Combining By (), Ba(t), B3(t), B4(t) gives us the following:

asy (Wi, x) — (wh,x))

> % <|| I - C"max|<§u ol - C’aM) Ghron(W").

For (w!,x) — (w9, x), we need to consider the cumulative of the four terms. For By(t) in specific, we have

3

n t—1 n 2
DD wwdi (W (Wi, kD)6 <dd) <Z 3i(WT)e' ((wg, % ~Z>)>
i=1 7=0 i=1 \7=0

t—1 2
< 407?dn (Z érob(\NT)) )
7=0

where the first inequality comes from applying Lemma B.4 C3, and the second inequality uses the fact that ¢'(z) < 1
together with §;(W™) < C,.Gyop(W7). Thus,

itzzywaxww( WL)(E + ) <zcr<zemb >+om (Zcmb )
< 30,V (z Con(W7)
(o < ]l d > O] from Assumption (1) and C large enough)
Therefore,
w1 Wi
<;§y¢y§i(WT)¢’( Wi, X ))& +€l) > ;;}yzym (WILRIN) (& + €| (vE,€),

Ll iy di (W) e ((wT KT i+el
where for simplicity we define Pl =1 270 ¥igi (W)@ ({wa 7)) (Eite))

_ i d . . . . .
s T o s vews (W (v R ) Etel ]| € R¢, which is independent of £. This gives

us that

i B4 (7')
7=0

s€[m]

Cy "
_3 77\[ (ZGrob >max’< s,§>|.

And therefore we have
oy ((v4:3) = (8.

fZBl ) + Ba(1) 4+ B3(7) + By(1)

R e G D

7=0
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Define another event £ = {maxSe [t €)] < egr/111og (dm/ n)} . Applying Proposition B.23 (D1) gives us that

P(&) > 1 — (d/n)~ L. Conditioning on the above events, we know

asy (<W2,X> - <WS,X>)

t—1
c ~
> T (Jjul* — ¢""+/dlog (dm/n) /n) 3 Gron(WT):
=0
Applying a union bound, the above holds with probability at least 1 — 3(d/n) 1. O

Corollary B.31. Assume (x,y) ~ D,. Fix some ¢ > 0. On a good run, the following holds for all s € [m] with probability
at least 1 — 4(d/n)~ 1!

agy (whx) > £ = Il ZGmb ),

where c; and C” come from Lemma B.30.

Proof of Corollary B.31. With proper C, Assumption (B2) gives us that || pl? > 2¢”+\/dlog (md/n) /n. Therefore,
Lemma B.30 tells us that with probability at least 1 — 3(d/n) =11,

sy ()~ (W2) 2 S S G (W

T7=0

Using Proposition B.23 as well as Lemma B.3, the following holds with probability at least 1 — (d/n) =L,

(Wi = [(wis g+ €

< || WOl el + con/111og (dm/n) ||wo| (Proposition B.23 (D1))
11
< |\WO| llaell + 6 Z,ng WOl (Assumption (B2))
Lin g
< WOl lliell + o C’E’THMHQ WOl (Assumption (1))
< 2|l ||w?] (Choose sufficiently large C)
< dwini || )| Vd (Lemma B.19)
An ||l :
< Jm (Assumption (3))
8 =~ ~
= %|| Grob(wo) (gz(wo) = 05)
< N Z Cran(WT), (17)

where the last line holds from ||z||> > C'log (2) by Assumption (B2) and C being large enough.

Therefore we have

asy (w4, x) 2 17 ZGmb
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Lemma B.32. For any (x,y) ~ D, with x = yu + £, on a good run, there exists some constant c¢g > 0 such that
ca) t—1
8 2 A -
[(wsox) ] < S (1l + Ll el + /a7 €l + Nl e+ €l ) 3 Guo(W7). ¥ € [
7=0
Proof of Lemma B.32. Consider Vs € [m],

(ws <ws7x+Z (Wt x) = (WI,x)) -

Decompose (Wit x) — (wi, x) into By (t), B2(t), Bs(t), B4(t) the same way as in Lemma B.30.

B0 = 22 (Sl + ) GuOW)
Balt)] < T2 <ﬁ+ @) (311 + 2 1]l @) Cuon (W),
By(t)] < ”faamuw*)uu,a < 1 Cron (W),
B QCJ’Lf ||f||ZGmb W) (W),
(w2 x)] < 2] - il < [l il + i) < 71<||u\|+||e||> (Assumption (3), Lemma B.19)
< Clo?(w#nun? ). (Assumption (B2))

Therefore,

t—1 t—1 t—1
(W) < [(wWox)| + D Bu(T)| + D [Ba(r)| + Y [Ba(r)| +
7=0 =0 7=0

t—1

> By(r)
7=0

t—1

S (4l + el + /7 1€+ Nl @+ 1l @) D Cron(W

7=0

ﬂ\

We finally demonstrate the lower bound on the normalized expected conditional margin, similar as Lemma B.14.

