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Abstract

Benign overfitting is the phenomenon wherein

none of the predictors in the hypothesis class can

achieve perfect accuracy (i.e., non-realizable or

noisy setting), but a model that interpolates the

training data still achieves good generalization. A

series of recent works aim to understand this phe-

nomenon for regression and classification tasks

using linear predictors as well as two-layer neural

networks. In this paper, we study such a benign

overfitting phenomenon in an adversarial setting.

We show that under a distributional assumption,

interpolating neural networks found using adver-

sarial training generalize well despite inference-

time attacks. Specifically, we provide conver-

gence and generalization guarantees for adversar-

ial training of two-layer networks (with smooth as

well as non-smooth activation functions) showing

that under moderate ℓ2 norm perturbation budget,

the trained model has near-zero robust training

loss and near-optimal robust generalization error.

We support our theoretical findings with an em-

pirical study on synthetic and real-world data.

1. Introduction

Neural networks have been widely used in real-world appli-

cations, achieving state-of-the-art performance on various

tasks such as image classification and speech recognition.

Despite their tendency to be over-parameterized and capa-

ble of interpolating the training data with significant label

noise, neural networks perform surprisingly well on pre-

viously unseen test data. This seemingly contradicts the

classical learning theory where overfitting to the training

data would typically hinder with generalization. Such phe-

nomena, known as benign overfitting (Bartlett et al., 2020),

is technically characterized by the following conditions:

(1) the trained classifier perfectly fits the noisy training

1Department of Computer Science, Johns Hopkins Uni-
versity, Baltimore, USA. Correspondence to: Yunjuan Wang
<ywang509@jhu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

data, achieving zero training error; (2) no classifier in the

related hypothesis class can achieve near-zero generaliza-

tion error; (3) the trained classifier achieves near-optimal

generalization error. Several recent works seek to unravel

the mystery of benign overfitting in various settings, includ-

ing training linear models (Bartlett et al., 2020; Chatterji

et al., 2022), kernel methods (Belkin et al., 2018; Liang

& Rakhlin, 2020; Mei & Montanari, 2022) and training of

neural networks (Frei et al., 2022; Cao et al., 2022).

While models based on neural networks have been tremen-

dously successful, they are highly vulnerable to small, nearly

imperceptible, albeit strategic, perturbation of data. These

perturbations, called adversarial examples, are abundant and

easy to find computationally (Bubeck et al., 2021). The po-

tential of such adversarial attacks to substantially degrade

the performance of an otherwise well-performing model has

been a source of significant concern regarding deployment

of machine learning models in real-world systems. It is no

surprise, then, that developing algorithms that can provably

defend against such attacks and are guaranteed to improve

the robustness of machine learning has gained tremendous

traction in recent years.

One of the most prominent empirical defense algorithms

against inference-time attacks is the adversarial training

method of Madry et al. (2018). Adversarial training pro-

ceeds by simulating attacks as part of training – generating

adversarial examples from (clean) training examples and

using them to train a neural network. We can view adver-

sarial training as a two-player game, wherein the learner

seeks to minimize their error on the training set while an

adversary strives to maximize the error by crafting small

strategic corruptions of the input training examples. Several

empirical studies show that by using adversarial training

or its variants (Zhang et al., 2019; Wang et al., 2020), the

learner returns a model that is more resilient to perturbations

in the input space (Madry et al., 2018; Shafahi et al., 2019b;

Dong et al., 2020; Pang et al., 2021).

In contrast to the benign overfitting phenomenon that occurs

in the standard (clean) setting, Sanyal et al. (2020) identi-

fied a sufficient condition on the data distribution that hurts

robust generalization when the classifier perfectly fits the

noisy label data. This “robust overfitting” phenomenon was

also confirmed by Rice et al. (2020) showing that on sev-
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eral real-world datasets, the robust test loss increases after

the first learning rate decay while the robust training loss

keeps decreasing throughout training. This naturally begs

the question whether the modern wisdom of training neural

networks to zero training loss also extends to adversarial

settings, or in other words, if benign overfitting can occur in

adversarial training. Chen et al. (2023) took a first step in

studying benign overfitting for adversarially trained linear

models and provide empirical results for both linear clas-

sifiers and neural networks. They acknowledged that it is

nontrivial to generalize the analysis to neural networks and

leave it for future work.

In this paper, we resolve the open question posed by Chen

et al. (2023), asserting that benign overfitting can also occur

in adversarially trained neural networks under certain data

distributions. Our key contributions are as follows.

1. Given training data generated from a mixture distribution

with label noise, we establish convergence guarantees

for adversarial training of two-layer neural networks

showing that robust training loss can be driven to zero,

thereby robustly interpolating the noisy training data. We

consider the hypothesis class given by two-layer neural

networks. We consider smooth as well as non-smooth

activation functions. Furthermore, we do not make any

assumption about the robust realizability of data.

2. We provide generalization guarantees on both the clean

test error and the robust test error, demonstrating that they

simultaneously achieve the near-optimal standard and

adversarial risk. In particular, for a moderately large net-

work we show that for ℓ2 norm-bounded additive adver-

sarial attacks, if the perturbation budget is not too large,

the robust test error approximates the label noise rate.

3. We validate our theoretical results with experiments on

both synthetic and real-world datasets.

1.1. Related Work

Benign Overfitting. A significant body of recent works

has delved into understanding why predictors that interpo-

late noisy training data can still achieve a good general-

ization performance, with a particular emphasis on linear

models, e.g., linear regression (Bartlett et al., 2020; Hastie

et al., 2022; Zou et al., 2021b; Chatterji et al., 2022; Koehler

et al., 2021), sparse regression (Wang et al., 2022a; Chatterji

& Long, 2022), logistic regression (Chatterji & Long, 2021;

Wang et al., 2021), ridge regression (Tsigler & Bartlett,

2020), and kernel methods (Belkin et al., 2018; Liang et al.,

2020; Liang & Rakhlin, 2020; Mei & Montanari, 2022).

For nonlinear model such as neural networks, analyzing

benign overfitting becomes much more challenging. There

has been some progress toward addressing this challenge.

Frei et al. (2022) provided a first such guarantee for finite-

width neural networks trained on logistic loss for data drawn

from a Gaussian mixture model. Concurrently, Cao et al.

(2022) characterized the generalization guarantees of two-

layer convolutional neural networks, assuming that input

data is a sum of a label-dependent signal patch and a label-

independent noise patch. While the works above consider a

smooth activation function, follow-up studies by Kou et al.

(2023) and Xu & Gu (2023) extended the results to SGD for

training neural networks with non-smooth activations (e.g.,

ReLU). Recently, Zhu et al. (2023) further extended these

findings to deep neural networks in the lazy regime.

Robust Overfitting. Numerous works focus on mitigat-

ing overfitting in adversarial settings following the work of

Rice et al. (2020). These include approaches that employ

heuristic ideas, such as early stopping, adding regulariza-

tion, adapting cyclic learning rate schedules (Rice et al.,

2020), and smoothing the logits or weights during train-

ing (Chen et al., 2021), among others (Pang et al., 2021;

Huang et al., 2020; Dong et al., 2022). Thw works of Xiao

et al. (2022); Clarysse et al. (2022); Fu & Wang (2023)

provide some theoretical justification for these practical ap-

proaches. Donhauser et al. (2021) and Dong et al. (2021)

implicate memorization – neither work provides any theo-

retical results to support their claim. However, follow-up

work by Li & Li (2023) considers a patch data distribution

with a meaningful signal patch embedded in noisy patches–

they show that the ability of a model class to memorize

spurious features (noisy patches) leads to overfitting. More

recently, Li et al. (2022) argued that robust generalization

may require exponentially large models.

Robust Generalization Guarantees. A standard techni-

cal tool for establishing generalization bounds is that of

uniform convergence. Several works build on this idea to

give generalization guarantees for the robust loss, by ana-

lyzing Rademacher complexity (Yin et al., 2019; Khim &

Loh, 2018; Awasthi et al., 2020), VC dimension (Cullina

et al., 2018; Montasser et al., 2020), or the covering num-

ber (Balda et al., 2019; Mustafa et al., 2022; Li & Telgarsky,

2023), of the hypothesis class or utilizing PAC Bayesian

analysis (Viallard et al., 2021; Xiao et al., 2023) and margin-

theoretic analysis (Farnia et al., 2018). However, by defini-

tion, these guarantees rely on bounding the generalization

gap, i.e., the difference between the empirical and expected

error, of all hypothesis in the hypothesis class simultane-

ously. As such, uniform convergence bounds are unable

to explain the benign overfitting phenomenon, wherein the

empirical and expected errors of an interpolating predictor

are not close to each other.

Computational Guarantees. The statistical guarantees

based on uniform convergence fail to explain benign over-

fitting. It is natural then to rely on a more direct (e.g.,
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trajectory-based) analysis of the output of the training al-

gorithm. However, a good theoretical understanding of

why and when adversarial training succeeds remains elusive.

Much of the recent work (Charles et al., 2019; Li et al.,

2020; Zou et al., 2021a; Chen et al., 2023) has focused on

studying adversarial training of linear models wherein the

adversarial examples are given in a simple closed-form ex-

pression – this simplifies the problem greatly reducing it to

standard training. Of special relevance to us in this body

of results, is the work of Chen et al. (2023) who claim to

demonstrate benign overfitting for linear models; yet, they

fail to show that the model returned by adversarial training

in the setting they consider has small robust training error,

making their claim questionable.

Adversarial training of neural networks was analyzed

by Gao et al. (2019) and further improved by Zhang et al.

(2020); however, both of these works focus on ensuring

convergence of the training procedure and do not provide

generalization guarantees on robust loss. This gap has been

addressed in very recent work by Li & Telgarsky (2023).

However, the work of Li & Telgarsky (2023), and the prior

work all focus on the lazy training regime, which, unfortu-

nately, has been proven to be at odds with robustness (Wang

et al., 2022b). Finally, Allen-Zhu & Li (2022) present an

analysis of adversarial training when initialized using a net-

work returned by standard (clean) training instead of random

initialization. Mianjy & Arora (2023) provide an end-to-end

analysis of adversarial training beyond the NTK setting with

a variant of adversarial training that involves using a slightly

different (reflected) loss for the inner loop maximization

problem (for finding an attack vector as part of adversarial

training), yet, their results are limited to robustly realiz-

able distributions, which cannot justify benign overfitting

as there is no noise in their setting.

2. Preliminaries

Notation. Throughout the paper, we denote scalars, vec-

tors, and matrices with lowercase italics, lowercase bold,

and uppercase bold Roman letters, respectively; e.g., u, u,

and U. We use [m] to denote the set {1, 2, . . . ,m} and

use both ∥ · ∥ and ∥ · ∥2 for ℓ2-norm. Given a matrix

U = [u1, . . . , um] ∈ R
d×m, we use ∥U∥F and ∥U∥2 to rep-

resent the Frobenius norm and spectral norm, respectively.

We use B2(u, α) to denote the ℓ2 ball centered at u ∈ R
d of

radius α. We use the standard O-notation (O, Θ and Ω).

2.1. Problem Setup

We focus on binary classification and denote the input space

and label space as X = R
d,Y = {±1}, respectively. We

assume that the data are drawn from a noisy mixture data

distribution D on X × Y that, along with its variants, has

been studied in several recent works (Chatterji & Long,

2021; Cao et al., 2021; Frei et al., 2022). Formally, we

consider the following data distribution.

Definition 2.1 (Data Distribution). Let Dclust be a λ-strongly

log-concave distribution over R
d for some λ > 0. We

assume that Dclust = D(1)
clust × · · · × D(d)

clust is a product

distribution whose marginals are all mean-zero with the

sub-Gaussian norm at most one. We further assume that

Eξ∼Dclust
[∥ξ∥2] ≥ κd holds for some 0 < κ < 1. Let

Dc be a distribution over X × Y . We first draw a sample

(xc, yc) ∼ Dc by sampling yc ∈ {±1} uniformly at random,

sampling ξ ∼ Dclust, and setting xc = ycµ + ξ. Given a

noise rate β > 0, we define our true data distribution D
to be any distribution over X × Y such that the marginal

distribution of D and Dc on X are the same, and the total

variation distance between the two distributions is bounded

by β, i.e., dTV(Dc,D) ≤ β.

The standard coupling lemma states that given two distribu-

tions D and Dc over the same domain Z = X × Y , there

exists a joint distribution over Z×Z such that the marginals

along the projections (z, z′) 7→ z and (z, z′) 7→ z′ are D
and Dc, respectively. Given that the marginal on X for D
and Dc are the same (see the definition above), this implies

that for (x, y) ∼ D, (xc, yc) ∼ Dc, P(x = xc) = 1 and

P(y ̸= yc) ≤ β. The definition above includes two settings:

1) Independent label flip, where for each sample, label y is

obtained by flipping yc with probability at most β, indepen-

dent of how other labels are generated; 2) Non-independent

label flip, where there exists potential correlations between

labels y. A yet another special instance that has been stud-

ied extensively in the adversarial learning literature is that

of Gaussian distribution (Javanmard et al., 2020; Dobriban

et al., 2020; Dan et al., 2020) which is a special case of the

data generative model above for β = 0.

Hypothesis Class. We focus on learning two-layer neural

networks defined as: f(x;W) := 1√
m

∑m
s=1 asϕ(⟨ws, x⟩)

where m is an even integer representing the number of

hidden nodes and ϕ : R → R is an activation func-

tion. The weight matrix at the bottom layer is denoted

as W = [w1, . . . ,wm] ∈ R
d×m and the weight vector at the

top layer by a = [a1, . . . , am] = [1, . . . , 1,−1, . . . ,−1] ∈
R
m. The top layer weight vector a is kept fixed through-

out the training process. The weight vectors at the bot-

tom layer are initialized randomly as w0
s ∼ N(0, ω2

initI),
for s ∈

{
1, . . . , m2

}
, and setting w0

s = w0
s−m

2
for s ∈{

m
2 + 1, . . . ,m

}
. This ensures symmetry at initialization

and yields f(x;W0) = 0 for all x. This symmetric initializa-

tion technique is commonly used in related work (Langer,

2021; Bartlett et al., 2021; Montanari & Zhong, 2022) and

we employ here for analytical purposes.

Training Data. We are given a training data of size

n sampled i.i.d. from the noisy data distribution, S =
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{(xi, yi)}ni=1 ∼ D. Let C denote the set of indices of train-

ing data corresponding to the clean labels; i.e., for i ∈ C, we

have that (xi, yi) ∼ Dc; similarly, let N denote the indices

corresponding to noisy labels; i.e., (xi,−yi) ∼ Dc ∀i ∈ N .

Loss Function. The 0-1 loss of a predictor f(·,W)
on a data point (x, y) is defined as ℓ0/1((x, y);W) =
1 (yf(x;W) ≤ 0), where 1(·) is the indicator function. For

computational reasons, as is typical, we use the logistic loss,

denoted ℓ(z) = log (1 + exp (−z)), to train the two-layer

neural networks. The population and the empirical loss

w.r.t. ℓ(·) are denoted as L(W) := E(x,y)∼Dℓ(yf(x;W))

and L̂(W) := 1
n

∑n
i=1 ℓ(yif(xi;W)).

Robust Loss. We consider ℓ2 norm-bounded adversarial

attacks with a perturbation budget of size α > 0. The set

of all such perturbations for an input example x ∈ X is

represented by B2(x, α). This threat model motivates min-

imizing the robust 0-1 loss defined as ℓ
0/1
rob ((x, y);W) =

maxx̃∈B2(x,α) 1(yf(x̃;W) ≤ 0). The population and empir-

ical risk w.r.t. the 0-1 loss and the robust 0-1 loss, respec-

tively, are denoted as L0/1, L̂0/1, L
0/1
rob , and L̂

0/1
rob . Analo-

gously, the population and empirical robust risk w.r.t. the

(surrogate) logistic loss ℓ(·) are defined as:

Lrob(W) := E(x,y)∼D max
x̃∈B2(x,α)

ℓ(yf(x̃;W))

L̂rob(W) :=
1

n

n∑

i=1

max
x̃i∈B2(xi,α)

ℓ(yif(x̃i;W)).

Note that we are ultimately interested in bounding the 0-1

loss and its robust variant.

Algorithm 1 Gradient Descent-based Adversarial Training

Input: Step size η, perturbation budget per sample α. Num-

ber of iterations T .

Initialize W0 randomly.

for t = 0, . . . , T − 1 do

for i = 1, . . . , n do

x̃ti = argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Wt)).
end for

Update Wt+1 = Wt − η
n

∑n
i=1 ∇ℓ(yif(x̃ti;Wt))

end for

return: WT

Adversarial Training. The gradient descent-based ad-

versarial training algorithm is presented in Algo-

rithm 1. We denote the adversarial training exam-

ple for some input xi given model parameter Wt, at

round t as x̃ti = argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Wt)) =
argminx̃i∈B2(xi,α) yif(x̃i;Wt). A bi-product of our initial-

ization is that f(·;W0) is the zero function at initialization

(see the paragraph titled “Hypothesis Class”).

Therefore, at t = 0, all perturbations of all training data

fare equally, i.e., perturbing data does not increase the train-

ing loss. Therefore, for simplicity, we simply choose to

not perturb the training data at iteration t = 01. The pro-

posed symmetric initialization and simple modification of

the training procedure at t = 0 is instrumental in proving

Lemma 4.1, which further yields tight results.

We make the following assumptions on the problem setup.

Specifically, we consider a high dimensional setting where

the dimension d is much larger than the number of training

samples n, as stated below in Assumption (1). Such a regime

is popular in biomedical settings where the data comes from

limited patient information such as MRI or DNA sequence.

Assumption 1. Let δ ∈ (0, 1/2). We assume

that there exists a positive constant C such that

the following holds: (1) The dimension satisfies

d ≥ Cmax{∥µ∥2 n, n2
(
log (n/δ) + α2

)
}. (2) noise

rate β ∈ [0, 1/C]. (3) Initialization variance satisfies

ωinit

√
md ≤ η. (4) Step size η ≤ (Cd2)−1. (5) The

number of samples satisfies n ≥ C log (m/δ). (6) Adver-

sarial perturbation α ≤ ∥µ∥.

Assumption (3) requires a small initialization to ensure that

the first step of adversarial training dominates the behavior

of the neural network, pushing it beyond the lazy train-

ing regime. Such initialization technique has also been

introduced in previous work (Ba et al., 2019; Xing et al.,

2021). Given that the objective of adversarial training is

to achieve a classifier that is robust against small input per-

turbations imperceptible to human eyes, Assumption (6)

is reasonable as it imposes a mild constraint on the attack

strength. Finally, we note that we can relax Assumption (1)

to d ≥ Cmax{∥µ∥2n, n2 log (n/δ)}, thereby removing the

dependence on α (see discussion in Section 4.1). We work

with the assumption above to keep our arguments and proofs

relatively simple and accessible.

3. Main Result

In this section, we present our main result providing the-

oretical guarantees for adversarial training of neural net-

works. We assume that the underlying distribution is the

noisy mixture distribution described in Section 2.1. Further,

we consider network architectures with both smooth and

non-smooth activation functions – while we show identical

results for both cases, we need slightly different assump-

tions for the two. Therefore, we first separately describe

each setting before presenting a unified result.

1Due to this simple modification, we can allow perturbation
budget α to be as large as ∥µ∥ (see Assumption (6)). On the other
hand, if we allow for non-zero perturbation at t = 0, we will need
α ≤ c ∥µ∥ for some c ∈ [0, 1).
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3.1. Smooth Activation Function

Here we consider a strictly increasing, 1-Lipschitz, H-

smooth activation function that is approximately homoge-

neous with ϕ(0) = 0. Formally, there exists γ,H > 0, 0 ≤
ζ < 1, c1 ≥ 0, c2 ≥ 0 such that 0 < γ ≤ ϕ′(z) ≤ 1, ϕ′(z)
is H-Lipschitz, and |ϕ′(z) · z − ϕ(z)| ≤ c1 + c2 |z|ζ , ∀z ∈
R. Smooth activation functions have been extensively stud-

ied both theoretically and empirically (Liu & Di, 2021;

Biswas et al., 2022). One example of such an activation

function that satisfies our condition is the smoothed Leaky

ReLU activation (Frei et al., 2022) defined as follows:

ϕSLReLU(z) =





z − 1−γ
4H , z ≥ 1

H
1−γ
4 Hz2 + 1+γ

2 z, |z| ≤ 1
H

γz − 1−γ
4H , z ≤ − 1

H

. (1)

However, we do need an additional assumption on top of

what (Frei et al., 2022) require. In particular, we assume

that ϕ′(z)z and ϕ(z) are close to each other. We argue that

this is a mild assumption, and holds trivially for standard

ReLU and Leaky ReLU, with c1 = c2 = 0. For ϕSLReLU(z),
of (Frei et al., 2022), the assumption holds with ζ = 0
with c1 = 1−γ

4H , and c2 = 0. The reason we need this

additional assumption is because the neural networks with

ϕSLReLU(z) activation function are no longer homogeneous.

Consequently, without the assumption, we end up with terms

in the upper bound on the empirical robust risk that depends

on the Frobenius norm of the weight matrix (see Section 4.3

for more details).

3.2. Non-smooth activation function

Here, we consider a more practical setting where the acti-

vation function is no longer smooth. We consider a homo-

geneous non-smooth activation function that satisfies the

following properties.

ϕ(0) = 0, ϕ′(z)z = ϕ(z), ∀z ∈ R;

0 ≤ ϕ′(z) ≤ 1, ∀z ∈ R;

∃γ ∈ (0, 1], s.t.ϕ′(z) ≥ γ, ∀z > 0.

This includes ReLU and Leaky ReLU activation functions.

3.3. Theoretical Guarantees

Our main result establishes benign overfitting in adversar-

ially trained neural networks. In particular, we show that

adversarial training converges to neural networks with zero

robust training loss and with standard (clean) test error close

to the noise rate. Furthermore, for small attack strength, α,

the robust test error also converges to the noise rate. For-

mally, we show the following.

Theorem 3.1. Let ε > 0, δ ∈ (0, 1/2). Let κ ∈ (0, 1) and

λ > 0 as given in Definition 2.1. We consider the following

regimes and parameter settings for smooth and non-smooth

activations functions, respectively.

Smooth Activation. Let ϕ be a γ-leaky H-smooth ac-

tivation with 0 ≤ ζ < 1. Set T̄ =
( 35+8

√
m/d3

γ∥µ∥ηε
) 2

1−ζ .

We assume that there exists some constant C > 0 such

that Assumption 1 holds, (A1) d ≤ ∥µ∥4 /C, and (A2)

∥µ∥2 ≥ C log (n/δ).

Non-smooth Activation. Let ϕ be a non-smooth activa-

tion with γ ∈ (0, 1]. Set T̄ = Ω
(

1
∥µ∥2γ2ηε2

)
. We as-

sume that there exists some constant C > 0 such that

Assumption 1 holds, (B1) m ≥ C log (n/δ), and (B2)

∥µ∥2 ≥ Cmax
{√

d
n log (md/nδ), log (n/δ)

}
.

Then, there exists a constant c > 0 such that after running

Algorithm 1 for T ≥ T̄ iterations, we have that with proba-

bility at least 1− 2δ over the random initialization and the

draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies L̂rob(W
T ) ≤ ε, the ro-

bust training error satisfies L̂
0/1
rob (WT ) = 0.

2. The clean test error satisfies

L0/1(WT ) ≤ β + 2exp
(
− cλn ∥µ∥4

C2d

)
.

3. For α
∥µ∥ ≤ 1

C

√
n∥µ∥2

d , the robust test error satisfies

L
0/1
rob (WT )≤β+2exp

(
−cλ ∥µ∥2

(∥µ∥
C

√
n

d
− α

∥µ∥
)2)

.

3.4. Discussion

Theorem 3.1 shows that adversarially-trained neural

networks can interpolate the noisy training data. In fact,

the trained network correctly classifies all training data

after the first step of adversarial training. For generalization

guarantees, Theorems 3.1 suggests an interesting interplay

between the parameters d, n, and ∥µ∥. Importantly, when

n ≫ Ω̃
(

d
∥µ∥4

)
, it ensures a small clean test error. Further-

more, when n≫ Ω̃
(d(1+α)2

∥µ∥4

)
2, the robust test error is also

guaranteed to be small. This result aligns with the literature

suggesting that adversarial robustness requires more

data (Schmidt et al., 2018). Notably, the clean test error ob-

tained through the adversarial training algorithm shares the

same bound as that derived through gradient descent (Frei

et al., 2022; Xu & Gu, 2023), even when the perturbation

size α is as large as the signal size ∥µ∥. For the robust

generalization error, the constraint on the perturbation can

2If we fix α
∥µ∥

to be a constant, then n ≫ Ω̃
(

d
∥µ∥2

)

guarantees

the robust test error to be small. This is verified in Section 5.
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be the same scale as the signal size; i.e. α ≤ O(∥µ∥) when

d = Θ(n ∥µ∥2). It is worth noting that the robust test error

decreases as n/d increases or as the attack strength α
∥µ∥

decreases, which is consistent with the findings in previous

literature (Schmidt et al., 2018; Shafahi et al., 2019a).

For non-smooth activation functions, Assumption (B1) is

a relatively mild constraint on the network width. As-

sumption (B2) is slightly more stringent compared to

Assumption (A2). However, it is worth noting that in

the clean setting, the minimax generalization error is at

least O(exp(−min(∥µ∥2 , n ∥µ∥4 /d))) (Giraud & Verze-

len, 2019), implying that (B2) is unavoidable up to logarith-

mic factors if we desire a classifier with good generalization.

Next, we provide a lower bound on the robust test error that

is independent of the algorithm as well as hypothesis class.

Theorem 3.2. We consider independent label flip with

probability β. Let p(x) be the density function of Dclust.

For any given classifier f(·;W), when α < ∥µ∥, we have

L
0/1
rob (W) ≥ β + 1−2β

4

∫
Rd

min{p(ξ), p(ξ + v)}dξ, where

v = 2 (1− α/ ∥µ∥)µ. When α ≥ ∥µ∥, the robust test error

satisfies L
0/1
rob (W) ≥ 0.5.

Consider the special instance of when Dclust is standard

Gaussian. Theorem 3.2 recovers the optimal risk in Do-

briban et al. (2020) up to a scaling factor when β = 0.

Moreover, the upper bound on the robust test error (denoted

as UBD) that we provide in Theorem 3.1 and the lower

bound (denoted as LBD) in Theorem 3.2 satisfy the follow-

ing: (UBD−β)=(LBD − β)O(n∥µ∥2/d). Our upper bound

roughly matches the lower bound when
n∥µ∥2

d = Ω(1).

Overfitting with Adversarial Training. While our result

may, at first, seem in conflict with the robust overfitting

phenomenon that observed by recent empirical studies,

we note that there is actually no contradiction with this

empirical observation as we consider a specific data-

generative model and a bound on the size of the adversarial

perturbation during adversarial training. Indeed, recent

empirical studies by (Dong et al., 2021) and (Yu et al., 2022)

confirm that small α prevents adversarial training from

overfitting. Furthermore, (Xing et al., 2022) explored the

phase transition between standard training and adversarial

training and showed that the optimization trajectories in the

two settings are close to each other when α is small. One

interesting future direction is to justify the generalization

guarantee for moderately large attack strength α
∥µ∥ .

Comparison with Theoretical Works. Several recent

works focus on giving convergence and generalization guar-

antees for adversarial training (Gao et al., 2019; Zhang et al.,

2020; Mianjy & Arora, 2023; Li & Telgarsky, 2023); here

we compare and contrast our work with each of these.

The work of (Gao et al., 2019) prove convergence for a mod-

ified algorithm for adversarial training wherein the iterates

are projected onto a norm ball to ensure that the network

weights stay close to initialization. However, they further

need to assume that a robust network exists in the vicinity

of the initialization. Such an assumption has been shown

to be invalid in a recent work (Wang et al., 2022b). In a

related work, (Zhang et al., 2020) provide a fine-grained

convergence analysis for datasets that are well-separated.

More recently, (Li & Telgarsky, 2023) give convergence and

generalization guarantees for adversarial training of shal-

low networks with early stopping. Unfortunately, all of the

aforementioned works are limited to the lazy regime (aka,

the NTK setting) which has been shown to be at odds with

adversarial robustness (Wang et al., 2022b). (Mianjy &

Arora, 2023) were the first to provide both convergence and

generalization guarantees beyond the NTK regime, yet their

analysis was restricted to robust realizable data distributions.

Our work stands out from prior work in several ways. First,

we study the standard adversarial training algorithm com-

monly used in practice. Second, we give convergence guar-

antees for adversarial training on non-separable data, unlike

other works that make restrictive assumptions regarding lin-

ear separability and robust realizability. Finally, our results

hold for neural networks that can be trained for arbitrary

many iterations allowing
∥∥Wt

∥∥ to go to infinity, i.e., beyond

the NTK regime.

4. Proof Sketch

We begin by providing some intuition for our proof. We

show that when the perturbation size is not large (α ≤ ∥µ∥),

the trajectory of the adversarial training remains close to

that of the standard training. Furthermore, given a good

initialization of the neural network the dynamics of the

training algorithm can be shown to be nearly linear. We also

leverage a result from high dimensional probability, that

the training data we draw is (nearly) separable even though

the underlying data distribution is non-separable. We show

that both of these events happen with high probability and

establish what we refer to as a “good” run of the algorithm

and are central to our proof.

Next, we formalize this intuition and provide a brief proof

sketch of our main result. We focus primarily on neural net-

works with smooth activation function (i.e., Theorem 3.1)

and note the differences in the analysis when extending the

result to the non-smooth activation functions. In our analy-

sis, we borrow many ideas from (Frei et al., 2022) and (Xu

& Gu, 2023). However, the extension is not straightforward

and our focus in this section is on highlighting the technical

challenges we overcome and the key insights we utilized

in our analysis. We also identify several non-rigorous ar-

guments and present a discussion regarding technical im-
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provements over (Frei et al., 2022); we defer them to Ap-

pendix B.1 due to space limitations. For detailed proofs, we

refer the reader to the Appendix.

4.1. Properties of Adversarial Training Examples

For convergence and generalization guarantees, Assump-

tion (6) allows the perturbation α to be as large as ∥µ∥. This

requires a fine-grained analysis of the properties of the ad-

versarial examples generated during the training process, as

characterized in the following lemma.

Lemma 4.1. ∀t ∈ N, i ∈ [n], the distance between x̃ti and

span{x1, . . . , xn} satisfies dist(x̃ti, span{x1, . . . , xn}) ≤
min

{
ωinit

√
md/η, α

}
.

Essentially, a smaller initialization on the model weight ωinit

leads to a shorter distance between the generated adversar-

ial examples to the linear subspace spanned by the train-

ing data {xi}ni=1. Notably, dist(x̃ti, span{x1, . . . , xn}) ≤
min {1, α} due to Assumption (3). This helps us control

the size of
∣∣〈µ, x̃ti

〉∣∣ = O(∥µ∥2), independently of α when

α is relatively large.

We can leverage another property of x̃ti to relax Assump-

tion (1) to d ≥ Cmax{∥µ∥2n, n2 log (n/δ)}. In particular,

we show that the angle between the direction of the addi-

tive adversarial perturbation for each training examples, i.e.,

yi(x̃
t
i − xi), and the direction of the combined training data

(i.e., −∑n
k=1 ykxk) is small. This allows us to control the

size of
〈
x̃ti, x̃

t
j

〉
for all i, j ∈ [n]. Both of these properties

we discuss above are crucial to our analysis and proofs.

4.2. Generalization Guarantee

As a proof strategy we seek to get an upper bound on the

robust test error in terms of a lower bound on the normalized

expected conditional margin. This follows using a concen-

tration argument given that Dclust is λ-strongly log-concave.

Lemma 4.2. Suppose that E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]−
∥W∥2 α ≥ 0 holds for both ȳ = 1 and ȳ = −1. Then, there
exists a universal constant c > 0 such that

L
0/1
rob (W)≤β+

∑

ȳ∈{−1,+1}

exp
(

−cλ
(

E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]

∥W∥2
−α

)

2
)

To get a lower bound on the normalized expected condi-

tional margin, we leverage the smoothness property of

the activation function to derive a lower bound on the

increment in the un-normalized margin for an independent

test example (x, y).

Lemma 4.3 (Informal). For some constant C2, with high

probability, we have for any t ≥ 0 and (x, y) ∈ R
d ×{±1},

there exist ρ̃ti = ρ
(
Wt, x̃ti, x

)
∈ [γ2, 1] such that

y
[

f(x;W
t+1)− f(x;W

t)
]

≥ η

n

n
∑

i=1

g̃i(W
t)
(

ξ̃
t
i

〈

yix̃
t
i, yx

〉

− H ∥x∥2 C2
2dη

2
√
mn

)

.

where g̃i(W
t) = −ℓ′(yif(x̃ti;Wt)) = 1

1+exp(yif(x̃ti;W
t))

.

For the non-smooth activation function, we get a similar

result which we defer to the Appendix due to space

constraints. Finally, we seek a positive lower bound on

un-normalized expected conditional margin for model Wt

by expressing it in terms of the cumulative increments

of margin; i.e., showing E(x,yc)∼Dc|yc=1[ycf(x;Wt)] =∑T
t=1 E(x,yc)∼Dc|yc=1[ycf(x;Wt) − ycf(x;Wt−1)] +

E(x,yc)∼Dc|yc=1[ycf(x;W0)]. A positive lower bound

holds trivially positive if
〈
yix̃

t
i, ycx

〉
is always bounded

below by some positive constant. However, due to the

presence of noisy labels yi and adversarial examples x̃i,〈
yix̃

t
i, ycx

〉
may be negative. Note, though, that the term〈

yix̃
t
i, ycx

〉
scales with g̃i(W

t). If we can show that g̃i(W
t)

is of the same order across all training examples, and

assume a small perturbation budget and that only a small

fraction of labels are noisy, then we can mitigate the effect

of the negative terms. The key lemma providing such a

result by bounding the loss ratio is as follows.

Lemma 4.4 (Informal). Given Assumption 1, there is an

absolute constant Cr > 0 such that with high probability,

we have for all t ≥ 0, maxi,j∈[n]
g̃i(Wt)
g̃j(Wt) ≤ Cr.

To see why the above holds, note that for any given i, j ∈ [n],

we have that
g̃i(Wt)
g̃j(Wt) ≤ max

{
2,

2 exp(−yif(x̃ti;W
t))

exp(−yjf(x̃tj ;W
t))

}
, where

x̃ti = argminx̃i∈B2(xi;α) yif(x̃i;Wt). For successive iter-

ates we get that
exp(−yif(x̃

t+1

i ;Wt+1))
exp(−yjf(x̃

t+1

j ;Wt+1))
≤ exp(−yif(x̃ti;W

t))
exp(−yjf(x̃tj ;W

t))
·

exp(yif(x̃
t+1

i ;Wt)−yif(x̃
t+1

i ;Wt+1))
exp(yjf(x̃tj ;W

t)−yjf(x̃tj ;W
t+1))

. Finally, we use induction

to complete the proof.

For smooth activation functions, the proof of Lem-

mas 4.3 and 4.4, follows by controling the term

y
[
f(x;Wt+1)− f(x;W

t)
]

via Taylor approximation. For

non-smooth activation functions, we need to ensure that

there exist enough neurons have positive activations at ini-

tialization as well as throughout the training process.

Lemma 4.5 (Informal). Given Assumption 1

and (B2), with high probability, for all s ∈ [m],
we have

∣∣{i ∈ [n] : yi = as,
〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ =
Θ(n); for all i ∈ [n], we have∣∣{s ∈ [m] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ = Θ(m).

7





Benign Overfitting in Adversarial Training of Neural Networks

For our next experiment, we plot the robust training loss and

robust test error as a function of the number of training iter-

ations in Figure 2. For the top row, we fix d = 1000, α
∥µ∥ =

0.1, and vary the signal size ∥µ∥ ∈ [4, 6, 8, 10]; for the

middle row, we fix ∥µ∥ = 5.0, α
∥µ∥ = 0.1, vary dimension

d ∈ [500, 1000, 1500]; for the bottom row, we fix ∥µ∥ =
5.0, d = 1000, vary attack rate α

∥µ∥ ∈ [0.05, 0.1, 0.15]. We

observe that the robust training loss goes to zero while the

robust test error converges to the label noise rate of 0.1. Fur-

thermore, smaller ∥µ∥, larger d, and larger α
∥µ∥ all lead to

worse robust test error, which is consistent with our theory.

We observe the same trends on MNIST dataset even though

the data generative assumptions are no longer valid; we

defer a detailed discussion to the Appendix.

6. Conclusion

In this paper, we show benign overfitting in adversarial train-

ing of two-layer neural networks under a noisy mixture data

distribution. Specifically, we show that under ℓ2 norm per-

turbations, the robust training loss converges to zero while

the robust generalization error is near-optimal. Our work

suggests several promising future directions. Our results as-

sume a generative model with a structured log-concave data

distribution. It is natural to explore whether our findings

can be extended to more general data distributions. Another

interesting direction is to investigate whether our results

generalize to the setting where the data dimension and the

number of training samples have the same scale. Finally,

we note that our main result only partially characterizes the

phase transition from small to large test errors for small and

large attack strengths, respectively. An important next step

is to provide generalization guarantees for attacks of mod-

erate strength and to explore the relationship between the

perturbation size, signal size, dimension, and the number of

training samples.
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exists a constant c > 0 such that after running Algorithm 1 for T ≥ T̄ iterations, we have that with probability at least

1− 2δ over the random initialization and the draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies L̂rob(W
T ) ≤ ε, the robust training error satisfies L̂

0/1
rob (WT ) = 0.

2. The clean test error satisfies
L0/1(WT ) ≤ β + 2exp

(
− cλn ∥µ∥4

C2d

)
.

3. For α
∥µ∥ ≤ 1

C

√
n∥µ∥2

d , the robust test error satisfies

L
0/1
rob (WT )≤β+2exp

(
−cλ ∥µ∥2

(∥µ∥
C

√
n

d
− α

∥µ∥
)2)

.

Proof of Theorem B.1. By Lemma B.3 and Lemma B.4, a good run occurs with probability at least 1 − 2δ. The robust

training loss bound is proved in Lemma B.15. For the robust loss, we apply Lemma B.2 with Lemma B.14, which give us

with probability at least 1− 2δ,

L
0/1
rob (WT ) = P(x,y)∼D[∃x̃ ∈ B2(x, α) s.t. y ̸= sign(f(x̃;WT ))]

≤ β + exp

(
−cλ

(
E(x,yc)∼Dc [ycf(x;W)|yc = −1]

∥W∥2
− α

)2)

+ exp

(
−cλ

(
E(x,yc)∼Dc [ycf(x;W)|yc = 1]

∥W∥2
− α

)2)

≤ β + 2 exp

(
−cλ

(
γ2

√
n

32C2

√
d
∥µ∥2 − α

)2
)

≤ β + 2 exp

(
−cλ

( √
n

C
√
d
∥µ∥2 − α

)2
)
, (Choose C ≥ 32C2

γ2 )

where the last line holds for α
∥µ∥ ≤ 1

C

√
n∥µ∥2

d , so that
√
n

C
√
d
∥µ∥2 − α ≥ 0.

Similar for the standard loss, applying Lemma B.2 gives us

L0/1(WT ) ≤ β + exp


−cλ

(
E(x,yc)∼Dc [ycf(x;WT )

∣∣yc = 1]

∥W∥2

)2



+ exp


−cλ

(
E(x,yc)∼Dc [ycf(x;WT )

∣∣yc = −1]

∥W∥2

)2



≤ β + 2 exp

(
−cλ

(
γ2

√
n

32C2

√
d
∥µ∥2

)2
)

(Lemma B.14)

≤ β + 2 exp

(
−cλ

( √
n

C
√
d
∥µ∥2

)2
)

(Choose C ≥ 32C2

γ2 )

= β + 2 exp

(
−cλn ∥µ∥

4

C2d

)
.

The proof of Theorem 3.1 builds upon a sequence of Lemmas, which we show below. Lemma B.2 bound the robust test

error by the normalized expected conditional margin via a concentration argument.
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Lemma B.2. Suppose that E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]− ∥W∥2 α ≥ 0 holds for both ȳ = 1 and ȳ = −1. Then, there

exists a universal constant c > 0 such that

L
0/1
rob (W) ≤ β +

∑

ȳ∈{−1,+1}
exp
(
− cλ

(
E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]

∥W∥2
− α

)2)
,

L0/1(W) ≤ β +
∑

ȳ∈{−1,+1}
exp
(
− cλ

(
E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]

∥W∥2

)2)
.

Proof of Lemma B.2. We have

L
0/1
rob (W) = P(x,y)∼D [∃x̃ ∈ B2(x, α) s.t. y ̸= sign(f(x̃;W))]

= P(x,y)∼D [∃x̃ ∈ B2(x, α) s.t. yf(x̃;W) ≤ 0]

≤ β + P(x,yc)∼Dc [∃x̃ ∈ B2(x, α) s.t. ycf(x̃;W) ≤ 0]

= β + P(x,yc)∼Dc

[
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

]
.

For any x̃ ∈ B2(x, α), we have

|ycf(x;W)− ycf(x̃;W)| = 1√
m

∣∣∣∣∣

m∑

s=1

as [ϕ(⟨ws, x⟩)− ϕ(⟨ws, x̃⟩)]
∣∣∣∣∣

≤ 1√
m

m∑

s=1

|as| |⟨ws, x − x̃⟩| (ϕ is 1-Lipschitz)

≤ 1√
m

√√√√
m∑

s=1

a2s

√√√√
m∑

s=1

⟨ws, x − x̃⟩2 (Cauchy-Schwartz)

= ∥W(x − x̃)∥
≤ ∥W∥2 α. (By the definition of the spectral norm)

Since Dclust is λ-strongly log concave, and ycf(x;W) is ∥W∥2-Lipschitz, there is an absolute constant c̄ > 0 such that for

any q ≥ 1, ∥ycf(x;W)− E[ycf(x;W)]∥Lq ≤ c̄ ∥W∥2
√
q/λ. Therefore, there is an absolute constant c > 0 such that for

any t ≥ 0, for fixed yc = 1 (same for yc = −1), we have

P (ycf(x;W)− E[ycf(x;W)] ≤ −t) ≤ exp

(
−cλ

(
t

∥W∥2

)2
)
. (2)

where the expectation is w.r.t. x. Choose t = E[ycf(x;W)]− ∥W∥2 α ≥ 0, we have

P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

∣∣∣∣yc = 1

)

= P(x,yc)∼Dc

(
ycf(x;W)− E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
]
≤ ycf(x;W)

− E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
]
− min

x̃∈B2(x,α)
ycf(x̃;W)

∣∣∣∣yc = 1

)

≤ P(x,yc)∼Dc

(
ycf(x;W)− E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
]
≤ ∥W∥2 α

− E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
] ∣∣∣∣yc = 1

)
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≤ exp


−cλ



E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
]
− ∥W∥2 α

∥W∥2




2

 .

Consider both yc = 1 and yc = −1 gives us

L
0/1
rob (W) ≤ β + P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

)

= β + P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

∣∣∣∣yc = −1

)
· P(yc = 1)

+ P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

∣∣∣∣yc = −1

)
· P(yc = −1)

≤ β + exp


−cλ



E(x,yc)∼Dc [ycf(x;W)

∣∣∣yc = 1]− ∥W∥2 α
∥W∥2




2



+ exp


−cλ



E(x,yc)∼Dc [ycf(x;W)

∣∣∣yc = −1]− ∥W∥2 α
∥W∥2




2

 .

Similarly,

L0/1(W)

= P(x,y)∼D[yf(x;W) ≤ 0]

≤ β + P(x,yc)∼Dc

[
ycf(x;W) ≤ 0

]

≤ β + P(x,yc)∼Dc

[
ycf(x;W) ≤ 0|yc = 1

]
+ P(x,yc)∼Dc

[
ycf(x;W) ≤ 0|yc = −1

]

≤ β + P(x,yc)∼Dc

[
ycf(x;W)− E(x,yc)∼Dc [ycf(x;W)|yc = 1] ≤ −E(x,yc)∼Dc [ycf(x;W)|yc = 1]|yc = 1

]

+ P(x,yc)∼Dc

[
ycf(x;W)− E(x,yc)∼Dc [ycf(x;W)|yc = −1] ≤ −E(x,yc)∼Dc [ycf(x;W)|yc = −1]|yc = −1

]

≤ β + exp


−cλ

(
E(x,yc)∼Dc [ycf(x;W)

∣∣yc = 1]

∥W∥2

)2

+ exp


−cλ

(
E(x,yc)∼Dc [ycf(x;W)

∣∣yc = −1]

∥W∥2

)2

 .

Now we only need to derive a lower bound on the normalized expected conditional margin. Below is a series of structural

results that leads us to our destination. Lemma B.3 and B.4 are the properties of initialized network weights as well as the

generated data.

Lemma B.3. Under Assumption 1, (A1) and (A2), there is a universal constant C0 > 1 such that with probability at least

1− δ/2 over the random initialization,

1

2
ω2

initd ≤
∥∥w0

s

∥∥2
2
≤ 3

2
ω2

initd, ∀s ∈ [m];
∥∥W0

∥∥
2
≤ C0ωinit(

√
m+

√
d)

Proof of lemma B.3. For any fixed s, note that
∥∥w0

s

∥∥2
2

is a ω2
init-multiple of a chi-squared random variable with d degrees of

freedom. By concentration of the χ2 distribution, for any t ∈ (0, 1],

P

(∣∣∣∣
1

dω2
init

∥∥w0
s

∥∥2
2
− 1

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−dt2/8

)
.
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In particular, if we choose t = 1/2, with probability at least 1− 2 exp (−d/32), we have

1

2
ω2

initd ≤
∥∥w0

s

∥∥2
2
≤ 3

2
ω2

initd.

Applying a union bound, with probability at least 1− 2m exp (−d/32), we have

1

2
ω2

initd ≤
∥∥w0

s

∥∥2
2
≤ 3

2
ω2

initd, ∀s ∈ [m].

Note that

1− 2m exp (−d/32)
≥ 1− 2δ exp (n/C − d/32) (Assumption (5))

≥ 1− 2δ exp (−d/64) (d ≥ 64n from Assumption (1), Assumption (A2) and C sufficiently large)

≥ 1− δ/4. (d ≥ 192 from Assumption (1), Assumption (A2) and C sufficiently large)

Therefore 1
2ω

2
initd ≤

∥∥w0
s

∥∥2
2
≤ 3

2ω
2
initd, ∀s ∈ [m] holds with probability at least 1− δ/4.

For the spectral norm, since the entries of [w1, . . . ,wm
2
]/ωinit are i.i.d. standard normal variables, by Theorem 4.4.5 in

(Vershynin, 2018), there exists a universal constant c > 0 such that for any u ≥ 0, with probability at least 1− 2 exp
(
−u2

)
,

we have

∥∥[w1, . . . , wm
2
]
∥∥
2
≤ cωinit(

√
m/2 +

√
d+ u).

In particular, taking u =
√
log (8/δ), we have with probability at least 1 − δ/4,

∥∥[w1, . . . ,wm
2
]
∥∥
2
≤ cωinit(

√
m/2 +√

d+
√
log (8/δ)). Since

∥∥W0
∥∥
2
=

√
2
∥∥[w1, . . . ,wm

2
]
∥∥
2

holds by symmetric initialization, and
√
d ≥

√
C log (1/δ) ≥√

log (8/δ) by Assumption (1) and C sufficiently large, we are done with the spectral norm.