Lemma B.33. On a good run, there exists some constant cg > 0 such that

E(x,y)~p.[y.f (x; WH)|y = 1] co\/n

Wl = ToCov/a "
Ewyon /W)y =—1] _ cov/n "
Wl = 160y
Proof of Lemma B.33. Consider the following
W) = =
BOW) = 7 o) - 7 3 o

as=yY
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We first consider y = 1. Denote event € as the conclusion of Corollary B.31 holds, then P(§) > 1 — 4 (d/n) "'
Corollary B.31 indicates that

t—1
t crn 2 o~ T
asy <stx> 2 4\/TTL ”MH ;Gmb(w ) > 0

Therefore, on event £ we have

wh o L\ ‘ ¢
yf(wi ) - \/E ;¢ (<Ws7x>)a8y <Ws7x>

1 & , cm

2 ﬁ;(é (<st || || ZGrob
1 / 0777

Zﬁas:y(ﬁ (<WS, || H ZGrob
1

> =5 el ZGmb

yern 2 ~ T
= 3 ||/’L|| ZGrob(W )7
=0

and thus
E(y)~p. [9f (6 WOL(E) [y = 1]
t—1
yern ~
2 P(g)T ||JU’H2 Z Grob(w
=0

t—1
> C—gn [l Z @mb(WT). (P(E) > 1 —4(d/n)~" > 2; choose sufficiently large C)

We now consider on event £¢. Using Lemma B.32 gives us that,
IE(x y)~D, [yf(x Wt)ﬂ (g(‘) ‘ = 1] |

\/“Z’ ’]l (€)ly = ]
t—1 R d t—1 N

< csn ([l + 1l @) PETy = 1) S Guan (W) +esn <||u||+\/;+a> E(E)1(E) fy=1) Gun(WT)
7=0 7=0

Now we denote another event £ = {||f| < 124/dlog (£) }, then

E (||g|| 1(£91 (5) ly = 1) <E (121 |dlog (Z)n (€ |y = 1) <12 /dlog (Z>4(Z)11 < 0.5(%)*8,

(d > log (2) Cn? from Assumption (1) with sufficiently large C)

d\ 16 d d, g
< = — . — < 0.5(=
y=1) <E(lgl1 (&) ly=1) <8(5)7Vd <2,/10g(n)>_05<n)
(Proposition B.23 (D2);d > log (2) Cn? with sufficiently large C)

< Ex

E(Jigh e (&

N—
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Putting them back gives us that
|E(g)~p, [9 (WL () |y = 1]|

t—1
< csn (Il +llull o) PEly = 1) Gron(W)+csn (Ilull+/d/n+a) (€] T (£°) | Zamb
=0

< can (Il + 1l ) 4(d/m) 3 Coan(W)esn (Il +v/dma) (d/n) S 5 GnW)
=0 =0

t—1
< cgn <||,uH2 + gl + |||l + Vd/n+ a) (d/n)~® Z érob(WT) (Assumption (1); choose sufficiently large C)
7=0
t—1
< ?77 lf? Z Gron(WT).  (|lul|> = Clog (2) from Assumption (B2);d > log (2) Cn?; choose sufficiently large C)
7=0

Therefore, we have

xy~D [ (X Wt)|y_1]
- E(x y)~D, [ X Wt 1 (5) ‘y = 1] + IE(x,y)w’DC [yf(xa Wt)]l (56) ‘y = 1]
[ (xWHL(E) [y = 1] — [Eqy)op, [f (x WL (E) [y = 1]|

CoT) _,_
_?H | Z robw

> E(x,y)N’D
Then similar as Lemma B.14, recall that ||WOHF < 2wprvmd < 21 < n\/d/némb(wo). If ||Wt||F <2 HWOHF

E(x,y)~p. [0S (x; Wh|y =1] con 22 A
WL, 16 {|W° I ZG”"

I

con

> GrO

= 160/d/nGrop(WO) il Z, ol
Cg\/>

> 1o " [ (028 Grob(W*) > Gron(WP))
If ||W*]| . > 2||W°| .. by Lemma B.12, we have
2wl < || < HW°HF+CQWd/nZGmb (W°).
Thus,
gy~ [0 (6 W)ly = 1]
2 5 o G
||Wt||2 16C, ﬁd/ Z Cron(W7) [l ;} rob (W
_ cyn
= 1602\[” pl?.