Lemma B.4. Let (xi, yi) ∼ D, ∀i ∈ [n], where xi = yciµ+ ξi, P(yci ̸= yi) ≤ β. Given 0 < κ < 1 in Definition 2.1, there

exists C1 = 10
κ > 1 such that for large enough C, with probability at least 1− δ over Dn, the following hold

(C1) ∀i ∈ [n], κd2 ≤ ∥ξi∥2 ≤ (3 + κ
2 )d, d/C1 ≤ ∥xi∥2 ≤ C1d; ∀x̃i, x̃

′
i ∈ B2(xi, α), d/(4C1) ≤

(√
d/C1 − α

)2
≤

∥x̃i∥2 ≤
(√
C1d+ α

)2 ≤ 4C1d,
〈
x̃i, x̃

′
i

〉
≥
(√

d/C1 − α
)2

≥ d/(4C1).

(C2) ∀i ̸= j ∈ [n], |⟨ξi, ξj⟩| ≤ C1

(√
d log (n/δ)

)
, |⟨xi, xj⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
.

∀x̃i ∈ B2(xi, α), x̃j ∈ B2(xj , α), |⟨x̃i, x̃j⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2,

|⟨xi, x̃j⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ α

√
C1d.

(C3) ∀z1, z2, . . . , zn ∈ R,

∥∥∥∥
n∑
i=1

ziξi

∥∥∥∥
2

≤ 4d
n∑
i=1

z2i .

(C4) ∀x̃i ∈ B2(xi, α), ∀z1, z2, . . . , zn ∈ R, d
8C1

·
n∑
i=1

z2i ≤
∥∥∥∥
n∑
i=1

zix̃i

∥∥∥∥
2

≤ 8C1d ·
n∑
i=1

z2i .

(C5) ∀i ∈ C,

∣∣∣⟨µ, yixi⟩ − ∥µ∥2
∣∣∣ ≤ ∥µ∥2 /2, ∀x̃i ∈ B2(xi, α),

1
2 ∥µ∥

2 − ∥µ∥α ≤ ⟨µ, yix̃i⟩ ≤ 3
2 ∥µ∥

2
+ ∥µ∥α.

(C6) ∀i ∈ N ,

∣∣∣⟨µ, yixi⟩+ ∥µ∥2
∣∣∣ ≤ ∥µ∥2 /2, ∀x̃i ∈ B2(xi, α),− 3

2 ∥µ∥
2 − ∥µ∥α ≤ ⟨µ, yix̃i⟩ ≤ − 1

2 ∥µ∥
2
+ ∥µ∥α.

(C7) The number of noisy samples satisfies |N |/n ≤ β +
√

2
C .
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Proof of Lemma B.4. The proof is a simple extension of Lemma 13 in (Chatterji & Long, 2021). For statement (C1),
κd
2 ≤ ∥ξi∥2 ≤ (3 + κ

2 )d and d/C1 ≤ ∥xi∥2 ≤ C1d follows directly from the proof of Lemma 19 in (Chatterji & Long,

2021). Since

∥xi − x̃i∥ ≤ α ≤ ∥µ∥ (Assumption (6))

≤ 1

2

√
d

C1
(d ≥ C ∥µ∥2 n from Assumption (1) with sufficiently large C)

≤ 1

2
∥xi∥ ,

d/(4C1) ≤
(√

d/C1 − α
)2

≤ ∥x̃i∥2 ≤
(√
C1d+ α

)2 ≤ 4C1d holds. Because
∥∥xi − x̃′i

∥∥ ≤ α ≤ 1
2 ∥xi∥ also holds,

through some simple calculation, we have
〈
x̃i, x̃

′
i

〉
≥ (∥xi∥ − α)2 ≥

(√
d/C1 − α

)2
≥ d/(4C1).

For statement (C2), |⟨ξi, ξj⟩| ≤ C1

(√
d log (n/δ)

)
and |⟨xi, xj⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
follows directly from the

proof of Lemma 20 in (Chatterji & Long, 2021).

|⟨x̃i, x̃j⟩| = |⟨xi, xj⟩+ ⟨x̃i − xi, xj⟩+ ⟨xi, x̃j − xj⟩+ ⟨x̃i − xi, x̃j − xj⟩|
≤ |⟨xi, xj⟩|+ α ∥xi∥+ α ∥xj∥+ ∥x̃i − xi∥ · ∥x̃j − xj∥
≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2.

|⟨xi, x̃j⟩| = |⟨xi, xj⟩+ ⟨xi, x̃j − xj⟩|
≤ |⟨xi, xj⟩|+ α ∥xi∥
≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ α

√
C1d.

The statement (C3) holds since

∥∥∥∥∥

n∑

i=1

ziξi

∥∥∥∥∥

2

=
n∑

i=1

z2i ∥ξi∥2 + 2
∑

i<j

zizj ⟨ξi, ξj⟩

≤
n∑

i=1

z2i (3 +
κ

2
)d+ 2C1

∑

i<j

z2i + z2j
2

√
d log (n/δ) ((C1), (C2))

≤
n∑

i=1

z2i (3 +
κ

2
)d+ 2C1

∑

i<j

z2i + z2j
2

d√
Cn

(Assumption (1))

≤ (3 +
κ

2
+

C1√
C
)d

n∑

i=1

z2i ≤ 4d
n∑

i=1

z2i . (C sufficiently large)

The statement (C4) holds since

∥∥∥∥∥

n∑

i=1

zix̃i

∥∥∥∥∥

2

=
n∑

i=1

z2i ∥x̃i∥2 + 2
∑

i<j

zizj ⟨x̃i, x̃j⟩

≤
n∑

i=1

z2i 4C1d+ 2
∑

i<j

z2i + z2j
2

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
((C1), (C2))

≤
(
4C1d+ n

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)) n∑

i=1

z2i

≤ 8C1d

n∑

i=1

z2i (Assumption (1), C sufficiently large)
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and

∥∥∥∥∥

n∑

i=1

zix̃i

∥∥∥∥∥

2

=
n∑

i=1

z2i ∥x̃i∥2 + 2
∑

i<j

zizj ⟨x̃i, x̃j⟩

≥
n∑

i=1

z2i
d

4C1
− 2

∑

i<j

z2i + z2j
2

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
((C1), (C2))

≥
(

d

4C1
− n

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)) n∑

i=1

z2i

≥ d

8C1

n∑

i=1

z2i . (Assumption (1), C sufficiently large)

Statement (C5) and statement (C6) follow similarly from the proof of Lemma 21 and 22 in (Chatterji & Long, 2021) and

combining the fact that

|⟨µ, yixi⟩ − ⟨µ, yix̃i⟩| ≤ ∥µ∥ · ∥xi − x̃i∥ ≤ ∥µ∥α.

The last statement follows from Hoeffding’s inequality:

P(|N |/n− β >

√
2

C
)

≤ e−2n(
√

2
C
)2

≤ e−2C log(1/δ)( 2
C
) (Assumption (5))

= δ4

≤ δ/6. (δ < 0.5)

Definition B.5. If the events in Lemma B.3 and Lemma B.4 occur, let us say that we have a good run.

Lemma B.3 and Lemma B.4 show that a good run occurs with probability at least 1 − 2δ. In the following we assume

a good run occurs. Lemma B.6 leverages the smoothness property of activation function and derive the result via Taylor

approximation. Lemma B.7 characterizes the relationship between L̂rob(·) and Ĝrob(·). Lemma B.8 further derives the

bounds on the gradient norm given adversarial training example, as well as the pairwise correlations of the gradients given

different adversarial training examples. These are standard results that have been derived by (Frei et al., 2022), and we

simply extend them for adversarial training scenario.

Lemma B.6 (Lemma 4.5 in (Frei et al., 2022)). For an H-smooth activation ϕ and any W,V ∈ R
m×d, and x ∈ R

d, we have

|f(x;W)− f(x;V)− ⟨∇f(x;V),W − V⟩| ≤ H ∥x∥2
2
√
m

∥W − V∥22 .

Lemma B.7. Let C1 > 1 be the constant from Lemma B.4. For an H-smooth activation ϕ and any W,V ∈ R
m×d, on a

good run it holds that

1√
C1d+ α

∥∥∥∇L̂rob(W)
∥∥∥
F
≤ Ĝrob(W) ≤ L̂rob(W) ∧ 1.

Proof of Lemma B.7. Since ϕ is 1-Lipschitz, we have ∀x̃i ∈ B2(xi, α),

∥∇f(x̃i;W)∥2F =
1

m

m∑

s=1

∥asϕ′(⟨ws, x̃i⟩)x̃i∥2 ≤
(√

C1d+ α
)2
. (3)

20



Benign Overfitting in Adversarial Training of Neural Networks

For ∀i ∈ [n], choose x̃i = argmaxx̃∈B2(xi,α) ℓ(yif(x̃i;W)) so that ℓ̃i(W) = ℓ(yif(x̃;W)), g̃i(W) = g(yif(x̃i;W)), we

have

∥∥∥∇L̂rob(W)
∥∥∥
F
=

∥∥∥∥∥
1

n

n∑

i=1

g̃i(W)yi∇f(x̃i;W)

∥∥∥∥∥
F

≤ 1

n

n∑

i=1

g̃i(W) ∥∇f(x̃i;W)∥F (Jensen’s inequality)

≤
√
C1d+ α

n

n∑

i=1

g̃i(W) (Equation (3))

≤
√
C1d+ α

n

n∑

i=1

min
(
ℓ̃i(W), 1

)
(By the definition of g̃i(W) and ℓ̃i(W))

≤
(√

C1d+ α
)(

L̂rob(W) ∧ 1
)
. (Jensen’s inequality)

Lemma B.8. Let C1 > 1 be the constant from Lemma B.4. For a γ-leaky, H-smooth activation ϕ, on a good run, for any

i, j ∈ [n], i ̸= j, ∀x̃i ∈ B2(xi, α), ∀x̃′i ∈ B2(xi, α), ∀x̃j ∈ B2(xj , α), we have

|⟨∇f(xi,W),∇f(x̃j ,W)⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ α

√
C1d,

|⟨∇f(x̃i,W),∇f(x̃j ,W)⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2.

Moreover, for any i ∈ [n] and any W ∈ R
m×d, we have

(√
d/C1 − α

)2
γ2 ≤ ∥∇f(x̃i;W)∥2F ≤

(√
C1d+ α

)2
,

(√
d/C1 − α

)2
γ2 ≤

∣∣〈∇f(x̃i,W),∇f(x̃′i,W)
〉∣∣ ≤

(√
C1d+ α

)2
.

Proof of Lemma B.8. The proof is similar as Lemma 4.7 in (Frei et al., 2022).

⟨∇f(x,W),∇f(y,W)⟩ = 1

m
⟨x, y⟩

m∑

s=1

ϕ′(⟨ws, x⟩)ϕ′(⟨ws, y⟩).

Therefore,

|⟨∇f(x,W),∇f(y,W)⟩| = 1

m
|⟨x, y⟩|

m∑

s=1

ϕ′(⟨ws, x⟩)ϕ′(⟨ws, y⟩) ∈ [γ2 |⟨x, y⟩| , |⟨x, y⟩|].

Thus, the first two inequalities follow from Lemma B.4 (C2). The last two inequalities follow from Lemma B.4 (C1).

Lemma B.9 plays a crucial role in our analysis. It demonstrates that the margin increases with each epoch of adversarial

training, given any adversarial examples. More importantly, it proves the loss g is at the same scale across all adversarial

training examples.

Lemma B.9. For a γ-leaky, H-smooth activation ϕ, there is a constant Cr =
64C1

(√
C1+0.5

√
1
C1

)
2

γ2 such that on a good run,

provided C > 1 is sufficiently large, we have for all t ≥ 0,

ykf(x̃k;Wt+1) ≥ ykf(x̃k;Wt) ≥ 0, ∀x̃k ∈ B2(xk, α), ∀k ∈ [n],

max
i,j∈[n]

g(yif(x̃
t
i;Wt))

g(yjf(x̃
t
j ;Wt))

≤ 16
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2 ≤ Cr,

where x̃ti = argmaxx̃∈B2(xi,α) ℓ(yif(x̃;Wt)), x̃tj = argmaxx̃∈B2(xj ,α) ℓ(yjf(x̃;Wt)).
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Proof of Lemma B.9. By Fact A.2 in (Frei et al., 2022), we have

g(x)

g(y)
≤ max

(
2, 2

exp (−x)
exp (−y)

)

holds for any x, y ∈ R, so

max
i,j∈[n]

g(yif(x̃
t
i;Wt))

g(yjf(x̃
t
j ;Wt))

≤ max

(
2, 2 · max

i,j∈[n]

exp
(
−yif(x̃ti;Wt)

)

exp
(
−yjf(x̃tj ;Wt)

)
)
.

In the remainder of the proof we will show that the ratio of the exponential losses is bounded. We will prove it by induction.

Since a good run occurs, all the events in Lemma B.3 and Lemma B.4 occurs. In particular, we have
∥∥W0

∥∥
2
≤ C0ωinit(

√
m+√

d) and
∥∥x̃0i
∥∥ ≤

√
C1d+ α. Note that at initialization, we have |f(x̃0i ;W0)| = 0. For any x̃i ∈ B2(xi, α), x̃j ∈ B2(xj , α),

consider t = 0, we have

max
i,j∈[n]

exp
(
−yif(x̃0i ;W0)

)

exp
(
−yjf(x̃0

j ;W0)
) = 1 ≤ 8

(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2 .

Assume the result holds at time t and consider the case t + 1. For simplicity we only consider the exponential ratio for

the first sample and the second sample, and denote At :=
exp(−y1f(x̃t1;W

t))
exp(−y2f(x̃t

2
;Wt))

. Then At ≤
8(

√
C1d+α)

2

γ2

(√
d/C1−α

)
2 . Fix k ∈ [n],

consider ∀x̃k ∈ B(xk, α), define ρ̃ti =
1
m

∑m
s=1 ϕ

′
(〈

w
(t)
s , x̃k

〉)
ϕ′
(〈

w
(t)
s , x̃ti

〉)
∈ [γ2, 1]. We first need to show that

ykf(x̃k;Wt+1) ≥ ykf(x̃k;Wt).

yk
[
f(x̃k;Wt+1)− f(x̃k;Wt)

]

≥ yk
[〈
∇f(x̃k;Wt),Wt+1 − Wt

〉]
− H ∥x̃k∥2

2
√
m

∥∥Wt+1 − Wt
∥∥2
2

(for y ∈ {±1}, apply Lemma B.6)

= ykη

[〈
∇f(x̃k;Wt),

1

n

n∑

i=1

g̃i(W
t)yi∇f(x̃ti;Wt)

〉]
− H ∥x̃k∥2 η2

2
√
m

∥∥∥∇L̂rob(W
t)
∥∥∥
2

2

≥ η

[
1

n

n∑

i=1

g̃i(W
t)
〈
yk∇f(x̃k;Wt), yi∇f(x̃ti;Wt)

〉
]
− H

(√
C1d+ α

)4
η2

2
√
m

Ĝrob(W
t) (Lemma B.7)

=
η

n


g̃k(Wt)ρ̃tk

〈
x̃tk, x̃k

〉
+
∑

i ̸=k
g̃i(W

t)ρ̃ti
〈
yix̃

t
i, ykx̃k

〉

− H

(√
C1d+ α

)4
η2

2
√
m

Ĝrob(W
t)

≥ η

n


̃gk(Wt)


γ2

(√
d/C1−α

)2
−maxj g̃j(W

t)

g̃k(W
t)

∑

i ̸=k

(
C1

(
∥µ∥2+

√
d log (n/δ)

)
+2α

√
C1d+α

2
)



 (Lemma B.4)

− H
(√
C1d+ α

)4
η2

2
√
m

Ĝrob(W
t)

≥ η

n

[
g̃k(W

t)

(
γ2
(√

d/C1 − α
)2

− Crn
(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

))]

(By induction,
maxj g̃j(Wt)
g̃k(Wt) ≤ Cr)

− H
(√
C1d+ α

)4
η2

2
√
m

Ĝrob(W
t)

≥
ηγ2

(√
d/C1 − α

)2

2n
g̃k(W

t)− H
(√
C1d+ α

)4
η2

2
√
m

Ĝrob(W
t)

(this line holds with large enough C via Assumption (1))

22



Benign Overfitting in Adversarial Training of Neural Networks

≥ ηĜrob(W
t)



γ2
(√

d/C1 − α
)2

2nCr
− H

(√
C1d+ α

)4
η

2
√
m


 (By induction, g̃k(W

t) ≥ 1
Cr
Ĝrob(W

t))

≥ ηĜrob(W
t)



γ2
(

1
2

√
d/C1

)2

2nCr
− H

(
2
√
C1d

)4
η

2
√
m


 (Assumption (6) and Assumption (1))

≥ ηĜrob(W
t)



γ2
(

1
2

√
d/C1

)2

2nCr
− H

(
2
√
C1d

)4

2Cd2


 (Assumption (4))

≥ 0, (4)

where the last line holds from Assumption (1) with sufficiently large C.

Now we are back to prove the upper bound of the exponential ratio At. We have

At+1 =
exp

(
−y1f(x̃t+1

1 ;Wt+1)
)

exp
(
−y2f(x̃t+1

2 ;Wt+1)
)

=
exp

(
−y1f(x̃t1;Wt)

)

exp
(
−y2f(x̃t2;Wt)

) · exp
(
y1f(x̃

t
1;Wt)− y1f(x̃

t+1
1 ;Wt+1)

)

exp
(
y2f(x̃

t
2;Wt)− y2f(x̃

t+1
2 ;Wt+1)

)

≤ At ·
exp

(
y1f(x̃

t+1
1 ;Wt)− y1f(x̃

t+1
1 ;Wt+1)

)

exp
(
y2f(x̃

t
2;Wt)− y2f(x̃

t
2;Wt+1)

) (By the definition of x̃t1, x̃
t+1
2 )

= At ·
exp

(
y1f(x̃

t+1
1 ;Wt)− y1f(x̃

t+1
1 ;Wt − η

n

∑n
i=1 ∇ℓ(yif(x̃ti;Wt)))

)

exp
(
y2f(x̃

t
2;Wt)− y2f(x̃

t
2;Wt − η

n

∑n
i=1 ∇ℓ(yif(x̃ti;Wt)))

)

≤ At ·
exp

(
− η
n

∑n
i=1 y1yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃ti;Wt)
〉)

exp
(
− η
n

∑n
i=1 y2yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃ti;Wt)

〉) (Lemma B.6)

· exp


2H

(√
C1d+ α

)2
η2√

m

∥∥∥∥∥
1

n

n∑

i=1

∇ℓ(yif(x̃ti;Wt))

∥∥∥∥∥

2



= At · exp
(
− η

n
g(y1f(x̃

t
1;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃t1;Wt)
〉

+
η

n
g(y2f(x̃

t
2;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃t2;Wt)

〉 )

·
exp

(
− η
n

∑
i ̸=1 y1yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃ti;Wt)
〉)

exp
(
− η
n

∑
i ̸=2 y2yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃ti;Wt)

〉)

· exp


2H

(√
C1d+ α

)2
η2√

m

∥∥∥∥∥
1

n

n∑

i=1

∇ℓ(yif(x̃ti;Wt))

∥∥∥∥∥

2

 ,

where the first inequality holds since exp
(
y1f(x̃

t+1
1 ;Wt)

)
≥ exp

(
y1f(x̃

t
1;Wt)

)
, exp

(
y2f(x̃

t+1
2 ;Wt+1)

)
≤

exp
(
y2f(x̃

t
2;Wt+1)

)
by the definition of x̃t1, x̃

t+1
2 .

We next bound each of the above term separately. For the first term, we have

exp
(
− η
n
g(y1f(x̃

t
1;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃t1;Wt)
〉
+
η

n
g(y2f(x̃

t
2;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃t2;Wt)

〉)

= exp

(
−g(y2f(x̃

t
2;Wt))η

n

(
g(y1f(x̃

t
1;Wt))

g(y2f(x̃
t
2;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃t1;Wt)
〉
−
〈
∇f(x̃t2;Wt),∇f(x̃t2;Wt)

〉))

≤ exp

(
−g(y2f(x̃

t
2;Wt))γ2η

n

(
g(y1f(x̃

t
1;Wt))

g(y2f(x̃
t
2;Wt))

(√
d/C1 − α

)2
−
(√
C1d+ α

)2

γ2

))
(Lemma B.8)
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= exp


−

g(y2f(x̃
t
2;Wt))ηγ2

(√
d/C1 − α

)2

n



g(y1f(x̃

t
1;Wt))

g(y2f(x̃
t
2;Wt))

−
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2





 .

For the second term, we have

exp
(
− η
n

∑
i ̸=1 y1yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃ti;Wt)
〉)

exp
(
− η
n

∑
i ̸=2 y2yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃ti;Wt)

〉)

≤ exp

(
η

n

∑

i ̸=1

g(yif(x̃
t
i;Wt))

∣∣〈∇f(x̃t+1
1 ;Wt),∇f(x̃ti;Wt)

〉∣∣

+
η

n

∑

i ̸=2

g(yif(x̃
t
i;Wt))

∣∣〈∇f(x̃t2;Wt),∇f(x̃ti;Wt)
〉∣∣
)

≤ exp

(
2η

n

n∑

i=1

g(yif(x̃
t
i;Wt))

(
C1 ∥µ∥2 + C1

√
d log (n/δ) + 2α

√
C1d+ α2

))
. (Lemma B.8)

For the third term, we have

exp


2H

(√
C1d+ α

)2
η2√

m

∥∥∥∥∥
1

n

n∑

i=1

∇ℓ(yif(x̃ti;Wt))

∥∥∥∥∥

2



≤ exp

(
2H
(√
C1d+ α

)4
η2√

m
· 1
n

n∑

i=1

g(yif(x̃
t
i;Wt))

)
(Lemma B.7)

≤ exp

(
η

n

n∑

i=1

g(yif(x̃
t
i;Wt))

)
. (Large enough C for assumption (4))

Combining the above results gives us that

At+1 ≤ At ·exp


−

g(y2f(x̃
t
2;Wt))ηγ2

(√
d
C1

− α
)2

n



g(y1f(x̃

t
1;Wt))

g(y2f(x̃
t
2;Wt))

−
(√
C1d+ α

)2

γ2
(√

d
C1

− α
)2







· exp
(
2η

n

n∑

i=1

g(yif(x̃
t
i;Wt))

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))
.

Now consider the following two cases. If
g(y1f(x̃t1;W

t))
g(y2f(x̃t

2
;Wt))

≤ 2(
√
C1d+α)

2

γ2

(√
d/C1−α

)
2 , then we have

At+1 ≤ At · exp
(
g(y2f(x̃

t
2;Wt))η(

√
C1d+ α)2

n

)
(g(y2f(x̃

t
2;Wt)) ≥ 0)

· exp
(
2η

n

n∑

i=1

g(yif(x̃
t
i;Wt))

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))

≤ At · exp
(
η
(√
C1d+ α

)2

n

)
exp

(
2η
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))

(0 ≤ g(yif(x̃
t
i;Wt)) ≤ 1)

≤ 2g(y1f(x̃
t
1;Wt))

g(y2f(x̃
t
2;Wt))

exp

(
η
(√
C1d+ α

)2

n

)
exp

(
2η
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))

( 12 exp (−z) ≤ g(z) ≤ exp (−z) , ∀z ≥ 0; Equation (4))
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=
4
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2 exp

(
2η

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2 +

(√
C1d+ α

)2

2n

))

≤ 8
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2 ,

where the last line holds from Assumption (4) with sufficiently large C so that the following holds

2η

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2 +

(√
C1d+ α

)2

2n

)

=
η
(√
C1d+ α

)2

n
+ 2η

(
C1 ∥µ∥2 + α2

)
+ 4η

(
C1

√
d log (n/δ) + α

√
C1d

)

≤ (2
√
C1d)

2

Cd2n
+

2(2C1 ∥µ∥2)
Cd2

+
4(C1

√
d2

Cn2 + C1d)

Cd2
(Assumption (1), (4), (6) with sufficiently large C)

≤ 1

8
.

Otherwise,
g(y1f(x̃t1;W

t))
g(y2f(x̃t

2
;Wt))

>
2(

√
C1d+α)

2

γ2

(√
d/C1−α

)
2 , then we have

At+1 ≤ At · exp


−

g(y2f(x̃
t
2;Wt))ηγ2

(√
d/C1 − α

)2

n



g(y1f(x̃

t
1;Wt))

g(y2f(x̃
t
2;Wt))

−
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2







· exp
(
2ηg(y2f(x̃

t
2;Wt))

n

n∑

i=1

g(yif(x̃i;Wt))

g(y2f(x̃2;Wt))

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))

≤ At · exp


−

g(y2f(x̃
t
2;Wt))ηγ2

(√
d/C1 − α

)2

n



g(y1f(x̃

t
1;Wt))

g(y2f(x̃
t
2;Wt))

−
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2







· exp


2ηg(y2f(x̃

t
2;Wt))

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

)
max




2,

16
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2








≤ At · exp

(
− g(y2f(x̃

t
2;Wt))η

((√
C1d+ α

)2

n

− 32
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

)))

(Assumption that
g(y1f(x̃t1;W

t))
g(y2f(x̃t

2
;Wt))

>
2(

√
C1d+α)

2

γ2

(√
d/C1−α

)
2 )

≤ At ≤
8
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2 ,

where the last line holds from Assumption (6), Assumption (1) with C being sufficiently large that

32
(√
C1d+ α

)2

γ2
(√

d/C1 − α
)2
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

)
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As the loss function is monotonically decreasing, x̃tk = argminx̃∈B2(xk,α)
ykf(x̃;Wt). As a result, there is no feasible

direction that is also a descent direction. Here we construct directions vθ = −x̃tk,⊥ − θyk(
n∑
i=1

yixi) for every θ ∈ R that

satisfies 0 < θ <
∥x̃tk,⊥∥2

2√
(α2−∥x̃t

k,⊥
∥2
2
)·8C1dn

. We have that

〈
x̃tk − xk, vθ

〉
=

〈
x̃tk,⊥ + x̃tk,∥ − xk,−x̃tk,⊥ − θyk(

n∑

i=1

yixi)

〉

=

〈
x̃tk,∥ − xk,−θyk(

n∑

i=1

yixi)

〉
+
〈
x̃tk,⊥,−x̃tk,⊥

〉

≤ θ∥x̃tk,∥ − xk∥2 · ∥
n∑

i=1

yixi∥2 − ∥x̃tk,⊥∥22

≤ θ
√
(α2 − ∥x̃tk,⊥∥22) · 8C1dn− ∥x̃tk,⊥∥22 < 0, (Lemma B.4 (C4))

therefore vθ are feasible directions. From the above discussion, we know that vθ cannot be descent directions. Pick

θ =
∥x̃tk,⊥∥2

2√
8α2C1dn

. From the form of the classifier ykf(x̃;Wt) = yk
1√
m

m∑
s=1

asϕ(⟨wts, x̃⟩), and combining the fact that ϕ is

strictly increasing with ϕ′ ∈ [γ, 1], we know there exists s0 ∈ [m] such that ykas0
〈
wts0 , vθ

〉
≥ 0.

0 ≥ ykas0
〈
wts0 ,−vθ

〉

=

t−1∑

t′=0

ykas0

〈
wt

′+1
s0 − wt

′

s0 , x̃
t
k,⊥ + θyk(

n∑

i=1

yixi)

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑

i=1

yixi)

〉

=

t−1∑

t′=0

ykas0

〈
ηas0
n
√
m

n∑

k′=1

g̃k′(W
t′)ϕ′(

〈
wt

′

s0 , x̃
t′

k′

〉
)yk′ x̃

t′

k′ , x̃
t
k,⊥ + θyk(

n∑

i=1

yixi)

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑

i=1

yixi)

〉

=

t−1∑

t′=0

〈
η

n
√
m

n∑

k′=1

g̃k′(W
t′)ϕ′(

〈
wt

′

s0 , x̃
t′

k′

〉
)yk′ x̃

t′

k′,∥, θ(
n∑

i=1

yixi)

〉

+

t−1∑

t′=0

yk

〈
η

n
√
m

n∑

k′=1

g̃k′(W
t′)ϕ′(

〈
wt

′

s0 , x̃
t′

k′

〉
)yk′ x̃

t′

k′,⊥, x̃
t
k,⊥

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑

i=1

yixi)

〉

Applying Lemma B.3 and Lemma B.4 (C4), the third term can be bounded by

∣∣∣∣∣ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑

i=1

yixi)

〉∣∣∣∣∣ ≤
∥∥w0

s0

∥∥
(
∥∥x̃tk,⊥

∥∥+
∥∥∥∥∥θyk(

n∑

i=1

yixi)

∥∥∥∥∥

)
≤ 2ωinit

√
d(
∥∥x̃tk,⊥

∥∥+ θ
√

8C1dn)

For the second term, we have

t−1∑

t′=0

yk

〈
η

n
√
m

n∑

k′=1

g̃k′(W
t′)ϕ′(

〈
wt

′

s0 , x̃
t′

k′

〉
)yk′ x̃

t′

k′,⊥, x̃
t
k,⊥

〉

≤ η

n
√
m

t−1∑

t′=0

〈
n∑

k′=1

g̃k′(W
t′)x̃t

′

k′,⊥, x̃
t
k,⊥

〉
(ϕ′(·) ≤ 1)

≤
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)
∥∥x̃tk,⊥

∥∥ (Lemma B.9, induction that ∥x̃t
′

k′,⊥∥2 ≤ Cd, ∀t′ ∈ [t− 1])
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For the first term, we have

t−1∑

t′=0

〈
η

n
√
m

n∑

k′=1

g̃k′(W
t′)ϕ′(

〈
wt

′

s0 , x̃
t′

k′

〉
)yk′ x̃

t′

k′,∥, θ(
n∑

i=1

yixi)

〉

= θ
η

n
√
m

t−1∑

t′=0




n∑

k′=1

〈
γg̃k′(W

t′)x̃t
′

k′,∥, xk′
〉
−

n∑

k′=1

∑

i ̸=k′

〈
g̃k′(W

t′)x̃t
′

k′ , xi

〉



≥ θ
η√
m

t−1∑

t′=0

Ĝrob(W
t′)

Cr

(
γd

4C1
− n

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ α

√
C1d

)
)

)
(Lemma B.4, B.9)

≥ θ

t−1∑

t′=0

γηdĜrob(W
t′)

8C1Cr
√
m

(Assumption (1))

As a result, we have

ykas0
〈
wts0 ,−vθ

〉
≥ θ

t−1∑

t′=0

γηdĜrob(W
t′)

8C1Cr
√
m

−
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 − 2ωinit

√
d(∥x̃tk,⊥∥2 + θ

√
8C1dn)

(∥x̃t
′

k′,⊥∥2 ≤ Cd from induction)

≥ ∥x̃tk,⊥∥22√
8α2C1dn

t−1∑

t′=0

γηdĜrob(W
t′)

8C1Cr
√
m

−
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 − 2ωinit

√
d(∥x̃tk,⊥∥2 +

∥x̃tk,⊥∥22
α

)

(plug in θ)

≥ ∥x̃tk,⊥∥22√
α2C1dn

t−1∑

t′=0

γηdĜrob(W
t′)

32C1Cr
√
m

−
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 − 2ωinit

√
d∥x̃tk,⊥∥2

(ωinit ≤ η√
md

≤ η√
Cmn

and C sufficiently large)

≥ Cd∥x̃tk,⊥∥2√
α2C1dn

t−1∑

t′=0

γηdĜrob(W
t′)

32C1Cr
√
m

−
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 − 2ωinit

√
d∥x̃tk,⊥∥2

≥ Cd∥x̃tk,⊥∥2√
α2C1dn

t−1∑

t′=0

γηdĜrob(W
t′)

32C1Cr
√
m

− 5

t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2

(
t−1∑
t′=0

Ĝrob(W
t′) ≥ Ĝrob(W

0) = 1
2 )

> 0. (d ≥ Cnα2 from Assumption (1), and C sufficiently large)

This is a contradiction. Therefore, we have proved dist(x̃tk, span{x1, . . . , xn}) = ∥x̃tk,⊥∥2 ≤ Cd. By induction, proof is

complete.

Using Lemma B.10, we can prove a different version of Lemma B.4 (C5) and (C6) that will be used later.

Lemma B.11. ∀i ∈ C, 1
3 ∥µ∥

2 ≤
〈
µ, yix̃

t
i

〉
≤ 3 ∥µ∥2. ∀i ∈ N , −3 ∥µ∥2 ≤

〈
µ, yix̃

t
i

〉
≤ − 1

3 ∥µ∥
2
.

Proof of Lemma B.11. From Lemma B.4 (C5) and (C6), we know that 1
2 ∥µ∥

2 ≤ ⟨µ, yixi⟩ ≤ 2 ∥µ∥2 holds for all i ∈ C, and

−2 ∥µ∥2 ≤ ⟨µ, yixi⟩ ≤ − 1
2 ∥µ∥

2
holds for all i ∈ N . Therefore, it suffices to prove |

〈
µ, yix̃

t
i

〉
− ⟨µ, yixi⟩ | ≤ 1

6 ∥µ∥
2
. We

can decompose x̃ti−xi = (x̃ti−xi)∥+(x̃ti−xi)⊥, where (x̃ti−xi)∥ ∈ span{x1, . . . , xn} and (x̃ti−xi)⊥⊥ span{x1, . . . , xn}.

From Lemma B.10, ∥(x̃ti − xi)⊥∥2 ≤ min{Cd, α} ≤ Cd ≤ 1. For the parallel component, we can write (x̃ti − xi)∥ =
n∑
k=1

zkxk, where zk ∈ R. From Lemma B.4 (C4), α2 ≥ ∥x̃ti − xi∥22 ≥ ∥(x̃ti − xi)∥∥22 ≥ d
8C1

·
n∑
k=1

z2k. Thus,

√
8C1nα2

d ≥
√
n

n∑
k=1

z2k ≥
n∑
k=1

|zk|.
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Now we can prove the statement.

|
〈
µ, yix̃

t
i

〉
− ⟨µ, yixi⟩ | = |

〈
µ, x̃ti − xi

〉
|

≤ |
〈
µ, (x̃ti − xi)∥

〉
|+ |

〈
µ, (x̃ti − xi)⊥

〉
|

≤
n∑

k=1

|zk| · | ⟨µ, xk⟩ |+ Cd∥µ∥

≤
√

8C1nα2

d
· 2∥µ∥2 + Cd∥µ∥

≤ 1

6
∥µ∥2 . (Assumption (A2), Assumption (1) and C being sufficiently large)

With Lemma B.9, we are able to give a tighter bound on the norm of Wt.

Lemma B.12. There is a constant C2 > 1 such that

∥∥Wt
∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d

n

t−1∑

s=0

Ĝrob(W
s).

Proof of Lemma B.12. By triangle inequality we have that

∥∥Wt
∥∥
F
=
∥∥∥Wt−1 − η∇L̂rob(W

t−1)
∥∥∥
F

≤
∥∥Wt−1

∥∥+
∥∥∥η∇L̂rob(W

t−1)
∥∥∥
F

≤
∥∥W0

∥∥
F
+ η

t−1∑

s=0

∥∥∥∇L̂rob(W
s)
∥∥∥
F
. (Telescope)

Consider x̃si = argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Ws)). Then we have the following

∥∥∥∇L̂rob(W
s)
∥∥∥
2

F

=
1

n2

∥∥∥∥∥

n∑

i=1

g̃i(W
s)yi∇f(x̃si ;Ws)

∥∥∥∥∥

2

F

=
1

n2




n∑

i=1

(g̃i(W
s))

2 ∥∇f(x̃si ;Ws)∥2F +
∑

i ̸=j
yiyj g̃i(W

s)g̃j(W
s)
〈
∇f(x̃si ;Ws),∇f(x̃sj ;Ws)

〉



≤ 1

n2

[
n∑

i=1

(g̃i(W
s))

2
(√

C1d+ α
)2

+
∑

i ̸=j
g̃i(W

s)g̃j(W
s)
(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)]
(Lemma B.8)

≤ 1

n2
max
k∈[n]

g̃k(W
s)

n∑

i=1

g̃i(W
s)
(
2C1d+ 2α2+n

(
C1 ∥µ∥2+C1

√
d log (n/δ)+2α

√
C1d+ α2

))

≤ 5C1d

n
max
k∈[n]

g̃k(W
s)Ĝrob(W

s),

where the last line follows Assumption (1) and Assumption (6).
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Applying Lemma B.9 gives us

max
k∈[n]

g̃k(W
s) ≤ Cr

n

n∑

i=1

g̃i(W
s) = CrĜrob(W

s).

Define C2 :=
√
5C1Cr, then we have

∥∥∥∇L̂rob(W
s)
∥∥∥
F
≤
√

5C1Crd

n
Ĝrob(W

s) = C2

√
d

n
Ĝrob(W

s). (5)

As a result, we have

∥∥Wt
∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d

n

t−1∑

s=0

Ĝrob(W
s). (6)

Recall that our goal is to give a lower bound on the normalized expected conditional margin. We start by giving a lower

bound in terms of the cumulative increments of margin given any independent test example (x, y), shown in Lemma B.13.

Lemma B.13. Let C2 > 1 be the constant from Lemma B.12. For a γ-leaky, H-smooth activation ϕ, on a good run, we

have for any t ≥ 0 and (x, y) ∈ R
d × {±1}, there exist ρ̃ti = ρ

(
Wt, x̃ti, x

)
∈ [γ2, 1] such that

y
[
f(x;Wt+1)− f(x;Wt)

]
≥ η

n

n∑

i=1

g̃i(W
t)

(
ρ̃ti
〈
yix̃

t
i, yx

〉
− H ∥x∥2 C2

2dη

2
√
mn

)

Proof of Lemma B.13. Note that since a good run occurs, Lemma B.6 implies

∣∣f(x;Wt+1)− f(x;Wt)−
〈
∇f(x;Wt),Wt+1 − Wt

〉∣∣ ≤ H ∥x∥2
2
√
m

∥∥Wt+1 − Wt
∥∥2
2

(7)

Therefore, we have

y
[
f(x;Wt+1)− f(x;Wt)

]

≥ y
[〈
∇f(x;Wt),Wt+1 − Wt

〉]
− H ∥x∥2

2
√
m

∥∥Wt+1 − Wt
∥∥2
2

(for y ∈ {±1}, apply (7))

= yη

[〈
∇f(x;Wt),

1

n

n∑

i=1

g̃i(W
t)yi∇f(x̃ti;Wt)

〉]
− H ∥x∥2 η2

2
√
m

∥∥∥∇L̂rob(W
t)
∥∥∥
2

2

≥ η

[
1

n

n∑

i=1

g̃i(W
t)
〈
y∇f(x;Wt), yi∇f(x̃ti;Wt)

〉
]
− H ∥x∥2 C2

2dη
2

2
√
mn

Ĝrob(W
t)

(Equation (5),

∥∥∥∇L̂rob(W
t)
∥∥∥
2
≤
∥∥∥∇L̂rob(W

t)
∥∥∥
F

, Ĝrob(W
t) ≤ 1)

=
η

n

n∑

i=1

g̃i(W
t)

(
ρ̃ti
〈
yix̃

t
i, yx

〉
− H ∥x∥2 C2

2dη

2
√
mn

)
(Ĝrob(W

t) = 1
n

∑n
i=1 g̃i(W

t))

where the last equality follows by defining

ρ̃ti = ρ(Wt, x̃ti, x) =
1

m

m∑

s=1

ϕ′
(〈

w(t)
s , x

〉)
ϕ′
(〈

w(t)
s , x̃ti

〉)
∈ [γ2, 1].
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Leveraging Lemma B.9 and B.13, we now formally derive a lower bound on the normalized expected conditional margin.

Lemma B.14. For a γ-leaky H-smooth activation ϕ, and for all C > 1 sufficiently large, on a good run, for any t ≥ 1, we

have

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]
∥∥Wt

∥∥
2

≥ γ2
√
n

32C2

√
d
∥µ∥2 ;

E(x,y)∼Dc
[
yf(x;Wt)|y = −1

]
∥∥Wt

∥∥
2

≥ γ2
√
n

32C2

√
d
∥µ∥2 .

where C2 is the constant from Lemma B.12.

Lemma B.14. From Lemma B.12, we have

∥∥Wt
∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d

n

t−1∑

s=0

Ĝrob(W
s).

Recall the following definition

ρ̃ti = ρ(Wt, x̃ti, x) =
1

m

m∑

s=1

ϕ′
(〈

w(t)
s , x

〉)
ϕ′
(〈

w(t)
s , x̃ti

〉)
∈ [γ2, 1].

By Lemma B.11, we have

E(x,y)∼Dc [ρ̃
t
i

〈
yix̃

t
i, µ
〉
|y = 1] ≥

{
1
3γ

2∥µ∥2, i ∈ C
−3 ∥µ∥2 , i ∈ N

If i ∈ C:

E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx

〉 ∣∣∣y = 1
]

= E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx − µ

〉
+ ρ̃ti

〈
yix̃

t
i, µ
〉 ∣∣∣y = 1

]

≥ E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx − µ

〉
· 1(
〈
yix̃

t
i, yx − µ

〉
≥ 0)

∣∣∣y = 1
]

+ E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx − µ

〉
· 1(
〈
yix̃

t
i, yx − µ

〉
< 0)

∣∣∣y = 1
]
+

1

3
γ2∥µ∥2

≥ E(x,y)∼Dc

[
γ2
〈
yix̃

t
i, yx − µ

〉
· 1(
〈
yix̃

t
i, yx − µ

〉
≥ 0)

∣∣∣y = 1
]

+ E(x,y)∼Dc

[〈
yix̃

t
i, yx − µ

〉
· 1(
〈
yix̃

t
i, yx − µ

〉
< 0)

∣∣∣y = 1
]
+

1

3
γ2∥µ∥2

= −1− γ2

2
E(x,y)∼Dc

[∣∣〈yix̃ti, yx − µ
〉∣∣]+ 1

3
γ2∥µ∥2

≥ −1− γ2

2
c3
∥∥〈yix̃ti, yx − µ

〉∥∥
ψ2

+
1

3
γ2∥µ∥2 (c3 is an absolute constant)

≥ −1− γ2

2
c4
∥∥yix̃ti

∥∥
2
+

1

3
γ2∥µ∥2 (c4 is an absolute constant)

≥ −1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2∥µ∥2.

If i ∈ N :

E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx

〉 ∣∣∣y = 1
]

= E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx − µ

〉
+ ρ̃ti

〈
yix̃

t
i, µ
〉 ∣∣∣y = 1

]
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≥ E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx − µ

〉
· 1(
〈
yix̃

t
i, yx − µ

〉
≥ 0)

∣∣∣y = 1
]

+ E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx − µ

〉
· 1(
〈
yix̃

t
i, yx − µ

〉
< 0)

∣∣∣y = 1
]
− 3 ∥µ∥2

≥ E(x,y)∼Dc

[
γ2
〈
yix̃

t
i, yx − µ

〉
· 1(
〈
yix̃

t
i, yx − µ

〉
≥ 0)

∣∣∣y = 1
]

+ E(x,y)∼Dc

[〈
yix̃

t
i, yx − µ

〉
· 1(
〈
yix̃

t
i, yx − µ

〉
< 0)

∣∣∣y = 1
]
− 3 ∥µ∥2

= −1− γ2

2
E(x,y)∼Dc

[∣∣〈yix̃ti, yx − µ
〉∣∣
∣∣∣y = 1

]
− 3 ∥µ∥2

≥ −1− γ2

2
c3
∥∥〈yix̃ti, yx − µ

〉∥∥
ψ2

− 3 ∥µ∥2 (c3 is an absolute constant)

≥ −1− γ2

2
c4
∥∥yix̃ti

∥∥
2
− 3 ∥µ∥2 (c4 is an absolute constant)

≥ −1− γ2

2
c4(
√
C1d+ α)− 3 ∥µ∥2 .

E(x,y)∼Dc

[
yf(x;Ws+1)− yf(x;Ws)

∣∣∣y = 1
]

≥ η

n

n∑

i=1

g̃i(W
s)E(x,y)∼Dc

[
ρ̃ti
〈
yix̃

t
i, yx

〉
− H ∥x∥2 C2

2dη

2
√
mn

∣∣∣y = 1

]
(Lemma B.13)

≥ η

(
1

n

∑

i∈C
g̃i(W

s)

(
−1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2∥µ∥2

)

+
1

n

∑

i∈N
g̃i(W

s)

(
−1− γ2

2
c4(
√
C1d+ α)− 3 ∥µ∥2

)
− Hc5dC

2
2dη

2
√
mn

Ĝrob(W
s)

)
(c5 is an absolute constant)

= η

(
−1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2∥µ∥2

)

·
((

1− Hc5C
2
2d

2η(
−(1− γ2)c4(

√
C1d+ α) + 2

3γ
2∥µ∥2

)√
mn

)
Ĝrob(W

s)

−
(
1 +

(1− γ2)c4(
√
C1d+ α) + 6 ∥µ∥2

−(1− γ2)c4(
√
C1d+ α) + 2

3γ
2∥µ∥2

)
1

n

∑

i∈N
g̃i(W

s)

)

≥ η

(
−1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2 ∥µ∥2

)

·
(
1− Hc5C

2
2d

2η(
−(1− γ2)c4(

√
C1d+ α) + 2

3γ
2 ∥µ∥2

)√
mn


 Ĝrob(W

s)

− (β +

√
2

C
)Cr

(
1 +

(1− γ2)c4(
√
C1d+ α) + 6 ∥µ∥2

−(1− γ2)c4(
√
C1d+ α) + 2

3γ
2 ∥µ∥2

)
Ĝrob(W

s)

)

≥ ηĜrob(W
s)

4

(
−1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2 ∥µ∥2

)

≥ ηĜrob(W
s)γ2

16
∥µ∥2 ,

where the second last inequality follows from η ≤ 1
Cd2 ≤

1
3
γ4∥µ∥2√mn
Hc5C2

2
d2

, β ≤ 1/C, d ≤ ∥µ∥4

C ≤ γ4∥µ∥4

9c2
4
C1

, α ≤ ∥µ∥ ≤
√
C1d
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and C being sufficiently large so that

Hc5C
2
2d

2η(
−(1− γ2)c4(

√
C1d+ α) + 2

3γ
2 ∥µ∥2

)√
mn

≤
1
3γ

4 ∥µ∥2

−(1− γ2)c4(2
√
C1d) +

2
3γ

2 ∥µ∥2

≤
1
3γ

4 ∥µ∥2

− 2
3γ

2(1− γ2) ∥µ∥2 + 2
3γ

2 ∥µ∥2
= 0.5,

and

(β +

√
2

C
)Cr

(
1 +

(1− γ2)c4(
√
C1d+ α) + 6 ∥µ∥2

−(1− γ2)c4(
√
C1d+ α) + 2

3γ
2 ∥µ∥2

)

≤ (
1

C
+

√
2

C
)Cr

(
1 +

(1− γ2)c4(2
√
C1d) + 6 ∥µ∥2

−(1− γ2)c4(2
√
C1d) +

2
3γ

2 ∥µ∥2

)

≤ (
1

C
+

√
2

C
)Cr

(
1 +

2
3γ

2(1− γ2) ∥µ∥2 + 6 ∥µ∥2

− 2
3γ

2(1− γ2) ∥µ∥2 + 2
3γ

2 ∥µ∥2

)

= (
1

C
+

√
2

C
)Cr

(
1 +

2
3γ

2(1− γ2) + 6
2
3γ

4

)

≤ 0.25.