All the above proof holds for expected condition on y = —1.
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B.3. Missing Proofs in Section 3.4

Theorem 3.2. We consider independent label flip with probability 5. Let p(x) be the density function of Dy, For any given

classifier f(-; W), when o < || ||, we have L?O/bl( W) > g+ 1_42[5 Jga min{p(&), p(§+v)}dE, where v =2 (1 — o/ ||u|) 1o
rob ( ) 2 0.5.

Proof of Theorem 3.2.

LU (W) = Py yyop [3% € Ba(x, ) s.t. yf(X; W) < 0]
= (1 = B)P(xy.)~p, [3X € Ba(x, ) s.t. Y ( ) 0]
+ ﬂP (x,y¢)~De [HX S BQ(X Oz) S.t. ycf( ]

=(1-B)Pxy)~ c
(1= B)Px g~ [~egnl(§a)y }

XE B2 (x,a)

+ <1 — Py )~D, L max y.f(X; W) < ])
0

> B+ (1= 28)P(xy.)~p, [ min Yef (X W) < } :

Recall that x = y.u + &.

Case 1: Consider the case that o > ||||. We have

1 min W) <0)]+1 max x; W) >0
(iel’j’z(lﬂr&a) U ) ) <i632(#+§’o‘) it ) )

L(f(&EW) <0)+1(f(§GW) =0)
217

where the first inequality holds because & € Ba(u + &, o) and € € Ba(—p + &, o). Therefore we have

Pixyo)~ Sf(xW) <0
(x.ye)~De (xeggl(ga)y FxW) )

1P < 3 ("’ W) < 0> *1 D. ( X f(~ “) > 0)
= ZPsp. min f(X; < + sPeipig ma X5 =
2 E~Depust REBs (ut€,a) 2 3 1 XEBa (—p+E,a)

= 0.5E¢ 1 min x;W)<0|+1 max X; W) >0

&~ Petus ( (iGBQ(H—Q—{,a) f&W) ) (f(GBg(—,u+§,a) f&W) )
> 0.5.

As a result,

LYY (W) > B+ 0.5(1—28) =0.5.

rob

Case 2: Consider the case that o < ||4]|. Let p(x) denote the density function of Dgjyg. Define v = (2 — QHO‘TH) . We have

1 min xW)<0]+1 max ;W) >0
( <i€82(#+£,o¢)f( ) ) (ie&»(u%a)f( ) ))

o (1 (i, EW <0) 41 (e sGwW 2 0))
((§+ W)<0)+0) (0+]l<f(£+ W)>0))
1,

vV

where the first inequality holds because § 4 5 € Ba(u + &, ) and € + 5 € Bo(§ + v — p, ). Therefore we have

Py )~D. < min  y.f(X; W) < O)

€B2(x,a)
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1 1
= | =Pep, min X;W) <0 | + zPenp max ;W) >0
(5Pt (i, F6W) <0 4 gpeomy ( max 76w 20))
1
= —Eeup (]l ( min ~ f(X; W) < 0) +1 ( max  f(X; W) > ))
2 ‘ XEB> (nt€,0) REBs (—pt6,0)

1
= - 1 min X; W) < +1 max
4 /Rd { ( (XEBz(MJrﬁ,a)f( ) ) <ieBz(u+£,a) )> p(&

+(]1< min f(i;W)§0>+]l< max )f(i;W)zO))p(§+v)}d§

XEB (§+v+p,a) XEB (E+V—p,

o

v

1 [, min{o(©).p(e + v)}as.

As a result,

LYY (W) >

rob

p(§ +v)}dé.

Consider a special instance where D,y is a standard Gaussian distribution; i.e., A'(0, 14). Then the result can be simplify as

L w) = 8+ 2 2o - o),

where ®(z) := \ﬁ [* . exp (—t?/2) dt is the normal cumulative distribution function. O

The following result shows that for certain step sizes and initialization, the neural network weights move far from the
initialization after the first step of adversarial training based on gradient descent.

Proposition B.34. Consider the same setting as in Theorem 3.1. Then, for some constant C' > 1 defined in Assumption 1,

1 U
with probability at least 1 — 2§ over the random initialization and the draw of an i.i.d. sample, we have that v WO, e >
Al
10 -
Proof of Proposition B.34. Consider V € R™*? be the matrix with rows v, = T ;LH > then we have
W W, - wey)
0 = 0
Wl W2l
—V Lion(W0), V>
0
Wl
Grop(W°
. *y||4u|| nbio() (Equation (12))
Wl
A 0
> Yl nGrob(W) (Lemma B.3)
4 3/2mdwinit
> 7||5“|| Gron(W?) (Assumption (3))
_ %ﬁtll . (Equation (9))

O
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