The third last inequality follows from Lemma B.9 that
∑

i∈N
g̃i(W

s) ≤ |N | ·max
i
g̃i(W

s)

≤ |N |
n

n∑

k=1

max
i
g̃i(W

s)

≤ Cr · |N | · Ĝrob(W
s)

≤ Cr(β +

√
2

C
)nĜrob(W

s). (8)

The last inequality follows from d ≤ ∥µ∥4

C ≤ γ4∥µ∥4

144c2
4
C1

, and α ≤ ∥µ∥ ≤
√
C1d so that

− 1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2 ∥µ∥2

≥ −1− γ2

2
c4(2

√
C1d) +

1

3
γ2 ∥µ∥2

≥ −1− γ2

12
γ2 ∥µ∥2 + 1

3
γ2∥µ∥2

≥ 1

4
γ2 ∥µ∥2 .

Applying the above result gives us the following

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]
∥∥Wt

∥∥
2

=
E(x,y)∼Dc

[
yf(x;W0)|y = 1

]
+
∑t−1
s=0 E(x,y)∼Dc

[
yf(x;Ws+1)− yf(x;Ws)|y = 1

]
∥∥Wt

∥∥
2

≥
∑t−1
s=0 Ĝrob(W

s)ηγ2

16
∥∥Wt

∥∥
F

∥µ∥2 . (f(x;W0) = 0 via symmetric initialization)
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Note that we have

Ĝrob(W
0) =

1

n

n∑

i=1

g̃i(W
0) = − 1

n

n∑

i=1

ℓ′(yif(x̃
0
i ;W0)) =

1

2
. (9)

Along with Lemma B.3, Assumption (3) and Assumption (1) gives us

∥∥W0
∥∥
F
≤ 2ωinit

√
md ≤ 2η ≤ η

√
d/nĜrob(W

0). (10)

Then if
∥∥Wt

∥∥
F
≤ 2

∥∥W0
∥∥
F

, we have

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]
∥∥Wt

∥∥
2

≥
∑t−1
s=0 Ĝrob(W

s)ηγ2

32
∥∥W0

∥∥
F

∥µ∥2

≥
∑t−1
s=0 Ĝrob(W

s)ηγ2

32η
√
d/nĜrob(W

0)
∥µ∥2 (Equation (10))

≥
√
nγ2

32
√
d
∥µ∥2 . (

∑t−1
s=0 Ĝrob(W

s) ≥ Ĝrob(W
0))

If
∥∥Wt

∥∥
F
> 2

∥∥W0
∥∥
F

, by Lemma B.12, we have

2
∥∥W0

∥∥
F
≤
∥∥Wt

∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d/n

t−1∑

s=0

Ĝrob(W
s).

Thus we have

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]
∥∥Wt

∥∥
2

≥
∑t−1
s=0 Ĝrob(W

s)ηγ2

32C2η
√
d/n

∑t−1
s=0 Ĝrob(W

s)
∥µ∥2

≥
√
nγ2

32C2

√
d
∥µ∥2 .

Similarly, we can get

E(x,y)∼Dc
[
yf(x;Wt)

∣∣y = −1
]

∥∥Wt
∥∥
2

≥ γ2
√
n

32C2

√
d
∥µ∥2 .

We finally provide the convergence guarantees of robust training loss in Lemma B.15.

Lemma B.15. For a γ-leaky, H-smooth activation ϕ, provided C > 1 is sufficiently large, then on a good run we have that,

∥∥∥∇L̂rob(W
t)
∥∥∥
F
≥ γ ∥µ∥

4
Ĝrob(W

t)

Moreover, the robust training loss satisfies

L̂rob(W
T ) ≤ 35 + 8

√
m
d3

γ ∥µ∥ ηT 1−ζ
2

Proof of Lemma B.15. Consider x̃ti as the adversarial example given model parameter Wt; i.e., x̃ti =

argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Wt)). We first need to show a lower bound for

∥∥∥∇L̂rob(W
t)
∥∥∥
F

=
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supU:∥U∥F=1

〈
−∇L̂rob(W

t),U
〉

, and it suffices to construct a matrix V with Frobenius norm at most one such

that
〈
−∇L̂rob(W

t),V
〉

is bounded from below by a positive constant. To this end, choose V ∈ R
m×d be the matrix with

rows vs =
asµ

∥µ∥√m , ∀s ∈ [m]. Then ∥V∥F = 1 since as = ±1, and we have for any W ∈ R
m×d,

⟨∇f(xi;W),V⟩ = 1√
m

m∑

s=1

asϕ
′(⟨ws, xi⟩) ⟨vs, xi⟩ =

〈
µ

∥µ∥ , xi
〉

1

m

m∑

s=1

ϕ′(⟨ws, xi⟩) (11)

By Lemma B.4 and Lemma B.11, we have

{
yi ⟨µ, xi⟩ ≥ 1

2 ∥µ∥
2
, i ∈ C

|⟨µ, xi⟩| ≤ 3
2 ∥µ∥

2
, i ∈ N ,

{
yi
〈
µ, x̃ti

〉
≥ 1

3 ∥µ∥
2
, i ∈ C∣∣〈µ, x̃ti

〉∣∣ ≤ 3 ∥µ∥2 , i ∈ N

And ∀z, ϕ′(z) ≥ γ > 0, equation (11) implies that we have the following lower bound for any W ∈ R
m×d,

yi ⟨∇f(xi;W),V⟩ ≥
{

γ
2 ∥µ∥ , i ∈ C

− 3
2 ∥µ∥ , i ∈ N , yi

〈
∇f(x̃ti;W),V

〉
≥
{

γ
3 ∥µ∥ , i ∈ C
−3 ∥µ∥ , i ∈ N

This allows for a lower bound on
〈
−∇L̂rob(W

t),V
〉

, since

〈
−∇L̂rob(W

t),V
〉
=

1

n

n∑

i=1

g̃i(W
t)yi

〈
∇f(x̃ti;Wt),V

〉

≥ 1

n

∑

i∈C
g̃i(W

t)
γ

3
∥µ∥ − 1

n

∑

i∈N
g̃i(W

t)3 ∥µ∥

=
γ ∥µ∥
3

[
Ĝrob(W

t)− (1 +
9

γ
)
1

n

∑

i∈N
g̃i(W

t)

]

≥ γ ∥µ∥
3

[
Ĝrob(W

t)− (1 +
9

γ
) · Cr(β +

√
2

C
)Ĝrob(W

t)

]
(Equation (8))

≥ γ ∥µ∥
4

Ĝrob(W
t), (12)

where the last line holds by C being sufficiently large so that

(1 +
9

γ
) · Cr(β +

√
2

C
)

≤ (1 +
9

γ
) · Cr(

1

C
+

√
2

C
)

≤ 1

4
.

Thus we have

Ĝrob(W
t) ≤ 4

γ ∥µ∥
〈
−∇L̂rob(W

t),V
〉
≤ 4

γ ∥µ∥
∥∥∥∇L̂rob(W

t)
∥∥∥
F
. (13)

We next give an upper bound on
∥∥Wt

∥∥2
F

as follows:

∥∥Wt+1
∥∥2
F

(14)

=
∥∥∥Wt − η∇L̂rob(W

t)
∥∥∥
2

F
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=
∥∥Wt

∥∥2
F
+ η2

∥∥∥∇L̂rob(W
t)
∥∥∥
2

F
− 2η

1

n

n∑

i=1

ℓ′(yif(x̃
t
i;Wt))yi

〈
∇f(x̃ti;Wt),Wt

〉

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 − 2η
1

n

n∑

i=1

ℓ′(yif(x̃
t
i;Wt))yi

〈
∇f(x̃ti;Wt),Wt

〉
(Equation (5))

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 + 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yi

m∑

s=1

as√
m
ϕ′(
〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 + 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yi

m∑

s=1

as√
m
ϕ(
〈
wts, x̃

t
i

〉
)

+ 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yi

m∑

s=1

as√
m
(ϕ′(

〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉
− ϕ(

〈
wts, x̃

t
i

〉
))

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 + 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yif(x̃

t
i;Wt)

+ 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))

m∑

s=1

1√
m

∣∣ϕ′(
〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉
− ϕ(

〈
wts, x̃

t
i

〉
)
∣∣

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2η

1

n

n∑

i=1

m∑

s=1

1√
m
(c1 + c2

∣∣〈wts, x̃ti
〉∣∣ζ) (g(z)z ≤ 1

3 , g(z) ≤ 1)

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+

2ηc2√
m

1

n

n∑

i=1

∥∥x̃ti
∥∥ζ
2

m∑

s=1

∥∥wts
∥∥ζ
2

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+

2ηc2√
m

1

n

n∑

i=1

∥∥x̃ti
∥∥ζ
2
m1− ζ

2

∥∥Wt
∥∥ζ
F

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

∥∥Wt
∥∥ζ
F
.

Then we have

∥∥Wt+1
∥∥2−ζ
F

≤ (
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

∥∥Wt
∥∥ζ
F
)

2−ζ
2 .

If
∥∥Wt

∥∥
F
≤ 1,

∥∥Wt+1
∥∥2−ζ
F

≤
(
1 + η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

) 2−ζ
2

≤
∥∥Wt

∥∥2−ζ
F

+

(
1 + η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

) 2−ζ
2

≤
∥∥Wt

∥∥2−ζ
F

+1+
2− ζ

2
·
(
η2
C2

2d

n
+
2

3
η+2ηc1

√
m+2ηc2m

1−ζ
2 (
√
C1d+α)

ζ

)
.

If
∥∥Wt

∥∥
F
> 1,

∥∥Wt+1
∥∥2−ζ
F

≤
∥∥Wt

∥∥2−ζ
F


1 +

η2
C2

2d
n + 2

3η + 2ηc1
√
m+ 2ηc2m

1−ζ
2 (

√
C1d+ α)ζ

∥∥Wt
∥∥ζ
F∥∥Wt

∥∥2
F




2−ζ
2

≤
∥∥Wt

∥∥2−ζ
F


1+ 2− ζ

2
·
η2

C2
2d
n + 2

3η+2ηc1
√
m+2ηc2m

1−ζ
2 (

√
C1d+α)

ζ
∥∥Wt

∥∥ζ
F∥∥Wt

∥∥2
F



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≤
∥∥Wt

∥∥2−ζ
F

+
2− ζ

2
·
(
η2
C2

2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

)
.

Combining the two cases, we have

∥∥Wt+1
∥∥2−ζ
F

≤
∥∥Wt

∥∥2−ζ
F

+1+
2− ζ

2
·
(
η2
C2

2d

n
+
2

3
η+2ηc1

√
m+2ηc2m

1−ζ
2 (
√
C1d+α)

ζ

)
.

Summing up the above inequality, we get

∥∥WT
∥∥2−ζ
F

≤
∥∥W0

∥∥2−ζ
F

+T ·
(
1+

2− ζ

2
·
(
η2
C2

2d

n
+
2

3
η+2ηc1

√
m+2ηc2m

1−ζ
2 (
√
C1d+α)

ζ

))
.

Thus,

∥∥WT
∥∥
F

≤
(∥∥W0

∥∥2−ζ
F

+T ·
(
1 +

2− ζ

2
·
(
η2
C2

2d

n
+
2

3
η+2ηc1

√
m+2ηc2m

1−ζ
2 (
√
C1d+α)

ζ

))) 1
2−ζ

≤
∥∥W0

∥∥
F
+ T

1
2−ζ ·

(
1 +

2− ζ

2
·
(
η2
C2

2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

)) 1
2−ζ

≤
∥∥W0

∥∥
F
+ T

1
2−ζ ·

(
1 +

1

2
·
(
η2
C2

2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

))

=
∥∥W0

∥∥
F
+ T

1
2−ζ ·

(
1 + η2

C2
2d

2n
+

1

3
η + ηc1

√
m+ ηc2m

1−ζ
2 (
√
C1d+ α)ζ

)
.

Consider the correlation between iterates weight and V as follows:

〈
Wt+1,V

〉
=
〈

Wt − η∇L̂rob(W
t),V

〉

=
〈
Wt,V

〉
− η

〈
∇L̂rob(W

t),V
〉

= . . .

=
〈
W0,V

〉
− η

t∑

s=0

〈
∇L̂rob(W

s),V
〉
. (15)

Recall from Lemma B.9 that ∀t ≥ 0, ykf(x̃k;Wt+1) ≥ ykf(x̃k;Wt), ∀x̃k ∈ B2(xk, α), ∀k ∈ [n]. Then we have

ykf(x̃
T
k ;WT ) ≥ ykf(x̃

T
k ;Wt), and therefore ℓ(ykf(x̃

T
k ;WT )) ≤ ℓ(ykf(x̃

T
k ;Wt)) ≤ ℓ(ykf(x̃

t
k;Wt)) by definition that

x̃ti = argmaxx̃i∈B2(xi,α) ℓ
(
yif(x̃i;Wt)

)
, t ≤ T . As a result, we have

L̂rob(W
T )

=
1

n

n∑

i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;WT )

)

≤ 1

T

T−1∑

t=0

1

n

n∑

i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;Wt)

)

≤ 1

T

T−1∑

t=0

2

n

n∑

i=1

max
x̃i∈B2(xi,α)

−ℓ′
(
yif(x̃i;Wt)

)
(ℓ (z) ≤ −2ℓ′(z) when z ≥ 0, Equation (4))

=
2

T

T−1∑

t=0

Ĝrob(W
t)
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≤ 8

γ ∥µ∥T
T−1∑

t=0

〈
−∇L̂rob(W

t),V
〉

(Equation (13))

=
8

γ ∥µ∥ ηT
(〈

WT ,V
〉
−
〈
W0,V

〉)
(Equation (15))

≤ 8

γ ∥µ∥ ηT
(∥∥WT

∥∥
F
+
∥∥W0

∥∥
F

)

≤ 8

γ ∥µ∥ ηT

(
2
∥∥W0

∥∥
F
+T

1
2−ζ ·
(
1+η2

C2
2d

2n
+
1

3
η + ηc1

√
m+ηc2m

1−ζ
2 (
√
C1d+α)

ζ

))

≤ 8

γ ∥µ∥ ηT 1−ζ
2−ζ

(
2
∥∥W0

∥∥
F
+1+η2

C2
2d

2n
+
1

3
η+ηc1

√
m+ηc2m

1−ζ
2 (
√
C1d+α)

ζ

)

≤ 8

γ ∥µ∥ ηT 1−ζ
2−ζ

(
ωinit

√
6md+

4

3
+ η

(
C2

2dη

2n
+ (c1 + c2)

√
m(
√
C1d+ α)

))
(Lemma B.3)

≤ 8

γ ∥µ∥ ηT 1−ζ
2−ζ

(√
6η +

4

3
+ η

(
C2

2dη

2n
+ (c1 + c2)

√
m(
√
C1d+ α)

))
(Assumption (3))

≤ 8

γ ∥µ∥ ηT 1−ζ
2−ζ

(√
6 +

4

3
+

1

Cd2

(
C2

2d

2nCd2
+ (c1 + c2)

√
m(
√
C1d+ α)

))
(Assumption (4))

≤ 8

γ ∥µ∥ ηT 1−ζ
2−ζ

(√
6 +

4

3
+

1

2
+

√
m

d3

)
(choose C > max{1, C1, C2, 4(c1 + c2)

2} be large enough)

≤ 35 + 8
√

m
d3

γ ∥µ∥ ηT 1−ζ
2

.

∀ε > 0, T ≥
(

35+8
√

m

d3

γ∥µ∥ηϵ

) 2
1−ζ

guarantees L̂rob(W
T ) ≤ ε.

For the smooth Leaky ReLU activation function of (Frei et al., 2022), we have the following result as corollary.

Corollary B.16. For the γ-leaky H-smooth ReLU activation ϕSLReLU defined in Equation (1), and for κ ∈ (0, 1), λ > 0
defined in Definition 2.1. There exists some constant C > 0 such that Assumption 1, (A1) and (A2) hold, then we have that

with probability at least 1− 2δ over the random initialization and the draws of the samples, the robust training loss satisfies

L̂rob(W
T ) ≤

30 + 6√
H
m

1
4

γ ∥µ∥√η
√
T
.

Proof of Corollary B.16. Here our activation function ϕ is ϕSLReLU. The definition of ϕSLReLU gives us that

ϕ′(z)z =





z = ϕ(z) + 1−γ
4H , z ≥ 1

H
1−γ
2 Hz2 + 1+γ

2 z = ϕ(z) + 1−γ
4 Hz2, |z| ≤ 1

H

γz = ϕ(z) + 1−γ
4H , z ≤ − 1

H

.

Therefore, ϕ′(z)z − ϕ(z) ≤ 1−γ
4H . Similar as Lemma B.15, we have Ĝrob(W

t) ≤ 4
γ∥µ∥

∥∥∥∇L̂rob(W
t)
∥∥∥
F

. In terms of the

upper bound on
∥∥Wt

∥∥2
F

, we have

∥∥Wt+1
∥∥2
F

=
∥∥∥Wt − η∇L̂rob(W

t)
∥∥∥
2

F

=
∥∥Wt

∥∥2
F
+ η2

∥∥∥∇L̂rob(W
t)
∥∥∥
2

F
− 2η

1

n

n∑

i=1

ℓ′(yif(x̃
t
i;Wt))yi

〈
∇f(x̃ti;Wt),Wt

〉
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≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 − 2η
1

n

n∑

i=1

ℓ′(yif(x̃
t
i;Wt))yi

〈
∇f(x̃ti;Wt),Wt

〉
(Equation (5))

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 + 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yi

1√
m

m∑

s=1

asϕ
′(
〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 + 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yi

1√
m

m∑

s=1

asϕ(
〈
wts, x̃

t
i

〉
)

+ 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))

1− γ

4H

√
m (ϕ′(z)z − ϕ(z) ≤ 1−γ

4H )

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 + 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yif(x̃

t
i;Wt) + η

√
m
1− γ

2H
(g(z) ≤ 1)

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + η

√
m
1− γ

2H
(g(z)z ≤ 1

3 )

≤
∥∥Wt

∥∥2
F
+ η

C2
2d

nCd2
+

2

3
η + η

√
m
1− γ

2H
(Assumption (4))

≤
∥∥Wt

∥∥2
F
+ η

(
5

3
+

1− γ

2H

√
m

)
.

Telescoping gives us that

∥∥WT
∥∥2
F
≤ ∥W0∥2F + η

(
5

3
+

1− γ

2H

√
m

)
T.

As a result, we have

L̂rob(W
T ) =

1

n

n∑

i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;WT )

)

≤ 1

T

T−1∑

t=0

1

n

n∑

i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;Wt)

)

≤ 1

T

T−1∑

t=0

2

n

n∑

i=1

max
x̃i∈B2(xi,α)

−ℓ′
(
yif(x̃i;Wt)

)
(ℓ (z) ≤ −2ℓ′(z) when z ≥ 0, Equation (4))

=
2

T

T−1∑

t=0

Ĝrob(W
t)

≤ 8

γ ∥µ∥T
T−1∑

t=0

〈
−∇L̂rob(W

t),V
〉

(Equation (13))

=
8

γ ∥µ∥ ηT
(〈

WT ,V
〉
−
〈
W0,V

〉)
(Equation (15))

≤ 8

γ ∥µ∥ ηT
(∥∥WT

∥∥
F
+
∥∥W0

∥∥
F

)

≤ 8

γ ∥µ∥ ηT

(
2
∥∥W0

∥∥
F
+

√
η

(
5

3
+

1− γ

2H

√
m

)
T

)

≤ 8

γ ∥µ∥ ηT

(
ωinit

√
6md+

√
η

(
5

3
+

1− γ

2H

√
m

)
T

)
(Lemma B.3)

≤ 8

γ ∥µ∥ ηT

(
√
6η +

√
η

(
5

3
+

1− γ

2H

√
m

)
T

)
(Lemma (3))
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≤
30 + 6√

H
m

1
4

γ ∥µ∥√η
√
T
.

B.2. Missing Proofs in Section 3.2

Theorem B.17. Let ε > 0, δ ∈ (0, 1/2). κ ∈ (0, 1) and λ > 0 are defined in Definition 2.1. Let ϕ be a non-smooth

activation with γ ∈ (0, 1]. Set T̄ =
(

30
∥µ∥γc0√ηε

)2
. There exists some constant C > 0 such that Assumption 1 and the

following holds: (B1) The network width satisfies m ≥ C log (n/δ). (B2) ∥µ∥2 ≥ Cmax
{√

d
n log (md/nδ), log (n/δ)

}
.

Then there exists a constant c > 0 such that after running Algorithm 1 for T ≥ T̄ iterations, we have that with probability at

least 1− 2δ over the random initialization and the draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies L̂rob(W
T ) ≤ ε, the robust training error satisfies L̂

0/1
rob (WT ) = 0.

2. The clean test error satisfies
L0/1(WT ) ≤ β + 2exp

(
− cλn ∥µ∥4

C2d

)
.

3. For α
∥µ∥ ≤ 1

C

√
n∥µ∥2

d , the robust test error satisfies

L
0/1
rob (WT )≤β+2exp

(
−cλ ∥µ∥2

(∥µ∥
C

√
n

d
− α

∥µ∥
)2)

.

Proof of Theorem B.17. This proof is similar with the proof of Theorem B.1. The robust training loss bound is proved in

Lemma B.29. For the generalization guarantee, apply Lemma B.2 with Lemma B.33, with probability at least 1− 2δ,

L
0/1
rob (WT ) = P(x,y)∼D[∃x̃ ∈ B2(x, α) s.t. y ̸= sign(f(x̃;WT ))]

≤ β + exp


−cλ

(
E(x,yc)∼Dc [ycf(x;WT )

∣∣yc = 1]∥∥WT
∥∥
2

− α

)2



+ exp


−cλ

(
E(x,yc)∼Dc [ycf(x;WT )

∣∣yc = −1]∥∥WT
∥∥
2

− α

)2



≤ β + 2 exp

(
−cλ

( √
n

C
√
d
∥µ∥2 − α

)2
)
, (Choose C ≥ 16C2

c9
)

where the last line holds for α
∥µ∥ ≤ ∥µ∥√n

C
√
d

, so that
√
n

C
√
d
∥µ∥2 − α ≥ 0.

Similarly, we have

L0/1(WT ) ≤ β + exp


−cλ

(
E(x,yc)∼Dc [ycf(x;WT )

∣∣yc = 1]∥∥WT
∥∥
2

)2



+ exp


−cλ

(
E(x,yc)∼Dc [ycf(x;WT )

∣∣yc = −1]∥∥WT
∥∥
2

)2



≤ β + 2 exp

(
−cλn ∥µ∥

4

C2d

)
.

The proof of Theorem B.17 builds upon a sequence of Propositions and Lemmas, which we show below.

Proposition B.18 defines a set G to characterize the index of noise that have large variance, and show the size of set G is

large.
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Proposition B.18. Let ξ = [ξ1, . . . , ξd]⊤ denote the random vector sampled from Dclust. Define G = {i ∈ [d]|E(ξi)2 ≥ κ
2 }.

Then the number of elements |G| ≥ κ
2−κd.

Proof of Proposition B.18. Since each ξi has subgaussian norm at most 1, we have 2 ≥ E exp
(
(ξi)2

)
≥ 1 + E(ξi)2, so

E(ξi)2 ≤ 1. Suppose |G| < κ
2−κd, then we have

κd ≤ E ∥ξ∥2=
∑

i∈G
E(ξi)2+

∑

i/∈G
E(ξi)2 ≤ |G|·1+(d− |G|)· κ

2
< d · κ

2
+(1− κ

2
)

κ

2− κ
d = κd,

which is a contradiction.

Lemma B.19 provides properties of the initialized network weights, similar to Lemma B.3 except we have an additional

result that the averaged initialized weights variance that belongs to set G are not small. This additional result will be used in

proving Lemma B.21.

Lemma B.19. There is a universal constantC0 > 1 such that with probability at least 1−3δ/4 over the random initialization,

1

2
ω2

initd ≤
∥∥w0

s

∥∥2
2
≤ 3

2
ω2

initd, ∀s ∈ [m];
∥∥W0

∥∥
2
≤ C0ωinit(

√
m+

√
d);

∑
i∈G(w

0
s,i)

2

|G| ≥ 1

4

∑
i∈[d](w

0
s,i)

2

d
, ∀s ∈ [m].

Here G is defined in Proposition B.18.

Proof of Lemma B.19. The first part is proved in Lemma B.3, and it holds with probability at least 1− δ/2.

For the second part, for any fixed s ∈ [m], by concentration of the χ2 distribution, we have

P

(∣∣∣∣∣
1

|G|ω2
init

∑

i∈G
(w0

s,i)
2 − 1

∣∣∣∣∣ ≥
1

2

)
≤ 2 exp (−|G|/32) ,

P



∣∣∣∣∣∣

1

dω2
init

∑

i∈[d]

(w0
s,i)

2 − 1

∣∣∣∣∣∣
≥ 1


 ≤ 2 exp (−d/8) .

Applying a union bound over all s ∈ [m],

∑
i∈G(w

0
s,i)

2

|G| ≥ 1

2
ω2

init ≥
1

4

∑
i∈[d](w

0
s,i)

2

d

holds with probability at least

1− 2m exp (−|G|/32)− 2m exp (−d/8)

≥ 1− 2m exp

(
− κ

32(2− κ)
d

)
− 2m exp (−d/8) (Proposition B.18)

≥ 1− 2δ exp

(
n/C − κ

32(2− κ)
d

)
− 2δ exp (n/C − d/8) (Assumption (5))

≥ 1− 2δ exp

(
−(

κ

32(2− κ)
C log (2)− 1/C)

)
− 2δ exp (−(C log (2) /8− 1/C))

(d ≥ Cn2 log (2) from Assumption (1); C sufficiently large)

≥ 1− δ/4. (C sufficiently large)

The proof is complete by taking a union bound over the above claims.

The following anti-concentration inequality is helpful in proving Lemma B.21.
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Proposition B.20. [Anti-concentration of subgaussian random variables] Assume X is a c-subgaussian random variable

with E[X] = 0,E[X2] = 1, then

P

(
X ≥ 1

10c2

)
≥ 0.04

220
2
3 c4

.

Proof of Lemma B.20. Denote a = 1
10c2 , A = 220

1
3 c2 and B = 0.04

A2 . From 2 ≥ E exp
(
X2

c2

)
≥ 1 + E

X2

c2 we know c ≥ 1.

Consider a truncated version of X defined by X̃ = X · 1a≤|X|≤A. We have

EX̃ = EX̃ − EX = −E
(
X · 1|X|<a

)
− E

(
X · 1|X|>A

)
.

It is trivial that
∣∣E
(
X · 1|X|<a

)∣∣ ≤ a. By subgaussian tail bound one may compute
∣∣E
(
X · 1|X|>A

)∣∣

≤ E
(
|X| · 1|X|>A

)

≤
∫ A

0

P (|X| > A) dt+

∫ ∞

A

P (|X| > t) dt

≤ 2A · exp
(
−A

2

c2

)
+

∫ ∞

A

2 exp

(
− t

2

c2

)
dt

≤ 2A · exp
(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
.

These imply

∣∣∣EX̃
∣∣∣ ≤ a+ 2A · exp

(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
.

Similarly,

1 = EX2 =E
(
X2 · 1|X|<a

)
+ E

(
X2 · 1|X|>A

)
+ EX̃2

≤ a2 + 2A2 · exp
(
−A

2

c2

)
+ 2c2 exp

(
−A

2

c2

)
+ EX̃2.

Thus,

∣∣∣EX̃2 − 1
∣∣∣ ≤ a2 + 2A2 · exp

(
−A

2

c2

)
+ 2c2 exp

(
−A

2

c2

)
.

Let X̃+ = max(X̃, 0) and X̃− = max(−X̃, 0), then X̃+ and X̃− are non-negative and X̃ = X̃+ − X̃−, X̃2 = X̃2
+ + X̃2

−.

We thus have
∣∣∣EX̃+ − EX̃−

∣∣∣ ≤ a+ 2A · exp
(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
,

EX̃2
+ + EX̃2

− ≥ 1− a2 − 2A2 · exp
(
−A

2

c2

)
− 2c2 exp

(
−A

2

c2

)
.

Now assume to the contrary that P (X ≥ a) < B. We have

EX̃+ ≤ A · P (|X| ≥ a) < A ·B,
EX̃2

+ < A2 ·B,

EX̃− ≤ EX̃+ + a+ 2A · exp
(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)

< A ·B + a+ 2A · exp
(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
,

EX̃2
− ≤ A · EX̃− < A

(
A ·B + a+ 2A · exp

(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

))
.
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These together imply

EX̃2
+ + EX̃2

− < A2 ·B +A

(
A ·B + a+ 2A · exp

(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

))

< 1− a2 − 2A2 · exp
(
−A

2

c2

)
− 2c2 exp

(
−A

2

c2

)
,

which is a contradiction. The last inequality holds since

RHS − LHS =1− a2 − 2A2 · exp
(
−A

2

c2

)
− 2c2 exp

(
−A

2

c2

)

−A2 ·B −A

(
A ·B + a+ 2A · exp

(
−A

2

c2

)
+
c2

A
exp
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−A

2

c2
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= 1− a2 − 2A2 ·B −A · a− 4A2 · exp
(
−A

2

c2

)
− 3c2 exp

(
−A

2

c2

)

= 1− 1

100c4
− 0.08−A · a− 4A2 · exp

(
−A

2

c2

)
− 3c2 exp

(
−A

2

c2

)

≥ 1− 1

100
− 0.08−A · a− 8A2/

(
A2

c2

)2

− 3c2/
A2

c2

= 1− 0.09− 1.5(22c4a2)
1
3 = 1− 0.09− 1.5(0.22)

1
3 > 0.

This completes the proof.

By combining Proposition B.18, Lemma B.19, and Proposition B.20, we establish the existence of enough neurons with

positive activation at the first and second step of adversarial training, as stated in Lemma B.21. This lemma plays a vital role

throughout the entire proof of networks with non-smooth activation functions.

Lemma B.21. Suppose the events in Lemma B.4 and Lemma B.19 hold. Given Assumption 1, (B1) and (B2), there exists a

constant c0 > 0 that only depends on κ such that with probability at least 1− δ/5,

∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ c0n;

∀i ∈ [n],
∣∣{s ∈ [m] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ c0m.

∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ ≥ c0n;

∀i ∈ [n],
∣∣{s ∈ [m] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ ≥ c0m.

Proof of Lemma B.21. Firstly, we prove the result for w0
s, i.e., the first 2 statements. Fix any given (xi, yi). Recall that

xi = yciµ+ξi, where yci is the clean label, ξi ∼ Dclust is the noise. Note that
〈
w0
s, xi

〉
= yci

〈
w0
s, µ
〉
+
〈
w0
s, ξi

〉
. The first term

is a centered Gaussian with variance ω2
init ∥µ∥2, therefore applying concentration argument gives us with probability at least

1−δ/20, maxs∈[m]

∣∣〈w0
s, µ
〉∣∣ ≤ 4ωinit ∥µ∥

√
log (m/δ). For the second term, condition on ξi, which is a centered Gaussian

with variance ω2
init ∥ξi∥2 , ∀s ∈ [m]. Since P

(〈
w0
s, ξi

〉
≥ ωinit∥ξi∥

10

)
≥ 1

5 , applying the Hoeffding’s inequality gives us with

probability at least 1− exp (−m/225), there exists a subset Ji ∈ [m] with |Ji| ≥ m/15 such that
〈
w0
s, ξi

〉
≥ ωinit∥ξi∥

10 and

as = yi, ∀s ∈ Ji. Conditioning on ∥ξi∥2 ≥ κd
2 obtained in Lemma B.4, we have that

〈
w0
s, xi

〉
≥ −4ωinit ∥µ∥

√
log (m/δ) + ωinit ∥ξi∥ /10 (Proposition B.19)

≥ ωinit

(√
κd/20− 4 ∥µ∥

√
log (m/δ)

)

≥ ωinit

(√
κd/20− 4

√
d/C

)
> 0,

where the last line holds via Assumption (1) and (5) for large enough C. Combining the above arguments, we have with

probability at least 1− δ/20− n exp (−m/225),

∀i ∈ [n],
∣∣{s ∈ [m] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ m

15
.
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Given m ≥ C log (n/δ), the above holds with probability at least 1− δ/10.

For the other statement, we can condition on w0
s similarly. Denote Xi =

〈
w0
s

∥w0
s∥2

, ξi

〉
, Yi =

Xi√
EX2

i

. It is obvious that

EYi = 0 and EY 2
i = 1.

EX2
i =

∑
j∈[d](w

0
s,j)

2
E(ξji )

2

∥w0
s∥22

≥
∑
j∈G(w

0
s,j)

2
E(ξji )

2

∑
j∈[d](w

0
s,j)

2
(here G is defined in Proposition B.18)

≥ |G| · κ/2
4d

≥ κ2

16− 8κ
. (Lemma B.19 and Proposition B.18)

From Proposition 2.6.1 in (Vershynin, 2018), there exists a universal constant c1 such that ∥Yi∥ψ2
=

∥Xi∥ψ2√
EX2

i

≤ c1
√
16−8κ
κ .

Applying Proposition B.20 gives us that

P

(
Xi ≥

κ3

10(c1)2(16− 8κ)
3
2

)
≥ P

(
Yi ≥

κ2

10(c1)2(16− 8κ)

)
≥ 0.04(

κ4

220
2
3 (c1)4(16− 8κ)2

).

Therefore,
〈
w0
s, ξi

〉
> 0 holds with probability at least 0.04( κ4

220
2
3 (c1)4(16−8κ)2

). Consider yci be the clean label that is

uniformly distributed on {−1,+1} and is independent of ξi, then we have

P
(〈

w0
s, ξi

〉
> 0, as = yci |w0

s

)

=
1

2
P
(〈

w0
s, ξi

〉
> 0|w0

s

)

≥ 0.02(
κ4

220
2
3 (c1)4(16− 8κ)2

).

Similar with the previous part, since ω2
init3d/2 ≥

∥∥w0
s

∥∥2 ≥ ω2
initd/2 holds, applying Hoeffding’s inequality, with probability

at least 1− δ/20−m exp

(
−5× 10−5( κ4

220
2
3 (c1)4(16−8κ)2

)2n

)
,

∀s ∈ [m],
∣∣{i ∈ [n] : yci = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ 0.015(

κ4

220
2
3 (c1)4(16− 8κ)2

)n.

When C is sufficiently large and n ≥ C log (m/δ) as assumed in Assumption (5), the above holds with probability at least

1− δ/10. Note that |{i ∈ [n]; yi ̸= yci }| ≤
(
1/C +

√
2/C

)
n ≤ 0.005( κ4

220
2
3 (c1)4(16−8κ)2

)n holds for a sufficient large C.

Thus,

∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ 0.01(

κ4

220
2
3 (c1)4(16− 8κ)2

)n.

The proof of the first two statements is complete by taking a union bound over the above two claims.

Now we are going to prove the last two statements. We consider the algorithm runs standard GD at time t = 0; i.e. no

adversarial training examples are generated for the first step, the adversarial training process starts at t ≥ 1. The gradient

descent update gives us w1
s = w0

s +
ηas

2n
√
m

n∑
k=1

ϕ′(
〈
w0
s, xk

〉
)ykxk.

∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ c0n. For these i,

〈
w1
s, xi

〉
− α

∥∥w1
s

∥∥ =
〈
w0
s, xi

〉
+

〈
ηas

2n
√
m

n∑

k=1

ϕ′(
〈
w0
s, xk

〉
)ykxk, xi

〉
− α

∥∥w1
s

∥∥
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≥−
√

3

2
ωinit

√
d · 2

√
C1d+

η

2n
√
m

(
γ
d

C1
− nC1

(
∥µ∥2 +

√
d log (n/δ)

))

− α

(√
3

2
ωinit

√
d+

η

2n
√
m

√
8C1dn

)
(Lemma B.19 and Lemma B.4)

≥−
√

3

2
ωinit

√
d · 3

√
C1d+

η

2n
√
m

(
γ

2C1
−
√

8C1

C

)
d

(α ≤ ∥µ∥ ≤
√

d
Cn ≤

√
C1d and Assumption (1))

≥ η

2n
√
m

(
γ

2C1
−
√

8C1

C
−
√

54C1n2

d

)
d (Assumption (3))

>0. (d ≥ Cn2 log (2) from Assumption (1) and C sufficiently large)

Therefore, ∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ ≥ c0n.

Similarly, ∀i ∈ [n],
∣∣{s ∈ [m] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ ≥ c0m.

Definition B.22. If the events in Lemma B.4, B.19 and B.21 occur, let us say that we have a good run.

A good run occurs with probability at least 1− 2δ. In the following proof, we condition on a good run occurs.

The following proposition presents several properties of the distribution Dclust, which are crucial for establishing the

generalization guarantees.

Proposition B.23. Assume ξ ∼ Dclust. Then the following holds:

(D1) For any fixed v ∈ R
d, for any δ̄ < 0.5, with probability at least 1− δ̄ w.r.t ξ, |⟨v, ξ⟩| ≤ c6 ∥v∥

√
log
(
1/δ̄
)
, where c6

is an absolute constant.

(D2) For any δ̄ < 0.5, with probability at least 1 − δ̄ w.r.t ξ, ∥ξ∥2 ≤ 9d(log
(
1/δ̄
)
). In particular, denote event E ={

∥ξ∥ ≥ 6
√
log
(
1/δ̄
)
d
}

, we have E [∥ξ∥1 (E)] ≤ 8δ̄4 ·
√
d · log

(
1/δ̄
)
.

Proof of B.23. We first prove (D1). Note that the coordinates of ξ are independent variables with ψ2 norm at most 1. From

Hoeffding’s inequality, there exists a universal constant c such that

P

(
|⟨v, ξ⟩| > c6 ∥v∥

√
log
(
1/δ̄
))

≤ 2 exp
(
−cc26 ∥v∥2 log

(
1/δ̄
)
/ ∥v∥2

)
= 2δ̄cc

2
6 .

By selecting c6 =
√

2
c , we get

P

(
|⟨v, ξ⟩| > c6 ∥v∥

√
log
(
1/δ̄
))

≤ 2δ̄2 ≤ δ̄.

Next we prove (D2). Note that the coordinates of ξ = [ξ1, ξ2, . . . , ξd]⊤ are independent variables with ψ2 norm at most 1.

From Bernstein’s inequality, there exists a universal constant c such that for every t > 0,

P
(
∥ξ∥2 − E ∥ξ∥2 > t

)
≤ exp

(
−cmin

{
t2

d
, t

})
.

Since 2 ≥ E exp
(
(ξi)2

)
≥ 1 + E(ξi)2, we have E ∥ξ∥2 =

∑d
i=1 E(ξ

i)2 ≤ d.

Select t = max

{√
d log(1/δ̄)

c ,
log(1/δ̄)

c

}
, then P

(
∥ξ∥2 − E ∥ξ∥2 > t

)
≤ δ̄. Therefore, with probability at least 1− δ̄ w.r.t
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ξ,

∥ξ∥2 ≤E ∥ξ∥2 +max





√
d log

(
1/δ̄
)

c
,
log
(
1/δ̄
)

c





≤ d+

√
d log

(
1/δ̄
)

c
+

log
(
1/δ̄
)

c

≤ 9d(log
(
1/δ̄
)
). (d is sufficiently large since C is sufficiently large; δ̄ < 0.5)

As for the last statement,

E [∥ξ∥1 (E)]

=

∫ ∞

0

P (∥ξ∥1 (E) ≥ t) dt

=

∫ 6
√

log(1/δ̄)d

0

P (∥ξ∥1 (E) ≥ t) dt+

∫ ∞

6
√

log(1/δ̄)d
P (∥ξ∥1 (E) ≥ t) dt

≤ 6
√

log
(
1/δ̄
)
d · P

(
∥ξ∥1 (E) ≥ 6

√
log
(
1/δ̄
)
d

)
+

∫ ∞

6
√

log(1/δ̄)d
exp

(
− t2

9d

)
dt (P

(
∥ξ∥2 > 9d(log

(
1/δ̄
)
)
)
≤ δ̄)

≤ 6
√

log
(
1/δ̄
)
d · δ̄4 +

∫ ∞

0

exp


−

(
t+ 6

√
log
(
1/δ̄
)
d
)2

9d


 dt

≤ 6
√

log
(
1/δ̄
)
d · δ̄4 +

∫ ∞

0

exp


−

12t
√

log
(
1/δ̄
)
d+ 36 log

(
1/δ̄
)
d

9d


 dt

= 6
√
log
(
1/δ̄
)
d · δ̄4 + δ̄4

9d

12
√
log
(
1/δ̄
)
d

≤ 8δ̄4 ·
√
d · log

(
1/δ̄
)
. (δ̄ < 0.5)

Before proceeding to the next Lemma, we define some important notations which will be used frequently later. We define

λi(x;Wt) =
1

m

m∑

s=1

ϕ
(〈

wts − η∇wsL̂rob(W
t), x

〉)
− ϕ(⟨wts, x⟩)〈

−η∇wsL̂rob(W
t), x

〉 ϕ′(
〈
wts, x̃

t
i

〉
),

so that the following holds:

yf(x;Wt+1)− yf(x;Wt)

=
1√
m

m∑

s=1

as
ϕ
(〈

wts − η∇wsL̂rob(W
t), x

〉)
− ϕ(⟨wts, x⟩)〈

−η∇wsL̂rob(W
t), x

〉
〈
−η∇wsL̂rob(W

t), yx
〉

=
η

mn

n∑

i=1

m∑

s=1

ϕ
(〈

wts − η∇wsL̂rob(W
t), x

〉)
− ϕ(⟨wts, x⟩)〈

−η∇wsL̂rob(W
t), x

〉 g̃i(W
t)ϕ′(

〈
wts, x̃

t
i

〉
)
〈
yix̃

t
i, yx

〉

=
η

n

n∑

i=1

g̃i(W
t)λi(x;Wt)

〈
yix̃

t
i, yx

〉
.
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For any t ≥ 1, We define A(t) as the set of pairs (i, s) such that the neurons s is active for the adversarial examples

∀x̃i ∈ B2(xi, α); i.e.,

A(t) :=
{
(i, s) ∈ [n]× [m] :

〈
wts, x̃i

〉
> 0, ∀x̃i ∈ B2(xi, α)

}
.

For notation simplicity, we also define

A(0) :=
{
(i, s) ∈ [n]× [m] :

〈
wts, xi

〉
> 0
}
.

Denote its coordinate as

Ai(t) : = {s ∈ [m] : (i, s) ∈ A(t)} ,
As(t) : = {i ∈ [n] : (i, s) ∈ A(t)} .

Proposition B.24. For any t ≥ 1 and any pair (i, s) ∈ A(t), we have ∀x̃i ∈ B2(xi, α), ϕ
′(⟨wts, x̃i⟩) ≥ γ. Moreover,

λi(x̃i;Wt) ≥ γ2
∣∣Ai(t) ∩ Ai(t+ 1)

∣∣ /m.

Proof. The definition of A(t) implies that ⟨wts, x̃i⟩ > 0, ∀x̃i ∈ B2(xi, α). By the definition of activation function we have

ϕ′(⟨wts, x̃i⟩) ≥ γ.

The definition of λi(x̃i;Wt) gives us the following:

λi(x̃i;Wt) ≥ γ

m

∑

s∈Ai(t)∩Ai(t+1)

ϕ
(〈

wt+1
s , x̃i

〉)
− ϕ(⟨wts, x̃i⟩)〈

wt+1
s , x̃i

〉
− ⟨wts, x̃i⟩

≥ γ2

m

∣∣Ai(t) ∩ Ai(t+ 1)
∣∣ .

We further define T := {(i, s) ∈ [n]× [m] : yi = as} and similarly we denote

T i : = {s ∈ [m] : (i, s) ∈ T } ,
Ts : = {i ∈ [n] : (i, s) ∈ T }

Lemma B.25. On a good run we have

∣∣Ai(1) ∩ T i
∣∣ ≥

∣∣Ai(0) ∩ T i
∣∣ ≥ c0m,

|As(1) ∩ Ts| ≥ |As(0) ∩ Ts| ≥ c0n.

Proof of Lemma B.25. The proof of Lemma B.21 implies that ∀i ∈ [n], s ∈ [m],

∣∣{i ∈ [n] : yi = as,
〈
w1
s, x̃i

〉
> 0, ∀x̃i ∈ B2(xi, α)

}∣∣ ≥
∣∣{i ∈ [n] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ c0n,∣∣{s ∈ [m] : yi = as,

〈
w1
s, x̃i

〉
> 0, ∀x̃i ∈ B2(xi, α)

}∣∣ ≥
∣∣{s ∈ [m] : yi = as,

〈
w0
s, x̃i

〉
> 0
}∣∣ ≥ c0m.

Combine with the definition of A and T conclude the proof.

In the following Lemma, we will 1) prove the number of neurons with positive activation increases as the training epochs

increases; 2) provide both an upper bound and a lower bound on the increment in the un-normalized margin for arbitrary

adversarial training examples; 3) show the loss g is at the same scale across all adversarial training examples. An analog of

Lemma B.26 is Lemma B.9 for neural networks with smooth activation functions.

Lemma B.26. On a good run, there exists a constant Cr > 0 that only depends on κ, γ such that for any t ≥ 0, we have

(E1) A(t) ∩ T ⊂ A(t+ 1) ∩ T .

(E2)
ηc0γ

2g̃i(Wt)
2n

(√
d
C1

− α
)2

≤ yif(x̃i;Wt+1)− yif(x̃i;Wt) ≤ 3η
n

(
C1d+ α2

)
g̃i(W

t), ∀x̃i ∈ B2(xi, α), ∀i ∈ [n].
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(E3) maxi,j∈[n]
g(yif(x̃ti;W

t))
g(yjf(x̃tj ;W

t))
≤ Cr.

Here c0 is the constant introduced in Lemma B.21

Proof of Lemma B.26. We prove via induction. Recall x̃ti = argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Wt)). Similar as network with

smooth activation functions, we have the following

max
i,j∈[n]

g(yif(x̃
t
i;Wt))

g(yjf(x̃
t
j ;Wt))

≤ max

(
2, 2 · max

i,j∈[n]

exp
(
−yif(x̃ti;Wt)

)

exp
(
−yjf(x̃tj ;Wt)

)
)
.

Therefore we only need max
i,j∈[n]

exp(−yif(x̃ti;W
t))

exp(−yjf(x̃tj ;W
t))

≤ Cr/2 to hold. Note that at initialization, max
i,j∈[n]

exp(−yif(x̃0i ;W
0))

exp(−yjf(x̃0j ;W
0))

= 1 ≤
Cr/2.

Without loss of generality, we choose i = 1, j = 2. Through induction, at iteration t, we have
exp(−y1f(x̃t1;W

t))
exp(−y2f(x̃t

2
;Wt))

≤ Cr/2.

Now we are proving with the following order: (E1), (E2) and (E3) for t+1. The t = 0 case of (E1) is proved in Lemma B.21.

For any t ≥ 1 and (i, s) ∈ A(t) ∩ T , we have yias = 1 and ⟨wts, x̃i⟩ > 0, ∀x̃i ∈ B2(xi, α) > 0 by definition, we have

〈
wt+1
s , x̃i

〉
−
〈
wts, x̃i

〉

=
η

n
√
m

n∑

k=1

ykasg̃k(W
t)ϕ′(

〈
wts, x̃

t
k

〉
)
〈
x̃tk, x̃i

〉

=
η

n
√
m
g̃i(W

t)ϕ′(
〈
wts, x̃

t
i

〉
)
〈
x̃ti, x̃i

〉
+

η

n
√
m

∑

k ̸=i
ykasg̃k(W

t)ϕ′(
〈
wts, x̃

t
k

〉
)
〈
x̃tk, x̃i

〉

≥ η

n
√
m

Ĝrob(W
t)

Cr
γ
(√

d/C1−α
)2

− η√
m
Ĝrob(W

t)
(
C1

(
∥µ∥2+

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)

≥ η

n
√
m

Ĝrob(W
t)

Cr
γ
(√

d/C1−α
)2

− η

n
√
m
Ĝrob(W

t)d

(
C1 + 1

C
+

√
5C1√
C

)
(Assumption (1))

≥ η

2n
√
m

Ĝrob(W
t)

Cr
γ
(√

d/C1 − α
)2

> 0. (α ≤ ∥µ∥ ≤ 1
2

√
d/C1; C sufficiently large)

This implies that (i, s) ∈ A(t+ 1) ∩ T , therefore (E1) holds.

Next we consider the following for any t ≥ 1

yif(x̃i;Wt+1)− yif(x̃i;Wt)

=
η

n

n∑

k=1

g̃k(W
t)λk(x̃i;Wt)

〈
ykx̃tk, yix̃i

〉

=
η

n
g̃i(W

t)λi(x̃i;Wt)
〈
x̃ti, x̃i

〉
+
η

n

∑

k ̸=i
g̃k(W

t)λk(x̃i;Wt)
〈
ykx̃tk, yix̃i

〉
.

The first term gives us

η

n
g̃i(W

t)λi(x̃i;Wt)
〈
x̃ti, x̃i

〉
≥ η

n
g̃i(W

t)λi(x̃i;Wt)
(√

d/C1 − α
)2

≥ η

n
g̃i(W

t)
γ2

m

∣∣Ai(t) ∩ Ai(t+ 1)
∣∣
(√

d/C1 − α
)2

(Proposition B.24)

≥ η

n
g̃i(W

t)
γ2

m

∣∣Ai(0) ∩ T i
∣∣
(√

d/C1 − α
)2

((E1))
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≥ ηγ2c0
n

(√
d/C1 − α

)2
g̃i(W

t). (Lemma B.25)

On the other hand,

η

n
g̃i(W

t)λi(x̃i;Wt)
〈
x̃ti, x̃i

〉
≤ η

n

(√
C1d+ α

)2
g̃i(W

t).

The second terms tells us that

η

n

∣∣∣∣∣∣

∑

k ̸=i
g̃k(W

t)λk(x̃i;Wt)
〈
ykx̃tk, yix̃i

〉
∣∣∣∣∣∣

≤ η
(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
Ĝrob(W

t)

≤ ηdg̃i(W
t)

n
. (Ĝrob(W

t) ≤ Cr g̃i(W
t); Assumption (1) for large enough C)

Similarly,

η

n

∑

k ̸=i
g̃k(W

t)λk(x̃i;Wt)
〈
ykx̃tk, yix̃i

〉

≥ −η
(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
Ĝrob(W

t)

≥ −ηCr
(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
g̃i(W

t) (Ĝrob(W
t) ≤ Cr g̃i(W

t))

≥ −ηγ
2c0
2n

(
0.5
√
d/C1

)2
g̃i(W

t) (Assumption (1) for large enough C)

≥ −ηγ
2c0
2n

(√
d/C1 − α

)2
g̃i(W

t).

Summing the two terms together we have (E2) holds for any t ≥ 1. Now let’s look at the t = 0 case of (E2). From the

proof of Lemma B.21, for any i ∈ [n], there are at least c0m many s ∈ [m], such that yi = as and
〈
w1
s, x̃i

〉
≥ η

5n
√
m

γ
C1
d.

Combining the fact that |
〈
w0
s, x̃i

〉
| ≤

√
3
2ωinit

√
d2

√
C1d ≤ η

√
6C1d√
m

≤ η
n
√
m

√
6C1√

C log(2)
d and C is sufficiently large, we

know that

λk(x̃i;W0) =
1

m

m∑

s=1

ϕ
(〈

w1
s, x̃i

〉)
− ϕ(

〈
w0
s, x̃i

〉
)

⟨w1
s − w0

s, x̃i⟩
ϕ′(
〈
w0
s, x̃

0
k

〉
) ∈ [

c0γ
2

1.1
, 1].

yif(x̃i;W1)− yif(x̃i;W0) =
η

n

n∑

k=1

g̃k(W
0)λk(x̃i;W0)

〈
ykx̃0k, yix̃i

〉

Similar with the logic for t ≥ 1, we get

yif(x̃i;W1)− yif(x̃i;W0)

≥ ηγ2c0
1.1n

(√
d/C1 − α

)2
g̃i(W

0)− ηCr

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
g̃i(W

0)

≥ ηγ2c0
2n

(√
d/C1 − α

)2
g̃i(W

0)

and

yif(x̃i;W1)− yif(x̃i;W0) ≤ η

n
(
√
C1d+ α)2g̃i(W

0) + ηCr

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
g̃i(W

0)

≤ 3η

n
(C1d+ α2)g̃i(W

0)
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Now the proof of (E2) is complete. This implies that yif(x̃
t
i;Wt) ≥ 0, ∀t ≥ 0, i ∈ [n]. Applying the above gives us the

following,

exp
(
−y1f(x̃t+1

1 ;Wt+1)
)

exp
(
−y2f(x̃t+1

2 ;Wt+1)
)

=
exp

(
−y1f(x̃t1;Wt)

)

exp
(
−y2f(x̃t2;Wt)

) · exp
(
y1f(x̃

t
1;Wt)− y1f(x̃

t+1
1 ;Wt+1)

)

exp
(
y2f(x̃

t
2;Wt)− y2f(x̃

t+1
2 ;Wt+1)

)

≤ exp
(
−y1f(x̃t1;Wt)

)

exp
(
−y2f(x̃t2;Wt)

) · exp
(
y1f(x̃

t+1
1 ;Wt)− y1f(x̃

t+1
1 ;Wt+1)

)

exp
(
y2f(x̃

t
2;Wt)− y2f(x̃

t
2;Wt+1)

)

≤ exp
(
−y1f(x̃t1;Wt)

)

exp
(
−y2f(x̃t2;Wt)

) · exp


3η

n

(
C1d+ α2

)
g̃2(W

t)− ηc0γ
2

2n

(√
d

C1
− α

)2

g̃1(W
t)




=
exp

(
−y1f(x̃t1;Wt)

)

exp
(
−y2f(x̃t2;Wt)

) ·exp



ηc0γ

2

2n

(√
d

C1
−α
)2

g̃2(W
t)




3η
n

(
C1d+ α2

)

ηc0γ2

2n

(√
d
C1

−α
)2 −

g̃1(W
t)

g̃2(W
t)





 ,

where the first inequality holds since exp
(
y1f(x̃

t+1
1 ;Wt)

)
≥ exp

(
y1f(x̃

t
1;Wt)

)
, exp

(
y2f(x̃

t+1
2 ;Wt+1)

)
≤

exp
(
y2f(x̃

t
2;Wt+1)

)
by the definition of x̃t1, x̃

t+1
2 .

If
g̃1(Wt)
g̃2(Wt) ≥

3η
n (C1d+α

2)
ηc0γ

2

2n

(√
d/C1−α

)
2 =

6(C1d+α
2)

c0γ2

(√
d/C1−α

)
2 , then

exp(−y1f(x̃
t+1

1
;Wt+1))

exp(−y2f(x̃
t+1

2
;Wt+1))

≤ exp(−y1f(x̃t1;W
t))

exp(−y2f(x̃t
2
;Wt))

≤ Cr/2. Otherwise

we have

exp
(
−y1f(x̃t+1

1 ;Wt+1)
)

exp
(
−y2f(x̃t+1

2 ;Wt+1)
)

≤ 2g̃1(W
t)

g̃2(W
t)

· exp
(
3η

n

(
C1d+ α2

)
g̃2(W

t)− ηc0γ
2

2n

(√
d/C1 − α

)2
g̃1(W

t)

)

≤ 12
(
C1d+ α2

)

c0γ2
(√

d/C1 − α
)2 exp

(
3η

n

(
C1d+ α2

))
(g̃i(W

t) ≤ 1)

≤ 24
(
C1d+ α2

)

c0γ2
(√

d/C1 − α
)2 ≤ Cr/2,

where the last line holds due to exp
(
3η
n

(
C1d+ α2

))
≤ 2 for η ≤ 1/Cd2 with C ≥ 6C1

log(2) given by Assumption (4).

Assumption (1) and Assumption (6) gives us that α ≤ ∥µ∥ ≤ 0.5
√

d
C1

. As a result, there exists a constant Cr =

192C1(C1+1/(4C1))
c0γ2 ≥ 48(C1d+α

2)
c0γ2

(√
d/C1−α

)
2 such that the Lemma statement holds, where C1 comes from Lemma B.4.

Similar with the smooth activation setting, we can characterize a property of the adversarial training example x̃ti using

Lemma B.26: during training the perturbed data x̃ti is close to the linear subspace span{x1, . . . , xn} in R
d.

Lemma B.27. ∀t ∈ N and i ∈ [n], the distance between x̃ti and span{x1, . . . , xn} satisfies dist(x̃ti, span{x1, . . . , xn}) ≤
min

{
ωinit

√
md

η , α
}

.

Proof of Lemma B.27. We define Cd =
ωinit

√
md

η for simplicity. The upper bound α is obvious because the perturbation size

is α. Now we look at Cd. We prove the result via induction. Consider time t = 0, from the symmetric initialization, for any

given x, we have f(x;W0) = 0 is a constant function. Therefore, for any given training data xi, generating the adversarial

examples by adding any perturbations on xi cannot increase the training loss. For simplicity, we consider the algorithm runs

standard GD at time t = 0; i.e. no adversarial training examples are generated for the first step, the adversarial training
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process starts at t ≥ 1. This gives us that dist(x̃0i , span{x1, . . . , xn}) = dist(xi, span{x1, . . . , xn}) = 0 ≤ Cd. Suppose

we have dist(x̃si , span{x1, . . . , xn}) ≤ Cd holds for any 0 ≤ s ≤ t− 1, and we will now prove the result for t.

Recall x̃tk = argmaxx̃∈B2(xk,α)
ℓ(ykf(x̃;Wt)). We decompose x̃tk = x̃tk,∥ + x̃tk,⊥, where x̃tk,∥ ∈ span{x1, . . . , xn} and

x̃tk,⊥⊥ span{x1, . . . , xn}. Assume ∥x̃tk,⊥∥2 > Cd, and we will prove via contradiction. As the loss function is monotonically

decreasing, x̃tk = argminx̃∈B2(xk,α)
ykf(x̃;Wt). As a result, there is no feasible direction that is also a descent direction.

Here we construct directions vθ = −x̃tk,⊥ − θyk(
n∑
i=1

yixi) for every θ ∈ R that satisfies 0 < θ <
∥x̃tk,⊥∥2

2√
(α2−∥x̃t

k,⊥
∥2
2
)·8C1dn

. We

have that

〈
x̃tk − xk, vθ

〉
=

〈
x̃tk,⊥ + x̃tk,∥ − xk,−x̃tk,⊥ − θyk(

n∑

i=1

yixi)

〉

=

〈
x̃tk,∥ − xk,−θyk(

n∑

i=1

yixi)

〉
+
〈
x̃tk,⊥,−x̃tk,⊥

〉

≤ θ∥x̃tk,∥ − xk∥2 · ∥
n∑

i=1

yixi∥2 − ∥x̃tk,⊥∥22

≤ θ
√
(α2 − ∥x̃tk,⊥∥22) · 8C1dn− ∥x̃tk,⊥∥22 < 0, (Lemma B.4 (C4))

therefore vθ are feasible directions. From the above discussion, we know that vθ cannot be descent directions. Pick

θ =
∥x̃tk,⊥∥2

2√
8α2C1dn

. Since sufficient neurons are activated for every x̃ ∈ B2(xk, α), we know there exist at least c0m many

s ∈ [m] such that
〈
wts, x̃

t
k

〉
> 0. From the form of the classifier ykf(x̃;Wt) = yk

1√
m

m∑
s=1

asϕ(⟨wts, x̃⟩), and combining the

fact that ϕ is strictly increasing on (0,+∞), there exists an s0 such that ykas0
〈
wts0 , vθ

〉
≥ 0.

0 ≥ ykas0
〈
wts0 ,−vθ

〉

=

t−1∑

t′=0

ykas0

〈
wt

′+1
s0 − wt

′

s0 , x̃
t
k,⊥ + θyk(

n∑

i=1

yixi)

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑

i=1

yixi)

〉

=

t−1∑

t′=0

ykas0

〈
ηas0
n
√
m

n∑

k′=1

g̃k′(W
t′)ϕ′(

〈
wt

′

s0 , x̃
t′

k′

〉
)yk′ x̃

t′

k′ , x̃
t
k,⊥ + θyk(

n∑

i=1

yixi)

〉
+ ykas0

〈
w0
s0 ,x̃

t
k,⊥ + θyk(

n∑

i=1

yixi)

〉

=
t−1∑

t′=0

〈
η

n
√
m

n∑

k′=1

g̃k′(W
t′)ϕ′(

〈
wt

′

s0 , x̃
t′

k′

〉
)yk′ x̃

t′

k′,∥, θ(
n∑

i=1

yixi)

〉

+

t−1∑

t′=0

yk

〈
η

n
√
m

n∑

k′=1

g̃k′(W
t′)ϕ′(

〈
wt

′

s0 , x̃
t′

k′

〉
)yk′ x̃

t′

k′,⊥, x̃
t
k,⊥

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑

i=1

yixi)

〉

≥ θ

t−1∑

t′=0

c0γηdĜrob(W
t′)

8C1Cr
√
m

−
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 − 2ωinit

√
d(∥x̃tk,⊥∥2 + θ

√
8C1dn)

(∥x̃t
′

k′,⊥∥2 ≤ Cd from induction, and sufficiently many neurons activated)

≥ ∥x̃tk,⊥∥22√
8α2C1dn

t−1∑

t′=0

c0γηdĜrob(W
t′)

8C1Cr
√
m

−
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 − 2ωinit

√
d(∥x̃tk,⊥∥2 +

∥x̃tk,⊥∥22
α

) (plug in θ)

≥ ∥x̃tk,⊥∥22√
α2C1dn

t−1∑

t′=0

c0γηdĜrob(W
t′)

32C1Cr
√
m

−
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 − 2ωinit

√
d∥x̃tk,⊥∥2

(ωinit ≤ η√
md

≤ η√
Cmn

and C sufficiently large)

≥ Cd∥x̃tk,⊥∥2√
α2C1dn

t−1∑

t′=0

c0γηdĜrob(W
t′)

32C1Cr
√
m

−
t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 − 2ωinit

√
d∥x̃tk,⊥∥2
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≥ Cd∥x̃tk,⊥∥2√
α2C1dn

t−1∑

t′=0

c0γηdĜrob(W
t′)

32C1Cr
√
m

− 5

t−1∑

t′=0

Cdη√
m
Ĝrob(W

t′)∥x̃tk,⊥∥2 (
t−1∑
t′=0

Ĝrob(W
t′) ≥ Ĝrob(W

0) = 1
2 )

> 0. (d ≥ Cnα2 from Assumption (1), and C sufficiently large)

This is a contradiction. Therefore, we have proved dist(x̃tk, span{x1, . . . , xn}) = ∥x̃tk,⊥∥2 ≤ Cd. By induction, proof is

complete.

Similar with the smooth activation setting, we can prove a different version of Lemma B.4 (C5) and (C6) that will be used

later.

Lemma B.28. ∀i ∈ C, 1
3 ∥µ∥

2 ≤
〈
µ, yix̃

t
i

〉
≤ 3 ∥µ∥2. ∀i ∈ N , −3 ∥µ∥2 ≤

〈
µ, yix̃

t
i

〉
≤ − 1

3 ∥µ∥
2
.

Proof of Lemma B.28. From Lemma B.4 (C5) and (C6), we know that 1
2 ∥µ∥

2 ≤ ⟨µ, yixi⟩ ≤ 2 ∥µ∥2 holds for all i ∈ C, and

−2 ∥µ∥2 ≤ ⟨µ, yixi⟩ ≤ − 1
2 ∥µ∥

2
holds for all i ∈ N . Therefore, it suffices to prove |

〈
µ, yix̃

t
i

〉
− ⟨µ, yixi⟩ | ≤ 1

6 ∥µ∥
2
. We

can decompose x̃ti−xi = (x̃ti−xi)∥+(x̃ti−xi)⊥, where (x̃ti−xi)∥ ∈ span{x1, . . . , xn} and (x̃ti−xi)⊥⊥ span{x1, . . . , xn}.

From Lemma B.10, ∥(x̃ti − xi)⊥∥2 ≤ min{Cd, α} ≤ Cd ≤ 1. For the parallel component, we can write (x̃ti − xi)∥ =
n∑
k=1

zkxk, where zk ∈ R. From Lemma B.4 (C4), α2 ≥ ∥x̃ti − xi∥22 ≥ ∥(x̃ti − xi)∥∥22 ≥ d
8C1

·
n∑
k=1

z2k. Thus,

√
8C1nα2

d ≥
√
n

n∑
k=1

z2k ≥
n∑
k=1

|zk|.

Now we can prove the statement.

|
〈
µ, yix̃

t
i

〉
− ⟨µ, yixi⟩ | = |

〈
µ, x̃ti − xi

〉
|

≤ |
〈
µ, (x̃ti − xi)∥

〉
|+ |

〈
µ, (x̃ti − xi)⊥

〉
|

≤
n∑

k=1

|zk| · | ⟨µ, xk⟩ |+ Cd∥µ∥

≤
√

8C1nα2

d
· 2∥µ∥2 + Cd∥µ∥

≤ 1

6
∥µ∥2 . (Assumption (B2), Assumption (1) and C being sufficiently large)

Lemma B.29, an analog of Lemma B.15, aims at providing the convergence guarantees of robust training loss for networks

with non-smooth activation functions.

Lemma B.29. For a non-smooth homogeneous activation function ϕ, provided C > 1 is sufficiently large, then on a good

run, the robust training loss satisfies

L̂rob(W
T ) ≤ 30

∥µ∥ γc0
√
ηT

.

where c0 > 1 is the constant in Lemma B.21.

Proof of Lemma B.29. The proof is similar with Lemma B.15. We first need to show a lower bound for

∥∥∥∇L̂rob(W
t)
∥∥∥
F
=

supU:∥U∥F=1

〈
−∇L̂rob(W

t),U
〉

, and it suffices to construct a matrix V with Frobenius norm at most one such that
〈
−∇L̂rob(W

t),V
〉

is bounded from below by a positive constant. To this end, choose V ∈ R
m×d be the matrix with rows

vs =
1√
m
asµ/ ∥µ∥ , ∀s ∈ [m]. Then ∥V∥F = 1 since as = ±1, and we have for any Wt,

〈
∇f(x̃i;Wt),V

〉
=

m∑

s=1

1√
m
asϕ

′(
〈
wts, x̃i

〉
) ⟨vs, x̃i⟩ =

〈
µ

∥µ∥ , x̃i
〉

1

m

m∑

s=1

ϕ′(
〈
wts, x̃i

〉
).

52



Benign Overfitting in Adversarial Training of Neural Networks

1 ≥ 1

m

m∑

s=1

ϕ′(
〈
wts, x̃i

〉
)

≥ 1

m

∑

s∈Ai(t)∩T i
ϕ′(
〈
wts, x̃i

〉
) (Only count the neurons that satisfy ⟨wts, x̃i⟩ > 0)

≥ 1

m

∑

s∈Ai(0)∩T i
ϕ′(
〈
wts, x̃i

〉
) ≥ c0γ. (Lemma B.26)

By Lemma B.4 and Lemma B.28, we have
{
yi ⟨µ, xi⟩ ≥ 1

2 ∥µ∥
2
, i ∈ C

|⟨µ, xi⟩| ≤ 3
2 ∥µ∥

2
, i ∈ N ,

{
yi ⟨µ, x̃i⟩ ≥ 1

3 ∥µ∥
2
, i ∈ C

|⟨µ, x̃i⟩| ≤ 3 ∥µ∥2 , i ∈ N
And ∀z > 0, ϕ′(z) ≥ γ > 0, so applying Lemma B.25, we have the following lower bound for any Wt,

yi
〈
∇f(xi;Wt),V

〉
≥
{
γ
2 ∥µ∥ · c0, i ∈ C
− 3

2 ∥µ∥ , i ∈ N , yi
〈
∇f(x̃i;Wt),V

〉
≥
{
γ
3 ∥µ∥ · c0, i ∈ C
−3 ∥µ∥ , i ∈ N

Similar as Lemma B.15, we have

〈
−∇L̂rob(W

t),V
〉
≥ γ ∥µ∥

4
c0Ĝrob(W

t).

Thus we have

Ĝrob(W
t) ≤ 4

γ ∥µ∥ c0

〈
−∇L̂rob(W

t),V
〉
≤ 4

γ ∥µ∥ c0

∥∥∥∇L̂rob(W
t)
∥∥∥
F
.

We next give an upper bound on
∥∥Wt

∥∥2
F

as follows:

∥∥Wt+1
∥∥2
F

(16)

=
∥∥∥Wt − η∇L̂rob(W

t)
∥∥∥
2

F

=
∥∥Wt

∥∥2
F
+ η2

∥∥∥∇L̂rob(W
t)
∥∥∥
2

F
− 2η

1

n

n∑

i=1

ℓ′(yif(x̃
t
i;Wt))yi

〈
∇f(x̃ti;Wt),Wt

〉

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 − 2η
1

n

n∑

i=1

ℓ′(yif(x̃
t
i;Wt))yi

〈
∇f(x̃ti;Wt),Wt

〉
(Equation (5))

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 + 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yi

m∑

s=1

as√
m
ϕ′(
〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(W

t)2 + 2η
1

n

n∑

i=1

g(yif(x̃
t
i;Wt))yif(x̃

t
i;Wt)

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η. (g(z)z ≤ 1

3 , g(z) ≤ 1)

Telescoping gives us that

∥∥Wt
∥∥2
F
≤
∥∥W0

∥∥2
F
+

(
η2
C2

2d

n
+

2

3
η

)
t.

We apply the same argument as B.15. Recall from Lemma B.26 (E2) that ∀t ≥ 0, ykf(x̃k;Wt+1) ≥ ykf(x̃k;Wt), ∀x̃k ∈
B2(xk, α), ∀k ∈ [n]. Then we have ykf(x̃

T
k ;WT ) ≥ ykf(x̃

T
k ;Wt), and therefore ℓ(ykf(x̃

T
k ;WT )) ≤ ℓ(ykf(x̃

T
k ;Wt)) ≤

ℓ(ykf(x̃
t
k;Wt)) by definition that x̃ti = argmaxx̃i∈B2(xi,α) ℓ

(
yif(x̃i;Wt)

)
, t ≤ T . As a result, we have

L̂rob(W
T ) =

1

n

n∑

i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;WT )

)
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≤ 1

T

T−1∑

t=0

1

n

n∑

i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;Wt)

)

=
1

T

T−1∑

t=0

2

n

n∑

i=1

max
x̃i∈B2(xi,α)

−ℓ′
(
yif(x̃i;Wt)

)
(ℓ (z) ≤ −2ℓ′(z) when z ≥ 0, Lemma B.26 (E2))

=
2

T

T−1∑

t=0

Ĝrob(W
t)

≤ 8

∥µ∥ γc0T
T−1∑

t=0

〈
−∇L̂rob(W

t),V
〉

=
8

∥µ∥ γc0ηT
(〈

WT ,V
〉
−
〈
W0,V

〉)
(Equation (15))

≤ 8

∥µ∥ γc0ηT
(∥∥WT

∥∥
F
+
∥∥W0

∥∥
F

)

≤ 8

∥µ∥ γc0ηT

(
2
∥∥W0

∥∥
F
+

√(
η2
C2

2d

n
+

2

3
η

)
T

)

≤ 8

∥µ∥ γc0ηT

(
ωinit

√
6md+

√(
C2

2d

nCd2
+

2

3

)
ηT

)
(Lemma B.3, Assumption (4))

≤ 8

∥µ∥ γc0ηT

(
√
6η +

√(
1

nd
+

2

3

)
ηT

)
. (Choose C ≥ C2

2 )

≤ 30

∥µ∥ γc0
√
ηT

.

Thus ∀ε > 0, T ≥
(

30
∥µ∥γc0√ηε

)2
guarantees L̂rob(W

T ) ≤ ε.

Now we switch to prove generalization guarantees. Lemma B.30 provides lower bound on both the local difference

of asy
(〈

wt+1
s , x

〉
− ⟨wts, x⟩

)
and the global difference of asy

(
⟨wts, x⟩ −

〈
w0
s, x
〉)

, which serves a similar purpose as

Lemma B.13 in networks with smooth activation functions.

Lemma B.30. Assume (x, y) ∼ Dc, x = yµ+ ξ. Fix some t > 0. On a good run, there exist constants c7, C
′ > 0, C ′′ > 0

such that the following holds for all s ∈ [m] and for all τ < t with probability at least 1− 3(d/n)−11 w.r.t. ξ,

asy
(〈

wτ+1
s , x

〉
− ⟨wτs , x⟩

)

≥ c7η√
m

(
∥µ∥2 − C ′ max

i∈[n]
|⟨ξi, ξ⟩| − C ′α

√
d log

(
d

n

))
Ĝrob(W

τ ).

Concurrently,

asy
(〈

wts, x
〉
−
〈
w0
s, x
〉)

≥ c7η√
m

(
∥µ∥2 − C ′′√d log (dm/n) /n

) t−1∑

τ=0

Ĝrob(W
τ ).

Proof of Lemma B.30. Consider xi = yciµ + ξi, x = yµ + ξ, where yci and y are the clean label. Denote x̃ti =
argmaxx̃∈B2(xi,α) ℓ(yif(x̃;Wt)), ϵti = x̃ti − xi. Then we have

asy
(〈

wt+1
s , x

〉
−
〈
wts, x

〉)
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=
η

n
√
m

n∑

i=1

yiyg̃i(W
t)ϕ′(

〈
wts, x̃

t
i

〉
)
〈
yciµ+ ξi + ϵti, yµ+ ξ

〉

=
η

n
√
m

n∑

i=1

yiyg̃i(W
t)ϕ′(

〈
wts, x̃

t
i

〉
)
(
yci y ∥µ∥2 + y

〈
µ, ξi + ϵti

〉
+ yci ⟨µ, ξ⟩+

〈
ϵti + ξi, ξ

〉)

=
η

n
√
m

n∑

i=1

g̃i(W
t)ϕ′(

〈
wts, x̃

t
i

〉
)
(
∥µ∥2 + yci

〈
µ, ξi + ϵti

〉)

︸ ︷︷ ︸
B1(t)

− 2η

n
√
m

∑

i∈N
g̃i(W

t)ϕ′(
〈
wts, x̃

t
i

〉
)
(
∥µ∥2 + yci

〈
µ, ξi + ϵti

〉)

︸ ︷︷ ︸
B2(t)

+
η

n
√
m

n∑

i=1

yiy
c
i yg̃i(W

t)ϕ′(
〈
wts, x̃

t
i

〉
) ⟨µ, ξ⟩

︸ ︷︷ ︸
B3(t)

+
η

n
√
m

n∑

i=1

yiyg̃i(W
t)ϕ′(

〈
wts, x̃

t
i

〉
)
〈
ξi + ϵti, ξ

〉

︸ ︷︷ ︸
B4(t)

.

We now bound each of the term separately. Recall from Lemma B.4 and Lemma B.28 that |⟨µ, ξi⟩| ≤ ∥µ∥2

2 and

|⟨µ, ϵti⟩| ≤ ∥µ∥2

6 , also lemma B.25 gives us that |As(t)| ≥ |As(0) ∩ Ts| ≥ c0n, together with Lemma B.26 gives us

that
∑
i∈As(t) gi(W

t) ≥ nc0Ĝrob(Wt)
Cr

. Therefore, for B1(t), we have

B1(t) ≥
ηγ

n
√
m

· ∥µ∥
2

3

∑

i∈As(t)
g̃i(W

t) (Lemma B.26)

≥ ηc0γ

Cr
√
m

· ∥µ∥
2

3
Ĝrob(W

t)

For B2(t), we have

|B2(t)| ≤
ηCr√
m

(
1

C
+

√
2

C

)(
3 ∥µ∥2 + 2 ∥µ∥α

)
Ĝrob(W

t)

≤ ηc0γ

4Cr
√
m

· ∥µ∥
2

3
Ĝrob(W

t),

where the last inequality holds for large enough C and α ≤ ∥µ∥.

For B3(t), define event E1 =
{
|⟨µ, ξ⟩| ≤ c6

√
11 log (d/n) ∥µ∥

}
. Apply Proposition B.23 (D1) gives us that P(E1) ≥

1− (d/n)−11. Therefore conditioning on E1 gives us that,

|B3(t)| ≤
ηCr√
m
Ĝrob(W

t) |⟨µ, ξ⟩|

≤ c6ηCr√
m

√
11 log (d/n) ∥µ∥ Ĝrob(W

t)

≤ c6ηCr√
m

√
11 log

(
∥µ∥4 /C4

)
∥µ∥ Ĝrob(W

t) (Assumption (B2))

≤ ηc0γ

4Cr
√
m

· ∥µ∥
2

3
Ĝrob(W

t). (Choose large enough C)

For B4(t), we have

|B4(t)| ≤
η√
m

max
i∈[n]

g̃i(W
t)max
i∈[n]

∣∣〈ξi + ϵti, ξ
〉∣∣ ≤ ηCr√

m
Ĝrob(W

t)

(
max
i∈[n]

|⟨ξi, ξ⟩|+ α ∥ξ∥
)
.
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Proposition B.23 (D2) gives us that with probability at least 1− (d/n)−11 w.r.t. ξ, ∥ξ∥ ≤ 10
√
d log

(
d
n

)
. Conditioning on

this event gives us that

|B4(t)| ≤
ηCr√
m
Ĝrob(W

t)

(
max
i∈[n]

|⟨ξi, ξ⟩|+ 10α

√
d log

(
d

n

))
.

Combining B1(t), B2(t), B3(t), B4(t) gives us the following:

asy
(〈

wt+1
s , x

〉
−
〈
wts, x

〉)

≥ c7η√
m

(
∥µ∥2 − C ′ max

i∈[n]
|⟨ξi, ξ⟩| − C ′α

√
d log

(
d

n

))
Ĝrob(W

t).

For ⟨wts, x⟩ −
〈
w0
s, x
〉
, we need to consider the cumulative of the four terms. For B4(t) in specific, we have

∥∥∥∥∥

n∑

i=1

t−1∑

τ=0

yiyg̃i(W
τ )ϕ′(⟨wτs , x̃τi ⟩)ξi

∥∥∥∥∥

2

≤ 4d

n∑

i=1

(
t−1∑

τ=0

g̃i(W
τ )ϕ′(⟨wτs , x̃τi ⟩)

)2

≤ 4C2
rdn

(
t−1∑

τ=0

Ĝrob(W
τ )

)2

,

where the first inequality comes from applying Lemma B.4 C3, and the second inequality uses the fact that ϕ′(z) ≤ 1

together with g̃i(W
τ ) ≤ CrĜrob(W

τ ). Thus,

∥∥∥∥∥

n∑

i=1

t−1∑

τ=0

yiyg̃i(W
τ )ϕ′(⟨wτs , x̃τi ⟩)(ξi + ϵτi )

∥∥∥∥∥ ≤ 2Cr
√
dn

(
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Ĝrob(W
τ )

)
+ αn

(
t−1∑

τ=0

Ĝrob(W
τ )

)

≤ 3Cr
√
dn

(
t−1∑

τ=0

Ĝrob(W
τ )

)
.

(α ≤ ∥µ∥, d ≥ Cn∥µ∥2 from Assumption (1) and C large enough)

Therefore,

〈
n∑

i=1

t−1∑

τ=0

yiyg̃i(W
τ )ϕ′(⟨wτs , x̃τi ⟩)(ξi + ϵτi ), ξ

〉
=

∥∥∥∥∥
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〈
ψts, ξ

〉
,

where for simplicity we define ψts =
∑n
i=1

∑t−1

τ=0
yiyg̃i(Wτ )ϕ′(⟨wτs ,x̃

τ
i ⟩)(ξi+ϵτi )

∥∑n
i=1

∑t−1

τ=0
yiyg̃i(Wτ )ϕ′(⟨wτs ,x̃

τ
i ⟩)(ξi+ϵτi )∥ ∈ R

d, which is independent of ξ. This gives

us that

∣∣∣∣∣

t−1∑

τ=0

B4(τ)

∣∣∣∣∣ ≤
3Crη

√
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(
t−1∑
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)
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∣∣〈ψts, ξ
〉∣∣ .

And therefore we have

asy
(〈
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〉
−
〈
w0
s, x
〉)

=
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τ=0

B1(τ) +B2(τ) +B3(τ) +B4(τ)

≥ c7η√
m

(
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Define another event E2 =
{
maxs∈[m] |⟨ψts, ξ⟩| ≤ c6

√
11 log (dm/n)

}
. Applying Proposition B.23 (D1) gives us that

P(E2) ≥ 1− (d/n)−11. Conditioning on the above events, we know

asy
(〈

wts, x
〉
−
〈
w0
s, x
〉)

≥ c7η√
m

(
∥µ∥2 − C ′′√d log (dm/n) /n

) t−1∑

τ=0

Ĝrob(W
τ ).

Applying a union bound, the above holds with probability at least 1− 3(d/n)−11.

Corollary B.31. Assume (x, y) ∼ Dc. Fix some t > 0. On a good run, the following holds for all s ∈ [m] with probability

at least 1− 4(d/n)−11,

asy
〈
wts, x

〉
≥ c7η

4
√
m

∥µ∥2
t−1∑

τ=0

Ĝrob(W
τ ),

where c7 and C ′′ come from Lemma B.30.

Proof of Corollary B.31. With proper C, Assumption (B2) gives us that ∥µ∥2 ≥ 2C ′′√d log (md/n) /n. Therefore,

Lemma B.30 tells us that with probability at least 1− 3(d/n)−11,

asy
(〈

wts, x
〉
−
〈
w0
s, x
〉)

≥ c7η

2
√
m

∥µ∥2
t−1∑

τ=0

Ĝrob(W
τ ).

Using Proposition B.23 as well as Lemma B.3, the following holds with probability at least 1− (d/n)−11,

∣∣〈w0
s, x
〉∣∣ =

∣∣〈w0
s, yµ+ ξ

〉∣∣

≤
∥∥w0

s

∥∥ ∥µ∥+ c6
√
11 log (dm/n)

∥∥w0
s

∥∥ (Proposition B.23 (D1))

≤
∥∥w0

s

∥∥ ∥µ∥+ c6

√
11n ∥µ∥4
C4d

∥∥w0
s

∥∥ (Assumption (B2))

≤
∥∥w0

s

∥∥ ∥µ∥+ c6

√
11n ∥µ∥4

C5n ∥µ∥2
∥∥w0

s

∥∥ (Assumption (1))

≤ 2 ∥µ∥
∥∥w0

s

∥∥ (Choose sufficiently large C)

≤ 4ωinit ∥µ∥
√
d (Lemma B.19)

≤ 4η ∥µ∥√
m

(Assumption (3))

=
8η ∥µ∥√

m
Ĝrob(W

0) (g̃i(W
0) = 0.5)

≤ c7η

4
√
m

∥µ∥2
t−1∑

τ=0

Ĝrob(W
τ ), (17)

where the last line holds from ∥µ∥2 ≥ C log (2) by Assumption (B2) and C being large enough.

Therefore we have
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〈
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〉
≥ c7η

4
√
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τ=0
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Lemma B.32. For any (x, y) ∼ Dc with x = yµ+ ξ, on a good run, there exists some constant c8 > 0 such that

∣∣〈wts, x
〉∣∣ ≤ c8η√

m

(
∥µ∥2 + ∥µ∥ ∥ξ∥+

√
d/n ∥ξ∥+ ∥µ∥α+ ∥ξ∥α

) t−1∑
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Ĝrob(W
τ ), ∀s ∈ [m].

Proof of Lemma B.32. Consider ∀s ∈ [m],

〈
wts, x

〉
=
〈
w0
s, x
〉
+
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τ=0

(〈
wτ+1
s , x

〉
− ⟨wτs , x⟩

)
.

Decompose
〈
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s , x

〉
− ⟨wts, x⟩ into B1(t), B2(t), B3(t), B4(t) the same way as in Lemma B.30.
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ηCr√
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2
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)
Ĝrob(W
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|B2(t)| ≤
ηCr√
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(
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√
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C

)(
3 ∥µ∥2 + 2 ∥µ∥α

)
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|B3(t)| ≤
ηCr√
m
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t) |⟨µ, ξ⟩| ≤ ηCr√
m
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∣∣∣∣∣ ≤
2Crη

√
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ηCr√
m
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∣∣〈w0
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〉∣∣ ≤

∥∥w0
s

∥∥ · ∥x∥ ≤
∥∥w0

s

∥∥ (∥µ∥+ ∥ξ∥) ≤ 2η√
m
(∥µ∥+ ∥ξ∥) (Assumption (3), Lemma B.19)

≤ 2η√
C log (2)

√
m
(∥µ∥2 + ∥µ∥ ∥ξ∥). (Assumption (B2))

Therefore,
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〉∣∣ ≤
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We finally demonstrate the lower bound on the normalized expected conditional margin, similar as Lemma B.14.

Lemma B.33. On a good run, there exists some constant c9 > 0 such that

E(x,y)∼Dc [yf(x;Wt)
∣∣y = 1]∥∥Wt

∥∥
2

≥ c9
√
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√
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√
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√
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Proof of Lemma B.33. Consider the following

yf(x;Wt) =
1√
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∑

as=y
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〈
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〉
)− 1√
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∑
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We first consider y = 1. Denote event E as the conclusion of Corollary B.31 holds, then P(E) ≥ 1 − 4 (d/n)
−11

.

Corollary B.31 indicates that

asy
〈
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and thus
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We now consider on event Ec. Using Lemma B.32 gives us that,
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∥ξ∥1 (Ec)1

(
Ẽ
)
|y = 1

)
≤ E

(
12

√
d log

(
d

n

)
1 (Ec) |y = 1

)
≤ 12

√
d log

(
d

n

)
4(
d

n
)−11 ≤ 0.5(

d

n
)−8,

(d ≥ log (2)Cn2 from Assumption (1) with sufficiently large C)

E

(
∥ξ∥1 (Ec)1

(
Ẽc
)
|y = 1

)
≤ E

(
∥ξ∥1

(
Ẽc
)
|y = 1

)
≤ 8(

d

n
)−16

√
d · (2

√
log

(
d

n

)
) ≤ 0.5(

d

n
)−8.

(Proposition B.23 (D2);d ≥ log (2)Cn2 with sufficiently large C)
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Putting them back gives us that

∣∣E(x,y)∼Dc
[
yf(x;Wt)1 (Ec)

∣∣y = 1
]∣∣

≤ c8η
(
∥µ∥2+∥µ∥α

)
P(Ec|y = 1)

t−1∑

τ=0

Ĝrob(W
τ )+c8η

(
∥µ∥+

√
d/n+α

)
E(∥ξ∥1 (Ec) |y = 1)

t−1∑

τ=0

Ĝrob(W
τ )

≤ c8η
(
∥µ∥2+∥µ∥α

)
4(d/n)−11

t−1∑

τ=0

Ĝrob(W
τ )+c8η

(
∥µ∥+

√
d/n+α

)
(d/n)−8

t−1∑

τ=0

Ĝrob(W
τ )

≤ c8η
(
∥µ∥2 + ∥µ∥α+ ∥µ∥+

√
d/n+ α

)
(d/n)−8

t−1∑

τ=0

Ĝrob(W
τ ) (Assumption (1); choose sufficiently large C)

≤ c9η

8
∥µ∥2

t−1∑

τ=0

Ĝrob(W
τ ). (∥µ∥2 ≥ C log (2) from Assumption (B2);d ≥ log (2)Cn2; choose sufficiently large C)

Therefore, we have

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]

= E(x,y)∼Dc
[
yf(x;Wt)1 (E) |y = 1

]
+ E(x,y)∼Dc

[
yf(x;Wt)1 (Ec) |y = 1

]

≥ E(x,y)∼Dc
[
yf(x;Wt)1 (E) |y = 1

]
−
∣∣E(x,y)∼Dc

[
yf(x;Wt)1 (Ec) |y = 1

]∣∣

≥ c9η

8
∥µ∥2

t−1∑

τ=0

Ĝrob(W
τ ).

Then similar as Lemma B.14, recall that
∥∥W0

∥∥
F
≤ 2ωinit

√
md ≤ 2η ≤ η

√
d/nĜrob(W

0). If
∥∥Wt

∥∥
F
≤ 2

∥∥W0
∥∥
F

,

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]
∥∥Wt

∥∥
2

≥ c9η

16
∥∥W0

∥∥
F

∥µ∥2
t−1∑

τ=0

Ĝrob(W
τ )

≥ c9η

16η
√
d/nĜrob(W

0)
∥µ∥2

t−1∑

τ=0

Ĝrob(W
τ )

≥ c9
√
n

16
√
d
∥µ∥2 . (

∑t−1
s=0 Ĝrob(W

s) ≥ Ĝrob(W
0))

If
∥∥Wt

∥∥
F
> 2

∥∥W0
∥∥
F

, by Lemma B.12, we have

2
∥∥W0

∥∥
F
≤
∥∥Wt

∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d/n

t−1∑

s=0

Ĝrob(W
s).

Thus,

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]
∥∥Wt

∥∥
2

≥ c9

16C2

√
d/n

∑t−1
τ=0 Ĝrob(W

τ )
∥µ∥2

t−1∑

τ=0

Ĝrob(W
τ )

=
c9
√
n

16C2

√
d
∥µ∥2 .

All the above proof holds for expected condition on y = −1.
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B.3. Missing Proofs in Section 3.4

Theorem 3.2. We consider independent label flip with probability β. Let p(x) be the density function of Dclust. For any given

classifier f(·;W), when α < ∥µ∥, we have L
0/1
rob (W) ≥ β+ 1−2β

4

∫
Rd

min{p(ξ), p(ξ+ v)}dξ, where v = 2 (1− α/ ∥µ∥)µ.

When α ≥ ∥µ∥, the robust test error satisfies L
0/1
rob (W) ≥ 0.5.

Proof of Theorem 3.2.

L
0/1
rob (W) = P(x,y)∼D [∃x̃ ∈ B2(x, α) s.t. yf(x̃;W) ≤ 0]

= (1− β)P(x,yc)∼Dc [∃x̃ ∈ B2(x, α) s.t. ycf(x̃;W) ≤ 0]

+ βP(x,yc)∼Dc [∃x̃ ∈ B2(x, α) s.t. ycf(x̃;W) ≥ 0]

= (1− β)P(x,yc)∼Dc

[
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

]

+ β

(
1− P(x,yc)∼Dc

[
max

x̃∈B2(x,α)
ycf(x̃;W) < 0

])

≥ β + (1− 2β)P(x,yc)∼Dc

[
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

]
.

Recall that x = ycµ+ ξ.

Case 1: Consider the case that α ≥ ∥µ∥. We have

1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

)

≥ 1 (f(ξ;W) ≤ 0) + 1 (f(ξ;W) ≥ 0)

≥ 1,

where the first inequality holds because ξ ∈ B2(µ+ ξ, α) and ξ ∈ B2(−µ+ ξ, α). Therefore we have

P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

)

=
1

2
Pξ∼Dclust

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+

1

2
Pξ∼Dclust

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

)

= 0.5Eξ∼Dclust

(
1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))

≥ 0.5.

As a result,

L
0/1
rob (W) ≥ β + 0.5(1− 2β) = 0.5.

Case 2: Consider the case that α < ∥µ∥. Let p(x) denote the density function of Dclust. Define v = (2− 2 α
∥µ∥ )µ. We have

(
1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))

+

(
1

(
min

x̃∈B2(ξ+v+µ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(ξ+v−µ,α)
f(x̃;W) ≥ 0

))

≥
(
1

(
f(ξ +

v

2
;W) ≤ 0

)
+ 0
)
+
(
0 + 1

(
f(ξ +

v

2
;W) ≥ 0

))

≥ 1,

where the first inequality holds because ξ + v
2 ∈ B2(µ+ ξ, α) and ξ + v

2 ∈ B2(ξ + v − µ, α). Therefore we have

P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

)
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=

(
1

2
Pξ∼Dclust

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+

1

2
Pξ∼Dclust

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))

=
1

2
Eξ∼Dclust

(
1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))

=
1

4

∫

Rd

{(
1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))
p(ξ)

+

(
1

(
min

x̃∈B2(ξ+v+µ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(ξ+v−µ,α)
f(x̃;W) ≥ 0

))
p(ξ + v)

}
dξ

≥ 1

4

∫

Rd

min{p(ξ), p(ξ + v)}dξ.

As a result,

L
0/1
rob (W) ≥ β +

1− 2β

4

∫

Rd

min{p(ξ), p(ξ + v)}dξ.

Consider a special instance where Dclust is a standard Gaussian distribution; i.e., N (0, Id). Then the result can be simplify as

L
0/1
rob (W) ≥ β +

1− 2β

2
Φ(−(∥µ∥ − α)),

where Φ(x) := 1√
2π

∫ x
−∞ exp

(
−t2/2

)
dt is the normal cumulative distribution function.

The following result shows that for certain step sizes and initialization, the neural network weights move far from the

initialization after the first step of adversarial training based on gradient descent.

Proposition B.34. Consider the same setting as in Theorem 3.1. Then, for some constant C > 1 defined in Assumption 1,

with probability at least 1− 2δ over the random initialization and the draw of an i.i.d. sample, we have that
∥W1−W0∥

F

∥W0∥F
≥

γ∥µ∥
10 .

Proof of Proposition B.34. Consider V ∈ R
m×d be the matrix with rows vs =

asµ
∥µ∥√m , then we have

∥∥W1 − W0
∥∥
F∥∥W0

∥∥
F

≥
〈
W1 − W0,V

〉
∥∥W0

∥∥
F

=
η
〈
−∇L̂rob(W

0),V
〉

∥∥W0
∥∥
F

≥ γ∥µ∥
4

ηĜrob(W
0)∥∥W0

∥∥
F

(Equation (12))

≥ γ∥µ∥
4

ηĜrob(W
0)√

3/2mdωinit

(Lemma B.3)

≥ γ∥µ∥
5

Ĝrob(W
0) (Assumption (3))

=
γ ∥µ∥
10

. (Equation (9))
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